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Abstract — Metabolic cross-feeding (MCF) is a widespread type of ecological interaction where

organisms share nutrients. In a common instance of MCF, an organism incompletely metabolizes sugars

and releases metabolites that are used by another as a carbon source to produce energy. Why would

the former waste edible food, and why does this preferentially occur at specific locations in the sugar

metabolic pathway (acetate and glycerol are preferentially exchanged) have challenged evolutionary theory

for decades. After showing that cells should in principle prioritise upstream reactions, we investigate how

a special feature of these metabolites – their high diffusivity across the cell membrane – may trigger the

emergence of cross feeding in a population. We explicitly model metabolic reactions, their enzyme-driven

catalysis, and the cellular constraints on the proteome that may incur a cost to expressing all enzymes along

the metabolic pathway. We find that up to high permeability coefficients of an intermediate metabolite, the

expected evolutionary outcome is not a diversification that resembles cross-feeding but a single genotype

that instead overexpresses the enzymes downstream the metabolite to limit its diffusion. Only at very high

permeabilities and under restricted sets of parameters should the population diversify and MCF evolve.

Key words— Metabolism, Specialisation, Mechanistic fitness, Proteome optimisation, Gene expres-

sion

Introduction

Genetic diversification (Wright, 1949; Ayala et al., 1974) may occur when different ecological niches are

encountered (Gause, 1932; Hardin, 1960; Levin, 1972), for instance when different carbon sources are

available in the environment (Hermsen et al., 2015; Wang et al., 2019). What may at first glance sound

puzzling – why not using all the available nutrients? – finds an explanation in physiological constraints or

even absolute incompatibilities that make specialists of each resource outperform generalists (Hutchinson,

1961; Stearns, 1989; Michod, 2005; Sheftel et al., 2013; Baquero et al., 2021). Even more bewildering is
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the observation that diversification occurs in the presence of a single energetic resource (Helling et al.,

1987; Lenski et al., 1991; Good et al., 2017). One finds a clear example in chemostats or controlled

experimental systems in which glucose is continuously injected, where glucose consumers may evolve that

release metabolites for others to use as a carbon source (Helling et al., 1987; Treves et al., 1998). This

unidirectional by-product process is a form of metabolite cross-feeding (D’Souza et al., 2018; Smith et al.,

2019), and its evolutionary underpinnings are still blurry (D’Souza et al., 2018; San Roman and Wagner,

2018).

In particular, the reasons why specific metabolites are more likely involved in cross-feeding remain

unclear. Indeed, a large number of metabolites can be produced by a glucose-reliant genotype and consti-

tute a viable single carbon source for a second genotype (a glucose reliant strain of Escherichia coli can

theoretically produce up to 58 such useful metabolites for example, San Roman and Wagner, 2018). Yet

only two metabolites are commonly reported as being traded in such cross-feeding interactions, namely

acetate and glycerol. San-Roman and Wagner (San Roman and Wagner, 2020) have hypothesized that

this preferential evolution could be due to shorter mutational paths, such that modifying the metabolic

network to produce these interacting strains would require fewer mutations and could thus occur more

readily under a neutral model of evolution. But their conclusion is that acetate or glycerol trades are no

more likely than others to arise by mutation and evolve neutrally.

In fact, adaptation is often incomprehensible without considering the ability of an organism to perform

a task as dependent on internal constraints. For example, fully expressing all enzymes along a metabolic

pathway may incur a fitness cost, such that sacrificing a part of a pathway becomes beneficial (Doebeli,

2002; Pfeiffer et al., 2004). The cost of packing a cell with proteins is actually two-fold (Labourel and Ra-

jon, 2021). First, producing enzymes incurs a direct energetic cost, approximately proportional to the sum

of enzyme concentrations in the cell (Wagner, 2005; Lynch and Marinov, 2015; Kafri et al., 2016). Second,

cell packing may disturb the diffusion of enzymes, thereby hindering metabolic efficiency (Dill et al., 2011;

Blanco et al., 2018). Making quantitative predictions thus requires to combine realistic features of cells

and competitive principles.

In a previous study, we have shown that the evolution of enzyme kinetic parameters and concentrations

is contingent on their competition with other processes for their substrate (Labourel and Rajon, 2021).

One of these competing processes may be leakage through the cell membrane, such that highly diffusive

metabolites should be processed by more efficient or concentrated enzymes. The combination of this re-

quirement for high concentrations, and the cost of an abundant proteome, could make these metabolites the

preferential points of rupture in a metabolic pathway by favoring a reduction in expression for downstream

enzymes.

Very few metabolites can diffuse through membranes, either because of their size or due to their

electronic properties (Milo and Phillips, 2016). Such diffusion may be direct, as is the case for glycerol,

or indirect when a non-diffusive metabolite spontaneously transforms into a diffusive one, as is the case
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with acetate (Orsi et al., 2009; Pinhal et al., 2019). In this work – see Figure 1 for an overview of the

metabolic model – we first determine how cells should allocate their proteome and find that upstream

reactions should be favored when selective pressures are rather similar along the pathway. We then assess

the hypothesis that cross-feeding evolves in response to the high diffusion rates of metabolites insofar as it

increases the selective pressure acting on downstream reactions and eventually becomes insurmountable. As

stated above, removing a part of a pathway may reduce the cost of over-expressing enzymes; interestingly,

a genotype that would only express these enzymes to feed on the intermediate metabolite would not have

to reach concentrations so high since the metabolite would already be present in the environment – i.e.

high diffusion, for a specialist of the intermediate metabolite, is therefore beneficial.

We use Adaptive dynamics to model the competition for resource(s), as the environment is shaped

by the genotype(s) in a population – that controls the equilibrium frequencies of both the nutrient and

the intermediate metabolite. We find that cross-feeding interactions only evolves at very high membrane

permeabilities of the focal metabolite, compatible with diffusion rates reported for acetate or glycerol. We

also find such evolutionary diversification between two specialist phenotypes to occur at moderate to high,

but not low, levels of degradation of metabolites along the pathway, and that it is also promoted by toxicity

or reversibility effects, although between a generalist strategy and a specialist feeding on the intermediate

metabolite in that case.

Optimal metabolic allocation and cell constraints

Evolution of the overall expression of metabolic enzymes

We first assume that all enzymes have an equal concentration and consider its evolution. Increasing

concentration enhances the efficiency of catalysis and thus the production of energy, but with diminishing

returns. It also incurs costs, firstly due to the actual energy cost of making proteins, and secondly because

high protein concentrations in the cell decrease the efficiency of reactions due to cell packing. The former

is captured in our model by a linear cost inflicted to extra production, and the latter through a penalty on

kf , whose effect has been estimated (Blanco et al., 2018; Andrews, 2020) and modelled in previous studies

(Dill et al., 2011) – see Model and (Labourel and Rajon, 2021).

To approach the case of reactions involved in the carbon cycle (Liebermeister et al., 2014), we consider

a pathway comprised of 40 enzymes and initiated by facilitated diffusion through a transporter (Kotyk,

1967), where an energy unit is produced at each step in the process – see Figure 1. Reactions follow

Michaelis-Menten kinetics (Briggs and Haldane, 1925) – and we also consider the case where they are

reversible, see SM – where we set their kinetic constants to log10(kf ) = 7 and log10(kcat) = 2.5. These

are high values relative to the average enzyme in a cell, but only slightly (one order of magnitude) above

the median observed for enzymes involved in the central metabolism (Bar-Even et al., 2011). The local

context of a reaction – including reaction reversibility and metabolite toxicity – may also affect metabolic

efficiency, as captured by a linear degradation rate of each metabolite, η, in this instance of the model

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473181doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473181
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Overview of the model: the cell is packed with macromolecules, as shown in (A), to a point
where any extra expression comes at a high cost so that the intracellular concentration reaches a ceiling
no matter how this extra expression would influence the flux within a pathway (see first subsection of
results for details). The pathway is initiated by a carrier protein and comprised of two sub-pathways P1 –
encompassing upstream enzymes, in red – and P2 – encompassing downstream enzymes, in green – whose
respective lengths are N1 and N2 – see (B). Unless stated otherwise, these sub-pathways are of equal size and
made of 20 enzymes each. These two sub-pathways are separated by a specific metabolite, whose leakiness
varies from being very low to relatively high. Within this pathway, each reaction follows Briggs Haldane
kinetics where enzyme efficiency is constant and studied as a parameter while reversibility varies depending
on the subsection, and provides a fitness yield proportional to the amount of product produced and to the
specific yield of energy gain set for reactions in the sub-pathway – see section on overexpression. Fitness
is simultaneously impeded by the cost of expression and the toxicity induced by the total concentration of
metabolites.

(Labourel and Rajon, 2021) – see SM for other types of cost. Nutrients are added to the environment at

a constant rate α and degraded at a linear rate β – set to physically realistic values in line with estimates

for diffusive processes in the medium – which also applies to metabolites that can be released by cells.

For all combinations of the parameters above considered, the evolutionarily expected concentrations of

the 40 enzymes in the pathway sum up to 15 − 25 % of the whole proteome (see SM - section Text S1),

according to Adaptive Dynamics – see Figure 2-A for an example of such convergent stable strategies (CSS,

thereafter). Firmly logical, the highest fraction is obtained in conditions where selection for efficiency is
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acute, such that increasing concentration becomes beneficial, to a certain extent, despite amplifying intra-

cellular crowding. These predictions are consistent with estimates among unicellular species (Liebermeister

et al., 2014): in most cases, enzymes involved in the carbon cycle constitute 15 to 25% of the proteome. In

the remaining of this study, the overall concentration of enzymes in the pathway is considered fixed at its

evolutionary expectation by default, i.e. that obtained for the specific combination of parameters studied

when assuming an identical allocation all along the pathway.

Figure 2: Figure A shows an example of pairwise invasibility plots, where black (resp. white) areas stand for
positive (resp.negative) invasive fitness. The grey area represents an area where no strategy is viable because
it cannot produce enough energy to reach the level set as corresponding to the demographic steady-state
even when only one individual is present. When a mutant arrives in the population of resident strategies,
it takes the place of the resident strategy if its invasion fitness is positive, a process represented by the
white arrows. Here, below the CSS, mutants with higher values (black area above the left lower corner to
right upper corner bisector) than the resident invades and evolution pushes resident to converge towards the
CSS, while above the CSS, it is the other way around. On Figure B, we show how cells should spread their
proteome content between upstream and downstream enzymes – referred to as δ in the text – when neither
metabolite toxicity nor reversibility are considered (the influence of these factors is discussed in the text and
shown in SM): in that case, it is always advantageous to invest more in upstream enzymes, an effect which
decreases without completely vanishing when downstream reactions provide more energy than upwards ones
– this is captured through the pay-off, with downstream reactions 10 times more fruitful than upstream ones
when it is set to 1:10. Self-evidently, because the degradation rate eventually reaches levels for which the
loss of metabolite becomes significant - see Figure S3 of SM to grasp this effect quantitatively - cells should
prioritize even more the first part of the pathway.

Overexpression in upstream reactions

We then studied how cells should allocate their proteome along a pathway where several reactions are

involved in energy production and fitness – for simplicity we consider that each reaction in either sub-

pathway contributes equally. Because its selective pressure is mainly set by the transporter’s features and

therefore differs, the first enzyme in the pathway has a fixed concentration close to its optimal value, that

is [E0] = 10−4M , and does not contribute to fitness. We then split the rest of the pathway in two parts of

equal length and study the evolution of the expression in each part. This is a proteome allocation problem,
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since the overall concentration is fixed as just described; we study the evolution of the part of this overall

concentration allocated to the first half P1 of the metabolic pathway, δ, which we assume may change by

mutation in the range [0, 1].

The evolution of δ is modelled using adaptive dynamics (Hofbauer and Sigmund, 1990; Geritz et al.,

1998; Doebeli, 2002), as is appropriate when the fate of a mutant can depend on the environment shaped by

one (or several) resident population. Here the resident strategy impacts the equilibrium concentrations of

the nutrient and of the metabolites produced along the pathway. At this stage, each of these metabolites is

considered identical to any other in the pathway, particularly regarding its diffusion across the membrane

(i.e. membrane permeability for this metabolite is set to 0). Therefore in this case, the evolutionary

outcome is always a single allocation strategy δ, as shown in Fig. 2-A, where, from any resident strategy

in place in the population, evolutionary trajectories will converge to δ ≈ 0.6, and, once in place in the

population (as resident) this strategy will be stable against the invasion by mutants with any other δ,

which is known as a convergent stable strategy – CSS, hereafter.

The investment in the first part of the pathway is generally above 0.5 : remarkably, δ evolves to

approximately 0.6 even at very low degradation rates where the resulting loss in metabolites is far less

than 1% along the pathway – see Figure S3 of SM, where we only report degradation rates above which the

loss is significant, i.e. η ≥ 10−3s−1. A plausible explanation is that upstream enzymes not only concur to

fitness directly through the energy generated by their respective reaction, but also through their indirect

contributions to downstream reactions – see Fig. 2 and SM Text S2 for the analysis of this phenomenon

through a more tractable model. This is also consistent with the fact that this unequal allocation holds

when downstream reactions produce far more energy than their upstream counterparts so that upstream

reactions contribute mostly indirectly to fitness (and is significantly heightened in the opposite case): even

when increasing the yield of the enzymes in the second half of the pathway tenfold as described for the

carbon cycle (Cox and Nelson, 2000), δ stays close to 0.6. Besides, the irreversible loss of metabolites caused

by an increase in the degradation rate (see Fig. S3 of SM) increases the asymmetry in fitness contributions

further and thereby tends to increase the ratio of upstream to downstream enzyme expression (see Fig.

2). Such asymmetries in fitness contributions might help explain why enzymes catalysing more upstream

reactions tend to face stronger selection (Greenberg et al., 2008; Wright and Rausher, 2010; Olson-Manning

et al., 2012). Overexpression of upstream enzymes can nonetheless be – at least, partly – counteracted by

selection for homogeneity in metabolite concentrations, as is the case when toxicity is high (Fig. 2B) and

equally spread, and also depend on reactions reversibility, including that of the transporter: if downstream

reactions are more reversible than upstream ones, cells should prioritise them, and vice versa. Be that as

it may, considering realistic combinations of these pressures – moderate toxicity and degradation rates as

well as the average reversibility found in central carbon metabolism (Li et al., 2011) – corroborate the need

for upstream overexpression, as shown in Section Text S3.4 – see more specifically Figure S9.
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Membrane permeability and cross-feeding

Membrane permeability impacts proteome allocation

Membranes are only permeable to a few metabolites, owing to their unique chemical features (Milo and

Phillips, 2016). In our model, we allowed the diffusion of the metabolite produced by the last reaction of

the first half of the metabolic pathway – see the model overview on Figure 1 – with permeability rates

ranging from P = 10−12 dm.s−1 to 10−4 dm.s−1 – in line with empirical estimates (Milo and Phillips, 2016),

see the Model section for details. Metabolites making their way across the membrane have two effects.

First, they are lost for the cell that has produced them, which may act as a selective pressure for limiting

diffusion. Second, they may accumulate in the external environment and be available to other individuals

as a resource. A cell has little leverage to limit outward diffusion; the most obvious solution is to use the

metabolite before it is lost, which in our model is possible through an increase in the concentration of

enzymes acting on the second part of the pathway. This is indeed what happens in our model: the optimal

allocation shifts from a higher concentration in the first part of the pathway to a higher concentration in

the second part as permeability increases as shown on Fig. 3 for the case of a low degradation rate (grey

dots) : notice here that the enzyme following the transporter has the same concentration as any other

one in the first sub-pathway as we also do not dissociate enzymes downstream the intermediate diffusive

process, i.e. those of the second sub-pathway, inasmuch as reversibility should propagate, at least partly,

the selective pressure modelled through the degradation rate – see previous section and SM section Text

S3.4. The results presented in Fig. 3 are for proteins with kinetic parameters similar to the median of those

reported for enzymes in the carbohydrate and energy pathway (Bar-Even et al., 2011). Higher efficiencies

consistently produce a qualitatively similar result of a downward shift in allocation to the first part of the

metabolic pathway P1 as permeability increases (see Figure S5 in SM).

The reported large allocation to the second half of the pathway is a rather efficient strategy, associated

with a slight decrease in the equilibrium concentration of the metabolite in the external environment

(for diffusion rates above 10−8 dm · s−1, see Fig. S5-B of SM). Despite its efficiency, this strategy results

in an external concentration of the metabolite between 10−4 and 10−3 M, and is increasingly costly as

permeability increases, as shown by the decrease in population size at high permeabilities – see Fig. S5-B

of SM.

High permeability coefficients can promote cross-feeding interactions

This decrease in efficiency associated with an overinvestment in the second part of the pathway P2, and the

increase in the external concentration of the metabolite, may create a new ecological niche when genotypes

increasing their contribution to the first or second part of the pathway become fitter than the generalist.

These situations can be identified by a specific type of pairwise invasibility plots where the singular strategy

is convergent but evolutionarily unstable, thereby defining a branching point as represented in Fig. 3-C. In

these cases, an adaptive diversification may occur, which can then be studied through coalition invasion
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Figure 3: Permeability influences the evolution of strategies of enzyme allocations along a metabolic pathway,
with the occurrence of cross-feeding at high permeability coefficients depending on the degradation rate.
Two degradation rates are considered here (two others in Fig. S5) : low η = 10−3 s−1 and moderate
η = 10−2 s−1. The enzymes catalysing reactions in either of two parts of the metabolic pathway, with
their relative concentrations represented by δ (% 1st pathway), have kinetic parameters typical of those
intervening in the carbon cycle (kf = 106 M−1. s−1 and kcat = 102 s−1); we also assume that reactions
in the second part of the pathway produce 10 times more energy than reactions in the first part. For low
permeability rates (below 10−6 dm.s−1), the evolutionarily expected strategy is always globally and locally
stable – as in Figure 2-A – and consists in investing more in the first part of the pathway as described in
Fig. 2-B. Increasing permeability coefficients above 10−7 dm.s−1 results in a decrease in the investment in
the first part of the pathway, δ, with different consequences for low and moderate degradation rates. At low
degradation rates, lowering δ, i.e. increasing the investment in the second part, remains the most efficient
strategy. At moderate degradation rates, however, high permeability coefficients result in singular strategies
that are both convergent (they evolve from any starting δ) and evolutionarily unstable (they can be invaded
by mutants with close (locally unstable) or distant (globally unstable) δ (panel C). This can lead to adaptive
diversification, resulting in a stable coalition of strategies, that is, a population made of coexisting genotypes
with different values of δ. The coalition can be determined (see SM -Section Text S3 for trait evolution plots)
; it is comprised of genotypes with δ = 1 (expressing only the first part of the pathway) and of genotypes
with δ = 0 (expressing only the second part), corresponding to metabolic cross-feeding. B represents a
permeability P = 10−6 dm.s−1 for which the singular strategy is globally instable but locally stable, so that
the evolutionary outcome should be contingent to the mutational landscape.

graphs where the fate of mutants invading a pair of coexisting strategies is considered (SM Figure S6,

section Text S3.1, and Appendix-Figure S14 and 15). When the degradation rate increases, the emergence

of this new ecological niche eventually gives birth to such branching point, where the singular strategy is

no longer stable (see C of Figure 3 for an extreme example where the singular strategy is both locally and
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globally unstable). For moderately high permeability rates – around P = 10−6dm · s−1 – the evolutionary

outcome is actually dubious, but when this permeability maxes out at P = 10−4dm · s−1, cross-feeding

diversification occurs between two specialists strategies, which was established by drawing trait evolution

plots (see SM - Text S3.1 and Figure S15 for P = 10−5dm · s−1).

Diversification therefore occurs in our model when the degradation rate is moderate (η > 10−2s−1)

and permeability is high (over 10−6dm · s−1; Fig. 3). The stable coalitions of strategies that evolve in this

situation are composed of two phenotypically different genotypes: one that uses the nutrient as to produce

the intermediate metabolite (corresponding to δ ≈ 0) and a second only consuming this metabolite (δ ≈ 1).

It should be highlighted, however, that the results in Figure 3 correspond to a metabolic pathway with

unequal contributions of reactions to the energy needs of the cell (downstream reactions produce more

than upstream ones, as observed on average in the carbon cycle). Equalling the energy contributions of

all reactions often prevents the occurrence of cross-feeding. Yet, cross-feeding emergence was less sensitive

to sub-pathway yields when we introduced toxicity and reversibility: in these contexts, diversification

also occurs albeit between a generalist strategy and a cross-feeder specialised at the leaky metabolite (see

Figures S8 and S10 of SM), coinciding with Black Queen dynamics often seen at the level of microorganisms

(Jeffrey et al., 2012).

More generally, the evolution of cross-feeding seems quite contingent on several other factors: for in-

stance, selection on the overall concentration of enzymes contributing to the pathway is important (for

instance, by reducing diffusive constraints), such that allowing higher concentrations precludes the occur-

rence of cross feeding. This is because increasing downstream concentrations, which may efficiently deal

with metabolite diffusion, comes at a lower cost on upstream concentrations under these circumstances.

This illustrates that the occurrence of cross feeding may critically depend on the other tasks – and their

contributions to fitness, which was not considered here – performed by cells and thereby on selection

acting on their own proteome, as the global proteome concentration only varies to a small extent (Milo

and Phillips, 2016). No less important should be the size of cells since smaller ones mechanically come

with higher relative leakiness due to larger surface-to-volume ratios, which could favor the occurrence of

cross-feeding. Cells can nonetheless adapt their size to their content, at least to a certain extent (Kafri

et al., 2016), which may limit the costs incurred by an increase in concentration and prevent the occurrence

of cross-feeding.

Finally, while in our model the efficiency of a reaction may only be changed through enzyme concentra-

tions, kinetic parameters may also evolve and thus represent a relevant alternative in some specific parts

of the metabolic network. The evolution of cross-feeding could thus also be contingent on the relative

availability of mutations changing concentration versus kinetic parameters. Therefore, while this model

includes much of the available information about enzyme kinetics and the selective constraints acting on

the proteome, actually predicting how and when cross-feeding should evolve will require more efforts to

better understand the building of global epistasis along metabolic networks.
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Discussion

The fact that few metabolites – acetate and glycerol, noticeably – are more likely involved in the evolution of

cross-feeding has been a conundrum for as long as experiments have revealed this phenomenon (San Roman

and Wagner, 2020). Here, we have put forward an explanation based on the necessity for a cell to optimise

its proteome allocation, owing to its different incurred costs, and the existence of intrinsic constraints,

noticeably the permeability of its membrane to a few metabolites. Indeed, acetate is in constant chemical

equilibrium with the highly diffusive acid acetic (Pinhal et al., 2019), and glycerol readily leaks towards

the environment (Milo and Phillips, 2016). The appearance of a new ecological niche when metabolites

rather upstream in a metabolic pathway – and therefore of potential use to generate more energy – tend

to diffuse, is not as straightforward as it may seem. In most cases that we have considered and that fall

into the realistic range of parameters, proteome allocation will evolve in such a way that it prevents, or at

least limits, the diffusion of the molecule. Only under some restricted conditions will cross-feeding evolve,

characterized by a division of labor between a part of the population that transforms the nutrient into the

diffusive metabolite, and another part that uses the metabolite as a carbon source, echoing work on digital

evolution that similarly pointed to the possible contingency of cross-feeding (Meijer et al., 2020).

One process that may facilitate the emergence of cross-feeding, or that may be coopted to foster its

efficacy when it is in place, is the export of metabolites through facilitated transport (Enjalbert et al.,

2017; Pinhal et al., 2019). This process, where cells actively give up a metabolite even though it still has

the potential to bring fitness contributions, is often known as overflow metabolism (Vemuri et al., 2006)

and also often involves acetate. We did not consider the existence of a documented cost to the second part

of the pathway, as has been documented in the past to explain overflow (Peebo et al., 2015; Basan et al.,

2015), nor did we account for other possible costs such as the existence of a localised toxicity (Kemble

et al.) or the membrane occupancy involved in cellular respiration (Zhuang et al., 2011; Szenk et al.,

2017). These processes may promote the advent of cross-feeding, for they could bring extra fitness to an

organism willing to specialise at one or the other part of the pathway. For instance, in a rich environment

where producing energy is easy, it may be relevant to free some part of the membrane in order to sustain

the uptake of other useful and otherwise costly nutrients. Yet, they are generally associated with rich

environments while cross-feeding does not seem to be limited to these conditions. Besides, we believe that

studying this question needs not bypass epistatic relationships stemming from the joint evolution between

enzyme kinetic parameters (Heckmann et al., 2018) and their expression along pathways (Kryazhimskiy,

2021); this may yield unexpected predictions, since increasing expression – as we did here – is not identical

to increasing kinetic efficiency.

In parallel, it is in fact also possible that cross-feeding only arises as the by-product of permeability

without bringing any fitness advantage to its initiator. Because there is an unexploited niche, an organism

could evolve that thrives on this metabolite, even at the cost of a slower pace of life. This may be even

truer since nutrients are almost never constant in Nature, but rather more or less subject to stochasticity.

What strategy should be favored in the light of such unpredictable fluctuations should be addressed to
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make more quantitative predictions: even a fast growing cell may indeed be willing to feed on the residual

wasted product when its main source of food is about to or has already disappeared (Solopova et al., 2014;

Enjalbert et al., 2017; Millard et al., 2021).Which strategy should evolve and whether it is conditioned by

the environmental context will tell us more about the rules behind microorganisms community assembly

(Goldford et al., 2018; Bajic and Sanchez, 2020; Estrela et al., 2020), a longstanding and ongoing question

in evolutionary ecology. We believe that the present study will help explain how the organisms composing

these communities appeared in the first place and how it may have fuelled microbial cooperative behaviours.

Material & Methods

Metabolic Model of fitness

Cell fitness results from the biomass and energy produced along a metabolic pathway (eg. ATP). The

pathway is initiated by carrier proteins, passively transporting nutrients inside cells and whose features

are based on those for glucose in yeasts, as detailed in (Labourel and Rajon, 2021). Nutrient molecules

are added (resp. degraded) at a constant rate α (resp. β) in the external environment. The metabolic

pathway is linear, comprising a first reaction catalysed by an independent enzyme followed by 40 reactions

catalysed by enzymes whose expressions is considered in this study. Each reaction follows either reversible

or irreversible Michaelis Menten kinetics (Haldane, 1930):

Ei + Si

kf,act−−−⇀↽−−−
kr

ESi
kcat−−−−⇀↽−−−−−

kinh,act
Ei + Pi, (1)

where reversibility is spread equally between backwards paramaters kr and kinh (eg. if Krev = 1/9,

kr = kcat/3 and kinh,act = kf,act/3 with kinh also being affected by crowding, which is a conservative

assumption as reverse reactions should be less sensitive to the diffusive process owing to the preexisting

co-localisation between substrate molecules and enzymes).

Each reaction produces energy – which is a simplification of the carbon cycle where some do not,

unimportant as we consider the global expression of large portions of a pathway. We consider the case

where contributions are equal along the pathway as well as other more realistic setups.

Cellular constraints

Cell proteomes face two intrinsic constraints: (i) the burden of protein expression and (ii) the cost entailed

by molecular crowding. We model (i) through a linear cost c impeding fitness (Lynch and Marinov, 2015).

We considered values of c such that the whole cytoplasmic proteome – the enzymes in the pathway and

other free enzymes – costs 5 to 50% of the whole cell budget. We model molecular crowding (ii) through

a non-linear decrease of diffusion (Dill et al., 2011; Blanco et al., 2018) that changes the affinity constant
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kf to kf,act according to equation:

kf,act = kf.10−([Eother]+
∑40

i=1[Etot,i])/[Mb], (2)

where [Etot,i] = [Ei] + [ESi],[Mb] = 3 · 10−3M represents the scaling factor for the effect of diffusion,

while [Eother] denotes the sum of the concentrations of other cytoplasmic proteins than the 40 under

consideration.

Our model includes three processes involving the metabolites produced that select for the enhancement

of enzyme activity, drawing a complex trade-off on the coexpression of enzymes: (1) metabolites can

be lost, either because they are involved in parasitic reactions or because they are subject to targeted

degradation (Peracchi, 2018), modelled through a linear degradation rate η; (2) metabolites can be toxic

for the cell, for they engage in parasitic reactions, for instance through promiscuous interactions (Niehaus

and Hillmann, 2020); (3) highly reversible reactions within a pathway may also require efficient enzymes to

maintain a high net flux (Heinrich et al., 1991). We considered these three processes in various instances

of our model, as described in SM Text S1; the results presented in the paper mainly comprise the action

of a linear degradation rate, which provides a good qualitative understanding of how processes impacting

the metabolites also impact selection on enzymes. Finally, the permeability of cell membrane to a given

metabolite also acts as a constraint, which is introduced here by considering that one metabolite in the

pathway diffuses passively at a rate ηd – on Figure 1, we show where this process occurs.

Adaptive Dynamics of enzyme expression

We use Adaptive Dynamics (Hofbauer and Sigmund, 1990; Geritz et al., 1998; Doebeli, 2002) to model

the evolution of enzyme expression along the metabolic pathway. This framework consider rare mutations,

such that a resident “strategy” – corresponding to a given expression pattern – is assumed to have reached

its demographic equilibrium before a mutant strategy appears in the population. At this demographic

equilibrium, births compensate for deaths in the population, resulting in a concentration of nutrients

specific of the resident (see next section). The fitness of any mutant strategy is then determined for each

resident equilibrium, which enables the drawing of Pairwise Invasibility Plots (PIPs) representing for each

pair the ability of a rare mutant to invade the resident strategy, based on a comparison between the growth

rate of the mutant and 1. These plots are used to identify singular strategies and their properties, as defined

in (Geritz et al., 1998). A particular type of singular strategies, branching points, may be indicative of

a diversification in the population, which we further study by drawing areas of mutual invasibility (each

strategy invades when rare), and then computing the ecological equilibrium for each coalition – composed

of two resident strategies instead of one – in that space. We then calculate the growth rate of mutants for

each nearby mutants of each strategy in the coalition to identify coalitions that are stable (they cannot

be invaded by any of the nearby mutants) and convergent (there exists evolutionary trajectories towards

them), hence identifying evolutionarily expected communities (or bimodal populations) after diversification
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has occurred (Dieckmann and Law, 1996; Dieckmann and Doebeli, 1999). This latter process is summarised

on trait evolution plots – TEPs – that we have shown in SM.

Ecological equilibria

As to draw pairwise invasibility plots, we determine the equilibrium through a three steps process (it

is not possible to use solver methods on the whole system for they fail to find consistent solutions as a

consequence of the huge difference in order of magnitude between metabolite concentrations and population

size). First, we set an equilibrium flux - to Φnet,Neq = 10−4M which is needed to sustain the population

at equilibrium. We then compute the value of the net flux Φnet,N for a given population size N . As long

as it is lower (or higher) than Φnet, population is increased (or decreased) at the next iteration. The

algorithm is stopped either when the difference between these fluxes is lower than 10−6Φnet,N , or when it

oscillates between two neighbouring values (Neq is then set to the average between these values). Ecological

equilibrium matches with the concentration in the environment for this demographic equilibrium. Notice

that to make the algorithm quicker, the first 100 iterations change population size by the ratio between

the current net flux and its targeted equilibrium value. Then, a fine adjustment is lead by increasing or

decreasing the population size by one unit. The same process is used for coexistence, although henceforth

applied to resident coalitions composed by two resident strategies that each has its own population size at

equilibrium. PIPs were generally drawn for 250 strategies, unless lower resolution was sufficient to capture

the trend. In order to determine the optimal allocation, we set the total proteome content to its optimal

value as determined without the influence of permeability. An individual whose strategy is to invest as

much in the first part of the pathway than in the second part corresponds precisely to this case. Notice

that, besides using a two step ptocess, solving the systems to find nutrient and metabolite concentrations

required to use R package ‘nleqslv’ with Broyden’s method (Hasselman, 2018).

Settings for the models

A list of the basic settings can be found at the end of section Text S1.1 - SM. We varied them within

their biological realistic ranges. This allowed us to identify key drivers of the diversification process that

eventually result in cross-feeding, as discussed in the results section. The extensive analysis of parameters

can be found in SM Texts S1 and S3.

Data Archival

We plan to make available the scripts used throughout this study through a git repository.
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