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Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism1

against pathogens. In tumors, recent studies have uncovered complex macrophage popula-2

tions, including tumor-associated macrophages, which support tumorigenesis through cancer3

hallmarks such as immunosuppression, angiogenesis or matrix remodeling. In the case of4

chronic lymphocytic leukemia, these macrophages are known as nurse-like cells and they5

protect leukemic cells from spontaneous apoptosis contributing to their chemoresistance.6

We propose an agent-based model of monocyte differentiation into nurse-like cells upon7

contact with leukemic B cells in vitro. We performed patient-specific model calibrations using8

cultures of peripheral blood mononuclear cells from patients. Using our model, we were able9

to reproduce temporal survival dynamics of cancer cells in a patient-specific manner and10

to identify patient groups related to distinct macrophage phenotypes. Our results show a11

potentially important role of phagocytosis in the polarization process of nurse-like cells and12

in promoting cancer cells’ enhanced survival.13
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Introduction14

Advances in cancer therapies focusing on the tumor-infiltrating immune cells have led to a dramatic15

improvement in survival of some patients. These therapies are mainly based on the reactivation of immune16

cells that normally detect and eliminate cancer cells and whose cytotoxic activity is inhibited within tumors.17

However, the great progress offered by these approaches is hampered by the limited response rate that18

is observed in around two thirds of the patients (1). Reasons for the low response-rates are sought in19

the intrinsic characteristics of the tumor, but also in the presence of a specific tumor microenvironment20

(TME) that either prevents potential immune effector cells from entering the tumor or renders them21

ineffective in fighting malignant cells. The revolution of immune therapies resulted in a paradigm shift in22

our understanding of cancer and the more we discover about the various cells present in tumors and the23

specific ways in which they interact with each other, the better we will be able to tune the TME to arrest24

tumor growth.25

In recent years, the research focus has been mostly on anti-tumoral T lymphocytes but in many cancers26

the presence of myeloid cells interferes with their killing action. In this project, we aim to better characterize27

the myeloid cells which protect the cancer cells from attack by T cells and promote tumor growth. It has28

long been known that tumors involve high levels of inflammation and for this reason macrophages are29

found in abundance in tumor biopsies (2, 3). Macrophages derive either from circulating monocytes or30

from embryonic progenitors (4), and are usually described to be in two opposite states as pro-inflammatory31

(M1) or anti-inflammatory (M2) macrophages, depending on their environmental signals (5, 6). However,32

recent single-cell studies identified a broader spectrum of phenotypes also impacting their specific functions33

such as phagocytosis, immunoregulation, matrix deposition, tissue remodeling and tumor resistance to34

therapy (7, 8). In tumors, macrophages can be educated by the cancer cells to promote their growth,35

becoming Tumor Associated Macrophages (TAM) (3, 9). Activation of the TAM polarization pathway36

leads to the secretion of several cytokines, such as CXCL12/13, IL-10, and IL-6/IL-8, which are reported to37

have pro-tumoral effect (10, 11), providing protection to the cancer cells.38

A similar ecology of cancer cells and macrophages is established in the case of Chronic Lymphocytic39

Leukemia (CLL), a blood-borne malignancy characterized by the accumulation of large quantities of40

CD19+/CD5+ B cancer cells (hereafter, CLL cells). These cells can be encountered in the bloodstream but41
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also in lymphoid organs (bone marrow, spleen and lymph nodes), forming proliferating centers in which they42

accumulate at high densities, promoting disease progression (12–15). CLL cells are unable to proliferate on43

their own and need to migrate to proliferation centers where they encounter a supportive TME comprising44

T cells, stromal cells and TAM, which are called Nurse-Like Cells (NLCs) in this pathology (16–18). It45

has been widely reported that NLCs are crucial in rescuing CLL cells from spontaneous apoptosis and are46

important in attracting them to the proliferation centers (19–22). While therapies for CLL patients have47

mostly been targeting the cancer cells, it is increasingly apparent that many drugs altering the TME and48

controlling these complex interactions can benefit patients.49

Similarly to cancer cells in solid tumors, CLL cells are able to induce the differentiation of monocytes50

into NLCs through direct contact and cytokine production. This favors the establishment of a pro-tumoral51

environment, protecting the leukemic cells from spontaneous apoptosis, and often leads to therapy resistance52

(23). One of the limitations in the study of TAM is the difficulty in identifying them in bulk tumor53

samples, due to their close similarity with other macrophages that are also present in the TME. However,54

although NLCs and M2-type macrophages display a similar profile in the CLL microenvironment (24),55

we showed that some distinctions can be highlighted, such as high expression of the RAGE membrane56

receptor, the HIF1α and VEGF/EGF transcription factors in NLCs (25). Given the nurturing properties57

of NLCs in the CLL microenvironment, a high number of NLCs has been reported to lead to disease58

progression and shorter overall survival (26, 27). It has also been reported that NLCs express high levels59

of stromal-derived factor 1-α (SDF-1α), a potent chemoattractant for CLL cells inducing their migration60

and pseudo-emperipolesis, corresponding to the crawling of entire CLL cells under macrophages without61

being internalized (28). Beside release of soluble factors, NLCs can also rescue CLL cells by direct contact62

(29) and promote CLL cell survival through LFA-3/CD2 interactions (30). Other molecules released by63

NLCs such as BAFF, BDNF and APRIL have been reported to support survival of CLL cells (31, 32).64

Based on these lines of molecular evidence, we derived general rules of interaction between cancer cells65

and monocytes to explore the mechanisms of cell-cell interactions that lead to the formation of NLCs.66

Importantly, the formation of NLCs can be observed and studied with a biologically relevant in vitro system67

in which patient-derived Peripheral Blood Mononuclear Cells (PBMCs) can be cultured for up to 13 days.68

PBMC are usually composed of 1-3% monocytes and >95% CLL cells, depending on the patient and disease69
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stage. Heterologous in vitro co-cultures of healthy monocytes and patient-derived CLL cells can also be70

used to produce NLCs in the absence of any other cell types. These two systems constitute a great resource71

to identify the processes that take place during the differentiation of monocytes into macrophages and72

their polarization into NLCs, like cell adhesion, phagocytosis performed by macrophages and NLCs and the73

accumulation of CLL cells around NLCs. Moreover, controllable settings in this experiment allow a detailed74

investigation of the conditions that are necessary and sufficient for NLC production, and the generated75

data can be used to propose computational models of this process and fit their parameters.76

Agent-based models (ABMs) represent a discrete modeling approach that enables the simulation of the77

dynamics of populations of individuals in an environment. In principle, ABMs describe the interactions of78

decentralized agents which can be grouped into classes defined by their own characteristics and behavioral79

rules in space and time. This structure enables us to study emergent global behaviors at the population level80

resulting from properties of individual cells and their interactions (33, 34). Importantly, the deterministic81

or stochastic dynamics is spatio-temporal, enabling the identification of spatial patterns of individuals in82

time. In cancer biology, ABMs have been widely used to simulate the dynamics of diverse immune and83

cancer cells populations (35–38). Specifically, models have investigated properties of tumor morphology,84

adaptation of cancer cells in the TME, mutations and phenotype diversity, cell plasticity, the role of the85

extracellular matrix, and the effect of drugs and nutrition on tumor survival and proliferation (39–45).86

Recent works focusing more specifically on macrophages in the TME of solid tumors have mostly exploited87

ODE approaches (46–50). Some ABMs have also been developed to describe the molecular mechanisms88

controlling macrophage polarization, but they do not include cellular interactions with cancer cells (51).89

Over the years, a number of computational tools for implementing ABMs have been developed, including90

advanced methods for incorporating both inter- and intra-cellular interactions to simulate the global91

dynamics of multicellular systems (52, 53). Here, we present an ABM implemented in Netlogo (54, 55)92

aiming to reproduce monocyte differentiation into macrophages and polarization into NLCs upon contact93

with CLL cells. We calibrate it on in vitro cultures of CLL patients’ PBMC and perform extensive parameter94

optimization using parameter exploration based on a genetic algorithm integrated in the OpenMOLE95

framework (56). The model allows us to gain quantitative insights into important factors and cellular96

processes in this biological system, such as phagocytosis and anti-apoptotic signaling mechanisms that97
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protect CLL cells from apoptosis.98

Results99

NLC formation in vitro. In order to observe the formation of NLCs in vitro, autologous cultures from 9 CLL100

patients’ PBMCs were monitored during 13 days Fig. 1A. Daily observation allowed us to see outgrowth101

of big, adherent macrophages, whose phenotype was further assessed by flow cytometry (Fig. S1). An102

example of visualization of NLCs by fluorescence microscopy is shown in Fig. 1B. CLL cell survival over103

time was monitored through measurements of the cell concentration and viability Fig. 1C. CLL cell viability104

represents the proportion of living cells within the cancer cell population, whereas CLL cell concentration is105

the percentage of remaining cells compared to their initial number at seeding. Based on the changes in106

maturating NLC morphology, the expression of myeloid markers on their surface (CD11c, CD14, CD16,107

CD163, CD206), and considering the overall survival state of CLL cells, we have distinguished 4 stages of108

the culture, allowing us to infer individual behaviors in the ABM design:109

• Phase I (Day0 - Day2). The initial state of the culture is characterized by the presence of110

approximately 4.5% apoptotic CLL cells (on average over the 9 patients) as a result of the initial lack111

of pro-survival agents and post-isolation stress. Monocytes attach to the plastic of the culture dish112

and start differentiation into macrophages. Based on the CLL cell countings, the phagocytosis activity113

of the differentiating monocytes is low, resulting in a decrease in the overall CLL cell viability.114

• Phase II (Day2 - Day6). Maturation of macrophages and their further polarization into NLCs115

occurs. Phagocytosis of the dead and apoptotic CLL cells intensifies (efferocytosis), leading to increase116

of global CLL cell viability and decrease of cell concentration. The specific phenotype of macrophages117

is not fully attributed at this stage of the culture, as these cells are still undergoing a differentiation118

process and could potentially belong to various subsets within the M1 (proinflammatory) to M2119

(anti-inflammatory) continuum.120

• Phase III (Day6 - Day9). Macrophages and NLCs reach full maturation. We observe a tendency121

for CLL cells to accumulate around NLCs Fig. 1B as a result of chemoattraction (21, 57). There is122

no clear up- or down-ward trend in CLL cell viability and concentration.123
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Fig. 1. Experimental setups and datasets from in vitro PBMC cultures from CLL patients. A) Experimental set-up. Autologous and heterologous co-cultures of CLL cells
and monocytes leading to NLC formation. In autologous cultures, Peripheral Blood Mononuclear Cells (PBMC) were isolated from CLL patients’ blood samples and cultured in
vitro for 13 days. The cell concentration and viability of CLL cells was monitored by hemocytometer and flow cytometry AnnexinV/7AAD staining, respectively. B) Visualization
of NLCs at 10 days of in vitro culture from two different patients in bright-field and immunofluorescence microscopy (NLC: green staining; CLL cells: red staining). C) Time
course datasets produced from the PBMC autologous cultures from 9 patients. CLL cell survival was monitored by viability assay and concentration measurements. The
black curve corresponds to the mean value averaged over the available data. The shaded area corresponds to the 95% confidence interval. The complete dataset showing
patients variability is available in Supplementary Material (Fig. S2). Time points at which data was not available for at least 4 patients were removed from downstream analysis
(Day 4, 5, 11, and 12). D) Heterologous co-cultures. Monocytes from healthy donors and B cells from CLL patients were co-cultured to assess the relationship between the
initial density of monocytes in the culture and the level of survival of CLL cells after 9 days. The x-axis displays different monocytes initial proportions (not to scale for clarity).
Measurements were performed on co-cultures of B cells from 5 CLL patients and monocytes from 2 healthy donors. The complete data showing inter-patient and inter-donor
variability is available in Supplementary Material (Fig. S3).

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2021.12.17.473137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473137
http://creativecommons.org/licenses/by/4.0/


• Phase IV (Day9 - Day13). The culture enters the steady state phase. CLL cell viability remains124

around 80% and cell concentration reaches 60% of the initial concentration.125

Importantly, CLL cell division was not implemented in this in vitro model, as CLL cells are known to126

proliferate only in the specific conditions found for example in lymph nodes, whereas they become quiescent127

in peripheral blood (58, 59).128

Additionally, to study the potential effect of initial proportion of monocytes in CLL cell survival,129

heterologous co-culture experiments were performed by mixing CLL cells from patients together with130

varying proportions of healthy monocytes, to produce cell viability and concentration readouts at Day 9131

of the co-culture Fig. 1D. We have observed that CLL cell survival at the beginning of the steady state132

phase (Day 9) could be dependent on the monocytes initial proportion. Of note, CLL patients’ blood133

sample quantities and their insufficient monocyte counts did not allow us to perform this experiment in an134

autologous setting with B cells and monocytes from the same patient.135

An agent-based model of NLC formation. The CLL cell survival dynamics observed in vitro can be described136

as the evolution of a system composed by two main cell populations (Fig. 2A): cancer cells (CLL cells)137

and myeloid cells (monocytes, macrophages, NLCs). In our model, cancer cells can be found in 3 states,138

depending on their life status: (i) NeedSignal (red arrow), when they are still above the apoptosis139

threshold and are attracted to NLCs, (ii) Apoptotic (yellow arrow), an irreversible state in which the cells140

will continue to move and eventually die and (iii) Dead (grey arrow), when the cells have reached the death141

threshold and will remain immobile. Myeloid cells can be found under 3 states as well, corresponding142

to their differentiation and polarization state: (i) Monocyte, (ii) Macrophage or (iii) NLC, characterized143

by specific properties and spatio-temporal behaviors including movement, phagocytosis (efferocytosis) or144

cell-cell interactions (Fig. 2B). From the dynamics shown in Fig. 1C, microscopy observations (Fig. 1B)145

and flow cytometry data on the evolution of the NLC phenotype (Fig. S1), we deduced several key processes146

that might determine the cells’ interactions and state transitions. These include: chemoattraction of CLL147

cells to NLCs, a progressive adherence process of monocytes to the culture dish, corresponding to the148

monocyte-to-macrophage differentiation in the model, appearance of the first NLCs around Day 4, and the149

implementation of different levels of phagocytosis efficiencies depending on the myeloid class (Monocyte,150

Macrophage, NLC ). The ABM of the co-culture of monocytes with CLL cells was implemented in NetLogo151

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2021.12.17.473137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473137
http://creativecommons.org/licenses/by/4.0/


(54, 55), in which space and time are discrete. Based on the experimental observation that macrophages and152

CLL cells concentrate at the bottom of the culture dish, the model was built in 2D, mimicking a projection153

of a cylindrical plate. Space is thus represented by a 2D lattice, where each cell occupies one spatial unit154

called “patch” of the size of a CLL cell (∼5µm). We made the simplification that cancer cells and myeloid155

cells occupy the same surface. There can only be one cell per patch and cells can move only on surrounding156

empty patches, according to their class and their corresponding mobility parameters. The model time step157

is one hour. The simulation duration was set to 13 days, corresponding to the experimental time-course158

performed experimentally.159

Briefly, at the beginning of the simulation, CLL cells and monocytes are instantiated in space randomly,160

with their class-specific property (life expectancy and differentiation time required for the monocyte-161

to-macrophage differentiation, respectively) set to values from characteristic distributions (Γ(x,nslife-init
Γα ,162

nslife-init
Γβ ) and N(0, monodiff

Nσ ), respectively). Monocytes will differentiate (gain of 1 unit at each time step)163

and will convert into Macrophages after reaching the differentiation threshold (monodiff
threshold). Cancer cells164

will decrease their life expectancy in a progressive manner (loss of 1 unit at each time step). When cancer165

cells reach the apoptosis threshold (apothreshold) and later the death threshold (deaththreshold), they will166

update their class from NeedSignal to Apoptotic, and from Apoptotic to Dead, respectively. Importantly,167

myeloid cells can phagocytose Apoptotic and Dead cancer cells with a characteristic efficacy, which depends168

on several class-specific parameters (phagocytosis efficiency, sensing distance and the movement probability169

of apoptotic cells), allowing efferocytosis, which corresponds to the clearance of apoptotic and dead cells170

from the culture environment. Besides phagocytosis, since certain macrophages in the M1-M2 spectrum171

could potentially kill the cancer cells (60), we implemented a killing efficiency for the Macrophage class172

so that they are able to actively kill cancer cells with a low efficiency (0-5%). After spending sufficient173

time in contact with cancer cells (nlcthreshold), Macrophages will polarize into NLCs, representing a shift in174

the phenotype of myeloid cells from Macrophage class to NLC class. NLCs secrete anti-apoptotic signals175

which will provide protective effects to the cancer cells, allowing them to fight apoptosis and survive longer176

through a life extension period (anti-apoboost). This can be seen as supplemental hours for the cancer cells177

to remain alive, before entering the Apoptotic state.178

A complete description of the different cell classes and rules is available in the Materials and Methods179
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section and as UML class diagrams in Fig. S4. The model features 19 parameters that were calibrated180

through parameter exploration (Supplementary Table 1). We highlight that, due to our general approach181

to model cellular interactions, the parameter values should be taken more qualitatively than quantitatively,182

representing the different mechanisms at play at a more abstract level.183

NeedSignal
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Monocyte

Macrophage

NLC

A B

Monocyte

Macrophage

NLC
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nslife-init
Γ(α,β)
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apomp

macronlc-pol
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monoφeff

monodiff
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N(0,σ)

transition

Fig. 2. ABM representations. A) Netlogo simulation of 5000 cells. Cancer cells are depicted as small arrows (red, yellow or grey for NeedSignal, Apoptotic or Dead state,
respectively) and myeloid cells are depicted as pentagons (blue, orange or green for Monocyte, Macrophage or NLC, respectively). B) Schematic diagram of the agents’
states and behaviors. Parameters optimized through the genetic algorithm are indicated next to their corresponding cellular processes, represented by arrows.

Parameter space exploration. Based on the two-dimensional ABM of monocyte-to-NLC differentiation in184

presence of CLL cells described in the previous section, we performed multiple simulations, limiting the185

parameters to values able to broadly reproduce the experimentally observed dynamics shown in Fig. 1C.186

This empirical approach was used to estimate the ranges to be systematically explored for each parameter187

(Supplementary Table 1). These include for example the parameters corresponding to the heterogeneous188

process of differentiation of monocytes into macrophages (monodiff
threshold, monodiff

Nσ ) set at the beginning of189

the co-culture. Parameters monodiff
threshold and monodiff

Nσ were tested empirically with fixed values between190

48h and 72h, and between 0h to 48h, respectively, since monocytes were observed to adhere to the plate191

heterogeneously from Day 0 to Day 3. Parameters corresponding to the conversion of macrophages into192

NLCs (N(macronlc-pol
Nµ , macronlc-pol

Ns )) were also chosen from ranges allowing the NLCs to start appearing193

around Day 4 and terminating their polarization around Day 8, as observed in the FACS data (Fig. S1).194

To determine the exact parameter values able to reproduce the CLL cell survival dynamics observed195
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experimentally in the PBMC autologous cultures (Fig. 1C), we then performed an automated parameter196

search employing the non-dominated sorting genetic algorithm-II (NSGA-II, (61, 62), Fig. 3A), implemented197

in openMOLE (56). This procedure systematically generates populations of parameter sets and evolves198

the candidate solutions towards higher values of two objective fitness functions, minimizing the difference199

between the simulated CLL cell viability and concentration and the corresponding experimental time-course200

data shown in Fig. 1C. Simulations were run on 1000 cells using averaged monocyte initial proportion and201

averaged apoptotic cell initial proportion over the 9 patients (1.28% and 4.55%, respectively).202

A total of 98 parameter sets were obtained as optimal solutions from the Pareto front, whose convex203

shape indicates the anti-correlated nature of the two fitnesses (Fig. 3B). Evolution of the fitness values on204

cell viability and concentration dynamics showed that the NSGA-II algorithm converged in early generations205

(∼500), ensuring that after 20’000 generations the parameter space was sufficiently explored to provide206

confidence in the resulting optimized parameters (Fig. S5). Generally, in multi-objective optimization207

methods, choosing a specific set of parameters from the optimization results requires both biological and208

computational reasoning. In our case, we particularly focused on three parameter sets, maximizing fitness209

on viability, concentration, and the knee-point on the Pareto front (Fig. 3B,C), defined as the point on the210

Pareto front that optimizes both constraints equally well and which usually represents the best trade-off.211

In addition, the distribution of each parameter value within solutions on the Pareto front (Fig. 4A) allows212

us to check for consistency between the result of the optimization algorithm and our biological observations.213

For example, monocyte phagocytosis efficiency (monoϕeff) is skewed towards low values while macrophage214

phagocytosis efficiency (macroϕeff) is skewed towards higher values. This is consistent with the experimental215

observation that phagocytosis in the first days (Day 0-2) is negligible, since dead cells accumulate and216

viability decreases. Indeed, in the first days, monocytes are non-adherent and, it is only when they adhere217

to the plate and differentiate into functional macrophages that we observe dead cells getting cleared from218

the population, with viability increasing again around Day 3-4 of the culture. It has been also reported219

that adherence is required to prime monocytes for their phagocytic functions (63–65). Furthermore, high220

values of anti-apoboost are selected, indicating the importance of the protective role of NLCs for CLL cells221

in the observed dynamics. Pearson correlations between the parameters and the two fitness functions222

shed light on the most important parameters defining the model fit (Fig. 4B,C). They suggest a strong223
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Fig. 3. Overview of strategy and results of the parameter exploration. A) Schematic diagram of the bi-objective genetic algorithm. Flow chart of the NSGA-II algorithm
procedure. The algorithm parameters and procedure details are described in the Materials and Methods section. B) Pareto front of the bi-objective optimization. The
NSGA-II genetic algorithm evaluates each explored set of parameters according to 2 objective functions corresponding to CLL cell viability and concentration (10 time points,
least squares method), along 20’000 generations. The Pareto front, depicted in red, contains 98 non-dominated solutions. The knee-point parameter set is in a cyan box and
the parameter sets performing best on viability and concentration dynamics are in magenta boxes. C) Representative parameter sets. The parameters listed here correspond
to the knee-point parameter set, and to the parameter sets fitting best viability and concentration dynamics.

role for the CLL cells’ life expectancy heterogeneity (i.e. parameters of the Gamma distribution of the224

cancer cells’ life property value at initialization) and of the macrophages’ phagocytosis efficiency in225

obtaining a higher fitness for viability (Fig. 4B). Other parameters involved in monocyte-to-macrophage226

differentiation timing (monodiff
threshold, monodiff

Nσ ), macrophage-to-NLC polarization (nlcthreshold, macronlc-pol
Nµ ),227

or NLC phagocytosis efficiency (nlcϕeff) are the most important to fit the concentration readout (Fig. 4C).228

This suggests that different mechanisms might be at play in reproducing the experimentally observed229

dynamics. Additionally, we cannot exclude that other parameter sets from the Pareto front reach the230

expected outcomes on viability and concentration equally well, due to potential coupling between some231

parameters (Fig. S6). Full investigation of the implications of these parameter correlations in the model232

would require further experimental validation and is beyond the scope of this work.233

Model performance in recapitulating averaged patient CLL cell survival dynamics. We evaluated the 3234

Pareto front’s representative parameter sets against experimental data from CLL cell survival in PBMC235

autologous cultures averaged from 9 different patients and observed that the knee-point set performed236

the best as measured by the Normalized Root Mean Squared Errors (NRMSE) and R2 values (knee-point237

set: NRMSEvia=0.2, R2
via=0.5 and NRMSEconc=0.13, R2

conc=0.85; best-viability set: NRMSEvia=0.16,238

R2
via=0.66 and NRMSEconc=0.53, R2

conc=-1.66; best-concentration set: NRMSEvia=0.29, R2
via=-0.07 and239

NRMSEconc=0.13, R2
conc=0.84, Fig. 5A-C). For this reason, the knee-point set was chosen for further240
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Fig. 4. Parameter distributions and correlations. A) Parameter distribution of the searched space and of the Pareto front solutions. The violin plots show the
distribution of parameter values in the entire search space after parameter exploration throughout 20’000 generations. The swarm plots represent the 98 non-dominated
solutions of the Pareto front. The cyan dot in each plot corresponds to the corresponding parameter value in the knee-point set. B) Parameter correlations with fitness
on viability. The parameters are ranked based on the absolute value of their correlation coefficient with fitness on viability. textbfC) Parameter correlations with fitness on
concentration. The parameters are ranked based on the absolute value of their correlation coefficient with fitness on concentration.
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evaluation of the model performance and for predictive power. One of the main input variables in the241

model are the initial concentrations of monocytes and CLL apoptotic cells in the culture. We therefore242

hypothesized that the initial monocyte and apoptotic cell concentration in our cultures could be factors that243

partially explain the broad differences and large dispersion of experimental measurements from different244

patients (Fig. 1C,D, Fig. 5 and Fig. S2, S3). To investigate this, we therefore performed several simulations245

with varying initial proportions of monocytes and estimated the CLL cell viability and concentration at246

Day 9. We compared our predictions to experiments from heterologous co-cultures of healthy monocytes247

with patient CLL cells in which we could vary the initial (healthy) monocyte concentration at will (Fig.248

1D). The results in Fig. 5D show that the model based on autologous culture datasets is able to predict249

viability and concentration values observed experimentally with changing initial monocyte proportion in a250

heterologous culture with reasonable accuracy on both viability and concentration readouts (NRMSEvia=0.2251

and NRMSEconc=0.29).252

We further tested whether we could fit patient-specific dynamics by using patient-specific initial monocyte253

and initial apoptotic cell proportions as inputs to our model (Supplementary Table 2). In this context, our254

predictions of CLL cell viability and concentration also partly matched the experimentally observed profiles255

(Fig. S7).256

Parameter sensitivity analysis. To better understand the influence of specific parameters on the overall257

CLL cell survival dynamics, we performed a sensitivity analysis using the one-factor-at-a-time method (66),258

with which each parameter value is varied while leaving the others at their optimized value extracted from259

the knee-point parameter set (Fig. 6). As described previously, several parameters, like heterogeneity of260

the cancer cells life expectancy, phagocytosis efficiency, monocyte-to-macrophage differentiation timing,261

and macrophage-to-NLC polarization timing, affect the viability and concentration dynamics the most262

(absolute values of correlation coefficients > 0.4, Fig.4 B,C). We first explored the importance of CLL cells’263

inherent survival heterogeneity by varying the shape and rate parameters of the Gamma distribution used to264

initialize the life expectancy of each cancer cell (nslife-init
Γα , nslife-init

Γβ , Fig. 6). Heterogeneity of macrophages’265

initial state of polarization towards NLCs was also shown to influence the survival dynamics as displayed266

by the simulations using varying values for this parameter (macronlc-pol
Nµ ). We also investigated the effect of267

varying the timing of monocyte differentiation into macrophages (monodiff
threshold) but did not observe any268
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A Bknee-point set best-viability set

NRMSE_via = 0.2
R²_via = 0.5

NRMSE_conc = 0.13
R²_conc = 0.85

NRMSE_via = 0.16
R²_via = 0.66

NRMSE_conc = 0.53
R²_conc = -1.66

C Dbest-concentration set

NRMSE_via = 0.29
R²_via = -0.07

NRMSE_conc = 0.13
R²_conc = 0.84

NRMSE_via = 0.2
R²_via = 0.71

NRMSE_conc = 0.29
R²_conc = 0.34

Fig. 5. Comparison of simulated and experimental results. A, B, C) Model fitting on PBMC autologous cultures. 12 simulations were run with the knee-point parameter
set (A), the parameter set maximizing the viability fitness (B), the parameter set maximizing the concentration fitness (C), and compared with the experimentally observed
viability and concentration dynamics averaged over 9 patients. The initial monocyte and apoptotic cancer cell proportions for the simulations were set to the average monocyte
and apoptotic cell proportions measured in the patient PBMCs (1.28% and 4.32%, respectively). Simulations are depicted in red and experimental data in black. D) Model
predictions on heterologous co-cultures with varying monocyte initial proportions. Simulations were run varying initial monocyte proportions (3 repetitions) for 9 days
and are here compared to experimental observations in heterologous co-cultures with the corresponding initial conditions after 9 days (average over 10 experiments including 5
CLL patients and 2 healthy donors). Red dots correspond to the simulations and black dots and boxes correspond to the experimental data. Values of R2 approaching one and
values of NRMSE close to zero indicate a good performance of the model.
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nslife-init
Γα nslife-init

Γβ

nlcthresholdmacronlc-pol
Nμ

monodiff
threshold

macroφeff

Fig. 6. Parameter sensitivity analysis. The parameters were varied one at a time while keeping all other parameters constant to estimate their impact on the overall dynamics
(4 simulation runs per value). Parameters which had the largest impact are displayed here (based on having absolute correlation coefficient to fitness on viability or on
concentration above 0.4). A parameter sensitivity analysis on the remaining 13 parameters is shown in Fig. S8.

major impact on the dynamics, at least with the other parameters fixed to their corresponding values from269

the knee-point parameter set. We then explored the importance of phagocytosis by performing simulations270

varying the characteristic phagocytosis efficiency of macrophages (macroφeff), highlighting the importance271

of this parameter in rescuing CLL cell viability. Finally, we evaluated the importance of the threshold that272

determines after how long a macrophage turns into NLC, finding that it also strongly impacts the readout273

dynamics (nlcthreshold). These particular parameters relate to specific mechanisms in the model that are274

potentially fundamental in reproducing the experimental behaviors.275

Patient-specific models allow identification of patients subgroups matching distinct macrophage profiles.276

As described previously, the performance of our general model with the knee-point parameter set against277

patient-specific dynamics showed varying accuracy scores depending on the patients (Fig. S7). Given278

the extreme variability between patients (Fig. 1C,D), we decided to perform patient-specific parameter279

optimizations using the initial monocyte and initial apoptotic cell proportions specific to each patient,280

optimizing the fit of simulation results to patient-specific experimental data. Knee-point parameters sets281

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2022. ; https://doi.org/10.1101/2021.12.17.473137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473137
http://creativecommons.org/licenses/by/4.0/


were retained for downstream analysis (Supplementary Table 3) and we tested the performance of each of282

the 9 models against the corresponding patient Fig. 7A. We observed overall improved fitness accuracy283

scores compared to the ones obtained with the general model, as shown by the NRMSE scores and R2 scores284

(Supplementary Table 4, averaged scores of =0.66 and R2
via=-3.98 for the general model compared to averaged285

scores of =0.26 and R2
via=0.27 for the patient-specific models; averaged scores of =0.37 and R2

conc=-0.68 for286

the general model compared to averaged scores =0.21 and R2
conc=0.44 for the patient-specific models). We287

also tried to predict behaviors in heterologous co-cultures with varying monocyte initial proportions for 3288

patients for whom we had the corresponding data, obtaining relatively good fitness scores (Fig. 7B, Patient289

3 (NRMSEvia = 0.66, R2
via = -1.66, NRMSEconc=0.24, R2

conc=0.58), Patient 4 (NRMSEvia=0.22, R2
via=0.66,290

NRMSEconc=0.29, R2
conc=0.49), Patient 6 (NRMSEvia=0.29, R2

via=0.4, NRMSEconc=0.16, R2
conc=0.77)).291

We are well aware, however, that heterologous co-cultures, with monocytes from healthy donors, behave292

differently compared to a fully autologous PBMC culture, limiting our chance of using an autologous-based293

model to predict heterologous dynamics.294

The knee-point parameter values for each patient were then used perform unsupervised patient clustering,295

revealing 2 distinct classes Fig. 8A. A principal component analysis was also performed showing a consistent296

separation between the two patients classes Fig. 8B. Analyzing the first principal component, which explains297

this separation of the two patient clusters Fig. 8C, highlighted the importance of the following parameters298

in defining the two classes: cell sensing distances (nlcsd, monosd), macrophage-to-NLC polarization timing299

properties (macronlc-pol
Nµ ), protective effects of the anti-apoptotic factors secreted by NLCs (anti-apoboost),300

apoptotic CLL cells movement probability (apomp), phagocytosis efficiency of Macrophage and NLC cells301

(macroϕeff and nlcϕeff). These results reveal the importance of the spatial aspects as well as phagocytosis302

and protective effect of NLCs in determining the viability and concentration dynamics.303

We further compared the distributions of the parameter values from each group identified by the304

unsupervised clustering and principal component analysis (Fig. 8A,B), highlighting some parameters that305

could be distinctive between the 2 classes (Fig. 9). In particular, among the parameters which contribute306

the most in separating the clusters (Fig. 8C), macronlc-pol
Nµ , related to the polarization status towards NLC307

when a Monocyte turns into a Macrophage, is lower in patients from Class A than patients from Class B.308

Combined with a higher nlcthreshold, this suggests a slower polarization of macrophages into NLCs in Class309
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Day Day Day
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Fig. 7. Evaluation of the patient-specific models. A) Model fitting of patient-specific models on PBMC autologous cultures. On each panel, 12 simulations are
shown with the corresponding patient-specific knee-point parameter set and compared with the experimentally observed viability and concentration dynamics. The initial
monocyte proportion for the simulations was set to the corresponding monocyte proportion measured in each patient (Supplementary Table 2). Simulations are depicted in red
and experimental data in black. B) Prediction performances of 3 patient-specific models on heterologous co-cultures with varying monocyte initial proportions.
Simulations were run for varying initial monocyte proportions (3 repetitions) for 9 days and are here compared to experimental observations in heterologous co-cultures with the
corresponding initial conditions after 9 days. Red dots correspond to the simulations and black dots correspond to the experimental data. Values of R2 approaching one and
values of NRMSE close to zero indicate a good performance of the model. For each patient, experiments were carried out with varying proportions of monocytes from 2
different healthy donors. However, due to low sample quantities from either the patient and/or the donor, not all monocyte proportions could be tested for all patients. The
complete data showing inter-patient and inter-donor variability is available in Supplementary Material (Fig. S3).
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Fig. 8. Patient clusters. A) Unsupervised hierarchical patient clustering. Patients were clustered with the complete linkage clustering method based on their knee-point
parameters sets. Parameter values were centered and scaled by row. Patient-specific parameter sets are available in detail in Supplementary Table 3. B) Principal Component
Analysis. Patients are colored according to the class identified in the unsupervised hierarchical clustering shown in A. C) Parameter contributions to the first dimension of
the principal component. The dashed line corresponds to the expected value if the contributions were uniform. Any parameter with a contribution above the reference line
could be considered as important in contributing to the dimension.

A than in Class B patients. Additionally, the parameters nlcsd, monosd, apomp, nlcϕeff , and macroϕeff , are310

all higher in Class A than in Class B patients, suggesting a more efficient overall phagocytosis activity which311
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could induce a quicker clearance of dead and apoptotic cells in Class A patients. Finally, anti-apoboost is312

also higher in Class A, suggesting a better protection against apoptosis from NLCs in patients from this313

class.314

nslife-init
Γα nslife-init

Γβ nsmp nssd

monodiff
thresholdmonodiff

Nσmonoφeffapomp

macronlc-pol
Nμ

macronlc-pol
Nσ

macrosd nlcφeff anti-apoboost

macroφeffmonosd macrokeff

nlcthresholdnlcsdlayersnlc

Fig. 9. Comparative knee-point parameter sets distributions within each patient class. The knee-point parameter sets of patients from clusters A and B resulting from the
unsupervised clustering shown on Fig. 8A were integrated and depicted here in blue for Class A and orange for Class B.
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Interestingly, some of these findings correlate with patient classes identified experimentally, where patients315

with either low or high viability of CLL cells were identified (67). In this publication, we observed a higher316

capacity of NLCs to attract leukemic cells and perform phagocytosis in the case of high viability profiles,317

possibly corresponding to higher values of the layersnlc and nlcϕeff parameters in Class A than in Class B318

patients (Fig. 9). Thus, high-viability patient profiles might correspond to the Class A patients in this319

study. We also showed a rescue of CLL cell viability in low-viability profiles when treating the cells with320

IL-10, which is known to induce macrophage polarization towards M2-like macrophages. This finding321

is in agreement with the hypothesis that patients from Class A here produce a protective NLC class322

(M2-like), showing a higher CLL cell viability at the end of the co-culture (Fig. 10), and displaying a323

higher Macrophage and NLC phagocytosis efficiency in our patient-specific models (Fig. 9). The protective324

effect of the anti-apoptotic signals secreted by NLCs (anti-apoboost) was also found to be higher in Class A,325

supporting the fact that this class might correspond to patients producing protective NLCs, secreting more326

anti-apoptotic signals than the non-protective NLCs. In both Class A and Class B, we still observed a high327

heterogeneity across patients. More samples could allow us to identify subclasses with higher resolution328

and better explain this variability.329

In patients from Class B, the viability of CLL cells is not fully restored during the time course of the330

experiment (Fig. 10) suggesting that the NLCs produced are dysfunctional. Interestingly, for two patients331

falling in this Class B, macrophages collected from the PBMC autologous culture at Day 8 had a more332

M1 rather than an M2 phenotype, supporting the classification of these patients in the non-protective333

macrophages class (Patient 2 and 9, Supplementary Table 5). On the other hand, two patients from class A334

had macrophages mainly of M2 phenotype, supporting the classification of these patients in the protective335

NLC class (Patient 5 and 8, Supplementary Table 5). These findings are consistent with the identification336

of a few CLL patients in whom CLL cells polarize macrophages into NLCs that are impaired in their337

protective effect on the cancer cells (67).338

Discussion339

Immunotherapies targeting the TME have proven to be extremely beneficial in a subset of patients. However,340

the presence of TAMs in tumors can hinder the efficacy of these treatments and lead to tumor progression341

by stimulating proliferation, angiogenesis and metastasis. In this project we aim at understanding how342
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Fig. 10. Unsupervised patient classification reveals characteristic macrophage profiles.

the pro-tumoral role of TAMs promotes the survival of cancer cells and identifying the cellular processes343

determining this phenomenon. Given the difficulty of studying cellular dynamics in tissues, we turned to an344

in vitro model of leukemia, in which we can closely follow the differentiation of TAMs from monocytes in the345

presence of cancer cells. Building on experimental measurements of cell counts and viability of cancer cells346

in cultures of blood from CLL patients, we implemented a two-dimensional ABM to simulate intercellular347

interactions in the spatial context of this in vitro culture. More specifically, we modelled the interactions348

between CLL cells and monocytes, and the resulting differentiation of monocytes into macrophages that349

protect cancer cells from spontaneous apoptosis (called NLCs in this pathology). Using our experimental350

observations of cancer cell survival dynamics in autologous PBMC cultures averaged from 9 patients to351

optimize the model parameters, we were able to reproduce biologically realistic dynamics. We further tested352

the predictive power of our model parameterized on averaged patient data in a heterologous experimental353

context, by simulating co-cultures of CLL cells with varying proportions of healthy monocytes, obtaining354

good accuracy between experimental and simulated CLL cell survival readouts at Day 9. These observations355

suggested that our general model could be made patient-specific using routinely measured variables, such356

as the proportion of monocytes in patient’s PBMCs. However, when using this input together with patient-357

specific information about the initial proportion of apoptotic cells after CLL cells isolation, we were unable to358

fit each patient’s cancer cell survival specific dynamics. We believe that some other patient-specific features359

need to be considered to obtain better predictions. The putative association between initial monocyte360
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proportion in autologous cultures and CLL cell survival or patient outcome remains to be studied clinically,361

despite some evidence that monocyte count in CLL patients can be prognostic (68, 69). Heterogeneity362

across patients is well known (70) and the formation of NLCs might be extremely patient-specific in both363

time scales, numbers, and phenotypes of NLCs generated. We are aware that different dynamics could be at364

play in different patients, and we hoped that clinically measurable parameters, such as the initial monocyte365

concentration in the blood, could help us produce a generally useful model that can give specific predictions.366

However, this involves making strong assumptions about the fact that the same processes are active in367

different patients, which remains to be verified. Considering the extreme variability between patients, we368

then opted for an approach to identify patient-specific model parameters. As expected, this procedure369

allowed us to obtain a much better match with patient-specific experimental data. Furthermore, using370

unsupervised clustering methods on the patient-specific parameter values, we detected the existence of 2371

distinct classes, which might correspond to protective and non-protective NLCs, as previously suggested372

experimentally (67). Additionally, we show that for a subset of patients for which experimental data is373

available, this unsupervised classification is consistent with the experimental evidence (cellular markers374

measured after 8 days of PBMC autologous cultures), displaying a majority of M2 markers in the case of375

the protective macrophages (NLCs), and a majority of M1 markers in the case of the non-protective NLCs.376

We also analyzed the impact of the model’s parameters in fitting the averaged experimental data and377

suggest a fundamental role of the heterogeneity of cancer cell life expectancy at initialization, which could378

be monitored in further studies by using mono-cultures of patient-derived CLL cells. Results on parameter379

correlation to the 2 fitness functions showed an important role for phagocytosis to ensure the long-term380

survival of cancer cells in this in vitro CLL model. This result was also confirmed by the differences in381

parameter distributions between the 2 patient classes corresponding to protective and non-protective NLCs.382

These include phagocytosis efficiencies from macrophages and NLCs, their sensing distances of dead and383

apoptotic cells and the movement probability of apoptotic cells. These findings suggest that monitoring384

and potentially modulating phagocytosis could play a role in the control of TAM formation in vitro, in CLL385

lymph nodes or even in solid tumors. This hypothesis would be in agreement with the fact that TAM levels386

of phagocytosis and efferocytosis affect their functionality and are key to controlling tumor progression387

(71, 72). We hypothesize that one possible reason for the importance of phagocytosis in this system lies in388
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the requirement for macrophages to process specific molecules from the cancer cells, such as antigens or389

metabolites, in order to induce their polarization into NLCs (71, 73, 74). Although levels of phagocytic390

activity in NLCs are still controversial (75, 76), phagocytosis might rely on other cellular interactions with391

the cancer cells that would need to be described at the molecular level. Finally, the level of protective392

anti-apoptotic signals, that are known to be provided by NLCs to the cancer cells (27), appear to be also393

important to differentiate between protective and non-protective NLCs, in agreement with the fact that394

protective NLCs secrete more anti-apoptotic signals than non-protective ones.395

Limitations of the study396

There are some important limitations of this study that we will list below. As far as the experiments are397

concerned, these in vitro cultures do not fully represent what is happening in the patient lymph nodes,398

where the density of CLL cells is as high or even higher than what we reproduce in the cultures, but399

potentially different cell populations other than cancer cells and monocyte/macrophages can be present in400

different proportions, and within a different physical environment. For example, autologous cultures of401

PBMCs from CLL patients include small quantities of T cells, NK cells, and traces of other immune cells402

(77), whose interactions with NLCs and CLL cells could be important. The effect of these other cells could403

not be taken into account in the heterologous cultures that contain exclusively monocyte-derived cells from404

healthy donors and cancer cells from CLL patients, rendering the comparisons between the two experiments405

difficult. The interactions between cells from different individuals could introduce a cross-reactive immunity,406

and we might be introducing effects due to the specific (epi)genetic characteristics of the monocytes from the407

healthy donors. Despite all these limitations, the fact that we can predict experimental data of heterologous408

co-cultures using the model optimized on autologous CLL patient cultures data suggests that the model409

can generalize and capture the overall behavior to some extent. Another important factor that is not taken410

into account in this study is the characteristic phenotype of the CLL cells, which are patient-specific and411

can be potentially affected by the CLL subtype (unmutated or mutated CLL, i.e. U-CLL, M-CLL (78, 79)),412

related to their cell of origin, which can impact the aggressiveness of the disease. Moreover, we cannot413

exclude an effect of age or sex of the patient. Due to the reduced number of samples considered, we were414

unable to identify any clear association of clinical sample characteristics with the patient classes defined415

by the time course profiles and represented by specific model parameters. The limited number of patient416
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samples might also impact the relevance of the results we obtained through our clustering analyses, which417

normally require a large number of features and would be more relevant for a larger number of samples.418

Further work will be devoted to producing more data to confirm the robustness of our findings on larger419

patient cohorts and to experimentally validate the phenotypic state of the CLL cells (living, apoptotic,420

necrotic), and myeloid cells (macrophages, NLCs).421

The computational model also required some assumptions and simplifications which can constitute422

limitations. Anti-apoptotic signals were modeled to be secreted by NLCs but it would be interesting to423

include the “eat-me” (80) and “don’t-eat-me” signals (CD47) (81, 82) expressed by cancer cells once NLCs424

have formed. We also decided to model the system with a two dimensional ABM, since the macrophages425

are adherent to the plate and most of the dynamics are determined by what happens on this surface.426

However, we observed that cancer cells can form aggregates in 3D, which might impact the overall dynamics427

and be indicative of their phenotypic state (83, 84). The initialization of these simulations is currently428

stochastic and does not take into account any information that could be extracted from high content429

imaging of the cultures. Despite this interesting prospect, the high density of cancer cells in the cultures430

has made quantitative imaging particularly difficult, and we will explore these possibilities in further work.431

One of the main advantages of ABM is the ease with which spatial information can be integrated. We432

therefore plan to expand our experimental setup to be able to capture spatial patterns in a 3D culture that433

could be easily compared to those appearing in expanded versions of our simulations. Of note, in some434

patients, experimental measurements of concentration show an increase at the very end of the culture. We435

could tentatively speculate that this could be explained by a low level of proliferation in the culture. The436

environmental change from circulating blood to our static in vitro setup could potentially mimic a situation437

similar to lymph nodes, in which CLL cells are known to proliferate (58, 59). Our PBMC co-culture system438

could allow the appearance of specific molecular signaling interactions and lead to activation of CLL cell439

proliferation. However, due to lack of clear biological evidence in our experiments, CLL cell division was not440

expected and not implemented in our model. An additional factor that could explain this phenomenon is a441

small level of medium evaporation taking place during the time course, artificially provoking an increase of442

cell concentration with time. Care was taken in controlling this effect, but some experimental errors or443

biases cannot be excluded. These include for example limited sample sizes (n=1 or n=2), variations in444
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the volume samplings or spatial heterogeneity in where the samples were taken, producing noise in the445

measured data and leading to a residual impact on the concentration curves.446

Our model being mostly qualitative, the interpretations we can draw from it can be limited. We were447

unable to define a single set of parameters that could be used for all the 9 patients considered, taking448

the initial monocyte concentration as an input variable. We can assume that some unexplored patient449

characteristics (constant or at the time of sampling) can lead to the production of either protective or450

non-protective NLCs and we were able to detect these two patient classes from parameter sets for our451

patient-specific models. Collecting data from more patients would allow us to more robustly define these452

two classes and might lead to biomarkers that identify patients that are likely to develop resistance to453

treatment due to the presence of protective NLCs in their lymph nodes.454

A possible extension of the usage of our model would be to include the effect of drug treatments, such455

as Bruton’s tyrosine kinase (BTK) inhibitors which are one of the main molecules used to treat CLL.456

In particular, ibrutinib is known to induce pro-apoptotic effects on CLL cells by impairing BCR and457

NF-κβ signaling. This in turn modifies among others the cancer cell mobility and adherence, limiting their458

attraction to the TME which includes NLCs, and finally leading to CLL cell apoptosis (20). Ibrutinib459

also indirectly modulates exchanges between CLL cells and NLCs by the inhibition of BTK expressed by460

NLCs. Additionally, Ibrutinib was shown to decrease the phagocytic potential of NLCs by downregulation461

of MAC1, CD11b, and CD18 expression (85). Clodronate is another promising molecule in treating CLL462

patients. It targets both monocytes and M2 macrophages, and was shown to inhibit the formation of463

NLCs in vitro, leading to an increased mortality of cancer cells and to sensitization to ibrutinib in the case464

of resistant cells (86, 87). Finally, IFN- is able to repolarize NLCs into M1-like macrophages, leading to465

decreased CLL cell viability and increased antibody-dependent phagocytosis by NLCs (76). Our model466

could be used to partially simulate these phenomena at the cellular scale and to suggest new hypotheses467

with regards to the mechanisms at play in the resistance to BTK inhibitors. However, combining our468

approach with a molecular model of monocyte differentiation into NLCs (25) and of CLL cell internal469

processes is crucial to predict the effect of specific treatments in detail and will be subject of further work.470

Another obvious extension would involve simulating cellular dynamics in tissues, thus tackling the issue of471

TAM formation in solid tumors. We have recently developed tools to extract spatial information from tumor472
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tissue samples either imaged via microscopy or characterized through single-cell spatial-omics techniques473

(88), and we plan to establish a framework to use spatial data to initialize the ABM simulations in these474

more complex contexts. Finally, we realize the importance of internal regulatory processes that determine475

the agents’ behaviors and plan to extend this model by combining it with gene regulatory network models476

of phenotype transitions inside each cell (cancer cells, monocytes and potentially other cells present in the477

TME in considerable proportions, such as lymphocytes or fibroblasts). We believe that hybrid approaches478

coupling gene regulatory models with agent-based models will be key in improving models’ accuracy. In479

this direction, we have developed a Boolean model of monocyte differentiation into NLC that we plan to480

integrate to the presented ABM using suitable tools in further work (25, 52, 53).481

To conclude, we hope that this model can be a starting point to provide simulations of dynamic cellular482

interactions in the tumor microenvironment, able to take into account patient-specific characteristics, and483

useful to generate novel biological hypotheses.484

Materials and Methods485

Cell culture. Blood samples were obtained after informed consent and stored at the HIMIP collection.486

According to French law, the HIMIP collection was declared to the Ministry of Higher Education and487

Research (DC 2008-307 collection 1) and a transfer agreement (AC 2008-129) was agreed after approbation488

by the “Comité de Protection des Personnes Sud-Ouest et Outremer II” (ethical committee). Clinical and489

biological annotation of samples were declared to the Comité National Informatique et Libertés (CNIL;490

data processing and liberties national committee).491

We used two different in vitro co-culture systems which we monitored through cell counting by hemocy-492

tometer and FACS analysis at different time points. In the first experimental system referred to as “PBMC493

autologous cultures”, CLL Peripheral Blood Mononuclear Cells (PBMC) were isolated from patients’ blood494

and were directly cultured in vitro. PBMC are composed of cancerous CLL cells and include around 1%495

of monocytes and traces of other immune cells, including lymphocytes (1-5% of T, B and NK cells). In496

the second experimental system referred to as “heterologous co-cultures”, CLL cells were isolated from497

CLL patients’ PBMC and mixed with varying concentrations of monocytes purified from healthy donors to498

assess the relationship between the initial density of healthy donor monocytes and the level or survival of499

cancer cells after 9 days of co-culture, with and without NLC formation (i.e. with and without monocytes500
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in the co-culture).501

• PBMC autologous cultures. To generate autologous NLCs, PBMC were isolated from the blood of502

CLL patients and were cultured at 107 cells/mL in RPMI 1640 supplemented with 10% Fetal Bovine503

Serum (FBS) and and 1% Penicillin/Streptomycin (Gibco) in the incubator at 37°C with 5% CO2.504

Cells were cultured for 13 days during which differentiation of the NLCs was followed by bright field505

imaging microscopy and phenotype of the cells was assessed by flow cytometry (presence of CD14,506

CD163 and CD206) at the final day of the culture. CLL cell samples were taken every day (or every 2507

or 3 days, depending on the patient) to measure the remaining cell concentration by hemocytometer508

and cell viability by flow cytometry using AnnexinV/7-AAD staining.509

• Heterologous co-cultures. To generate heterologous co-culture, CLL cells from PBMC fraction510

were isolated using negative selection (EasySep™ Human B Cell Enrichment Kit II Without CD43511

Depletion, STEMcell) and monocytes from healthy donors’ PBMC were isolated using positive512

selection method (CD14 MicroBeads, human, Miltneyi). Subsequently CLL cells at 107 cells/mL were513

mixed with varying concentrations of purified monocytes. At Day 9 concentration and viability of the514

CLL cells was measured and the phenotype of NLCs was assessed by FACS. CLL PBMC used for the515

autologous co-cultures contained >85% of CLL cells and 0.21-3.48% of monocytes as assessed by flow516

cytometry. Purity of the isolated CLL cells and monocytes exceeded 95%.517

Flow cytometry. Follow-up of monocyte-to-NLC differentiation was performed by analysis of changes in518

the expression of myeloid cell markers by flow cytometry. Briefly, at different time points, autologous CLL519

patient’s PBMC were gathered from 1 well of 6-well plate. In order to remove adherent macrophages, the520

cells were washed twice with PBS, covered with 1 mL of Versene solution and incubated for 30 min at 4°C.521

Afterwards 0.5 mL of FBS was added and cells were further detached with gentle scraping (Sarstedt). Both522

floating and adherent cell fractions were combined, washed in PBS and re-suspended in flow cytometry523

buffer (PBS + 2% FBS) containing Human BD Fc Block™ (2.5µ g/mL) and incubated for 15 min at 4°C.524

Subsequently cells were stained with CD14, CD16, CD163 and CD206 antibodies (BD Pharmingen) at525

saturating concentrations and incubated for 20 min at 4°C. After washing, samples were resuspended in526

PBS and analyzed by LSRII flow cytometer (BD Biosciences). Results were further processed using Flow527

Logic 700.2A (Inivai Technologies Pty. Ltd) software.528
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Agent Based Model. At each time step, 3 main processes are executed by each cell: update-position,529

update-properties and update-class. Movements concern all cells except the Dead ones, which are immobile.530

Cell motility can either be random or directional, for example when the NeedSignal cancer cells move towards531

NLCs, or when the phagocytic myeloid cells move towards Apoptotic or Dead cancer cells. Phagocytosis is532

modeled as an active search by the myeloid cells towards Dead and Apoptotic cancer cells. If the myeloid533

cell encounters a Dead and Apoptotic cancer cell within its characteristic perception radius (i.e. sensing534

distance), it will phagocytose it with its characteristic probability (i.e. phagocytosis efficiency), and the535

phagocytosed cancer cell will be cleared from the simulation. In the reverse case, the myeloid cell will536

move to a random surrounding patch. Properties updates concern the cancer cells life property, the537

differentiation status of Monocytes into Macrophages, the nlc-polarization status of Macrophages538

into NLCs and the amount of anti-apoptotic signals which are present on each patch. At each time step,539

agents can change their class based on the comparison of their property values and specific calibrated540

thresholds. For example, NeedSignal cancer cells will turn into Apoptotic cells if their life property value541

goes below the apoptosis threshold. Apoptotic cancer cells will convert to Dead if their life property value542

goes below the death threshold. Myeloid cells will differentiate from Monocyte to Macrophage depending543

on their differentiation status compared to the differentiation threshold. Macrophages will polarize into544

NLCs, depending on their nlc-polarization status compared to the NLC threshold.545

The UML class diagrams shown on Fig. S4 display in detail every action performed by each agent class:546

• Monocytes can perform 3 actions: move, perform phagocytosis and differentiate into Macrophages.547

Monocytes can move towards Apoptotic or Dead CLL cells in their perception radius (monosd), and548

will phagocytose these cells with a specific probability (monoϕeff). If they cannot find any Dead or549

Apoptotic cancer cell, they will move randomly. At the beginning of the simulation, Monocytes start550

to adhere progressively to the substrate (differentiation property increments by 1 at each time551

step) and will differentiate into Macrophages after 2 to 3 days (monodiff
threshold).552

• Macrophages can perform 4 actions: move, perform phagocytosis, polarize into NLCs and kill the553

NeedSignal cancer cells. Similarly to Monocytes, Macrophages can move towards Apoptotic or Dead cells554

in their perception radius (macrosd) and phagocytose them with their specific probability (macroϕeff).555

If they cannot find any Dead or Apoptotic cancer cell, they will move randomly. Macrophages are556
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also able to directly kill NeedSignal CLL cells with a low characteristic probability between 0% and557

5% (macrokeff). At each time step, their nlc-polarization property will increase by 1 if they are558

located next to a NeedSignal or Apoptotic cancer cell, and will decrease by 1 in the reverse case. The559

complete polarization into NLC will occur when the Macrophages have been in contact with cancer560

cells for a sufficient duration (nlcthreshold). Thus, nlcthresholdan be seen as a proxy for the number561

of accumulated hours for which a Macrophage has been in contact with at least one NeedSignal or562

Apoptotic cancer cell.563

• NLCs can perform 3 actions: move, perform phagocytosis and secrete anti-apoptotic signals on564

patches. Similar to Macrophages, NLCs will move in the direction of Apoptotic or Dead CLL cells565

in their perception radius (nlcsd), and will phagocytose them with their characteristic probability566

(nlcϕeff). If they cannot find any Dead or Apoptotic cancer cell, they will move randomly. At each time567

step, if they are located next to a NeedSignal cancer cell, NLCs will secrete 1 unit of anti-apoptotic568

signals on the patch they are located on. If they are not surrounded by any NeedSignal cancer cell,569

they will decrease their nlc-polarization property by 1.570

• NeedSignal cancer cells can perform 3 actions: move, decrease their life property value (default571

behavior) or increase their life property value (through anti-apoptotic signals). Cancer cell movement572

involves actively searching for NLCs around them in a characteristic perception radius (nssd) and573

a characteristic movement probability (nsmp). If a NLC is located in its perception radius, the574

NeedSignal cancer cell will move towards it, or randomly in the reverse case. Importantly, when575

a NeedSignal cancer cell finds a NLC, it will remain attached to it on n layers (with n being the576

number of layers of cancer cells that NLCs can have around them, corresponding to the parameter577

layersnlc). This process can greatly impact how the NLCs will move and perform phagocytosis, due578

to the inherent relationship between layersnlc and nlcsd. By default, a NeedSignal cancer cell will579

have its life property value decrease by 1 unit at each time step. However, if the cancer cell is580

located on a patch containing more than 1 unit of anti-apoptotic signal, it will consume 1 unit of581

the anti-apoptotic signal and get an increment of anti-apoboost on its life property value, helping it582

fight apoptosis and survive overall longer. The NeedSignal cell life property represents the number583

of hours it can remain in the NeedSignal state before reaching the apoptosis threshold (apothreshold).584
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The apoptosis threshold is set to 0 since it represents a threshold below which the cancer cells enter585

an irreversible apoptotic state from which they cannot be rescued. NeedSignal cancer cells cannot be586

phagocytosed but they can be killed by Macrophages.587

• Apoptotic cancer cells can perform 2 actions: move and decrease their life property value. Apoptotic588

cancer cells move randomly with their characteristic movement probably (apomp). This movement589

probability will impact the overall phagocytosis efficacy since it affects the possible encounters between590

Apoptotic cells and phagocytic cells. In the irreversible Apoptotic state, cancer cells can no longer591

benefit from the anti-apoptotic signals from NLCs and will subsequently die, following a decrement592

of their life property by 1 at each time step until they reach the death threshold (deaththreshold),593

which is set to -500 hours based on timings observed on CLL cell monocultures. Apoptotic cancer594

cells can be phagocytosed by Macrophages or NLCs.595

• Dead cancer cells can perform 1 action: decrease their life property value. In this state, cancer596

cells can no longer move and can only be phagocytosed.597

• Patches can perform 1 action: update their amount of anti-apoptotic signals. At each time step, if598

a NLC is located on a given patch and is located next to a NeedSignal cancer cell, the amount of599

anti-apoptotic signals on this patch will increase by 1. In absence of any NLC, and if some amount600

of anti-apoptotic signals is already present on the Patch, the total amount will decrease by 0.1% of601

its actual value (arbitrarily set to a negligible decrease in this model). This is inspired by cytokine602

diffusion processes (89, 90) that will impact the 8 neighboring patches which will thus receive 1/8 of603

0.1% of the chemical.604

Stochasticity. In this model, stochasticity is used to describe cell motility and heterogeneity of property605

values in the cell population at initialization. The stochastic aspect in cell motility consists in randomly606

chosen moving directions when performing different actions (move, phagocytose), whereas cell heterogeneity607

consists in probabilistic distributions at instantiation of the different cell types. In this way, the model608

provides cells of the same type to be asynchronous to a certain action. The corresponding parameters were609

explored within empirically chosen ranges and optimized through the genetic algorithm to fit the viability610

and concentration dynamics observed experimentally. More specifically:611
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• Monocytes. The cells are initialized with a property value of differentiation taken from a normal612

distribution N(0, monodiff
Nσ ). The differentiation time required for Monocytes to differentiate into613

Macrophages is monodiff
threshold614

• Macrophages. The cells are instantiated with a property value of NLC-polarization taken from a615

normal distribution N(macronlc-pol
Nµ , macronlc-pol

Ns ) with the mean of the distribution corresponding to616

the time when the first NLCs should be observed experimentally.617

• NeedSignal cancer cells. The cells are initialized with various values of life property value taken618

from a Gamma distribution Γ(x,nslife-init
Γα , nslife-init

Γβ ), with nslife-init
Γα being the shape and nslife-init

Γβ the619

rate of the distribution.620

• Density of the world. Considering the surface available for the cells in the culture wells (12-well621

plates, with a planar surface of 3.5cm2 in each well), a diameter of 5µm for the CLL cells, a seeding622

concentration of 107 cells/mL and assuming a spherical shape of the cells, we estimated the surface623

cell density to be around 55% (ratio of the surface occupied by the CLL cells to the total surface of624

the well).625

Parameter optimization. Variables related to cell density, initial monocyte proportions, the time-scales and626

heterogeneity of monocyte-to-macrophage differentiation, NLC formation and CLL cell apoptosis duration627

were estimated or calibrated based on in vitro PBMC autologous cultures experimental data. The model628

involves 19 parameters for which optimization with the NSGA-II genetic algorithm was performed to infer629

their values (Supplementary Table 1). Most of the model parameters (such as the sensing distances, the NLC630

polarization, the protective effects of the anti-apoptotic signals, or the NLC threshold) are associated with631

the modeling procedure and do not necessarily have an exact measurable biological or physical counterpart,632

nor a real-world unit value. Therefore, parameter values should not be taken as absolute but rather as633

representative for the process they encode. Parameter ranges able to reproduce the observed experimental634

dynamics were selected and parameters were systematically in these empirically determined ranges.635

We derived 2 objective functions from experimental results obtained from in vitro co-cultures of monocytes636

and CLL cells, corresponding to two main readouts: cell viability (i.e, the ratio of initial CLL cell number637

minus dead cell number to the initial CLL cell number) and cell concentration (expressed as the ratio of total638
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CLL cell number to the initial CLL cell number). We defined the cost functions as the least square errors639

between the model predictions and the available experimental time-points on cell viability and concentration.640

Dealing with incomplete datasets, we considered only the time points in which the measurements were641

available for at least 4 patients. The OpenMOLE (Open MOdeL Experiment) software was used to642

perform 20’000 simulations exploring specific ranges of each of the 19 parameters (Supplementary Table 1).643

OpenMOLE is a platform used to perform large-scale user-supplied model exploration, calibration, machine644

learning, optimization and data processing (56). In general, these procedures demand high computational645

time and power; for this reason OpenMOLE uses a DSL (Domain Specific Language) for distributed646

model exploration written in Scala. In this platform, the model calibration was automated with a genetic647

algorithm (NSGA-II) on the 2 objective functions. To initialize the genetic algorithm in OpenMOLE,648

default values were chosen, i.e. random values of initial population, mutation probability and crossover649

probability. The genetic algorithm convergence is ensured by using a Pareto converging algorithm (Fig.650

3B), which naturally samples the explored space and ensures that the population advances towards the651

Pareto front, thus choosing heuristically sets of parameters (91).652

The optimization outputs generated by OpenMOLE were further analyzed, in order to select the set of653

parameters with the best fit and prediction power. Firstly, to ensure robustness, the optimization outputs654

were filtered to select only the sets of parameters which have been repeatedly simulated at least 50 times655

along the optimization process. The sets of parameters fulfilling this condition were represented in the form656

of a Pareto front (Fig. 3B). Secondly, we ranked the sets of parameters according to their fitness on viability657

and concentration in order to choose the best set of parameters for further model analysis. Since the two658

fitnesses were anti-correlated, curve fitting was performed using 3 specific parameter sets: (i) one with the659

best fitness on viability, (ii) a second one with the best fitness on concentration and (iii) a third one located660

at the knee-point on the Pareto front. We observed that the set corresponding to the knee-point produces661

the most similar viability and concentration dynamics to those observed experimentally (Fig. 5A), as662

confirmed by the R2 and NRMSE values. Figures 5B and 5C show the simulation results using models with663

parameters from the sets of best fitness on viability and concentration dynamics. For computational reasons,664

parameter exploration was performed on 1000 cells, whereas the validation simulations were performed on665

5000 cells, to underscore the scale-invariant results of our study.666
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Code availability. All the files used for model simulation in Netlogo, parameter optimization in Open-667

MOLE and statistical analysis of the outputs are available in GitHub: https://github.com/VeraPancaldiLab/668

Agent-Based-Model-of-NLC-in-CLL. The NetLogo model can also be run online on NetLogoWeb at669

https://www.netlogoweb.org/.670
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