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Abstract 
Humans rapidly extract diverse and complex information from ongoing social interactions, but the 

perceptual and neural organization of the different aspects of social perception remains unresolved. We 

showed short film clips with rich social content to 97 healthy participants while their haemodynamic 

brain activity was measured with fMRI.  The clips were annotated moment-to-moment for 112 social 

features. Cluster analysis revealed that 13 dimensions were sufficient for describing the social perceptual 

space. Univariate GLM was used to map regional neural response profiles to different social features. 

Multivariate pattern analysis was then utilized to establish the spatial specificity of the responses. The 

results revealed a posterior-anterior gradient in the processing of social information in the brain. Occipital 

and temporal regions responded to most social dimensions and the classifier revealed that these responses 

were dimension-specific; in contrast Heschl gyri and parietal areas were also broadly tuned to different 

social signals while the responses were domain-general and did not differentiate between dimensions. 

Frontal and limbic regions responded only to a limited number of social dimensions. Altogether these 

results highlight the distributed nature of social processing in the brain as well as the posterior-anterior 

gradient of domain-general versus dimension-specific social perceptual processes in the brain.  
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Introduction 
Humans live in a complex and ever-changing social world, but how do we make sense of the high-

dimensional and time-variable information constantly conveyed by our conspecifics? Prior functional 

imaging studies localized specific aspects of social perception into different brain regions 1.  Fusiform 

gyrus (FG) is consistently involved in the perception of faces 2 and lateral occipitotemporal cortex 

(LOTC) in the perception of bodies 3. Temporoparietal junction (TPJ) is in turn involved in reflecting 

the mental states of others 4 as well as processing social context and focusing attention 5. Polysensory 

areas in the superior temporal sulcus (STS) have been associated with multiple higher-order aspects of 

social perception 6-9, while medial frontal cortex (MFC) has been extensively studied in the context of 

self-representation and theory of mind 10. Finally, speech-based social communication is accomplished 

by a network consisting of superior temporal gyrus (STG) and its proximal areas STS (Wernicke area in 

left pSTS), TPJ, angular gyrus, middle temporal gyrus (MTG) and inferior frontal gyrus (Broca’s area in 

the left IFG) 11.  

 

Humans can however reliably process numerous simultaneously occurring features of the social world 

ranging from others’ facial identities and emotions to their intentions and mental contents to the fine-

grained affective qualities of the social interaction. Given the computational limits of the human brain, it 

is unlikely that all features and dimensions of the social domain are processed by distinct areas and 

systems 12. Although the brain basis of perceiving specific isolated social features has been successfully 

delineated, the phenomenological as well as neural organization of the different social perceptual 

processes have remained poorly understood. Neural responses to complex stimuli cannot necessarily be 

predicted on statistical combination of responses to simple stimuli 13. Therefore studies based on neural 

responses to isolated social features may not directly generalize to real-world social perception 14 where 

social features such as facial identities, body movements, and nonverbal communication often overlap 

with distinct temporal occurrence patterns.  In other domains including  actions 12, language 15, and 

emotions 16, studies have tackled this issue by first generating a comprehensive set of modelled 

dimensions for the complex dynamic stimulus. Then, using dimension reduction techniques, they assess 

the representational similarities of the modelled dimensions, or the representational similarities of the 

brain activation patterns associated with each dimension. For example, a recent study found that linguistic 

and visual semantic representations converge so that visual representations locate on the border of 

occipital cortex and that linguistic representations are located anterior to the visual representations 17. 

However, a detailed representational space for social features at both perceptual and neural level is 

currently lacking. 
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Commonly applied univariate analyses cannot reveal the specificity of brain activation patterns resulting 

from the perception of different social features. Consequently, they do not allow testing whether different 

perceptual features can be reliably discriminated based on their spatial brain activation patterns. 

Multivariate pattern analysis (MVPA) allows the analysis of information carried by fine-grained spatial 

patterns of brain activation 18. Pattern recognition studies have established that regional multivariate 

patterns allow distinguishing brain activation related to multiple high-level social features such as faces 19 

and their racial group 20 in FG and facial expressions in FG and STS 21-23. Perception of different goal-

oriented motor actions with different levels of abstraction can be decoded in LOTC and in inferior 

parietal lobe, suggesting that these regions process the abstract concepts of the goal-oriented actions, not 

just their low-level visual properties 24. Furthermore, decoding of goal-oriented actions was successful in 

LOTC when subjects observed the actions in both first and third person perspectives 25. It however 

remains unresolved how specific these regional response profiles are across different social perceptual 

features.  

 

The current study 

In this fMRI study, we mapped the perceptual and neural representations of naturalistic social episodes 

using both univariate and multivariate analyses. We used short film clips as stimuli because cinema 

contains rich and complex social scenarios and as it also elicitis strong and consistent neural responses 

in functional imaging studies 6,26.  We first aimed at establishing a taxonomy of the social dimensions that 

human observers use for describing social scenarios, and then mapping the brain basis of this social 

perceptual space. We mapped the perceptual space of social processes based on subjective annotations 

of a large array of social features (n=112) in the films (n=96). We then used dimension reduction 

techniques to establish the representational space of social perception, and to reduce the 

multidimensional space into a limited set of reliable perceptual dimensions of social features. Using 

univariate regression analysis, we established a posterior-anterior gradient in social perceptual processes 

in the brain, while multivariate pattern analysis revealed differences in the specificity of tuning for social 

dimensions across brain regions. 

 

 

 

Materials and methods 
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Participants 

Altogether 102 volunteers participated in the study. The exclusion criteria included a history of 

neurological or psychiatric disorders, alcohol or substance abuse, BMI under 20 or over 30, current use 

of medication affecting the central nervous system and the standard MRI exclusion criteria. Two 

additional subjects were scanned but excluded from further analyses because unusable MRI data due to 

gradient coil malfunction. Two subjects were excluded because of anatomical abnormalities in structural 

MRI and additional three subjects were excluded due to visible motion artefacts in preprocessed 

functional neuroimaging data.  This yielded a final sample of 97 subjects (50 females, mean age of 31 

years, range 20 – 57 years). All subjects gave an informed, written consent and were compensated for 

their participation. The ethics board of the Hospital District of Southwest Finland had approved the 

protocol and the study was conducted in accordance with the Declaration of Helsinki. 

 

Experimental design for fMRI 

To map brain responses to different social features, we used our previously validated socioemotional 

“localizer” paradigm that allows reliable mapping of various social and emotional functions 6,27-29. The 

original experiment using this stimulus described the experimental design and stimulus selection in detail 
6. Briefly, the subjects viewed a medley of 96 movie clips (median duration 11.2 seconds, range 5.3 – 28.2 

seconds, total duration 19 min 44 seconds) that have been curated to contain large variability of social 

and emotional content. The videos were extracted from mainstream Hollywood movies with audio track 

in English. Nine erotic scenes were added to broaden the social content of the stimulus and a subset of 

87 clips from the original set of 137 clips were included to limit the experiment duration. Because this 

task was designed to map neural processing of naturalistic socioemotional events, the clips were not 

deliberately matched with respect to, for example, human motion or optic flow. The videos were 

presented in fixed order across the subjects without breaks. Subjects were instructed to view the movies 

similarly as if they were viewing a film at a cinema or at home and no specific task was assigned. Visual 

stimuli were presented with NordicNeuroLab VisualSystem binocular display. Sound was conveyed with 

Sensimetrics S14 insert earphones. Stimulation was controlled with Presentation software. Before the 

functional run, sound intensity was adjusted for each subject so that it could be heard over the gradient 

noise. 

 

Neuroimaging data acquisition and preprocessing 

MR imaging was conducted at Turku PET Centre.  The MRI data were acquired using a Phillips Ingenuity 

TF PET/MR 3-T whole-body scanner. High-resolution structural images were obtained with a T1-

weighted (T1w) sequence (1 mm3 resolution, TR 9.8 ms, TE 4.6 ms, flip angle 7◦, 250 mm FOV, 256 × 
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256 reconstruction matrix). A total of 467 functional volumes were acquired for the experiment with a 

T2∗-weighted echo-planar imaging sequence sensitive to the blood-oxygen-level-dependent (BOLD) 

signal contrast (TR 2600 ms, TE 30 ms, 75◦ flip angle, 240 mm FOV, 80 × 80 reconstruction matrix, 

62.5 kHz bandwidth, 3.0 mm slice thickness, 45 interleaved axial slices acquired in ascending order 

without gaps). 

 

The functional imaging data were preprocessed with FMRIPREP 30 (v1.3.0), a Nipype 31 based tool that 

internally uses Nilearn 32. During the preprocessing, each T1w volume was corrected for intensity non-

uniformity using N4BiasFieldCorrection (v2.1.0) 33 and skull-stripped using antsBrainExtraction.sh 

(v2.1.0) using the OASIS template. Brain surfaces were reconstructed using recon-all from FreeSurfer 

(v6.0.1) 34, and the brain mask estimated previously was refined with a custom variation of the method 

to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical grey-matter of 

Mindboggle 35. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 
36 was performed through nonlinear registration with the antsRegistration (ANTs v2.1.0) 37, using brain-

extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid, 

white-matter and grey-matter was performed on the brain-extracted T1w image using FAST 38 (FSL 

v5.0.9). 

 

Functional data were slice-time-corrected using 3dTshift from AFNI 39 (v16.2.07) and motion-corrected 

using MCFLIRT 40 (FSL v5.0.9). These steps were followed by co-registration to the T1w image using 

boundary-based registration 41 with six degrees of freedom, using bbregister (FreeSurfer v6.0.1). The 

transformations from motion-correction, coregistration, and spatial normalization were concatenated 

and applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Independent-component-analysis-based Automatic Removal Of Motion Artifacts (ICA-AROMA) was 

used to denoise the data nonaggressively after spatial smoothing with 6-mm Gaussian kernel 42. The data 

were then detrended using 240-s-Savitzky–Golay filtering to remove the scanner drift 43, and finally 

downsampled to original 3 mm isotropic voxel size. The BOLD signals were demeaned to make the 

regression coefficients comparable across different individuals 44. First and last two functional volumes 

were discarded to ensure equilibrium effects and to exclude the time points after the stimulus had ended. 

 

Stimulus features 

Five individuals not participating in fMRI rated the 112 predefined features (see Table SI-1) from the 

film clips. We selected a broad range of socioemotional features from the following categories: sensory 

input (e.g. smelling, tasting), basic body functions (e.g. facial expressions, walking, eating), person 
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characteristics (e.g. pleasantness, trustworthiness) and person’s inner states (e.g. pleasant feeling, arousal), 

social interaction signals (e.g. talking, communicating with gestures) and social interaction characteristics 

(e.g. hostility, sexuality). It was stressed to the observers that they should rate the perceived features of 

the social interaction rather than the observer’s own inner states (such as emotions evoked by the films).  

The ratings were collected separately for each video clip in short time intervals (median 4.0 sec, range: 

3.1 – 7.3 seconds). Features were annotated on a continuous scale from 0 (absent) to 100 (present). 

Annotators watched the video clips altogether 12 times, rating an average of 10 dimensions on each 

viewing to reduce the cognitive load. The ratings were done using an online rating platform Onni 

(http://onni.utu.fi) developed at Turku PET Centre 45.  

 

Feature selection 

We first evaluated whether the a priori features were frequently and consistently perceived in the stimulus 

films. Features with low occurrence rate and/or inter-rater reliability were excluded, because i) high 

occurrence rate is needed to reliably estimate the stimulus-dependent variation in BOLD signal, and ii) 

high inter-rater reliability is necessary to ensure that the features were perceived uniformly across the 

raters. The occurrence rate was defined as the number of time points where the mean (minus standard 

error of the mean) of the rating exceeded 5 (on a scale ranging from 0 to 100). Features were included in 

the analyses if they occurred at least five times throughout the experiment; this was estimated to yield 

sufficient statistical power in the BOLD-fMRI GLM analyses. Inter-rater reliability of the features was 

assessed using intra-class correlation coefficient (ICC), as calculated in the R package psych 

(https://cran.r-project.org/package=psych). ICCs below 0.5 are considered poor 46, and we thus only 

included features with ICC over 0.5. 45 features satisfied both criteria. The occurrence rate and inter-

rater reliability of each feature are shown in Figure SI-1.  

 

Dimension reduction 

The selected 45 features were linearly correlated (Figure 1) and it is unlikely that each social feature is 

processed in different brain regions or networks. We thus performed dimension reduction with 

hierarchical clustering on the correlation matrix of selected features to define the perceptual dimensions 

that characterize different aspects of social interaction. Unweighted pair group method with arithmetic 

mean (UPGMA), as implemented in R, was used as the clustering algorithm 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust). Other average 

linkage clustering methods implemented in the R package (WPGMA, WPGMC and UPGMC) yielded 

highly similar clustering hierarchy. Hierarchical clustering requires a desired number of resulting clusters 

as an input for automatic definition of cluster boundaries from hierarchical tree (Figure SI-2). To 
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estimate the optimal number of clusters we chose three criteria that the clustering result should satisfy. 

These were cluster stability, theoretically meaningful clustering, and sufficient reduction in collinearity 

between the clusters. To assess the stability of clusters we conducted a consensus clustering analysis with 

ConsensusClusterPlus R package 47. Theoretically meaningful clustering was then assessed, and 

collinearity was measured using Pearson correlation and variance inflating factor (VIF). Detailed 

information of the cluster analysis and consensus clustering results can be found in Supplementary 

Methods (see also Figure SI-3). Cluster analysis grouped social features into six clusters and seven 

independent features not belonging to any cluster (Figure 1) and these social dimensions formed the 

final model for social perception. The cluster regressors were created by averaging across the individual 

feature values in each cluster (Figure SI-4). 

 

 

Modelling low-level sensory features 

Our goal was to map perceived social dimensions in the human brain. The stimulus film clips were not 

balanced by their low-level audiovisual properties thus these were controlled statistically when  estimating 

the unique contribution of social dimensions to the BOLD signal. We extracted 14 different dynamic 

audiovisual properties from the stimulus film clips including six visual features (luminance, first derivative 

of luminance, optic flow, differential energy, and spatial energy with two different frequency filters) and 

eight auditory features (RMS energy, first derivative of RMS energy, zero crossing, spectral centroid, 

spectral entropy, high frequency energy and roughness). Optic flow was estimated with opticalFlowLK -

function with basic options (https://www.mathworks.com/help/vision/ref/opticalflowlk.html). 

Custom functions were used for estimating other visual features (see Code availability). Auditory features 

were extracted using MIRToolbox1.8.1 48. First eight principal components (PCs) explaining over 90 % 

of the total variance were selected as regressors for low-level audiovisual features. As the stimulus film 

clips included control clips with no human interaction, we created a “nonsocial” block regressor by 

assigning a value of 1 to the time points where the stimulus did not contain people, human voice, or 

animals. A low-level model was formed by combining the eight audiovisual PCs, the nonsocial regressor 

and subjectwise mean signals from cerebrospinal fluid (CSF) and white matter (WM). See Figure SI-5 

for correlations between low-level features and social dimensions. 

  

   

Modelling brain responses to social perceptual dimensions 

Ridge regression 49 was used to estimate the contributions of the low-level features and cluster-based 

composite social dimensions to the BOLD signals for each subject. Ridge regression was preferred over 
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ordinary least squares (OLS) regression because even after dimension reduction, the social regressors 

were moderately correlated (range: -0.38 – 0.32) and we wanted to include all perceptual dimensions in 

the same model to estimate their unique contributions to the BOLD signals. We also wanted to avoid 

overfitting while retaining generalizability of the results. To conservatively control for low-level features, 

the demeaned BOLD signals were first predicted with the low-level model and the residual BOLD signals 

were then used as input in the following regression analysis with the social stimulus model. The low-level 

regressors were still included as nuisance covariates in the analysis of social dimensions for the possible 

interaction between the social dimensions and low-level features. In both consecutive analyses ridge 

parameter was optimized using leave-one-subject-out cross-validation. Prior to statistical modelling the 

regressor time series were convolved with the canonical HRF and the columns of the design matrices 

were standardised (μ = 0, σ = 1). Detailed description of ridge regression modelling is included in 

supplementary materials (Figure SI-6).  

 

Ridge regularization parameter optimisation is computationally prohibitive when considering all the 

voxels in the brain. We used a uniformly distributed sample of grey matter voxels for the optimisation. 

For selecting a representative sample of grey matter voxels, we first generated a population level grey 

matter mask by averaging over individual grey matter probability maps and voxels with over 0.5 

population level probability were considered as grey matter. Second, we wanted to make sure that only 

grey matter voxels where each subject has BOLD signal were included. To accomplish this, we calculated 

a population level EPI-mask based on FMRIPREP derived individual EPI-masks and finally 20% of grey 

matter voxels within the EPI-mask were randomly identified. Approximately ~5000 voxels were selected 

for ridge parameter optimization. The population level EPI-mask was used in all further analyses to 

include only voxels with BOLD signal from each subject and thus brain areas including parts of 

orbitofrontal, inferior temporal and occipital pole areas were not included in the analyses. 

 

For the social perceptual model, the regression analysis was run both at voxel-level and at region-of-

interest (ROI) level. In voxel-level analysis, subject-level b-coefficient-maps were subjected to group-

level analysis to identify the brain regions where the association between intensity of each social 

dimension and haemodynamic activity was consistent across the subjects. Voxels outside the population 

level EPI mask were excluded from the analysis. Statistical significance was identified using the randomise 

function of FSL 50. Voxel-level FDR with q-value of 0.05 was used to correct for multiple comparisons 
51. Anatomical ROIs were extracted from AAL2 atlas 52. ROIs, where at least 50% of voxels were outside 

the population level EPI mask, were excluded from the analysis. This resulted in inclusion of 41 bilateral 

ROIs into the analysis. A parametric T-test on the b-weights of a ROI was used to assess statistical 
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inference across subjects. ROI-analysis results were considered significant with P-value threshold of 0.05 

Bonferroni corrected for multiple comparisons. The results for ROI analyses are reported as union of 

bilateral ROIs.  

 

As a supplementary analysis we compared the predictive capabilities of separate low-level and social 

models (Supplementary Methods, Supplementary Results and Fig-SI8). 

 

 

Multivariate pattern analysis of social perceptual dimensions 

To reveal the regional specialization in processing of different social features, between-subject 

classification of 11 perceptual dimensions1 was performed in Python using the PyMVPA toolbox 53. For 

classification, only one dimension label for each time point could be given. Although, in continuous 

signal, the choice of the best label for each time point was not always obvious, because more than one 

feature could be present simultaneously. To resolve this issue, we first normalized the dimension rating 

time series (μ = 0, σ = 1) and then, for each time point, chose the feature with the highest Z-score as the 

category label for that time point. To ensure that the included time points would be representative of the 

assigned categories, we chose only time points where Z-scores for the chosen dimension were above 

zero.  

 

Classifying every time point separately is computationally prohibitive and single EPI scans are noisy. 

Moreover, it cannot be assumed that adjacent time points assigned with the same label would be 

independent from each other. Accordingly, we split the data into 29 time windows and all time points 

with the same label within a time window were considered as a single event of that class. The time window 

boundaries were adjusted so that adjacent time points with the same label would not be interspersed to 

different time windows because temporal autocorrelation of adjacent time points may yield in artificial 

increase of the classification accuracy. After adjustment, the average time window length was 39 seconds 

(range: 34 sec – 49 sec). Altogether the data consisted of 87 events for each subject. These events include 

Using an object: 16, Communication 15, Antisocial behaviour: 11, Feeding: 10, Walking: 9, Prosocial 

behaviour: 8, Body movement: 5, Crying: 4, Play: 4, Running: 3 and Searching: 2.  

 

A GLM was fit for the residual BOLD time series (after regressing out the low-level features) in each 

time window and social dimension and the resulting subjectwise b-images were used as input for the 

 
1 Dimensions “Male” and “Female” were excluded from classification, because unlike the rest of the dimensions, they are 
genuinely binary features and thus not comparable with the other dimensions in the implemented classification framework 
(see Figure SI-4).  
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multivariate pattern analysis (MVPA). The input residual BOLD time series were normalized (μ = 0, σ = 

1) before application of the GLM. A Neural Network (NN) model was trained to classify the perceptual 

dimensions using leave-one-subject-out cross-validation, where the model was trained on the data from 

all except one subject and tested on the hold-out subject’s data; this procedure was repeated N times so 

that each subject was used once as the hold-out subject. Such leave-one-subject-out cross-validation tests 

the generalizability of the results across the sample of the subjects. The analysis was performed using 

whole brain data (with non-brain voxels masked out) and regional data using anatomical ROIs. In the 

whole-brain analysis, an ANOVA feature selection was applied to the training set within each cross-

validation and 3000 voxels with the highest F-score were selected. The regional MVPA was first 

performed using data form all voxels within a region. To control for the effect of ROI size to the 

classification accuracy the regional MVPA was also performed with an ANOVA feature selection where 

the size of the smallest ROI (lateral orbitofrontal cortex, 119 voxels) was selected as the number of 

features for the feature selection. Hyperparameters of the NN algorithm were optimized within a limited 

set of predefined hyperparameter values in the whole brain analysis. Hyperparameter values reflecting 

the best prediction accuracy with acceptable runtime were used in both full brain and ROI analyses 

(Table SI-2). 

 

Classification accuracy was quantified by computing the proportion of correctly classified events relative 

to the total number of events (i.e., recall). To estimate the null distribution, the following procedure was 

repeated 500 times: we 1) randomly shuffled social class labels; 2) ran the whole-brain MVPA with 97 

leave-one-subject-out cross-validations, where the classifier was trained on the data with shuffled labels 

from N-1 subjects and tested on data with correct labels from the remaining subject; and 3) calculated 

the classification accuracies on each of the 500 iterations. The null distribution estimation was 

computationally prohibitive as one iteration took approximately one hour, and we decided that 500 

iterations would be sufficient to assess the statistical significance of our findings. If the true accuracy was 

larger than 99% of the accuracies obtained with the randomly shuffled labels, the true accuracy was 

considered significant with an alpha of 0.01. We cannot assume that the null distribution of classification 

accuracies for each class is equal and center around the naïve chance level because the number of events 

is unbalanced between classes. For this reason, we only report if the total accuracy of the classification is 

statistically significant. In the whole-brain classification we also report the precision of the classifications 

which is the number of correct predictions for a class divided by the total number of predictions into 

that class. 
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Inter-subject correlation analysis 

Watching films synchronizes brain activity between different individuals particularly in the occipital, 

temporal, and parietal regions of the brain and the synchronization of brain activity can be measured 

with inter-subject correlation (ISC) analysis 54. As the only variable factor in the experiment is the time-

varying audiovisual stimulus, ISC analysis captures the shared stimulus-dependent activation in the brain. 

This stimulus-dependent activation most likely reflects the population level consistency in perception of 

low-level audiovisual features but also higher order social perceptual processes. As a post hoc analysis, we 

assessed whether the regional differences in brain response profiles for social dimensions relate to the 

inter-subject response reliability of BOLD response.  To this end, we calculated the ISC across subjects 

over the whole experiment and compared the regional ISC with the results from regression and MVPA 

analyses. ISC-toolbox with default settings was used for ISC calculations 55. 

 

Results 
How people perceive the social world? 

A total of 45 out of the 112 social features had sufficient inter-rater reliability and occurrence rate (see 

Figure SI-1). Hierarchical clustering identified six clusters that were labelled as “Antisocial behaviour”, 

“Prosocial behaviour”, “Communication”, “Body movement”, “Feeding” and “Play”. Seven perceptual 

dimensions did not link with any cluster and were analysed separately. These dimensions were “Using an 

object”, “Crying”, “Male”, “Female”, “Running”, “Walking” and “Searching”. Figure 1 shows the 

clustering of the dimensions. Median pairwise correlation between any two of the 13 dimensions was 

0.02 (range: -0.38 – 0.32) and the maximum variance inflation factor (VIF) in the design matrix excluding 

nuisance covariates was 3.3 (male regressor) and median VIF value was 1.3. These diagnostics indicate 

that regression coefficients for the dimensions will be stable in linear model estimations and, and they 

could thus be included in the same model. See Figure SI-4 for visualized time series of social dimensions 

and Figure SI-5 for correlations matrices for low-level features and social dimensions. 
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Figure 1. The results of hierarchical clustering of reliably rated social features. Hierarchical clustering identified six clusters 

and seven individual features. 

 

Cerebral topography of social perception 

Regularized ridge regression was used to establish the full-volume activation patterns for 13 perceptual 

social dimensions (Figure 2). Social information processing engaged all brain lobes and both cortical and 

subcortical regions. Robust responses were observed in occipital, temporal, and parietal cortices (Figure 

3). There was a clear gradient in the responses, such that temporal, occipital and parietal regions showed 

the strongest positive association with most of the social dimensions, with significantly less consistent 

activations in the frontal lobes and subcortical regions. Yet, frontal, and subcortical activations were also 

observed for some dimensions such as prosocial behaviour, antisocial behaviour and feeding. 
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In ROI analysis, broad responses for social dimensions were observed in STG and MTG with strongest 

responses for communication and antisocial behaviour, respectively. In parietal lobe, all regions except 

angular gyrus and paracentral lobule associated with a wide range of perceptual dimensions. In frontal 

regions the associations between social dimensions and haemodynamic activity were less consistent than 

in more posterior regions, yet still statistically significant in some of the regions including IFG, cingulate 

cortex and precentral gyrus. Most consistent frontal effects were found for prosocial and antisocial 

behaviour. For subcortical regions the observed associations were generally weak. Most notable 

subcortical associations with perceptual dimensions were seen in amygdala and thalamus. Consistent 

negative associations were restricted to occipital lobe and were observed for communication, crying, body 

movement and running.  

 

Figure 2. Brain regions showing increased BOLD activity for the social dimensions. Data are thresholded at p < 0.05, 

FDR corrected. 
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Figure 3. Results from the ROI analysis. A heatmap showing T-values for regression coefficients in each ROI and 

perceptual dimension. Statistically significant (P < 0.05, Bonferroni-corrected for each dimension independently) ROIs are 

marked with an asterisk.  

 

Analysis of posterior-anterior gradient of social perception  

Figure 4a shows the cumulative brain activation maps for all 13 perceptual dimensions. There was a 

gradient in the regional selectivity for social dimensions. Occipital and temporal cortices as well as parietal 

cortices responded to most social dimensions, while responses become more selective in the frontal 

cortex although IFG, precentral gyrus and the frontal part of the medial superior frontal gyrus (SFG) had 

some consitency in their response profile. Because the same stimulus was used across the subjects, we 

hypothesized that the brain activation in the areas with the broadest response profiles would be 

temporally most synchronized across subjects. We thus calculated the ISC of brain activation over the 

whole experiment (Figure 4b) and correlated the regional ISC values with corresponding response 

selectivity values (i.e. number of social features resulting in significant activations in each region). 
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Scatterplot in Figure 4c shows the association between ISC and corresponding brain response selectivity 

for perceptual dimensions (Pearson r = 0.86). 

 
Figure 4. (a) Cumulative activation map for social dimensions. Voxel intensities indicate how many social dimensions 

(out of 13) activated the voxel statistically significantly (FDR corrected, q = 0.05). White lines indicate the localizations 

of major gyri. (b)  ISC across subjects over the whole experiment (c) Scatterplot showing the relationship between ISC and 

the overlap of activation patterns for perceptual dimensions. Regional ISC and overlap of activation patterns reflect the 
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average value of all voxels within a region. CARET software 56 was used for mapping results from ICBM 152 Nonlinear 

Asymmetrical template version 2009c space to the flatmap surface. 

 

Multivariate pattern analysis 

Finally, we trained a between-subject neural network model to decode presence of perceptual social 

dimensions from the spatial haemodynamic activation patterns to reveal which social dimensions are 

consistently represented in each cerebral region. Whole brain classification was performed in 3000 voxels 

that passed through the feature selection. The majority of the selected voxels (Figure 5a) localized into 

temporal (STG, MTG, Heschl gyrus and superior temporal pole), occipital (calcarine and lingual gyri, 

cuneus, FG, superior occipital gyrus (SOccG), middle occipital gyrus (MoccG) and inferior occipital gyrus 

(IoccG)) and parietal cortices (supramarginal, superior parietal gyrus (SPG) and inferior parietal gyrus 

(IPG)). The permuted chance level for the total classification accuracy in the whole brain analysis was 

0.128 which is above naïve chance level ( !
!!

 @ 0.09).  At the whole brain level, the NN model was able 

to classify all 11 social dimensions significantly above chance level with the total classification accuracy 

of 0.52 (p<0.01). Classification accuracies/precisions for each social dimension were: walking: 0.49/0.51, 

using an object: 0.53/0.50, searching: 0.70/0.69, running 0.56/0.62, prosocial behaviour 0.45/0.48, play 

0.53/0.51, feeding 0.46/0.48, crying 0.46/0.51, communication 0.55/0.55, body movement 0.52/0.50 

and antisocial behaviour 0.55/0.53 (Figure 5a).  

 

The classification was also performed within anatomical ROIs (Figure 5b). Most accurate classifier 

performance was observed in lingual gyrus (0.34, p<0.01), calcarine gyrus (0.33, p<0.01), cuneus (0.29, 

p<0.01), SOccG (0.29, p<0.01), MOccG (0.27, p<0.01), STG (0.27, p<0.01) and MTG (0.25, p<0.01). 

Although the prediction accuracies were statistically significantly above permuted chance level for each 

ROI, the posterior-anterior gradient was also observed in the classification accuracies so that highest 

accuracy was observed in occipital and temporal areas, followed by parietal cortices and frontal and 

cingulate cortices. Lowest accuracies were found in the cubcortical regions.  (Figure 5b).  We also 

validated that this gradient was not an artefact stemming from the sizes of the ROIs, as similar posterior-

anterior gradient was observed in the regional classification with ANOVA feature selection limited to 

119 voxels (Figure 5c). 
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Figure 5. Results from the multivariate pattern analysis. (a) Whole brain classification accuracies and the localization of 

ANOVA selected voxels. (b) Regional classification accuracies compared with the whole brain classification accuracy 

(black). The permuted chance level accuracy (acc = 0.128) is shown as a horizontal line. The mean prediction accuracy was 

significantly (p<0.01) above the chance level accuracy in the whole brain analysis and for each ROI. (c) Regional 

classification accuracies using only 119 voxels (the size of the smallest ROI) with the highest F-scores as input for the 

classifier. 
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Relationship between classification accuracy and ISC 

Regional classification accuracy and ISC were positively correlated (Pearson r = 0.85, Figure 6a). Most 

occipital regions, STG and MTG showed high synchrony (ISC > 0.1) and high classification accuracy 

(acc > 0.25). Most parietal regions showed average ISC and average classification accuracy while frontal 

and subcortical regions showed low ISC and low classification accuracies. The most notable exception 

to this pattern was Heschl gyrus which had high ISC (0.28) yet average classification accuracy (acc = 

0.22).  

 
Figure 6. (a) Scatterplot showing the relationship between ISC and classification accuracy. (b) Additive RGB map of the 

main findings. The overlap between activation patterns for perceptual dimensions in regression analysis is shown as blue 

(only areas where at least 3 dimensions expressed FDR corrected brain activation). FDR-corrected ISC across subjects is 

shown as red and the selected voxels for the whole brain classification are shown as green. 
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Discussion 
Our findings provide the currently most detailed map of the social perceptual mechanisms in the human 

brain. The behavioral data established that 13 social dimensions reliably capture the social perceptual 

space. The cerebral topography for social perception was organized along a posterior-anterior -axis, with 

occipital and temporal cortical regions serving a central general-purpose role in social perception, while 

the regional selectivity for social dimensions increased towards frontal and subcortical regions. 

Multivariate pattern recognition established that particularly occipito-temporal and parietal regions carry 

detailed and dimension-specific information regarding the social world, as evidenced by the highest 

classification accuracies in the multi-class classification approach. Both classification accuracy and 

consistency of the responses for specific social dimensions were the highest in the brain regions having 

most reliable (indicated by ISC) activation patters throughout the experiment. These effects were 

observed although low-level sensory features were statistically controlled for. Altogether these results 

show that i) the brain represents the social world in a dimensional fashion, ii) that the pro- versus 

antisocial nature and social communicative intent and body movements are the primary dimensions 

extracted from social scenes, and that different brain regions have variable specificity in their response 

profiles towards social dimensions. 

 

Cerebral posterior-anterior gradient in social perception 

The behavioural experiment established that the observers used consistently a set of 45 descriptors when 

evaluating the social contents of the movies. Dimension reduction techniques further revealed that these 

45 features could be adequately summarized in 13 social dimensions. The largest clusters were organized 

along the valence dimension of the social interaction containing prosocial (e.g., kissing, touching, 

sexuality) versus antisocial (hurting others, yelling) behaviors. Social communicative behaviors (e.g., eye 

contact, talking) and body movements (e.g., waving, moving a foot) also formed large clusters. Play-

related behaviors (laughing, playfulness) as well as feeding-related actions (e.g., tasting, eating) were also 

represented into smaller clusters. Notably, some features such as presence of males versus females, 

walking, and using objects remained independent of any of the clusters. The univariate BOLD-fMRI 

analysis based on these dimensions revealed that a widely distributed cortical and subcortical networks 

encode the social contents of the video stimuli. Most dimensions activated LOTC, STS, TPJ, as well as 

other occipitotemporal and parietal regions. There was a gradual change from these unselective social 

responses in occipitotemporal and parietal regions towards more selective responses in frontal and 

subcortical regions, suggesting that social perception is mainly processed in lateral and caudal parts of 

the brain. This effect was also confirmed by the ROI analysis. Most consistent responses were observed 

in all occipital regions and in temporal regions STG and MTG (which outline STS) and Heschl gyrus. In 
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parietal cortex, most consistent responses were observed in supramarginal gyrus (a part of TPJ), SPG 

and precuneus. Frontally the responses were less consistent although brain activity in IFG, precentral 

gyrus and frontal part of medial SFG associated with a limited number of dimensions including 

“Prosocial behaviour”, “Antisocial behaviour”, “Feeding” and “Using an object”. These data are 

consistent with previous univariate studies addressing social functions for LOTC 3,57-59, TPJ 4,5 and STS 6-

8,60, MFC 61.   

 

Decoding of perceptual social dimensions from brain activation patterns 

The univariate analysis revealed the overall topography and regional brevity of the tuning for different 

social signals. However, this analysis cannot determine whether a single region activated by multiple social 

dimensions reflects responses to shared features across all the dimensions such as biological motion 

perception or intentionality detection; 9,62, or spatially overlapping yet dimension-specific processing. 

Multivariate classification analysis revealed that the answer to this question depends on the region. The 

feature selection for the whole-brain classification retrieved voxels from STS, LOTC, TPJ and FG 

(Figure 5 and Figure 6) yielding classification accuracy exceeding  50% for the multi-class classification.  

Regional classification confirmed that occipital, temporal and parietal regions showed average to high 

classification accuracies, whereas the classification accuracies diminished towards chance level in frontal 

and subcortical regions. These results show that even if the regional univariate responses for social 

dimensions were overlapping the specificity of the spatial activation patterns was different between 

regions. Previous classification studies have shown how individual social features are represented in these 

regions. For example, specific response patterns to pictures of faces versus animals, houses or man-made 

objects can be found in FG and LOTC 19. Subsequent classification studies have shown that, for example, 

different facial expressions can be classified from activation patterns in FG, and STS 21,22 and goal-

oriented actions in LOTC and interior parietal lobe 24,63. Importantly, our results show that BOLD-fMRI 

can be used for classification of multiple overlapping event categories from continuous naturalistic 

stimulation. Previous multivariate pattern analyses of social categories have used block designs and 

categorical stimuli matching the a priori category labels. In addition, these studies have only focused on a 

certain detailed aspect of socioemotional processing. The present results thus underline that even with 

high-dimensional naturalistic stimulus, the response properties of certain brain areas show high degree 

of category specificity. 

 

Reliability versus specificity of responses to social perceptual dimensions 

We observed robust inter-subject correlation of brain activity in temporal and occipital regions while 

subjects viewed the video clips. Previous studies have found that the ISC is in general the strongest in 
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the sensory regions, and it progressively becomes weaker toward the polysensory and associative cortices 
26. Our data revealed that the strength of the ISC was contingent on the number of social features each 

region responded to in the univariate analysis. Additionally, regional ISC was also associated with the 

corresponding regional classification accuracy (Figure 4c and Figure 6a). These data highlight the 

relevance of the social domain to the cortical information processing, as the consistency of the regional 

neural responses was associated with the brevity of the tuning for social signals in each region. In other 

words, regions responding to multiple social signals also do so in a time-locked fashion across subjects, 

whereas the responses become more idiosyncratic as they become more selective. Importantly, this effect 

was not just an artefact of the consistency of sensory cortical responses to social signals but was also 

observed in higher-order associative areas including LOTC and STS.  

 

Functional organization of social perception in the human brain 

The regional response profiles towards social signals can be summarized based on the combination of 

the regional response consistency (univariate regression analysis), the spatial response pattern specificity 

(MVPA) and the reliability of the BOLD signal across subjects (ISC). First, occipitotemporal regions 

responded consistently to most social dimensions, while presence of specific social dimensions could 

also be classified accurately from these regions. High classification accuracy suggests that these regions 

already hold dimension-specific and integrated information regarding the social world. Additionally, these 

regions responded consistently to the social stimuli (as indicated by high ISC) across subjects. LOTC, 

STS, TPJ, FG and occipital regions thus constitute the most fundamental hubs for social perception in 

the human brain and are likely involved in integration of the multisensory information and semantic 

representations regarding the social events 6,62. 

 

Second, Heschl gyrus, the site of the auditory cortex 64 responded consistently to social dimensions but 

the classification accuracy was only moderate in that region while the ISC of the response was the highest 

of all regions. This suggests that Heschl gyrus processes domain-general social (most likely auditory) 

information but does not carry detailed information about the distinct social dimensions, as evidenced 

by the weak ability to classify specific dimensions from this region. Third, parietal regions especially 

precuneus, supramarginal gyrus and SPG showed consistent responses with numerous social dimensions 

and yet their ISC and classification accuracies were only moderate. Previously precuneus have been linked 

with attention and memory retrieval 65,  supramarginal gyrus with phonological 66 and visual 67 processing 

of words and SPG in visuospatial processing and working memory 68. These parietal regions thus likely 

respond to some general features of the social signals or idiosyncratic brain states associated with social 

dimensions. 
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Finally, frontal and subcortical regions responded only to a limited number of social dimensions, and 

classification accuracy and ISC were remained low. The regression analysis showed some consistency in 

IFG, precentral gyrus, the frontal part of the medial SFG, amygdala and thalamus, yet the classification 

accuracies remained low. MFC have previously been associated with higher-level social and affective 

inference such as linking social processing with decision making, affective processing and theory of mind 
10,61. Previous classification studies are in line with our results, and they have not found specificity for 

responses to social perceptual dimensions in frontal cortex 19,21,24,25. Thus, frontal areas may subserve 

higher-order social process by linking low-level social perception into more complex and abstract 

cognitive processes such as making predictions of the next actions of others based on the perceived 

information. Finally, limbic regions such as amygdala and thalamus in turn have been linked with 

processing of (negative) emotions 28 and accordingly they showed reliable responses primarily to 

perception of antisocial behaviours.  

 

Limitations  

We used naturalistic video stimuli to model real-life social perception. Yet, because the stimulus film clips 

were extracted from popular Hollywood films and the social features present may not be completely 

representative of real-life social encounters. However, the advantage of this approach is the high intensity 

and frequency of the features, which benefits BOLD response modelling. We did not balance the low-

level sensory differences across the clips. Thus, despite carefully controlling for low-level features in the 

analyses, it is possible that such features still confound the results. Over half of the predefined social 

features had an insufficient inter-rater reliability or insufficient occurrence rate in the stimulus film clips; 

however, this is itself an important finding regarding the consistency of the perceptual taxonomy 

individuals use for describing social events and these features were excluded from the analysis. The 

number of events for classification was unbalanced across categories, which may affect the classifier 

training. Even in regions with near chance level total accuracy, some classes with large number of events 

were classified with relatively high accuracy (Figure SI-7) which may be due to the large number of 

events in these classes and might not reflect the actual social information processing in the brain. 

Consequently, regional differences in the prediction accuracies in individual classes cannot be addressed. 

  

Conclusion 
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Using a combination of data-driven approaches and multivariate pattern recognition we established the 

perceptual space for social features and mapped the cerebral topography of social perception that can be 

adequately described with 13 perceptual dimensions. Social perceptual space included clusters of social 

features describing prosocial and antisocial behaviour, feeding, body movement, communication and 

playfulness, as well as individual dimensions male, female, running, walking, searching, crying and using 

an object. Clear gradient in response selectivity was observed from broad response profiles in temporal, 

occipital and parietal regions towards narrow and selective responses in frontal and subcortical regions. 

Perceptual social dimensions could be reliably decoded from regional activation patterns using 

multivariate pattern analysis. Both regression analysis and multivariate pattern analysis highlighted the 

importance of LOTC, STS, TPJ and FG and other occipitotemporal regions as dimension-specific social 

information processors, while parietal areas and Heschl’s gyrus process domain-general information from 

the social scenes. Additionally, regional response profiles for social perception closely related to the 

overall reliability of the BOLD responses. Altogether these results highlight the distributed nature of 

social processing in the brain as well as the specific contributions of dimension-specific versus domain-

general social perceptual processes.  
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