
CONGA: Copy number variation genotyping in ancient genomes
and low-coverage sequencing data

Arda Söylev1*, Sevim Seda Çokoglu2, Dilek Koptekin3, Can Alkan4, and Mehmet Somel2*

1Department of Computer Engineering, Konya Food and Agriculture University, Konya, 42080, Turkey
2Department of Biology, Middle East Technical University, Ankara, 06800, Turkey

3Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, 06800,
Turkey

4Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey

*Corresponding authors: asoylev@gmail.com and msomel@metu.edu.tr

ABSTRACT

To date, ancient genome analyses have been largely confined to the study of single nucleotide1

polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of2

evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered3

by typical low coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection4

software to be effectively applied to ancient genomes. Here we present CONGA, tailored for5

genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that6

CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between7

heterozygous and homozygous states. We applied CONGA to genotype 10,002 outgroup-ascertained8

deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years,9

produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion10

profiles unrelated to their population origin, but attributable to technical factors such as coverage and11

read length. The majority of the sample (50/71), despite originating from nine different laboratories12

and having coverages 0.44×-26× (median 4×) and read lengths 52-121 bp (median 69), exhibit13

coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured14

using SNPs and CONGA-genotyped deletions are strongly correlated. CONGA-genotyped deletions15

also display purifying selection signatures, as expected. CONGA thus paves the way for systematic16

CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome17

coverage.18

Keywords Genomics · ancient DNA · CNV genotyping · deletion · low coverage whole genome sequencing19

Introduction20

Ancient genomics, the analysis of genetic material extracted from archaeological and paleontological remains, has21

become a major source of information for the study of population history and evolution over the last decade Skoglund22

and Mathieson (2018); Frantz et al. (2020); Shapiro and Hofreiter (2014); Marciniak and Perry (2017). While the23

number of published ancient genomes is exponentially growing, their analyses have yet been nearly exclusively limited24

to those of single-nucleotide polymorphisms (SNPs), while structural variations (SVs) in ancient genomes remain25

mostly ignored. Copy number variations (CNVs) are a common type of SVs and include deletions and duplications26

ranging from 50 bps to several megabasepairs. Although their number, by count, is much fewer than SNPs, the27

fraction of the genome affected by CNVs is well past that accounted for SNPs Conrad et al. (2010). Likewise, CNVs28

are a major contributor to phenotypic variation: they are frequently discovered as the basis of diverse biological29

adaptations Gonzalez et al. (2005); Perry et al. (2007); Xue et al. (2008); Chan et al. (2010); McLean et al. (2011);30

Hardwick et al. (2011); Kothapalli et al. (2016); Nuttle et al. (2016); Hsieh et al. (2019) as well as genetic diseases31

(reviewed in Zhang et al. (2009); Stankiewicz and Lupski (2010); Girirajan et al. (2011); Saitou and Gokcumen (2020)).32

This renders the study of CNVs in ancient genomes two-fold attractive. First, as CNVs frequently serve as genetic33

material for adaptation, their study in ancient genomes can allow detailed temporal investigation of adaptive processes.34

Examples include evolutionary changes in salivary amylase copy numbers in humans and in dogs, thought to represent35
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responses to a shift to starch-rich diets Mathieson and Mathieson (2018); Bergström et al. (2020). Second, large36

deletions can be a major source of deleterious mutation load, and studying deletion frequencies in ancient genome37

samples from extinct species or severely bottlenecked populations can inform about the genetic health of lineages. For38

instance, a study on the last surviving mammoth population on Wrangel Island reported an excess of deletions in this39

sample, which may have compromised the population’s fitness Rogers and Slatkin (2017).40

Despite this appeal, the impact of CNVs on evolutionary history and ancient phenotypes remains largely unex-41

plored Frantz et al. (2020). The reason lies in the significant technical challenges in CNV detection posed by ancient42

genomes. State-of-the-art methods for CNV discovery from shotgun genome sequencing data require at least mod-43

erate depth of coverage Abyzov et al. (2011); Boeva et al. (2012); Smith et al. (2015); Alkan (2020) and read-pair44

information Rausch et al. (2012); Layer et al. (2014); Chen et al. (2016); Eisfeldt et al. (2017); Soylev et al. (2017,45

2019), or long reads Chaisson et al. (2015); Sedlazeck et al. (2018). However, due to the degraded and elusive nature46

of ancient DNA, ancient genome data is frequently produced at low coverage (<1×) and the molecules retrieved are47

typically short, between 50-80 bps. Excess variability in genome coverage caused by taphonomic processes is another48

potential issue. Although CNVs have been studied in a few relatively high coverage ancient genomes using CNV49

discovery tools Green et al. (2010); Reich et al. (2010); Meyer et al. (2012); Rogers and Slatkin (2017); Bergström50

et al. (2020), these methods are inapplicable to most ancient genome data sets, and so far, no specific algorithm for51

CNV identification in ancient genomes has been developed and tested.52

With the aim to fill this gap, here we present CONGA (Copy Number Variation Genotyping in Ancient Genomes and53

Low-coverage Sequencing Data), a CNV genotyping algorithm tailored for ancient and other low coverage genomes,54

which estimates copy number beyond presence/absence of events. We use simulations and down-sampling experiments55

to assess CONGA’s performance. Beyond simulations, we explore whether deletions can be reliably genotyped in56

heterogeneous datasets composed of ancient genomes from different laboratories, where not only low coverage, but57

also coverage variability caused by differences in taphonomy and experimental protocols may pose challenges. We58

evaluate this by studying expected patterns of genetic drift and negative selection on CONGA-genotyped deletions.59

Results60

Motivation and overview of the algorithm61

We developed CONGA to genotype given candidate CNVs in mapped read (BAM) files (Methods). The choice of62

CNV genotyping over CNV discovery has obvious reasons: (a) CNV discovery using low coverage ancient genomes is63

impractical; (b) for many species studied using ancient genomics, CNV reference sets based on high quality genomes64

are already available (Supplemental Note S1); (c) variants in ancient genomes will largely overlap with present-day65

variants in most cases; (d) genotyping has much shorter running times and lower memory usage than discovery. Indeed,66

although algorithms for de novo SNP discovery exist Prüfer (2018); Link et al. (2017), most ancient genome studies to67

date have chosen genotyping known variants because of low coverage and DNA damage Orlando et al. (2021). We68

reasoned that it may be likewise possible to genotype CNVs in ancient genomes with high accuracy and in short running69

times using depth of coverage and split-read information, despite low and variable coverage.70

Briefly, CONGA first calculates the number of reads mapped to each given interval in the reference genome, which71

we call “observed read-depth”. It then calculates the “expected diploid read-depth”, i.e., the GC-content normalized72

read-depth given the genome average. Using these values, CONGA calculates the likelihood for each genotype by73

modeling the read-depth distribution as Poisson, similar to common CNV callers Xie and Tammi (2009); Chiang et al.74

(2009); Yoon et al. (2009). The genotypes can be homozygous CNV, heterozygous CNV, or no CNV. Using these75

likelihoods CONGA then calculates a statistic we term the C-score, defined as the likelihood of a CNV being true (in76

heterozygous or homozygous state) over it being false (no CNV). For genotyping duplications, CONGA also uses an77

additional split-read step in order to utilize paired-end information. Briefly, it splits reads and remaps the split within78

the genome, treating the two segments as paired-end reads Karakoc et al. (2012); Soylev et al. (2019). Either type of79

signature, read-depth or paired-end, can be sufficient to call a duplication (Methods). The overall workflow is presented80

in Figure 1.81

Accuracy evaluation using simulated genomes and comparison with published algorithms82

To evaluate the performance of CONGA we first simulated genomes with CNVs of ancient-like characteristics. We83

employed VarSim Mu et al. (2015) to insert deletions and duplications into the human reference genome (GRCh37).84

We used three different size intervals for CNVs: small (100 bps - 1000 bps), medium (1,000 bps - 10,000 bps) and85

large (10,000 bps - 100,000 bps). We thus simulated three genomes, each with roughly 1,500 deletions and 1,50086

duplications of a specific size range (see Supplemental Fig. S1 for the exact numbers and length distributions of CNVs87
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Figure 1: Overall workflow of CONGA. The first step involves initialization, where we create the input (reference)
CNV file using the deletions and duplications of a high quality genome set. We apply our genotyping algorithm in the
second step and create the initial CNV call set. We then perform a filtering and refining step, which is used to generate
the final CNV call set.

inserted in each genome). We next used these genomes as input to the ancient read simulator Gargammel Renaud et al.88

(2017), which generates paired-end short Illumina reads with varying fragment sizes (median 66 bps) and post-mortem89

damage. The data was generated at various depths: 0.05×, 0.1×, 0.5×, 1× and 5× (Methods). We then used CONGA90

to genotype CNVs across the simulated ancient genomes, using a candidate CNV call set. In order to assess specificity91

and sensitivity, we also used a background (false) CNV list, prepared using published deletion and duplication calls92

from modern-day human long-read sequencing datasets Audano et al. (2019); Chaisson et al. (2019); Zook et al. (2020);93

Collins et al. (2020), as well as from African populations (AFR) from Phase 3 of the 1000 Genomes Project Sudmant94

et al. (2015b). We mixed these false CNVs to the list of true CNVs with a ratio of approximately 10:1 (∼15,00095

false events vs. ∼1,500 true events) and used this mixed list as the candidate CNV call set to CONGA (Methods).96

To assess the performance of CONGA in identifying CNVs, we further compared it with a CNV genotyping tool,97

GenomeSTRiP Handsaker et al. (2011, 2015), and three of the widely used CNV discovery tools: CNVnator Abyzov98

et al. (2011), FREEC Boeva et al. (2012) and mrCaNaVaR Alkan et al. (2009); Kahveci and Alkan (2018); Alkan99

(2020).100

Table 1 shows true and false predictions by CONGA, GenomeSTRiP, FREEC and CNVnator, as well as their true101

positive rate (TPR), false discovery rate (FDR) and the F-score (F1) for identifying deletions and duplications of small,102

medium and large size (as defined above). We report results with mrCaNaVaR separately in Supplemental Table S1.A103

as this algorithm was specifically designed to target large duplications (>10 kbps) only.104

Both genotypers, CONGA and GenomeSTRiP, achieved higher performance compared to the three CNV discovery105

tools (Table 1; Supplemental Table S1.A). Although this may seem expected, the fact that our candidate CNV call set106

included 10 times more false CNVs than true CNVs is notable, and indicates that both CONGA and GenomeSTRiP107

achieve non-trivial performances in distinguishing true versus false CNVs in ancient genomes.108

CONGA and GenomeSTRiP had comparable performances, although CONGA had lower FDR and slightly lower recall109

(TPR) than the latter, leading to overall higher F-scores. We note that GenomeSTRiP was performed on each genome110

independently here, and its performance when genotyping multiple genomes together could be higher Handsaker et al.111

(2011). However, joint genotyping may also create biases in heterogeneous datasets (see Discussion).112

We observed that all tools converge in performance as the coverage approaches depths of 5×, especially with large113

CNVs. For small CNVs (<1 kbps), all tools under-performed, although CONGA predictions still had higher recall and114

precision than the other tools (see Supplemental Fig. S2 for precision-recall curves).115

The simulation results thus suggest that CONGA can efficiently and accurately genotype deletions and duplications of116

length >1 kbps in ancient genomes at ≥0.5× coverage, with higher overall accuracy compared to available discovery117

and genotyping tools.118

Copy number predictions of CNVs119

Beyond the identification of deletion and duplication events, classifying individual genotypes as heterozygous or120

homozygous CNVs could provide valuable information for population genetic analyses of CNVs. However, predicting121

CNV copy numbers can be a significant challenge on low coverage genomes Kousathanas et al. (2017). We thus122

assessed the performance of CONGA to determine the copy number of a CNV based on the likelihood model described123

above using our simulation data. We focused on medium and large size CNVs given the weak performance of CONGA124

on small CNVs. We note that CONGA only evaluates the possibility of homozygous duplications (ignores copy numbers125
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Table 1: Summary of simulation predictions by CONGA, GenomeSTRiP, FREEC and CNVnator.

Cov. CONGA GenomeSTRiP FREEC CNVNator
T F TPR FDR F1 T F TPR FDR F1 T F TPR FDR F1 T F TPR FDR F1

Dels
(small)
1810
True

.05× 1471 1887 0.81 0.56 0.57 829 6308 0.46 0.88 0.19 0 1221 0.00 1.00 - 3 47442 0.00 1.00 0.00
.1× 1266 1440 0.70 0.53 0.56 851 4765 0.47 0.85 0.23 0 198 0.00 1.00 - 0 402 0.00 1.00 -
.5× 1285 157 0.71 0.11 0.79 853 1549 0.47 0.64 0.41 0 6761 0.00 1.00 - 0 806 0.00 1.00 -
1× 1410 46 0.78 0.03 0.86 888 719 0.49 0.45 0.52 0 1916 0.00 1.00 - 0 263 0.00 1.00 -
5× 1593 8 0.88 0.00 0.93 917 89 0.51 0.09 0.65 20 392 0.01 0.95 0.02 341 493 0.19 0.59 0.26

Dups
(small)
1751
True

.05× 601 548 0.34 0.48 0.41 829 3834 0.47 0.82 0.26 0 44 0.00 1.00 - 7 47700 0.00 1.00 0.00
.1× 719 404 0.41 0.36 0.50 1048 2691 0.60 0.72 0.38 0 7 0.00 1.00 - 0 28699 0.00 1.00 -
.5× 856 64 0.49 0.07 0.64 1077 686 0.62 0.39 0.61 0 3 0.00 1.00 - 0 9 0.00 1.00 -
1× 1155 14 0.66 0.01 0.79 1127 311 0.64 0.22 0.71 0 555 0.00 1.00 - 0 884 0.00 1.00 -
5× 1448 1 0.83 0.00 0.91 888 1270 0.73 0.05 0.82 35 77 0.02 0.69 0.04 2 0 0.00 0.00 0.00

Dels
(med.)
1680
True

.05× 1136 1704 0.68 0.60 0.50 1430 5670 0.85 0.80 0.33 0 83 0.00 1.00 - 0 68 0.00 1.00 -
.1× 1273 1308 0.76 0.51 0.60 1452 4383 0.86 0.75 0.39 0 237 0.00 1.00 - 1 216 0.00 1.00 0.00
.5× 1423 171 0.85 0.11 0.87 1495 1467 0.89 0.50 0.64 239 6433 0.14 0.96 0.06 187 257 0.11 0.58 0.18
1× 1506 53 0.90 0.03 0.93 1501 699 0.89 0.32 0.77 421 2135 0.25 0.84 0.20 330 257 0.20 0.44 0.29
5× 1569 9 0.93 0.01 0.96 1510 102 0.90 0.06 0.92 929 485 0.55 0.34 0.60 949 423 0.56 0.31 0.62

Dups
(med.)
1684
True

.05× 792 551 0.47 0.41 0.52 1104 3813 0.66 0.78 0.33 0 3 0.00 1.00 - 0 114 0.00 1.00 -
.1× 950 422 0.56 0.31 0.62 1160 2701 0.69 0.70 0.42 0 3 0.00 1.00 - 0 102 0.00 1.00 -
.5× 1340 60 0.80 0.04 0.87 1322 685 0.79 0.34 0.72 271 15 0.16 0.05 0.28 2 4 0.00 0.67 0.00
1× 1451 11 0.86 0.01 0.92 1389 333 0.82 0.19 0.82 582 937 0.35 0.62 0.36 16 2 0.01 0.11 0.02
5× 1553 1 0.92 0.00 0.96 1473 95 0.87 0.06 0.91 1000 329 0.59 0.25 0.66 105 2 0.06 0.02 0.12

Dels
(large)
1385
True

.05× 1208 1812 0.87 0.60 0.55 1330 5891 0.96 0.82 0.31 0 87 0.00 1.00 - 84 131 0.06 0.61 0.11
.1× 1251 1309 0.90 0.51 0.63 1337 4371 0.97 0.77 0.38 0 754 0.00 1.00 - 560 246 0.40 0.31 0.51
.5× 1293 157 0.93 0.11 0.91 1335 1496 0.96 0.53 0.63 664 3136 0.48 0.83 0.26 1049 293 0.76 0.22 0.77
1× 1299 53 0.94 0.04 0.95 1338 759 0.97 0.36 0.77 1239 156 0.89 0.11 0.89 1204 309 0.87 0.20 0.83
5× 1299 4 0.94 0.00 0.97 1336 230 0.96 0.15 0.91 1260 154 0.91 0.11 0.90 1265 453 0.91 0.26 0.82

Dups
(large)
1532
True

.05× 1263 563 0.82 0.31 0.75 1271 3900 0.83 0.75 0.38 0 6 0.00 1.00 - 4 354 0.00 0.99 0.00
.1× 1327 366 0.87 0.22 0.82 1327 2855 0.87 0.68 0.46 0 0 - - - 455 315 0.30 0.41 0.40
.5× 1420 58 0.93 0.04 0.94 1424 964 0.93 0.40 0.73 589 97 0.38 0.14 0.53 1039 77 0.68 0.07 0.78
1× 1426 20 0.93 0.01 0.96 1445 623 0.94 0.30 0.80 1305 266 0.85 0.17 0.84 1216 94 0.79 0.07 0.86
5× 1428 9 0.93 0.01 0.96 1447 454 0.94 0.24 0.84 1304 294 0.85 0.18 0.83 1350 165 0.88 0.11 0.89

The table shows CNV prediction performances of CONGA, GenomeSTRiP, FREEC and CNVnator on simulated genomes
with depths 0.05×, 0.1×, 0.5×, 1× and 5×, for deletions (Dels) and duplications (Dups) of multiple CNV size intervals
including 100 bps - 1 kbps (small), 1 kbps - 10 kbps (medium) and 10 kbps - 100 kbps (large). Here, T (True) and F (False)
refer to correct and incorrect predictions respectively, TPR is true positive rate (or recall) and FDR is false discovery rate
(1−Precision) of each algorithm. F1 (F-score), is calculated as (2×Precision×Recall)/(Precision+Recall). Bold
values in each row represent the highest TPR, lowest FDR, or highest F1 across the tools. See Supplemental Table S1.A
for details and mrCaNaVaR predictions for large variations. Commands that we used to run each tool are also given in
Supplemental Material. The results here were generated using C-Score <0.5 for CONGA, while no read-pair or mappability
filters were applied.

≥3). Figure 2 shows CONGA’s copy number prediction performance for deletions and duplications using F-scores126

for each coverage tested. We found that F-scores were above 0.7 at coverages ≥0.5×. Encouragingly, CONGA had127

comparable power in identifying heterozygous and homozygous events of size >1 kbps (Supplemental Table S1.B).128

Down-sampling experiments with real ancient genomes129

We next studied the performance of CONGA in identifying CNVs at various depths of coverage using real ancient130

genome data. As no ground truth CNV call-set is available, we used the following approach: (i) we chose three131

published ancient genomes of relatively high coverage (≥9×), (ii) we genotyped CNVs using the full genome data with132

CONGA and using a modern-day human CNV call set as input, (iii) we down-sampled the ancient genome data to133

lower coverages, (iv) we assessed CONGA’s performance in genotyping the same CNVs at low coverage (Methods).134

Specifically, we selected a (∼ 23.3×) ancient Eurasian genome (Yamnaya) de Barros Damgaard et al. (2018b), a135

13.1× ancient genome from Greenland (Saqqaq) Rasmussen et al. (2010), and a 9.6× ancient genome from Ethiopia136

(Mota) Llorente et al. (2015). The Yamnaya genome was only available as a BAM file, while the latter two were137
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Figure 2: Performance (F-scores) of CONGA in predicting copy-numbers of (A) deletions and (B) duplications using
merged sets of medium and large CNVs, at various coverage values.

available as FASTQ files, which we processed into BAM files (Methods). We used a list of modern-day human CNVs138

as candidate CNV set (n = 17, 392 deletions and n = 14, 888 duplications) (Methods) as input to CONGA. We thus139

genotyped between 688-1,581 deletions and 638-4,097 duplications across these three genomes using the full data. We140

then down-sampled all three BAM files to various depths, and repeated the genotyping for each genome. We estimated141

CONGA’s TPR and FDR on down-sampled genomes by treating the CNVs genotyped using the full data as ground142

truth (Methods).143

CONGA displayed satisfactory performance in identifying deletions in all three genomes even at coverages around144

0.5×, with TPR of >70% and FDR of <45% (Figure 3, Supplemental Table S1.C). For duplications, however, CONGA145

showed poor performance: at around 1× coverage, duplication TPR was >40% in the Saqqaq and Mota genomes, and146

only 22% in the Yamnaya genome. A detailed analysis of these results suggested that pre-publication quality filtering147

of BAM files may have obliterated read-depth-based duplication signals in the data (Supplemental Note S2).148

Overall, both our simulations and down-sampling experiments with real genomes suggest that CONGA can efficiently149

genotype >1 kbps deletion events at depths of coverage of 0.5×, and even at 0.1×. CONGA could thus be applied on a150

large fraction of ancient shotgun sequenced genomes available for deletion genotyping. In contrast, CONGA’s low151

performance in duplication genotyping in the down-sampled Yamnaya BAM data implies that identifying duplications152

in published low coverage ancient genomes may not be feasible, as the data are mainly submitted in BAM format in153

public repositories (see Discussion). We therefore limited downstream analyses on real ancient genomes to deletions154

>1 kbps.155

Analysis of 71 real ancient genomes and technical influences on deletion genotyping156

Although CONGA’s above performance in deletion genotyping was promising, heterogeneous sets of real ancient157

genomes may pose additional challenges, as they are obtained from DNA samples of complex taphonomic history and158

are produced via different experimental protocols. Hence, whether consistent biological signals may still be extracted159

from low coverage genome sets remains unclear. To explore this, we genotyped deletions with CONGA across a160

diverse sample of real ancient human genomes. We then studied their diversity with expectation that deletions, like161

SNPs, should display genome-wide similarity patterns that reflect population origin, i.e., shared genetic drift, among162

individuals Conrad and Hurles (2007); Levy-Sakin et al. (2019); Almarri et al. (2020).163

We thus collected BAM files for 71 ancient human genomes belonging to a time range between c.2,800-45,000 years164

Before Present (BP) (Supplemental Table S2) Rasmussen et al. (2014); Günther et al. (2015); Hofmanová et al. (2016);165

Jones et al. (2015); Kılınç et al. (2016); de Barros Damgaard et al. (2018b); Gamba et al. (2014); González-Fortes et al.166

(2017); de Barros Damgaard et al. (2018a); Keller et al. (2012); Sikora et al. (2019); Olalde et al. (2014); Lazaridis167

et al. (2014); Antonio et al. (2019); Allentoft et al. (2015); Haber et al. (2019); Fu et al. (2014); Broushaki et al. (2016);168

Seguin-Orlando et al. (2014); Jones et al. (2017); Haber et al. (2017); Raghavan et al. (2014); Martiniano et al. (2017);169
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Figure 3: TPR vs FDR curves for deletion and duplication predictions of CONGA using Mota, Saqqaq and Yamnaya
genomes down-sampled to various depths from their original coverages of 9.6×, 13.1× and 23.3×, respectively. The
numbers inside boxes show the down-sampled coverage values. We calculated TPR and FDR for down-sampled
genomes assuming that our CONGA-based predictions with the original genomes (full data) reflect the ground truth.
These predictions, in turn, were made using modern-day CNVs as candidate CNV list. The purpose of the experiment
was to evaluate accuracy at lower coverage relative to the full data (Methods).

Krzewińska et al. (2018); Yaka et al. (2021). These were chosen to bear diverse characteristics, including a wide range170

in mean coverage (0.04×-26×, median = 3.45×), population origin (West and East Eurasia and North America), the171

laboratory of origin (10 different laboratories), the use of shotgun vs. whole-genome capture protocols, or the use of172

uracil–DNA–glycosylase (UDG) treatment Rohland et al. (2015). For genotyping, we used a candidate CNV dataset of173

11,390 autosomal deletions (>1 kbps with mean 10,735 bps) identified among African populations (AFR) from Phase 3174

of the 1000 Genomes Project Sudmant et al. (2015b) (Methods). Our motivation for using an African sample here was175

to avoid ascertainment bias Clark et al. (2005) in studying deletion frequencies, as all of the 71 ancient individuals were176

non-African, and thus African populations represent an outgroup to our sample set. We further filtered these for high177

mappability (mean >0.9) and to be derived in the human lineage using chimpanzee and bonobo genomes to represent178

the ancestral state, leaving us with 10,002 deletion events (Methods).179

Genotyping the 10,002 loci across 71 BAM files, we found 8,780 (88%) genotyped in at least one genome (as deletion180

or reference). Further, 5,467 (55%) loci genotyped as a deletion (in heterozygous or homozygous state) at least once.181

Across the 71 genomes, we detected a median number of 490 deletion events [396-2,648] again in either heterozygous182

or homozygous state.183

We studied deletion copy number (frequency) variation across these 71 ancient genomes using a battery of heatmaps,184

hierarchical clustering, multidimensional scaling plots (MDS) and principal components analysis (PCA) (Supplemental185

Fig. S3; Supplemental Fig. S4). This revealed a minority of genomes exhibiting highly divergent frequencies, without186

obvious association with their population of origin. Given the close evolutionary relationship among Eurasian human187

populations, we reasoned that these divergent signals most likely originate from experimental artifacts, data processing188

artifacts, or variability of DNA preservation among samples. Supporting this, mean deletion frequencies across the189

71 genomes could be explained by laboratory-of-origin (Kruskall-Wallis test , p = 0.08). We identified a subset of190

21 divergent, or outlier genomes, and removing these also removed the laboratory-of-origin effect (Kruskall-Wallis191

test, p = 0.22; Supplemental Note S3). We could further recognize a number of attributes that could explain these192

divergent deletion profiles. First, the 21 divergent genomes had on average shorter read length compared to the rest193

(median = 57 vs. 69; Wilcoxon rank sum test p < 0.001; Supplemental Fig. S5A). One of these was the Iceman,194

with unusually short (50 bps) reads. Second, the coverage of the 21 divergent genomes was lower compared to the195

remaining 50 (median = 3.31 vs. 3.98; Wilcoxon rank sum test, p = 0.014; Supplemental Fig. S5B). For instance,196

all three genomes with <0.1× coverage in our dataset (ne4, ko2, and DA379) were among the outliers. The number197

of non-genotyped loci was likewise higher in the divergent group (median = 1509 vs. 1886; Wilcoxon rank sum test,198

p = 5.39× 10−5; Supplemental Fig. S5C). UDG-treatment did not appear to be related to outlier behaviour (binomial199

test p = 2.633× 10−9; Supplemental Fig. S5D). Meanwhile, Bon002, the only sample produced using whole-genome200

capture, was among the most extreme outliers, suggesting that the capture procedure distorts coverage. Consequently201

we removed these 21 genomes from further analyses.202
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A comparison of deletion and SNP diversity across 50 ancient genomes203

The above filtering steps resulted in a dataset of 8,780 derived deletions genotyped in at least one of the 50 ancient204

Eurasian genomes, with 396-748 deletions (median = 467.5) detected in heterozygous or homozygous state per genome,205

and 29% detected in at least one genome.206

We used this dataset to test three hypotheses: (i) that CONGA-called deletion diversity patterns should parallel SNP207

diversity patterns, reflecting shared demographic history (genetic drift and admixture) among genomes, (ii) that208

CONGA-called deletions should be evolving under some degree of negative selection (caused by gene expression209

alterations, exon loss, or frame-shifts), and (iii) that variation in deletion load among genomes may be correlated210

with variation in deleterious SNP load. We note that the first two patterns (hypotheses i and ii) have been previously211

described using large modern-day CNV datasets (see Conrad and Hurles (2007); Levy-Sakin et al. (2019); Almarri et al.212

(2020) for drift, and Conrad et al. (2010); Cooper et al. (2011); Sudmant et al. (2015a) for selection), and our goal here213

was mainly to perform a sanity check and assess CONGA’s effectiveness in producing reliable biological signals.214

To test the first hypothesis, we compared pairwise genetic distances among the 50 individuals (Figure 4A) calculated215

using either SNPs or deletion genotypes. For this, we collected 38,945,054 autosomal SNPs ascertained in African216

individuals in the 1000 Genomes Dataset and genotyped our 50 ancient genomes at these loci (Methods). We then217

calculated pairwise outgroup-f3 statistics, a measure of shared genetic drift between a pair of genomes relative to an218

outgroup population Patterson et al. (2012). Using the Yoruba as outgroup, we calculated genetic distances for all219

pairs of ancient genomes as (1 - f3), using either SNPs or deletions. We observed strong positive correlation between220

the two resulting distance matrices (Spearman r = 0.671, Mantel test p = 0.001) (Figure 4B). Summarizing SNP-221

and deletion-based distances using multidimensional scaling (MDS) also revealed highly similar patterns, with clear222

clustering among west and east Eurasian genomes observed with either type of variation (Figure 4C, D). This result was223

encouraging in showing that diversity patterns based on deletion genotyping with CONGA in a heterogeneous sample224

of low coverage ancient genomes reveals expected signals of shared demographic history.225
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Figure 4: (A) Geographic locations of the 50 ancient individuals. (B) Comparison of genetic distances calculated using
SNPs and deletions. We calculated the Spearman correlation coefficient between two matrices and then calculated
Mantel test p-value using the "mantel" function in R package "vegan" (v2.5-7). (C) and (D) represent multidimensional
scaling plots that summarize outgroup-f3 statistics calculated across all pairs among the 56 ancient individuals using
SNPs and deletions, respectively.
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Negative selection on deletion variants226

We next studied the impact of negative (purifying) selection on deletions by comparing the site-frequency-spectrum227

(SFS) of autosomal deletions with those of SNPs. We used the 8,780 human-derived deletions and 32,304,437 human-228

derived SNP alleles across the 50 ancient genomes (Methods). To allow comparison with the pseudo-haploidized SNP229

genotype data, we randomly chose one allele per genome (i.e., deletion or no event) in the deletion dataset. Set side230

by side with the SNP SFS, we observed an excess of singletons and a lack of fixed derived variants among deletions,231

consistent with stronger negative selection on the latter (Figure 5A). The excess of undetected and singleton deletions232

does not appear to be related to low recall, as both high and low coverage genomes show the same trend (Supplemental233

Fig. S6).234

Figure 5: (A) The site-frequency-spectra of derived deletion alleles (on the left, n=3,472) and derived SNP alleles
(on the right, n=57,307). The x-axes show mean allele frequency for each locus calculated using only those genomes
where a locus has been observed (e.g. an allele observed in 10 out of 40 genomes will be represented as 25%). The two
distributions are significantly different from each other (Kolmogorov-Smirnov test p < 10−15). (B) The size distribution
(in kbps) of the deletions versus mean allele frequency. The red line shows the fitting of smoothing spline and indicates
a negative correlation (Spearman correlation r = −0.33, p < 10−16). Both axes were log2-scaled.

If deletions are under negative selection we may also expect longer deletions, or deletions containing evolutionary235

conserved genes, to be segregating at lower frequencies. Indeed, we found that deletion allele frequencies were236

negatively correlated with deletion size across the 50 genomes (Spearman correlation r = −0.33, p < 10−16)237

(Figure 5B). To test the second idea, we determined deletions overlapping Ensembl human genes. Overall, 26% of238

the 8,780 derived deletions overlapped minimum one gene. We then collected mouse-human dN/dS ratios, an inverse239

measure of protein sequence conservation (Methods). We found that deletions with lower (below-mean) allele frequency240

had slightly lower dN/dS values compared to deletions with higher (above-mean) allele frequency (median = 0.086 vs.241

0.097; Mann-Whitney U test, one-sided p = 0.055). These observations, along with the SFS comparison, follow the242

notion that deletions are evolving under negative selection.243

We further asked whether inter-individual variation in the total deletion mutation burden that we measure in our244

dataset may be correlated with variation in the burden of functional deleterious SNPs based on their impact on protein245

sequence. Demographic bottlenecks can theoretically cause variable levels of mutation burden –as deletions and/or as246

SNPs– among ancient genomes, and these burden levels could be correlated especially if their phenotypic impacts are247

comparable (see Discussion). To test this we collected (a) total deletion length and (b) the number of genes affected by248

deletions, for each of the 50 ancient genomes (Supplemental Fig. S7). We further collected SIFT scores (an estimate of249

how protein sequence would be affected by a SNP Ng and Henikoff (2003)) for n=22,996 SNPs in our dataset, predicted250

to be "deleterious" or "tolerated", and used these to calculate a deleterious/tolerated ratio per genome (Methods;251

Supplemental Fig. S8A). We then compared the deleterious/tolerated ratio-based burden levels with deletion-based252

mutation burden levels (total length and number of genes), but found no significant correlation (Spearman r = 0.09 and253

r = −0.05, respectively, p > 0.5; Supplemental Fig. S8B). This could be explained by high noise and lack of statistical254

power, as well as differences in phenotypic impacts between deletions and SNPs (see Discussion). We also did not255

observe any correlation between historical age and deletion frequencies in this sample (Supplemental Fig. S9).256
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Time and memory consumption257

Finally, we examined time and memory requirements of CONGA. We first tested our performance of deletions with258

BAM files of the 71 ancient genomes presented above. This finished in ∼12 hours in total with as low as 2.2 GB of259

peak-memory consumption. This is ∼10 minutes per genome. In order to evaluate CONGA’s performance with a260

higher coverage genome sample, we ran 30 genomes (randomly selected 10 CEU, 10 YRI, 10 TSI) from the 1000261

Genomes Project Phase 3, which had mean 7.4× coverage Sudmant et al. (2015b). The analysis took just slightly262

longer, ∼15 minutes average per genome, with similar memory usage.263

We also compared the time and memory requirements of CONGA, GenomeSTRiP, FREEC and CNVnator in Table 2.264

In order to benchmark these tools, we used a 5× simulated genome (the same genome with medium sized CNVs used265

in the simulation experiments described above) with the same computing resources1. CONGA has the lowest runtime266

and memory footprint among the other tools.267

In Supplemental Table S1.D we report the effects of parameter choices when using with CONGA on runtime and268

memory usage. We note that using split-reads for duplication genotyping (intended for higher coverage genomes)269

increases runtime and memory consumption significantly because here CONGA uses its own small-scale read mapper,270

which creates a bottleneck.271

We further provide a comparison of CONGA’s performance on genomes of various depths of coverage in Supplemental272

Table S1.D, calculated using the down-sampled 23× Yamnaya genome (with coverages between 23× and 0.07×).273

Table 2: Time and Memory Consumption

Tools Time (h:m) Peak Memory Usage (GB)
CONGA 0:09 1.2
GenomeSTRiP 1:22 2.2
FREEC 0:39 7.1
CNVnator 0:32 14.1

Time and memory consumption of each algorithm for a simulated genome of 5× depth of coverage with 1680 deletions and
1684 duplications. "Time" refers to wall clock time and "Peak memory usage" is the maximum resident set size. Note that
GenomeSTRiP has two steps in its pipeline: preprocessing and genotyping. Here, time was calculated by summing the running
times of each step, and memory by taking the maximum. For CONGA, we used default parameters used in the simulation
experiments.

Discussion274

Modern human genome sequencing experiments today typically reach coverages >20× and increasingly use long read275

technology, and such experiments can employ diverse read signatures to reliably identify CNVs Alkan et al. (2011).276

CONGA’s approach that mainly relies on the read-depth signature is naive in comparison; however, using read-depth277

appears as the main practical solution given the short fragment size and the predominance of low coverage (around or278

<1×) among ancient genome datasets.279

CONGA’s overall performance and utility280

Despite these challenges, our experiments using simulated genomes and down-sampled real ancient FASTQ data showed281

that CONGA can relatively efficiently genotype deletions and duplications of size >1 kbps at 1× coverage, or even282

lower. CONGA outperformed two “modern DNA” CNV discovery algorithms, FREEC and CNVnator, two methods283

previously employed in ancient genome analyses Smith et al. (2017); Bhattacharya et al. (2018). CONGA exceeded both284

tools in TPR and true negative rates, especially at coverages <1×. This is unsurprising, as these tools were developed285

for discovering novel CNVs in relatively high coverage genome data. Meanwhile, compared to GenomeSTRiP, a CNV286

genotyper that also uses both different sources of information within a Bayesian framework Handsaker et al. (2011,287

2015), CONGA performed better in achieving lower FDR rates at all coverages, while GenomeSTRiP had higher recall288

at coverages 0.5× or below. In time and memory use, CONGA surpassed all three tools.289

In terms of deletion copy number estimates, CONGA again achieved acceptable accuracy (∼75% TPR and <30%290

FDR) in genomes of 0.5× coverage. At lower depths of coverage and also when genotyping deletions <1 kbps, recall291

and/or precision were weaker. CONGA’s performance on duplications was also poor, as we discuss below.292

1Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz: 2CPUs * 8 cores each=16 cores total and 216GB RAM
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Overall, the relatively high accuracy at ≥0.5× coverage suggests that CONGA could be used to genotype deletions293

across a considerable fraction of published shotgun sequenced ancient genomes. CONGA and GenomeSTRiP could294

also be used in parallel, as they appear to complement each other in recall and specificity. Further, GenomeSTRiP295

can be used in population samples for jointly genotyping low coverage genomes, which could potentially increase296

performance. We caution, however, that joint genotyping can create ascertainment biases if coverage and ancestry297

co-vary among jointly analysed genomes.298

Beyond aDNA, CONGA is suitable for CNV analyses for any low depth whole-genome sequencing (WGS) experiment.299

Such studies are increasing in number due to the trade-off between budget limitations and the wealth of genome-wide300

information that can be used in population and conservation genetics (e.g. Vieira et al. (2016)).301

Caveats in duplication genotyping302

In simulated genome experiments, CONGA’s performance in genotyping duplications was similar to that in deletions.303

Beyond read-depth information (also used in genotyping deletions), duplication genotyping could also effectively benefit304

from paired-end information from split reads. Using paired-end information alone yielded >0.65 F-Score for duplication305

genotyping, though only at 5× coverage and with variants >10 kbps (Supplemental Table S1.E; Supplemental Fig.306

S10). In down-sampling experiments, CONGA showed slightly lower performance in duplication genotyping than in307

deletion genotyping when using two ancient genomes available as FASTQ files. However, CONGA’s performance was308

dramatically low on the 23× ancient BAM file, Yamnaya. This can be explained as follows (see Supplemental Note309

S2): (i) The available Yamnaya data was processed in such a way that excess reads at duplicated loci, i.e. read-depth310

information, was lost. (ii) Consequently, nearly all (97%) duplications CONGA genotyped in the original (23×)311

BAM file were called only using paired-end information. (iii) Because paired-end information is rapidly lost with312

decreasing coverage (as it requires reads overlapping breakpoints), and read-depth information was lacking, genotyping313

duplications in this BAM files became infeasible at <5× coverage.314

The majority of shotgun ancient genomes in public databases are only published as BAM files. The majority of published315

files are also at <5× coverage. Hence, most published ancient shotgun genomes are not amenable to duplication316

genotyping with CONGA. This is highly unfortunate, as gene duplications are a major source of evolutionary adaptation317

that would be valuable to study also in ancient populations.318

Caveats in deletion genotyping319

Applying CONGA to genotype deletions on a heterogeneous set of real ancient shotgun genomes revealed conspicuous320

technical influences on deletion genotyping, with a significan fraction of the 71 analysed genomes displaying outlier321

behaviour in their deletion frequencies. We could notice technical particularities for the 21 genomes identified as322

outliers, such as lower coverage, shorter read lengths, or the application of whole-genome hybridization capture. Our323

results suggest that 0.4× coverage may be close to the lower threshold for deletion genotyping of >1 kbps events,324

slightly higher than the threshold in our simulation results. We also find that whole-genome hybridization capture and325

extra short reads (roughly ≤55 bp) compromise deletion genotyping, while UDG-treatment does not show a significant326

effect. That said, we lack clear explanations for outlier deletion frequency patterns for some of these 21 genomes. For327

instance, the genome SI-45 has coverage >3× and an average read length of 60 bps, but nevertheless displays unusual328

deletion patterns. We suspect that such unexpected patterns might reflect technical peculiarities in library preparation,329

sequencing or data filtering. Unique taphonomic processes influencing DNA preservation and variability in coverage330

may also be at play.331

Such effects could be investigated by future studies compiling larger datasets with detailed experimental descriptions.332

Meanwhile, our results point to the necessity of rigorous quality control and outlier filtering when calling deletions in333

heterogeneous datasets, similar to practices traditionally adopted in transcriptome analyses. This is particularly essential334

when combining genomes produced using different experimental protocols and sequencing platforms.335

Community recommendations for improving CNV analyses in ancient genomes336

The above observations mark the urgent need for new practices in producing and publishing ancient genomes to allow337

reliable study of both deletions and duplications, beyond SNPs.338

• Most published ancient genome data to date is SNP capture data, which is largely worthless for CNV analyses.339

Our results underscore the long-term value of shotgun sequencing data over SNP capture, as well as whole-340

genome capture.341

• Publishing data as raw FASTQ files should be priority. The main motivation behind publishing BAM files342

instead of raw data is to avoid publishing environmental DNA reads, which constitute a large fraction of343
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reads from shotgun sequenced aDNA experiments. Saving microbial (e.g. pathogenic) aDNA fractions344

for investigations is another motivation. Nevertheless, our results show that raw FASTQ data is absolutely345

necessary for duplication genotyping at low coverage and also helpful against biases in deletion genotyping.346

In the long term, publishing raw data will be for the whole community’s benefit.347

• Sharing all details on DNA extraction, library construction, as well as the alignment and preprocessing steps348

used in creating the exact version of datasets submitted to public databases is crucial for healthy reuse of the349

data.350

Purifying selection and mutation loads in past populations351

Our analysis of >1 kbps deletions genotyped in 50 ancient genomes revealed how variation in deletion frequencies352

reflect (a) demographic history, as reflected in strong correlation with SNP variation and spatial clustering, and (b)353

negative selection, as reflected in a steeper SFS than of SNPs, lower frequencies of large deletions, and lower frequencies354

of deletions overlapping conserved genes. These results show that CONGA can identify reliable biological signals in355

technically heterogeneous and noisy datasets, which is a non-trivial outcome.356

Beyond expected patterns, we also studied possible correlation between deletion loads and deleterious SNP loads357

per genome across the 50 ancient individuals. High deleterious mutation loads could arise by relaxation of negative358

selection due to strong bottlenecks, as suggested for Wrangel Island mammoths Rogers and Slatkin (2017) or for359

dogs Marsden et al. (2016). Conversely, bottlenecks can cause high inbreeding levels, and this may lead the purging of360

recessive deleterious variants, as recently described for a founder population of killer whales Foote et al. (2021). In361

our dataset we found no significant relationship between deletion-related loads and deleterious SNP loads. This could362

be due to lack of strong variability among Eurasian genomes in deleterious mutation burdens or due to low statistical363

power, as we only use deletions segregating in Africa. The result could also reflect differences in dominance effects or364

fitness effects between SNPs and deletions.365

A full analysis of this question could be possible with the creation of a geographically comprehensive genomic time-366

series, especially genomes of non-Eurasian populations with variable demographic histories. It would further require367

CNV discovery in carefully processed high-coverage ancient genomes and subsequent genotyping on low coverage368

data using CONGA. We hope that our study opens the way for such work, bringing deeper insight into the impacts of369

selection and drift in humans and other species.370

Methods371

Among various approaches developed for CNV discovery using high throughput sequencing data, almost all use the372

fact that read-depth, i.e., the density of reads mapped to the reference genome, will be on average lower in deleted373

regions and higher in duplicated regions Alkan et al. (2011); Ho et al. (2020). The distance between paired-end reads,374

their orientation, and split-read information (start and end of reads mapping to different locations) are further sources375

of information used in determining CNVs. Although available CNV discovery algorithms generally perform well in376

modern-day human genome sequencing data with high coverage, this is not necessarily the case for ancient genomes, as377

well as other low coverage sequencing experiments (Supplemental Fig. S11, S12). The first reason is that the majority378

of shotgun ancient genomes are produced at low coverage (typically <1×), which constrains the use of read-depth379

information. Second, ancient DNA fragments are short and of variable size (typically between 50-100 bps) Shapiro and380

Hofreiter (2014). Thus, paired-end information is absent, and available split-read information is also limited. Variability381

in ancient DNA preservation and genome coverage Pedersen et al. (2014) is yet another noise source that is expected to382

limit efficient CNV discovery. CONGA overcomes these limitations using genotyping instead of de novo discovery.383

It estimates whether a candidate CNV, the location of which is provided as input, is present in a genome in BAM384

format. It also estimates the genotype, i.e., the heterozygous or homozygous state. CONGA makes use of read-depth385

information for deletions, and both read-depth and split-read information for duplications.386

Likelihood-based read-depth calculation for deletion and duplication genotyping387

The input to the algorithm is (1) a list of candidate CNV locations and CNV type, i.e., deletion or duplication, and (2) a388

data set of reads aligned to the linear reference genome, e.g., using BWA Li and Durbin (2009), which should be in389

BAM format.390

In order to calculate the likelihood of a CNV at a given locus based on read-depth information, CONGA uses an391

approach akin to Soylev et al. (2019). Let (Si) be the ith CNV in our CNV input list, defined by the breakpoint interval392

(Bl, Br) and the type of CNV: a deletion or duplication. At this locus, CONGA calculates the likelihood of the three393

possible genotype states, k, given the read alignment data and CNV type. The genotype states are: no event (k = 0), a394
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heterozygous state (k = 1), or a homozygous state (k = 2). The likelihood, in turn, is calculated by comparing the395

observed (Oi) read-depth versus the expected (Eik) read-depth within (Bl, Br), given the three different genotypes.396

We detail the steps below.397

1. We count the total number of mapped reads within that locus (falling fully within the interval (Bl, Br)). This398

is the observed read-depth, (ORD).399

2. We calculate expected read-depth under a "no event" scenario, i.e., representing the diploid state. Here we400

account for the GC bias in high-throughput sequencing data Smith et al. (2008), by using LOESS smoothing to401

normalize read-depth for GC content. Specifically, for each chromosome, we calculate the read-depth values402

per GC percentile for sliding windows of size 1,000 bps (step size = 1 bp). We then calculate the average403

read-depth per GC percentile. Then, using the chromosome-wide average GC value for the interval (Bl, Br),404

we calculate the expected diploid read-depth, Eik=0
.405

3. We model the read-depth distribution as Poisson, using the expected read-depth values for k = 0, k = 1,406

k = 2. We calculate the probability P (RDSi |state = k) as:407

P (RDSi
|state = k) =

EOi

ik × e−Eik

Oi!
,

where Eik is the expected read-depth given state = k, and Oi is the observed read-depth at that specific locus.408

A typical autosomal human locus is diploid (has copy number = 2); therefore when there is no CNV event409

(k = 0), the expected value of Oi should be Eik=0
.410

If a genome is homozygous for a deletion, we expect no reads mapping to the region, thus Oi ∼ Eik=2
= 0. For411

heterozygous deletions, the expected number of mapped reads in that interval will be half of the expected diploid412

read-depth: Oi ∼ Eik=1
= Eik=0

/2. For homozygous duplications, we expect Oi ∼ Eik=2
= Eik=0

× 2. For413

heterozygous duplications, we expect Oi ∼ Eik=1
= Eik=0

× 1.5.414

4. We calculate a likelihood-based score, which we term the C-score, to estimate how likely locus Si carries a415

non-reference variant in a genome, in either one copy or two copies. For this we use the calculated likelihoods416

for the three states. We define the C-score as the maximum of the likelihoods of (Si) being present in417

heterozygous state (k = 1) or in homozygous state (k = 2) in that genome, over the likelihood of no event418

(k = 0). We use the log function to avoid numerical errors.419

C − score(Si) =

max(log(P (RDSi
|k=1)),log(P (RDSi

|k=2)))

log(P (RDSi
|k=0)) ,

The C-score is distributed between 0 and +∞, with lower scores indicating higher likelihood of a true CNV420

event.421

Results from our simulations and down-sampling experiments suggest that the relatively simple Poisson distribution422

can be effectively used to model copy number states, especially in the face of potentially non-independent errors due to423

ambiguous mapping of short and damaged reads or GC content heterogeneity. We note that alternative models have424

also been used for analysing CNVs in short read sequencing data, such as the negative binomial distribution Miller et al.425

(2011) or Gaussian mixed models Handsaker et al. (2011). We also note CONGA’s our approach could be expanded in426

the future by including the evaluation of duplication events involving >2 copies, as in multicopy genes Sudmant et al.427

(2010).428

Split-read and paired-end signatures for duplication genotyping429

Beyond read-depth, information of paired-end reads or read fragments that do not linearly map to the genome can430

be used to identify CNVs. Ancient genomes are sometimes single-end and sometimes paired-end sequenced, but in431

the latter case, short overlapping reads are typically merged into a single read before alignment. Ancient genome432

data is thus practically single-read. However, the split-read method can be applied on single-read ancient genome433

data, which emulates paired-end information for genotyping duplications. This approach is visualized in Figure 6.434

We therefore designed CONGA to include both paired-end and single-end reads as input and to evaluate paired-end435

signature information.436

First, assume a read of length L mapped to position posx in the reference genome, where posx is assumed to be one437

of the breakpoints of a putative CNV. There always exists a subsequence ≥ L/2 that will have at least one mapping438

in the reference genome with some error threshold. Thus, we can split a read into two subsequences, assigning the439
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Deletion Duplication

reference
genome

donor
genome

Figure 6: The figure shows our split-read approach to emulate paired-end using single-end reads. We use short-read
Illumina mappings in a BAM file as input. We split each discordant read (whose mapping quality is larger than the given
threshold and does not overlap with a known satellite) from the middle, keeping the initial mapping as one element and
the other subsequence (split segment) as the second element of a pair. We remap the split segment to the reference
genome, and evaluate the position and the orientation of both reads to identify the presence of putative CNVs.

actual mapping to one of the pairs and remapping the other subsequence ("split segment") as a second pair. There440

are two possible split strategies: an even decomposition, where both subsequences are of equal lengths, or an uneven441

decomposition, where the subsequences are of unequal lengths. Given the infeasibility of testing each split position and442

the fact that ancient reads are typically already short, we follow Karakoc et al. (2012) and split the read from the middle443

to obtain two reads with equal lengths L/2. If a read overlaps a duplication breakpoint, and assuming that the expected444

position of the breakpoint will be uniformly distributed within the read, the split segment will map to the reference445

genome with insert size—the distance between the split-read pairs—greater than zero.446

With this simple observation, the need to observe all possible breakpoints can be eliminated. Thus, given a single-end447

read Rsei, we define Rpei = (l(Rpei[posx : posx +RL/2]) and r(Rpei[posy : posy +RL/2])), where posx is the448

initial mapping position of the single-end read, posy is the remapping position of the split read, RL is the length of the449

single-end read observed before the split, l(Rpei[posx : posx +RL/2]) is the left pair within posx and posx +RL/2450

and r(Rpei[posy : posy +RL/2]) is the right pair within posy and posy +RL/2 of the paired-end reads. We use this451

information as described in the following section.452

Remapping paired-reads and utilizing paired-read information453

According to our remapping strategy, we use a seed-and-extend approach similar to that implemented in mrFAST Alkan454

et al. (2009), where a read is allowed to be mapped to multiple positions. Our main concern here is that the split455

segment, due to its short length, can be mapped to unrealistically high numbers of positions across the genome. To456

overcome this problem we use the approach developed in TARDIS Soylev et al. (2017), allowing the split segment to457

be mapped only up to 10 positions within close proximity (15 kbps by default) of the original mapping position and458

applying a Hamming distance threshold for mismatches (5% of the read length by default).459

Based on the distance between the reads (insert-size) and orientation, we then evaluate the type of putative CNV.460

As Figure 6C shows, if the split segment maps behind the initially mapped segment of the same pair to generate a461

reverse-forward mapping orientation, this would be an indication of a duplication.462

In order to utilize this paired-read information, for each CNV locus used as input to our algorithm, we count the number463

of read-pair (i.e. split segments) that map around +/- 5 kbps of the breakpoints. Each such read-pair is treated as one464

observation. We use these counts in combination with the C-score (read-depth information) to genotype duplications465

(see below). We do not use this read-pair information for genotyping deletions due to its low effectiveness in our initial466

trials (Supplemental Table S1.E).467

Mappability filtering468

The probability of unique alignment of a read of certain size varies across the genome, mainly due to repetitive469

sequences. Various algorithms estimate this probability, termed mappability, across the genome for k-mers of specific470

length Koehler et al. (2011); Derrien et al. (2012); Karimzadeh et al. (2018); Pockrandt et al. (2020). This is calculated471

by extracting k-mers of given length through the genome, remapping them to the reference genome, and measuring472

mappability as the proportion of unique mappings Karimzadeh et al. (2018). Because low mappability regions can473

be confounded with real deletions, we use mappability information to filter out CNV loci that could represent false474

positives.475

CONGA accepts any mappability file in BED format, where values are distributed between 0 and 1. These can then be476

used to filter out CNVs for minimum mappability.477
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In our experiments, we used the 100-mer mappability data from the ENCODE Project ENCODE Project Consortium478

(2012). Using this data, for each CNV event (Si), we calculated the average mappability value within its breakpoints.479

We used a minimum average mappability threshold of 0.9 for the CNV events we analyzed.480

Our deletion frequency analysis results suggest that the strict filter should be used especially when analyzing data sets481

of heterogeneous origin. This is because published BAM files frequently differ in mapping quality filters applied before482

publishing (and these filters are usually not indicated), and such filtered BAM files will produce artificial deletion483

signals at low mappability regions, while unfiltered BAM files will not.484

Simulation and down-sampling experiments485

Simulating ancient genomes with implanted deletions and duplications486

Our goal here was to study the performance of CONGA on different sized deletions or duplications using simulated487

genomes containing implanted CNVs and to determine thresholds for reliably calling these variants. We first employed488

VarSim Mu et al. (2015) to simulate and insert deletions and duplications into the human reference genome GRCh37.489

We repeated this three times, for small (100 bps - 1000 bps), medium (1000 bps - 10,000 bps), and large (10,000 bps -490

100,000 bps) CNVs. As a result we generated three CNV-implanted genomes, with around 1500 deletions and 1500491

duplications each (between 1385 and 1810). The CNVs were produced so that they were non-overlapping, and their492

length distribution and exact counts are provided in Supplemental Fig. S1.493

To evaluate specificity and sensitivity, we also included a background (false) CNV set in the experiment, which would494

not be implanted but would be queried as part of the candidate list. This background set was prepared using recently495

published deletion and duplication calls from human genome sequencing experiments Audano et al. (2019); Chaisson496

et al. (2019); Zook et al. (2020); Collins et al. (2020) and also sequencing data from African populations (AFR) from497

Phase 3 of the 1000 Genomes Project Sudmant et al. (2015b). We compiled a list of 17,392 deletions and 14,888498

duplications that were non-overlapping and of size >∼1000 bps using BEDTools mergeBed Quinlan and Hall (2010).499

When evaluating genomes with small CNVs (100 bps - 1,000 bps), we additionally included small CNVs from Chaisson500

et al. (2019). Specifically we added 4,623 deletions and 3,750 duplications of size 100 bps - 1,000 bps to the above501

background list.502

In order to assess CONGA’s performance, we added the true CNVs generated using VarSim to this background set (and503

removed overlapping CNVs from the candidate genotype set), such that only ∼10% of the input candidate CNV list504

were true events. Finally, we determined how many of these true events could be correctly called by CONGA and other505

software.506

Simulating ancient genome read data507

We used the above-described simulated genomes as input to Gargammel Renaud et al. (2017), which generates ancient-508

like Illumina reads, i.e., short reads of variable size bearing postmortem damage (i.e., C-to-T transitions at read ends)509

and including adapters. Gargammel can generate aDNA fragments following a size distribution given as input, and we510

used a subset of Fu et al. (2014), which is default for this software. We used Gargammel to produce reads at various511

depths of coverage: 0.05×, 0.1×, 0.5×, 1× and 5×. We then removed adapters and merged overlapping reads Schubert512

et al. (2016) to generate single-end Illumina reads. These reads had sizes ranging between 34 bps and 139 bps, with513

average 69 bps and median 66 bps (these statistics were calculated using 1× coverage data, but other data also had514

similar distributions). We mapped the Gargammel-output reads back to the human reference genome (hg19, or GRCh37)515

using BWA-aln Li and Durbin (2009) with parameters "-l 16500 -n 0.01 -o 2" (Supplemental Material). Note that516

BWA-aln has been shown to be more accurate for short ancient reads than BWA-mem Oliva et al. (2021).517

Evaluation of CONGA, GenomeSTRiP, CNVnator and FREEC with simulated ancient genome data518

We ran CNVnator Abyzov et al. (2011), FREEC Boeva et al. (2012) and GenomeSTRiP Handsaker et al. (2011) on519

the simulated genomes with parameters described in the Supplementary Information and CONGA with two values for520

the C-score (<0.3 and <0.5). We used the above-described list of CNVs as the input candidate set for CONGA and521

GenomeSTRiP.522

To determine true calls, we used >50% reciprocal overlap for the two CNV events (the event in the input event set and523

the called event) to be considered the same. This calculation was done using BEDTools Quinlan and Hall (2010). The524

number of true CNVs were: 1810 deletions and 1751 duplications for 100 bps - 1000 bps; 1680 deletions and 1684525

duplications for 1000 bps - 10,000 bps; and 1385 deletions and 1532 duplications for 10,000 bps - 100,000 bps.526
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Down-sampling experiment with real ancient genomes527

We used three relatively high coverage (∼23.3×, ∼13.1× and ∼9.6× respectively) genomes of a Yamnaya culture-528

related individual from early Bronze Age Karagash (hereafter Yamnaya), Kazakhstan de Barros Damgaard et al. (2018b),529

a Saqqaq culture-related individual from Bronze Age Greenland (hereafter Saqqaq) Rasmussen et al. (2010), and a530

4500-year old East African hunter-gatherer individual from Mota Cave in Ethiopia (hereafter Mota) Llorente et al.531

(2015). Using this data, and the above-described 17,392 deletions and 14,888 duplications of size >1 kbps (see above)532

as input, we genotyped 2639 deletions and 1972 duplications in Yamnaya (deletion sizes: 1 kbps to 4 Mbps, median = 4533

kbps, mean = 23 kbps; duplication sizes: 1 kbps to 28 Mbps, median = 14 kbps, mean = 80 kbps); 1581 deletions and534

4097 duplications in Saqqaq (deletion sizes: 1 kbps to 5 Mbps, median = 5 kbps, mean = 17 kbps; duplication sizes: 1535

kbps to 28 Mbps, median = 16 kbps, mean = 70 kbps); and 688 deletions and 638 duplications in Mota (deletion sizes:536

1 kbps to 130 kbps, median = 4 kbps, mean = 7 kbps; duplication sizes: 1 kbps to 28 Mbps, median = 6 kbps, mean =537

82 kbps).538

We then randomly down-sampled the BAM files to various depths using Picard Tools Pic (2019): between 16-0.07× for539

Yamnaya; 9-0.05× for Saqqaq; 7-0.03× for Mota. We note that this down-sampling procedure does not produce the540

exact targeted depths, which is the reason why we obtain variable coverages in Fig. 3.541

For calling deletions we used C-score<0.5. For calling duplications, we called events that fulfilled either of the542

following conditions (a) C-score<0.5, or (b) C-score<10 and read-pair support >10. Finally, treating the results of543

the original data as the correct call-set, we calculated TPR (true positive rate) and FDR (false discovery rate) for544

the down-sampled genomes. We considered CNVs with ≥ 50% reciprocal overlap as representing the same event,545

calculated using BEDTools Quinlan and Hall (2010).546

C-score and read-pair cutoffs and minimum CNV size547

We ran CONGA with a range of parameter values for the C-score [0.1-5] and for minimum read-pair support (from 0548

support to >30), and using the above-described true event sets as the input candidate set involving medium and large549

CNVs (1680 deletions and 1684 duplications for 1000 bps - 10,000 bps, and 1385 deletions and 1532 duplications for550

10,000 bps - 100,000 bps).551

We used simulation results (Supplemental Table S1.E) to choose an effective cutoff for calling CNVs. For both deletions552

and duplications, we decided to use C-score <0.5, which appears to yield a good trade-off between recall and precision.553

Specifically, in simulations, this cutoff ensured an F-score of >0.5 at 0.1× for >1 kbps deletions, and superior F-scores554

at higher coverages (Supplemental Fig. S13).555

In addition, we observed that read-pair support >10 could be useful for identifying duplications in the absence of556

read-depth support, but only when coverages were ≥1× (Supplemental Table S1.E; Supplemental Fig. S10). Moreover,557

read-pair support was not valid for detecting deletions.558

We note that CONGA outputs the C-scores and read-pair counts for all input CNVs. Users can choose alternative559

cutoffs to increase recall (higher C-scores) or precision (lower C-scores).560

The simulation experiments showed that CONGA was not efficient in identifying events <1 kbps. CONGA therefore561

ignores events <1 kbps under default parameters. This can be modified by the user if needed.562

Analysis of real ancient genomes563

Ancient genome selection and preprocessing564

We selected 71 ancient shotgun or whole-genome captured genomes from individuals excavated in West and East565

Eurasia and in North America (Supplemental Table S2). Our sample set belongs to a time range between c.2,800-45,000566

years Before Present (BP). Samples from 10 different laboratories were selected in order to study the effects of different567

data production protocols on deletion genotyping. We also chose genomes with a range of coverage levels (0.04×-26×,568

median = 3.45×) and that included both UDG-treated and non-UDG-treated libraries. The only capture-produced data569

was Bon002 Kılınç et al. (2016), produced using whole-genome hybridization with myBaits (Arbor Biosciences, USA)570

probes.571

Selected ancient genomes were mapped to the human reference genome (hg19, or GRCh37) using BWA aln/samse572

(0.7.15) Li and Durbin (2009) with parameters "-n 0.01, -o 2". PCR duplicates were removed using FilterUniqueSAM-573

Cons.py Kircher (2012).574

We also removed reads with >10% mismatches to the reference genome, those of size <35 bps, and with <30 mapping575

quality (MAPQ).576
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Candidate CNV call set for real ancient genomes577

Here our goal was to study properties of deletion variants in ancient genomes and to compare these with SNP variation578

in terms of demographic history and purifying selection. Polymorphism data sets can suffer from ascertainment bias in579

downstream evolutionary analyses Clark et al. (2005). A common practice to avoid this bias is to use SNPs ascertained580

in a population that is an outgroup to the focal populations. We therefore used variants ascertained in modern-day581

African populations for both calling SNP and deletion variants in our ancient genomes.582

In order to create a candidate deletion call set to be used as input to CONGA, we downloaded deletions of size >1000583

bps identified among 661 African population (AFR) genomes of the 1000 Genomes Project Phase 3 Sudmant et al.584

(2015b). When a deletion was located inside the breakpoints of another deletion, we removed the internal one. In585

addition, for pairs of deletions that had >50% overlap, we filtered out the smaller one. Finally, we filtered out deletion586

loci with <50% average mappability (see above). This resulted in 11, 390 autosomal >1000 bps deletions from 661587

AFR genomes.588

We filtered these deletions for high mappability (≥ 0.9 average mappability) and being derived in the human lineage589

(see section "Ancestral state determination" below). This left us with 10,002 deletion loci.590

Deletion genotyping in ancient genomes591

We genotyped all the chosen 71 ancient genomes using the 11,390 AFR autosomal deletion data set (>1 kbps with592

mean 10,735 bps). We used C-score <0.5 as cutoff for calling deletions, and >2 for calling the reference homozygous593

genotype (0/0). To limit false negatives, C-scores between 0.5 and 2 were coded as missing (NA). Note that these594

cutoffs can be modified by the user.595

In total, 1,222 deletion loci (12%) out of 10,002 were missing across all the 71 genomes. Of the remaining, 5,467 were596

genotyped as a deletion in heterozygous or homozygous state in at least one genome. Genotyping rates (non-missing597

values) in the full dataset was overall 80.0%.598

Analyzing the ancient deletion dataset599

We generated a heatmap summarizing deletion copy numbers using the R "gplots" package "heatmap.2" function Warnes600

et al. (2020). Further, we performed a principal components analyses (PCA) on the deletion copy number data set601

(removing missing values) with 71, 60 (first outlier filter) and 50 (refined data set) ancient genomes (Supplemental Fig.602

S4). PC1 and PC2 values were computed using the R "stats" package "prcomp" function using the default parameters R603

Core Team (2020). On the same 3 genome sets, we likewise created multidimensional scaling plots (MDS) calculated604

with parameter "k=2" with the R “cmdscale” function on a Euclidean distance matrix of deletion frequencies (without605

removing NAs), and hierarchical clustering trees summarizing Manhattan distance matrices, calculated with the R “dist”606

and “hclust” functions. This analysis revealed visible outliers in deletion frequency among samples, which we defined607

as the "divergent" genome set (Supplemental Fig. S3A; Supplemental Note S3).608

Based on this observation, we compared the total number of missing values, average read length, and coverage between609

the divergent genome set (n=21) and the rest, which we refer to as the "coherent" set (n=50), using the Mann-Whitney610

U test with the R "wilcox.test" function, and visualized the data with R utility function "boxplot" R Core Team (2020)611

(Supplemental Fig. S5A, B, C, D). We likewise compared average deletion frequencies between UDG-treated and612

untreated genomes using the Mann-Whitney U test.613

Creating and analyzing the refined deletion data set and the SNP data set614

SNP genotyping in ancient genomes615

Following the same reasoning as above regarding ascertainment bias, we used an African population to create a SNP616

genotyping set for calling SNPs in the ancient genomes. Specifically, we used the 1000 Genomes Yoruba data set,617

which included a total of 38,945,054 autosomal bi-allelic SNPs (minor allele frequency > 0) in 661 African genomes618

of the 1000 Genomes Project Phase 3 The 1000 Genomes Project Consortium (2015). First, all reads in all BAM619

files were clipped (trimmed) using the trimBam algorithm implemented in BamUtil Jun et al. (2015). Following620

standard practice Mittnik et al. (2018), we trimmed (a) the end 2 bases of each read for samples prepared with the621

Uracil-DNA-glycosylase (UDG) protocol, and (b) the end 10 bases of each read for non-UDG samples.622

Using these BAM files of the 50 ancient individuals and the above-described SNP list, we generated pseudo-haploid623

SNP calls at these target SNP positions by randomly selecting one read and recording the allele carried on that read624
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as the genotype. This was performed using the pileupCaller software (https://github.com/stschiff/sequenceTools) on625

samtools mpileup output (base quality>30 and MAPQ>30) Li et al. (2009).626

Ancestral state determination627

To polarize deletion and SNP alleles for being ancestral or derived in the human lineage, we mapped loci from hg19628

(GRCh37) to panTro6 (chimpanzee) and to panPan2 (bonobo) using the UCSC Genome Browser tool "liftOver" with629

default parameters Kent et al. (2002). For deletions, we filtered out deletions that did not fully map to either chimpanzee630

or bonobo reference genomes, as these could represent derived insertions in the human lineage. The remaining deletions631

could thus be inferred to be alleles that were derived in humans. For SNPs, we removed the positions not represent632

in either chimpanzee or bonobo reference genomes and assigned the ancestral state as the Pan allele, only if both633

chimpanzee and bonobo carried same allele. This left us with 32,344,446 SNP positions with derived allele information.634

Creating the refined deletion data set635

We removed 21 genomes identified as outliers in both heatmap, PCA and MDS analyses. Next, we genotyped the636

8,780 AFR deletions in the remaining 50 genomes. We call this the "refined data set". After refining our data set,637

we also checked its general properties. We plotted size distribution in logarithmic scale, deletion allele frequency638

distribution and relative frequency distribution among observed heterozygous deletions over homozygous deletions639

using R’s "graphics" package hist function (Supplemental Fig. S14) R Core Team (2020). We also plotted relative640

deletion (homozygous or heterozygous) frequencies of 8,780 deletions for each individual in our refined data set using641

R’s "graphics" package matplot function R Core Team (2020).642

Genetic distance and selection analyses using deletions and SNPs643

Here our goal was to calculate pairwise genetic distances among the 50 ancient genomes using deletion allele frequencies644

and using SNPs, and further to compare the distances. We calculated distances using the commonly used outgroup-f3645

statistics, which measures shared genetic drift between two samples relative to an outgroup, and is implemented as646

qp3pop in Admixtools v.7.0 Patterson et al. (2012). The outgroup-f3 values were calculated for each pair of 50647

individuals (a) in the deletion and (b) in the SNP data sets, using the African Yoruba as outgroup in both cases. To648

convert the deletion data set to eigenstrat format, which Admixtools requires, we encoded the first nucleotide of each649

deletion as the reference allele, and the alternative allele was randomly assigned among the remaining 3 nucleotides650

using custom Python script. We thus calculated a pairwise similarity matrix for both data sets. Genetic distances651

were calculated as 1-f3. Distances were then summarized using multidimensional scaling (MDS) with the "cmdscale"652

function of R R Core Team (2020) (Figure 4C, D; Supplemental Fig. S4).653

We further performed the Mantel test to compare the f3-based similarity matrices calculated using SNPs and deletions.654

We used the "mantel" function in the R-package "vegan" with parameter "method=spearman" Oksanen et al. (2013).655

Site frequency spectrum calculation for deletions and SNPs656

Here our goal was to compare the SFS across deletions and SNPs called in ancient genomes. Because the ancient SNP657

genotypes are pseudo-haploidized, we performed the same pseudo-haploidization process on the deletion data set. For658

this, for any heterozygous call in the deletion data set, we randomly assigned either of the homozygous states, using the659

R "sample" function (i.e., we converted 1’s to 0’s or 2’s with 50% probability). We then counted derived alleles at each660

locus, for deletions and for SNPs, and divided by the total number of genomes where an allele was observed at that661

locus (i.e., removing the missing data). We plotted the site-frequency spectrum analysis on both deletions and SNPs662

using R’s "ggplot2" package geom_histogram function Wickham (2016). We also calculated the Spearman correlation663

between the deletion size in logarithmic scale and the frequency using R’s "stats" package "cor.test" function R Core664

Team (2020). Further, we plotted the site-frequency spectrum analysis on deletions in high and low coverage genomes665

using R’s "ggplot2" package geom_histogram function Wickham (2016) (Supplemental Fig. S6). The threshold is666

considered to be the median coverage (3.98×).667

Evolutionary conservation668

To measure evolutionary conservation for genes that overlapped deletions, we retrieved non-synonymous (dN) and669

synonymous (dS) substitution rate estimates between human (GRCh37) and the mouse genome (GRCm38) per gene670

from Ensembl (v75) via the R package "biomaRt" Durinck et al. (2005). We queried 18,112 genes with dN, dS values671

and calculated the dN/dS ratio (or Ka/Ks) per gene. The ratio for genes with more than one dN or dS values were672

calculated as the mean dN or dS per gene. We then intersected our deletions with the genes with dN/dS values using673
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BEDTools Quinlan and Hall (2010) and found 2,221 Ensembl (v75) human genes. Overall, 34% of the 10,002 derived674

deletions overlapped with at least one gene. We then collected mouse-human dN/dS ratios (Methods) for these genes (n675

= 2,221, 0-1.18, median = 0.09, mean = 0.13). For deletions overlapping with multiple genes, we calculated the mean676

dN/dS per deletion. We then divided the deletions in our data set into two groups by the deletion allele frequency: high677

versus low relative to the median. We plotted the dN/dS ratios of the deletion groups defined above using the R package678

"ggplot2" and the "geom_boxplot" function Wickham (2016).679

Comparison with SIFT predictions and temporal change680

Here our goal was to study deleterious mutation loads per genome in the form of SIFT-predicted harmful SNPs and681

CONGA-predicted deletions, across the 50 ancient genomes. We used SIFT predictions available in Ensembl (v75)682

collected via the R package "biomaRt" Durinck et al. (2005, 2009). We retrieved SIFT predictions of "tolerated" and683

"deleterious" impact and SIFT scores for all 1000 Genomes human SNPs from Ensembl, and subsetted the African684

SNP set used for genotyping the ancient genomes. This resulted in 22,996 SNPs with SIFT predictions. Further, we685

calculated a ratio representing the total number of SIFT-predicted "deleterious" SNPs over the number of "tolerated"686

SNPs, for each of the 50 individuals. In addition, we calculated the total CONGA-predicted deletion length and the687

total number of genes overlapping CONGA-predicted deletions per individual, ignoring homozygous or heterozygous688

state. We plotted these three mutation load scores, i.e. SIFT-predicted deleterious/tolerated ratios per individual, the689

number of affected genes, and the total deletion length, using R base function "plot" (Supplemental Fig. S7) R Core690

Team (2020). We further estimated pairwise correlations between the three scores, fitting the values into a linear model691

using the R "lm" function and calculating Spearman’s rank correlation. We plotted the linear models using the R base692

function "pairs" (Supplemental Fig. S8B) R Core Team (2020).693

We finally tested whether the mean deletion allele frequency changed over time by fitting the values in a linear model694

using the R "lm" function (Supplemental Fig. S9).695

Software Availability696

CONGA is implemented in C programming language and its source code is available under BSD 3-clause license697

at https://github.com/asylvz/CONGA, as well as Supplemental Code. Simulated datasets and predictions of each698

tool can be accessed through Zenodo (10.5281/zenodo.5555990). Mappability data was downloaded from http:699

//hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/700
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