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Abstract 
 
Working memory allows us to retain visual information to guide upcoming future behavior. 
In line with this future-oriented purpose of working memory, recent studies have shown that 
action planning occurs during encoding and retention of a single visual item, for which the 
upcoming action is certain. We asked whether and how this extends to multi-item visual 
working memory, when visual representations serve the potential future. Human 
participants performed a visual working memory task with a memory-load manipulation 
(one/two/four items), and a delayed orientation-reproduction report (of one item). We 
measured EEG to track 15-25 Hz beta activity in electrodes contralateral to the required 
response hand – a canonical marker of action planning. We show an attenuation of beta 
activity, not only in load one (with one certain future action), but also in load two (with two 
potential future actions), compared to load four (with low prospective-action certainty). 
Moreover, in load two, potential action planning occurs regardless whether both visual 
items afford similar or dissimilar manual responses; and it predicts the speed of ensuing 
memory-guided behavior. This shows that potential action planning occurs during multi-
item visual working memory, and brings the perspective that working memory helps us 
prepare for the potential future. 
 
 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.12.17.473138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 
 

Working memory allows us to hold onto visual information to prepare for and guide 
potential future action (Baddeley, 1992; Fuster & Alexander, 1971; Nobre & Stokes, 2019; 
Rainer et al., 1999; van Ede, 2020). For example, when a football player breaks through the 
defense line, the player may look to see where the left- and right-wing attackers are 
located. This information is retained in memory as the player sprints towards the goal and 
prepares to potentially pass the ball to either attacker, depending on the development of 
the attack. In this example, visual information is retained in working memory in anticipation 
of multiple potential future actions. In this way, visual working memory allows for flexible 
behavior – being prepared for multiple potential future actions offers a way to deal with 
uncertainty in a dynamically unfolding environment (Cisek & Kalaska, 2010). 

A vast body of research into visual working memory has provided a detailed 
understanding of the mechanisms of encoding and retention (e.g., D’Esposito & Postle, 
2015; Harrison & Tong, 2009; Luck & Vogel, 2013; Schneegans & Bays, 2017; Serences, 
2016). Ultimately, working memory serves as a bridge between perception and upcoming 
action. Therefore, it is also important to consider the role of potential action planning 
alongside encoding and retention in visual working memory (Heuer et al., 2020; Myers et 
al., 2017; Olivers & Roelfsema, 2020; van Ede, 2020). Two recent electroencephalography 
(EEG) studies provide evidence that action planning and visual retention can co-occur 
during working memory (Boettcher et al., 2021; Schneider et al., 2017). At least, they show 
that this occurs during encoding and retention of a single visual item, for which the 
upcoming action can be fully pre-determined in advance. 

From the literature of motor planning research, the concept of parallel action planning 
proposes that we often plan multiple potential actions in parallel, even before selecting the 
relevant action for implementation (Cisek, 2007; Cisek & Kalaska, 2005; Gallivan et al., 
2015, 2016; Grent-’t-Jong et al., 2013). A recent study tentatively suggests that multiple 
potential actions may also be planned alongside visual working memory. When two visual 
items are retained in visual working memory, and one of the two items is probed for action, 
visual and motor representations are selected concurrently after the memory delay (van Ede 
et al., 2019). However, it is yet to be demonstrated how the planning of multiple potential 
actions unfolds during the memory delay, alongside the encoding and retention of more 
than one visual item in working memory. 

In this study, we used EEG to address whether and how multiple potential actions are 
planned alongside the encoding and retention of multiple visual items in working memory. 
We envisioned two hypothetical scenarios. In the one-or-none scenario (Figure 1C), action 
planning may occur alongside visual working memory only when we retain one visual item 
for which the required action is known. In this case, one would expect a relative attenuation 
of EEG-beta activity (a canonical marker of action planning; Mcfarland et al., 2000; Neuper 
et al., 2006; Salmelin & Hari, 1994; van Wijk et al., 2009) during the memory delay only 
when we retain one visual item. Alternatively, in the graded scenario (Figure 1D), action 
planning may occur alongside visual working memory, even when we retain multiple visual 
items in anticipation of multiple potential actions. In this case, one would expect to observe 
an attenuation of beta activity that depends on the number of action possibilities, as has 
previously been reported in studies considering action planning without simultaneous item-
retention in visual working memory (Tzagarakis et al., 2010, 2015, 2021). 

To preview our results, we show that: (i) action planning of multiple potential actions 
co-occurs with visual retention of multiple visual items; (ii) this effect occurs regardless of 
whether potential actions require a similar or dissimilar manual response; (iii) the degree to 
which actions are planned during the memory delay is predictive of the speed of memory-
guided action afterwards.  
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Results 
 

Participants performed a delayed orientation-reproduction task (Figure 1A) with a memory-
load manipulation (Figure 1B): they were asked to memorize one, two, or four colored and 
oriented bars, one of which would always be probed for report. This enabled us to 
disentangle the one-or-none scenario (Figure 1C; i.e., action planning only occurs 
alongside visual working memory when we retain one visual item for which the required 
action is known in advance) from the graded scenario (Figure 1D; i.e., action planning 
occurs alongside visual working memory, even when we retain more than one visual item in 
anticipation of multiple potential actions). 
 
 

 
 
Figure 1. Experimental design and hypothetical action-planning scenarios. (A) Visual working memory task. 
Participants performed a delayed orientation-reproduction task. Participants viewed four colored oriented bars 
at encoding, and memorized their orientations during the delay, after which one of the bar colors was probed for 
action, indicating which orientation should be reproduced by moving a computer mouse. (B) Memory-load 
manipulation. We implemented a block-wise memory-load manipulation by preceding each block with a pre-
cue, indicating which bar colors were relevant for the upcoming block. In load one, participants were asked to 
memorize the orientation of one bar (e.g., the orientation of the orange bar); in load two, participants were asked 
to memorize the orientation of two bars (e.g., the orientation of the green and the blue bar); in load four, 
participants were asked to memorize the orientations of all four bars. (C, D) Two different scenarios for main 
results. In the first scenario, one-or-none (C), action planning occurs during the memory delay only when we 
retain one visual item, but not when we retain more than one visual item. Alternatively, in the graded scenario 
(D), the degree of action planning depends on the number of action possibilities, with more action planning in 
load two than in load four, despite the fact that it remains unknown throughout the memory delay what action 
will become relevant in both conditions. 
 
Working-memory performance improves as a function of item certainty 
 

Before turning to the main EEG results, we characterized the effect of memory load on task 
performance (i.e., absolute error and decision time). With an increase in memory load, the 
absolute difference between the target orientation and the reported orientation (i.e., 
absolute error) significantly increases (Figure 2A; F(2,72) = 52.02, p < .001). Post-hoc 
comparisons revealed a significantly lower absolute error in load one compared to load two 
and load four, and in load two compared to load four (all p < .001). Similarly, the time it 
takes to initiate the mouse response (i.e., decision time) also significantly increases with an 
increase in memory load (Figure 2B; F(2,72) = 20.77, p < .001). Post-hoc comparisons 
revealed significantly faster decision times in load one compared to load two and load four 
(both p < .001), and in load two compared to load four (p = .011). These effects of memory 
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load on absolute errors and decision times can further be appreciated by a visualization of 
their respective density plots (Figure 2A, B, right). 

These results confirm the effectiveness of the memory-load manipulation: although in 
each memory-load condition four bars were always presented on the screen at encoding, 
one, two, or four bars were selectively retained in visual working memory, as instructed by 
the block-wise pre-cue. Moreover, these results show that, with lower memory loads, 
participants’ orientation-reproduction reports are initiated faster, and are more precise. 
With lower memory loads there is a higher certainty about which item will be probed, and 
therefore a higher certainty about the required action. Hence, faster response initiation with 
lower memory loads might at least partly be accompanied by an increase in action planning 
during the working memory delay. Next, we will present neural evidence for this idea. 
Critically, we will show that this holds not only when comparing load one to loads two and 
four, but also when comparing load two to four, even though in both conditions the 
prospective action is unknown during the memory delay. 

 
 

 
 
Figure 2. Memory performance improves as a function of item certainty. (A) Effect of memory load on 
absolute orientation-reproduction error (º). Bar graphs show average absolute error; error bars represent within-
participants standard error (SE); grey lines represent averages for each individual participant; density plots 
(right) show density of target-deviation for each memory-load condition, averaged across participants. (B) Effect 
of memory load on decision time (ms); the time from memory-probe onset to response onset. Bar graphs show 
average decision times; error bars represent within-participants standard error (SE); grey lines represent 
averages for each individual participant; density plots show density of decision times for each memory-load 
condition, averaged across participants. 
 
Planning multiple potential actions alongside visual working memory 
 

We now turn to our central question: whether and how multiple potential actions are 
planned alongside multi-item visual encoding and retention in working memory. To 
investigate this, we used EEG to track 15-25 Hz beta attenuation in electrodes contralateral 
to the response hand (i.e., C3) – a canonical neural marker of action planning (e.g., 
Boettcher et al., 2021; Mcfarland et al., 2000; Neuper et al., 2006; Salmelin & Hari, 1994; 
van Wijk et al., 2009). To disentangle the two previously envisioned scenarios (Figure 1C, 
D), we compared beta activity during the memory delay across each possible memory-load 
comparison: load one versus load four; load one versus load two; and load two versus load 
four. 

We observed a significant relative attenuation of beta activity in C3 for load one, 
compared to load four (Figure 3A-i; time-frequency map cluster p < .0001). This relative 
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beta attenuation in load one showed a left-central topography (i.e., contralateral to the 
response hand; Figure 3A-ii). Moreover, in line with Boettcher and others (2021), it showed 
a bimodal temporal profile (Figure 3A-iii; time-course cluster p < .0001). Similarly, we 
observed a significant relative attenuation of beta activity in C3 for load one compared to 
load two (Figure 3B-i; time-frequency map cluster p < .0001), with similar topographical 
(Figure 3B-ii) and temporal (Figure 3B-iii; time-course early cluster p < .0001, late cluster p 
= .0004) characteristics as in the comparison between load one and load four. These data 
are consistent with the notion that in load one, participants know with certainty at encoding 
which visual item they will need to report at the end of the working-memory delay. 
Accordingly, participants can plan the required action ahead of time, leading to a stronger 
action-planning signal in the EEG in load one compared to load two and four (i.e., when 
more than one item can become relevant later). 

The most critical finding emerged when we compared action planning in load two 
versus load four. In both conditions, participants remained oblivious about which item 
would be probed for report at the end of the memory delay. Nevertheless, when directly 
comparing these conditions, we also observed a significant relative attenuation of beta 
activity in C3 for load two compared to load four (Figure 3C-i; time-frequency map; early 
cluster p = .0013, late cluster p = .0021). As before, this effect was characterized by a 
similar C3-centred topography (Figure 3C-ii) and bimodal temporal profile (Figure 3C-iii; 
time-course; early cluster p = .0011, late cluster p = .0014). 

In accordance with previous research (Boettcher et al., 2021; Schneider et al., 2017), 
we confirm that action planning occurs alongside the retention of a single visual item in 
working memory when the required action is certain. Moreover, we show that this is 
characterized by a bimodal pattern of action planning, possibly representing an early 
‘action encoding’ stage followed by a subsequent ‘preparation-for-implementation’ stage 
(in line with Boettcher et al., 2021). The key novelty here is the emergence of this action-
planning signature during the retention of more than a single visual item in working 
memory, when the to-be-implemented action remains uncertain throughout the memory 
delay. These results are in line with the graded scenario (Figure 1D) we previously 
envisioned: we observed an attenuation of beta activity that depends on the number of 
action possibilities (largest in load one, intermediate in load two, smallest in load four). 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.12.17.473138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 
 
Figure 3. Planning multiple potential actions alongside visual working memory. Comparison of neural 
activity in C3 for (A) load one versus four; (B) load one versus two; and (C) load two versus four. For each 
memory-load comparison – (i) Difference in time-frequency response in electrode C3, aligned to memory 
encoding. Colors indicate percentage change between the load conditions; black cluster outline indicates 
significant difference from a cluster-based permutation analysis. (ii) Topographies of beta (15-15 Hz) percentage 
change for three different time windows during the memory delay. (iii) Time-courses of beta (15-15 Hz) 
percentage change in electrode C3. Light-grey shadings around time-course indicate standard error; black 
horizontal lines indicate significant clusters; black vertical lines indicate memory encoding (at 0 sec) and 
memory probe (at 2 sec).  
 
Similar and dissimilar potential actions are planned alongside visual working memory 
 

During the retention of two oriented bars (i.e., in load two), the difference in orientation 
between those two bars varies between trials: the difference can be smaller (i.e., when both 
orientations are similar), or larger (i.e., when both orientations are dissimilar). Consequently, 
the potentially required actions can also be similar (i.e., when they both require the mouse 
to be moved a similar direction), or dissimilar (i.e., when they each require the mouse to be 
moved in dissimilar directions).  

Next, we aimed to rule out the possibility that the observed relative attenuation of beta 
activity for load two (compared to load four) was driven primarily by trials with similar 
memorized orientations (as suggested in: Grent-’t-Jong et al., 2014), that maybe have been 
associated with, or reduced to, a single action plan. To this end, we separated trials in load 
two as follows: trials were marked as similar when the absolute difference in orientation 
between two bars was smaller than 45º; trials were marked as dissimilar when this 
difference was larger than 45º. Next, we compared beta attenuation in C3 during the 
memory delay for load two compared to load four, while this time distinguishing between 
load two-similar and load two-dissimilar trials. For completeness, load two-similar and -
dissimilar were also compared directly. 

In line with the data presented in Figure 3C, we observed a significant relative 
attenuation of beta activity in C3 when comparing load two-similar to load four. This 
attenuation started soon after encoding (Figure 4A-i; time-frequency map early cluster p = 
.0021, late cluster p = .0021), had a left-central motor topography (Figure 4A-ii), and 
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showed a bimodal temporal profile (Figure 4A-iii; time-course early cluster p = .0009, late 
cluster p = .0012). Crucially, when we exclusively included trials from load two that were 
marked as dissimilar (and thus, required distinct potential actions) in our comparison, we 
still observed a significant relative attenuation of beta activity in C3 for load two-dissimilar 
compared to load four (Figure 4B-i; time-frequency map early cluster p = .011, late cluster 
p = .0005), with the same topographical (Figure 4B-ii) and temporal (Figure 4B-iii; time-
course early cluster p = .0026, late cluster p = .0005) characteristics as previously 
described. Moreover, when directly comparing load two-similar and load two-dissimilar 
trials, we did not observe a significant attenuation of beta activity in C3 (Figure 4C).  

These results show that the observed relative attenuation of beta activity in load two 
compared to load four was not merely driven by trials in load two where both memorized 
item orientations were similar. Accordingly, these results indicate that multiple potential 
actions can be planned during visual working memory, even when two visual 
representations in working memory require distinct actions for reproduction. 
 
 

 
 
Figure 4. Similar and dissimilar potential actions are planned alongside visual working memory. 
Comparison of neural activity in C3 for (A) load two-similar versus four; (B) load two-dissimilar versus two; and 
(C) load two-similar versus -dissimilar. Using the absolute difference in orientation between two items in load 
two, trials were marked as similar if this difference was smaller than 45 degrees, or as different if this difference 
was larger than 45 degrees. For each comparison – (i) Difference in time-frequency response in electrode C3, 
aligned to memory encoding. Colors indicate percentage change between the conditions; black cluster outline 
indicates significant difference from a cluster-based permutation analysis. (ii) Topographies of beta (15-15 Hz) 
percentage change for three different time windows during the memory delay. (iii) Time-courses of beta (15-15 
Hz) percentage change in electrode C3. Light-grey shadings around time-course indicate standard error; black 
horizontal lines indicate significant clusters; black vertical lines indicate memory encoding (at 0 sec) and 
memory probe (at 2 sec). 
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Potential action planning alongside visual working memory allows for faster  
memory-guided behavior 
 

Finally, we investigated whether potential action planning during the memory delay might 
be beneficial for performance, specifically for the speed of action implementation after the 
working-memory delay. To examine this, we marked trials as fast or slow, based on the 
onset time of the orientation-reproduction report after the onset of the memory probe. To 
this end, we performed a median split separately for each memory-load condition, and 
each participant. We reasoned that, if preparedness for potential future actions is beneficial 
for the speed at which one of these actions is later implemented, the degree of beta 
attenuation in C3 after encoding and during retention should be stronger in trials with faster 
decision times than in those with slower decision time. Moreover, this should only be the 
case in situations where action planning occurs alongside visual working memory. 

For trials in load one, we observed a significant relative attenuation of beta activity in 
C3 for fast compared to slow trials, starting soon after encoding (Figure 5A-i; time-
frequency map cluster p = .00029). This effect again showed a left-central topography 
(Figure 5A-ii), and a bimodal temporal profile (Figure 5A-iii; time-course early cluster p = 
.011, late cluster p = .0004). Critically, when performing the same median split analysis for 
load two, we again observed a significant relative attenuation of beta activity in C3 for fast 
compared to slow trials. This effect also emerged soon after encoding (Figure 5B-i; time-
frequency map early cluster p < .0001, late cluster p < .0001), had a left-central topography 
(Figure 5B-ii), and a bimodal temporal profile (Figure 5B-iii; time-course early cluster p = 
.0003, late cluster p = .0002). In contrast, when comparing fast to slow trials in load four, we 
did not observe such a significant attenuation of beta activity during the memory delay 
(Figure 5C). Nonetheless, after the memory delay, beta activity still became significantly 
predictive of response-onset times (Figure 5C-i, iii; time-frequency map cluster p = .0025; 
time-course cluster p = .0031). 

These results indicate that preparedness for multiple potential future actions is 
beneficial for the speed at which one of these actions is later implemented when we retain 
one or two visual items, but not (or at least to a lesser and non-significant extent) when we 
retain four visual items. This is consistent with the finding (Figure 3C) that there is more 
action planning during the memory delay in load two (i.e., when action certainty is 
intermediate) than in load four (i.e., when action certainty is low). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.12.17.473138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 
 
Figure 5. Potential action planning alongside visual working memory allows for faster memory-guided 
behavior. Comparison of neural activity in C3 for (A) load one: fast versus slow; (B) load two: fast versus slow; 
and (C) load four: fast versus slow. Trials in each memory load and participant were marked as fast or slow 
using a median split for decision times. For each comparison – (i) Difference in time-frequency response in 
electrode C3, aligned to memory encoding. Colors indicate percentage change between the conditions; black 
cluster outline indicates significant difference from a cluster-based permutation analysis. (ii) Topographies of 
beta (15-15 Hz) percentage change for three different time windows during the memory delay. (iii) Time-courses 
of beta (15-15 Hz) percentage change in electrode C3. Light-grey shadings around time-course indicate 
standard error; black horizontal lines indicate significant clusters; black vertical lines indicate memory encoding 
(at 0 sec) and memory probe (at 2 sec). 
 
 
Discussion 
 

While visual working memory allows us to retain information from the past, it inherently 
serves the future. It forms the bridge between perception and action, allowing us to use 
detailed visual representations from memory to guide potential future action (Baddeley, 
1992; Fuster & Alexander, 1971; Nobre & Stokes, 2019; Rainer et al., 1999; van Ede, 2020). 
Critically, working memory often contains not one, but multiple pieces of information that 
may become relevant for upcoming behavior (Cowan, 2001; Luck & Vogel, 1997; Ma et al., 
2014), and it may therefore serve not just the future, but the potential future. Accordingly, 
we asked whether and how multiple potential actions are planned during visual working 
memory, alongside the encoding and retention of multiple visual items. We show an 
attenuation of beta activity in central electrodes contralateral to the required response hand 
that depends on the number of action possibilities (strongest in load one, intermediate in 
load two, weakest in load four). In load two, this effect occurred regardless of whether both 
potential actions required a similar or dissimilar manual response. Moreover, the degree of 
beta attenuation during the memory delay (in load one and load two) was predictive of the 
speed of the ensuing memory-guided action after. These results are in line with the 
previously envisioned graded scenario, whereby action planning occurs alongside visual 
working memory, even when we retain more than one visual item in anticipation of multiple 
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potential actions. This brings the concept of parallel action planning (Cisek, 2007; Cisek & 
Kalaska, 2010) to the domain of multi-item retention in visual working memory.   

Previous research focusing on working memory of a single visual item already showed 
that action planning of its associated certain action occurs during the working-memory 
delay (Boettcher et al., 2021; Schneider et al., 2017). We directly build upon these findings, 
showing that, alongside the encoding and retention of two visual items, their associated 
potential actions are also planned during the memory delay. This occurs despite the 
uncertainty throughout the delay which of the two items will be probed for action later. 
Moreover, the action planning signature we observed (i.e., beta attenuation), follows a 
similar bimodal activation pattern (i.e., arising early after encoding, and resuming before 
probe onset) as in Boettcher and others (2021), reminiscent of the two-stage sequence of 
action-encoding followed by action-planning that they described. Another recent study that 
focused on working memory of multiple visual items previously showed that, when either of 
two visual items in visual working memory is probed for report, visual and motor 
information are selected concurrently (van Ede et al., 2019). This study – which focused on 
neural activity after the memory delay – provided tentative evidence for the idea that parallel 
action planning may co-occur with multi-item visual retention. Here we provide direct, 
complementary evidence for this interpretation by focusing on EEG activity in the delay-
period itself. 

The concept of parallel action planning has been around for more than a decade. An 
early study showed that when primates decide between two reaching actions towards 
different target locations, both actions are planned in parallel at first, and one of these 
actions is selected for implementation later (Cisek & Kalaska, 2005). This has led to the 
proposition of the affordance competition hypothesis (Cisek, 2007), suggesting that 
behavior is a competition between parallel representations of potential action affordances. 
Recent work has argued that potential action planning is also prevalent in humans when 
they plan and perform reaching actions towards multiple potential locations (Gallivan et al., 
2015, 2016; Grent-’t-Jong et al., 2013; Stewart et al., 2013; Wong & Haith, 2017). Yet, so far 
it has been considered predominantly in tasks without concurrent item retention in working 
memory, whereby visual objects guide our actions. We now provide evidence for the notion 
that multiple potential actions, that are guided by detailed visual item representations, are 
also planned alongside encoding and retention during visual working memory. At the same 
time, our data show that action planning is more profound when the relevant action is fully 
known in advance (i.e., in load one) as compared to when there are multiple potential 
courses of action (i.e., in load two and four). This is in line with other earlier research, which 
showed that beta attenuation is inversely related to the number of action possibilities, being 
larger with higher action certainty, and vice versa (Tzagarakis et al., 2010, 2015, 2021). 

We interpret our data in the load two condition as reflecting the planning of multiple 
potential actions. However, one might alternatively argue that participants plan one single 
action selectively, even when they anticipate multiple potential actions. Indeed, concluding 
the occurrence of parallel action planning from trial-average data is notoriously difficult 
(Dekleva et al., 2018). However, three aspects of our data argue against this alternative 
interpretation. First, if this were true, it logically follows that the degree of action planning in 
load one and two should be comparable (i.e., in both cases one action is planned). In other 
words, we should observe no difference in beta activity during the memory delay in load 
one compared to load two, contrasting our observations. Second, in half of the trials in load 
two, the action that is selectively planned should be the “incorrect” action that is 
associated with the visual item that is not probed later. This should be detrimental to 
decision times, as this would require a switch of plans in this half of the trials. Yet, we 
observed that larger beta attenuation in load two during the memory delay predicts faster 
decision times later, suggesting that beta attenuation generally facilitated performance. A 
third possibility is that multiple potential actions in load two are “merged into one” 
whenever two visual items require a similar manual response. However, we observed an 
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attenuation of beta activity in load two (compared to load four) regardless of whether the 
two potential actions required a similar or dissimilar manual response. These data support 
out parallel-planning interpretation by countering the possibility that one potential action is 
selectively planned during the memory delay, even when there are multiple potential 
courses of action. 

Several lines of previous research have focused on bi-directional influences between 
visual working memory and action (for recent reviews: Heuer et al., 2020; Myers et al., 
2017; Olivers & Roelfsema, 2020; van Ede, 2020). It has been shown, for example, that 
action planning can benefit visual working memory performance: memory performance is 
higher when the memorized locations of visual memoranda and (planned) actions are 
congruent, both for eye movements (Hanning et al., 2016; Hanning & Deubel, 2018; Ohl & 
Rolfs, 2017, 2018, 2020), and for manual actions (Hanning & Deubel, 2018; Heuer & 
Schubö, 2017, 2018). We focused on the reverse direction, and considered how retention 
during visual working memory may naturally recruit action planning. Moreover, we show 
that the degree of action planning during the working-memory delay is beneficial for the 
speed of memory-guided action afterwards. At the same time, we found no relation 
between action planning and the precision of the memory-guided orientation-reproduction 
report. This suggests that action planning in our task did not necessarily influence the 
quality of visual working memory representations. Instead, planning multiple potential 
actions may have occurred alongside visual working memory retention, allowing both action 
plans and visual representations to be readily available for fast response-implementation 
after the memory delay. 

Although visual working memory allows us to retain information that is no longer 
physically available to us, visual working memory is not merely a temporary storage 
mechanism. Instead, we often rely on representations in visual working memory to guide 
and plan potential future actions, even – or perhaps especially – under varying degrees of 
action certainty. This is useful in our everyday lives where we are often faced with multiple 
sources of visual information that we need to retain, and that each afford distinct potential 
actions. Being prepared for more than one action-scenario allows us to cope with action 
uncertainty in a dynamically unfolding world (Cisek & Kalaska, 2010), and, ultimately, allows 
us to act rapidly when working-memory contents become relevant for behavior. The 
findings presented here provide evidence that multiple potential actions can be planned 
alongside visual working memory. They also reinforce the idea that visual working memory 
is ultimately future-oriented. 
 
 
Methods 
 
Participants 
 

Twenty-five healthy human adults (mean age 25.32 years, sd = 4.27, sex of the subjects is 
unknown, four left-handed) participated in the experiment. All participants had normal or 
corrected-to-normal vision. None of the participants were excluded from the analyses. The 
experiment was approved for by the Central University Research Ethics Committee of the 
University of Oxford. Participants provided written informed consent before participating in 
the study. They received a monetary compensation of £10 per hour after participation. 
 
Experimental design and procedure 
 

Participants performed a visual working memory task with a delayed orientation-
reproduction report (Figure 1A). A blocked memory-load manipulation was implemented in 
the task. To achieve this, each block of trials was preceded with an instruction display 
(block-wise pre-cue) that indicated the relevant color(s) of that block (Figure 1B). 
Participants were asked to encode and retain only the bars of the instructed color(s). In load 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.12.17.473138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

one, participants were required to retain the orientation of the one bar whose color 
matched that of the instruction cue; in load two, participants were required to retain the 
orientations of the two bars whose colors matched the instruction cue; in load four, 
participants were required to retain the orientations of all four colored bars. In all cases, 
four bars were presented on the screen at encoding, as such controlling for bottom-up 
stimulus differences between the load conditions. 

Participants were seated at a viewing distance of 90 cm from the computer screen. The 
bars had a diameter of 5.7 degrees visual angle and were centered at a 5.7 degrees visual 
angle distance from fixation. Every encoding display contained four colored oriented bars 
(green, RGB: 0, 210, 63; blue, RGB: 0, 128, 255; orange, RGB: 255, 127, 39; purple, RGB: 
238, 0, 238) that were presented on a grey background (RGB: 25, 25, 25) for 500 ms. The 
relevant colors indicated in the block-wise pre-cue were randomly chosen. Color locations, 
and bar orientations were both randomly chosen on a trial-by-trial basis.  

The encoding display was followed by a memory delay (1500 ms) in which only the 
fixation cross remained on the screen. After the delay, a response dial was presented on 
the screen (as in: van Ede et al., 2017). This dial consisted of a grey circle with two smaller 
circles (or handles), positioned opposite each other on the larger circle, that together 
represented an orientation. The color of the two handles indicated which bar orientation 
should be reproduced. The color was always chosen randomly from the relevant colors in 
that block. The position of the two handles could be adjusted by dragging a computer 
mouse. For consistency, the mouse was always controlled with the right hand (even in the 
few participants who preferred their left hand). The task was to align the two handles with 
the memorized orientation of the to-be-reproduced colored bar (i.e., the bar with the same 
color as the response handles). The initial orientation of the response dial was randomly 
varied on a trial-by-trial basis. 

Participants had an unlimited amount of time to initiate their response after the 
response dial had been presented on the screen. Once their response was initiated, 
participants had a maximum of 2500 ms to confirm their orientation-reproduction report 
with a mouse click. A visualization of an hourglass was presented under the response dial 
to indicate the amount of time that had passed. After response confirmation, participants 
received feedback on their orientation-reproduction precision. If the absolute difference in 
orientation between the response and the target was smaller than 15 degrees, the fixation 
cross turned green; if the absolute difference was larger than 15 degrees, or if the response 
deadline had passed, the fixation cross turned red. The inter-trial-interval was randomly 
varied between 500 and 800 ms. 

Preceding the main task, participants performed one practice block of 20 trials for each 
memory-load condition (i.e., 60 trials in total). During the main task, participants performed 
two consecutive sessions with a 10-15-minute break in between. Each session contained 
10 blocks of 20 trials for each memory-load condition (i.e., 2*10*20*3 = 1200 trials in total). 
Load conditions were always grouped into three consecutive sub-blocks of 20 trials each, 
with load conditions one, two, and four occurring in random order. After every 60 trials, 
participants were prompted to have a self-paced break. Participants one and two 
performed 12 blocks during each session (i.e., 1440 trials in total). After realizing that 
number of trials took a considerable amount of time, the number of blocks per session was 
reduced from 12 to 10 from participant three onwards. 
 
Behavioral data analyses 
 

All behavioral analyses were performed in R (R Core Team, 2020). The variables of interest 
for the behavioral analyses were absolute error (in degrees) and decision time (in ms). 
Absolute error was defined as the absolute difference between the reported- and the target 
orientation. Decision time was defined as the time between the onset of the response dial 
and the initiation of the mouse response (as in: van Ede et al., 2017, 2019).  
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Before turning to the main analyses, behavioral data were cleaned by removing outlier 
decision times. First, trials with decision times smaller than 200 ms or larger than 5000 ms 
were excluded from further analyses. Next, for each participant trials were excluded with 
decision times larger than the mean plus two-and-a-half times the standard deviation. 
Means and standard errors of the variables of interest were calculated for each participant 
and memory load using the Rmisc package (Hope, 2013), and visualized using the ggplot2 
package (Wickham, 2016). Two one-way repeated measures ANOVAs were performed to 
statistically evaluate the effect of memory load on the variables of interest. For each 
memory-load comparison, and each variable of interest, post-hoc comparisons were done 
using the Tukey HSD (honest significant difference) test. 
 
EEG acquisition and analyses 
 

EEG was measured using Synamps amplifiers and Neuroscan acquisition software 
(Compumedics Neuroscan, North Carolina, USA), using the standard 10-10 system 64 
electrode set-up. The left mastoid was used as an active reference. The ground electrode 
was placed on the left upper arm. During acquisition, the data were low-pass filtered with a 
250 Hz cutoff, and sampled at 1000 Hz.  

Pre-processing. All EEG analyses were performed in MATLAB (2020b; The MathWorks, 
2020) using the FieldTrip toolbox (Oostenveld et al., 2011; http://fieldtriptoolbox.org). After 
acquisition, data were re-referenced to an average of the left and right mastoids. Then, 50-
Hz noise was filtered using a dft filter, and the data were down-sampled to 200Hz. The data 
were epoched from -1000 to 3000 ms, relative to memory encoding onset. Independent 
Component Analysis (ICA) was used to correct for eye-movement artifacts. The appropriate 
ICA components used for artifact rejection were identified by correlating the time-courses 
of the ICA components with those of the measured horizontal and vertical EOG. After blink 
correction, the FieldTrip function ft_rejectvisual was used to visually assess which trials had 
exceptionally high variance, which were marked for rejection. Trials that had been marked 
as too fast or too slow (as described in the behavioral analyses section) were also rejected 
from further analyses. A surface Laplacian transform was applied to increase the spatial 
resolution of the central 15-25 Hz beta signal of interest (as in: van Ede et al., 2019). 

Channel and frequency-band selection. For all reported analyses, channel and 
frequency-band selections were pre-determined. To investigate motor activation 
contralateral to the hand used for reporting (i.e., the right hand), we focused on EEG activity 
in channel C3 (i.e., a canonical EEG channel over the left motor cortex). To zoom in on the 
beta-band, we additionally extracted 15-25 Hz beta activity for all time course-based 
visualizations (though note that we always also statistically evaluated our data in the full 
time-frequency plane). These selections are in line with previous research (e.g., Boettcher et 
al., 2021; Mcfarland et al., 2000; Neuper et al., 2006; Salmelin & Hari, 1994; van Wijk et al., 
2009) and were set a-priori. 

Time-frequency analysis. Time-frequency responses for the frequency-range from 3 to 
40 Hz (in steps of 1 Hz) were obtained using the short-time Fourier transform. Data were 
Hanning-tapered with a sliding time window of 300 ms, progressing in steps of 50 ms. 
Time-frequency responses were contrasted for each memory-load comparison (load one 
versus four; load one versus two; load two versus four), using a normalized subtraction to 
express load effects as a percentage change: ((a – b) / (a + b)) * 100. Time-frequency 
responses were averaged across participants in channel C3. To focus on the delay period 
of interest, we considered all data in the time-window of -100 to 2500 ms (relative to 
memory encoding onset). For topographies, time-frequency responses were averaged for 
the pre-determined beta frequency-band from 15-25 Hz, and visualized in three 
consecutive time-windows covering the full delay period: 500 to 1000 ms (i.e. the first 500 
ms after encoding offset), 1000 to 1500 ms, 1500 to 2000 ms. To obtain beta time-courses, 
time-frequency responses were averaged over the 15-15 Hz band. 
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Dependence on orientation-similarity. To assess whether the observed differences 
between load two and four depended on the item similarity in load two trials, we also 
separately examined load two trials in which the items were similar versus dissimilar. To this 
end, the absolute difference in orientation was calculated between the two relevant items in 
load two. Trials were marked as similar if this absolute difference was smaller than 45 
degrees; trials were marked as different if this absolute difference was larger than 45 
degrees. The previously described calculation of time-frequency responses, topographies, 
and time-courses were repeated for the following contrasts: load two-similar versus four; 
load two-different versus four; load two-similar versus two-different. 

Dependence on decision time. We also aimed to assess whether action planning – as 
reflected in EEG beta activity in C3 – during the memory delay may have impacted decision 
times after the delay. To this end, trials in each memory load and participant were marked 
as fast or slow using a median split for decision times. We did this separately for each load 
condition and ran the previously described calculation of time-frequency responses, 
topographies, and time-courses for the following contrasts: load one fast versus slow; load 
two fast versus slow; load four fast versus slow. 

Statistical evaluation. Cluster-based permutations (Maris & Oostenveld, 2007) were 
performed for the statistical evaluation of the above-described EEG contrasts for load, 
orientation-similarity, and behavior. This non-parametric approach (or montecarlo method) 
offers a solution for the multiple-comparisons problem in the statistical evaluation of EEG 
data, which, in our case, included a sizeable number of time-frequency comparisons. It 
does so by reducing the data to a single metric (e.g., the largest cluster of neighboring data 
points that exceed a certain threshold) and evaluating this (in the full data space under 
consideration) against a single randomly permuted empirical null distribution. Cluster-based 
permutations were performed on the time-frequency responses (considering clusters in 
time and frequency) and time-courses (considering clusters in time) of each above-
described contrast, using 10.000 permutations, and an alpha level of 0.025. 
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