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23 Abstract

24 Epidemiological surveillance systems for pathogens in wild species have been proposed as a preventive measure 

25 for epidemic events. These systems can minimize the detrimental effects of an outbreak, but most importantly,  

26 passive surveillance systems are the best adapted to countries with limited resources. Therefore, the present 

27 study aims to evaluate the technical and infrastructural feasibility to establish this type of scheme in Costa Rica 

28 targeting thedetection of pathogens of zoonotic and conservation importance in wildlife. Between 2018 and 

29 2020, 85 carcasses of free-ranging vertebrates were admitted for post mortem analysis and complementary 

30 laboratory analysis, representing a  solid basis for the implementation of a passive surveillance system for 

31 wildlife diseases in the country. However, we encounter during this research significant constraints that affected 

32 the availability of carcasses for analysis, mainly related to the initial identification of cases, detection biases 

33 towards events in populated- or easily accessible-areas with nearby located wildlife management centers, 

34 further associated with financial disincentives, and limited local  logistics capacity. Thus resulting in the exclusion 

35 of some geographic regions of the country. This epidemiological surveillance scheme allowed us to estimate the 

36 general state of health of the country's wildlife, establishing the cause of death of the analyzed animals as 

37 follows: (i) 46 (54.1%) traumatic events, (ii) 23 (27.1%) infectious agents, (iii) two (2.4%) degenerative illness, 

38 (iv) three (3.5%) presumably poisoning, and (v) in 11 (12.9%)undetermined. It also allowed the detection of 

39 pathogens such as, canine distemper virus, Klebsiella pneumoniae, Toxoplasma gondii, Trypanosoma spp., 

40 Angiostrongylus spp., Dirofilaria spp., Baylisascaris spp., among others. As well as recognizing the circulation of 

41 these pathogens around national territory and also on those analyzed species. This strategy is crucial in 

42 geographical regions defined as critical for the appearance of diseases due to their great biodiversity and social 

43 conditions.

44

45  
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46 Introduction

47 Zoonotic diseases represent one of the major burdens to society (both locally and globally), and a direct threat 

48 to public health, conservation, and human welfare programs [1,2]. Moreover, zoonotic diseases are responsible 

49 for causing significant economic losses, distorting social patterns, and negatively impacting human development 

50 indices, with a strong impact on developing countries  [3–6]. A current example is the COVID-19 pandemic, that  

51 evidences the inadequacy of the infrastructures and diagnostic facilities/techniques to ensure surveillance,  for 

52 early detection of potentially zoonotic agents in wildlife and for establishing control measures and mitigation 

53 [7].

54 Wildlife populations act as reservoirs for numerous pathogens, many of which can affect both human and animal 

55 health though with different degrees. Wildlife play various roles within the epidemiology of diseases 

56 participating in their spread and maintenance [8–10]. These roles assign wildlife the important function of 

57 sentinels of the ecosystems' health, and allows the early detection of alterations in the environment; as well as, 

58 the distribution, the re-emergence or emergence of certain pathogens in a specific region [11,12].

59 Tropical countries (including Costa Rica) are among the areas of most extraordinary natural diversity with 

60 concomitant high diversity of pathogens and thus, a high potential for disease emergence [13,14]. The risk posed 

61 by wildlife as possible natural reservoirs, especially in geographic regions such as Costa Rica, a crossing point 

62 between North America and South America, is stressed by migratory movements that influence the appearance 

63 of diseases [15,16]. This risk has increased drastically because of anthropogenic pressures linked to over-

64 exploitation of natural resources and increase of land use that in turn increases the possibility of contact 

65 between wildlife, domestic animals, and humans [17,18].

66 One of the preventive strategies against the risk of epidemic events, promoted by the World Organization for 

67 Animal Health (OIE) and World Health Organization (WHO) is to increase the efforts to establish early detection 

68 mechanisms for pathogens, of both zoonotic and conservation importance, via epidemiological monitoring 

69 systems, and emphasizing the need to develop robust surveillance and control programs for diseases in free-
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70 ranging species [7,19,20]. As early as 2012, the World Bank stated that preventive investments in the "ONE 

71 HEALTH" approach through veterinary and public health services could mean significant savings in response to 

72 the zoonotic outbreaks the world faces annually [21]. This statement reinforces the idea that investment in 

73 programs of epidemiological surveillance using wildlife as sentinels may be an alternative measure to prevent 

74 or predict epidemic events, which could minimize the economic impact of an outbreak.

75 One of the first steps to know the health status of the wildlife in a region is monitoring through passive 

76 surveillance, which identifies the causes of morbidity and mortality in a range of species based on their 

77 pathological profiles through post-mortem examinations. This approach offers advantages such as profitability 

78 and the ability to carry out a convenience sampling by taking advantage of the established infrastructure and 

79 obtaining a sustainable tool that allows understanding the emerging potential of different pathogens. 

80 Furthermore, when these schemes are set in the long term, it has been proven to provide the core information 

81 for decision-making and policies, regulations, and strategies establishment, prioritizing disease prevention, even 

82 when the sampling is biased and with incomplete geographic coverage [22–25].

83 Significant efforts have been made in Latin American to improve epidemiological surveillance systems aimed at 

84 animal health, however, there is still the need to optimize these schemes [26,27]. For example, according to the 

85 U.S. Department of Agriculture, Costa Rica has the infrastructure and maintains adequate surveillance programs 

86 to detect and control zoonotic diseases in farm animals [28]. However, it does not contemplate local wildlife 

87 within its scheme as it should be [29]. 

88 Several pathogens such as zoonotic parasites, vector-borne diseases, and direct transmission viruses have been 

89 identified in Costa Rican wildlife [30–41]. Nonetheless, without being contemplated in a routine systematic 

90 wildlife surveillance program, this information cannot reveal the local distribution of these infectious agents or 

91 the general health status of wildlife. And it only reflects the urgency of establishing a constant and sustainable 
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92 surveillance diseases system, where aspects such as the pathogens zoonotic  in wildlife are contemplated, and 

93 open the door to further research to know the eco-epidemiology of these agents at the local level.

94 Countries with limited resources (LMIC) such as Costa Rica, face severe financial and logistical restrictions to 

95 monitor the health and circulation of pathogens in wildlife. Nevertheless, the animal health system should, in 

96 the short term, establish at least a passive epidemiological surveillance in wildlife. Therefore, during our 

97 research a pilot scheme for surveillance of the general health status of wildlife was implemented, aiming to 

98 evaluate the technical and infrastructural feasibility to establish sustainably of this type of scheme in Costa Rica. 

99 Eighty-five carcasses of wild species were analyzed, detecting zoonotic pathogens, such us Klebsiella 

100 pneumoniae, Toxoplasma gondii, Baylisascaris spp. and pathogens of conservation importance in wildlife, such 

101 us canine distemper virus, among others. Furthermore, our research allowed to know the circulating pathogens 

102 in the analyzed species and their distribution in the national territory. This demonstrated that there is the 

103 logistical capacity to implement this surveillance program even when we experience some limitations.

104 Material and Methods

105 Statement of Ethics

106 All samples were obtained from dead wildlife (found dead in the field or euthanized after veterinary care in 

107 specialized centers). The study was approved by the Ministry of Environment and Energy (MINAE) (wildlife 

108 authority) through permit (R-SINAC-PNI-ACLAC-039), and with the support of the animal health authority, the 

109 National Animal Health Service through the office (SENASA-DG-0277-18).

110 Notification and receptionof cases

111 Between 2018 and 2020, officials from the wildlife management centers, veterinarians from the National Animal 

112 Health Service (SENASA), and wildlife officials from the National Wildlife Service (SINAC) reported cases, and 

113 voluntarily sent specimens from different localities in the country to the Wildlife Program of SENASA or directly 
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114 to Pathology Department of the Escuela de Medicina Veterinaria, Universidad Nacional. The carcasses used in 

115 this study were all from free-ranging vertebrates with any apparent clinical condition or after death due to any 

116 associated disease or trauma. Basic information was requested for every sample submission: geographic 

117 location, the standard and scientific name of the animal, clinical signs, and any information considered relevant 

118 to the case, following the scheme recommended by the OIE for the notification of cases for disease surveillance 

119 system in wild animals [20,42]. All carcasses were shipped fresh under refrigerated conditions or stored at -20 

120 °C for a maximum period of one week before shipping.

121 Pathological analysis

122 The carcasses received were classified by their autolysis degree according to an established scale of one to five 

123 [43]. Thus, ranging from a fresh carcass or recently dead animal (grade 1) to advanced decomposition (grade 4) 

124 and partial, mummified carcasses or skeletal remains (grade 5). Only carcasses with grades 1 to 3 were included 

125 in the study for post-mortem analysis and tissue sampling [44]. Therefore, 96 specimens were received, of 

126 which, 85 were admitted in the study. These were divided by taxonomic class into birds and mammals. The 

127 mammal class was subdivided into taxonomic groups. The geographical distribution and the taxa admitted are 

128 shown in S1 Fig.

129 All morphological findings were recorded. In addition, tissue samples were taken for routine histopathological 

130 and microbiological analysis as required. Tissue samples for histopathology were processed based on standard 

131 routing protocols [44]. 

132 Detection of different infectious agents

133 Virus Detection: Molecular methods were used for the detection of different viral agents. All molecular methods 

134 were done in the presence of a positive and a negative control. The samples analyzed were fresh tissues 

135 collected in a sterile manner during post-mortem analysis. In addition, we performed RNA extraction using the 
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136 commercial kit DNeasy Blood and Tissue (QIAGEN, Venlo, The Netherlands), following the manufacturer's 

137 recommendations. The methods used and the samples collected are specified in Table 1.

138 Protozoa Detection: Confirmation was performed using molecular techniques for pathogen identification when 

139 a previous presumptive protozoa presence was established in the histological study. All molecular methods 

140 were done in the presence of a positive and a negative control. Tissue samples previously embedded in paraffin 

141 were used for this purpose. The deparaffinization procedure was done using xylol washes following the method 

142 recommended to perform DNA extraction from the tissue [45]. According to the manufacturer's instructions, 

143 we performed DNA extraction using the commercial kit DNeasy Blood and Tissue (QIAGEN, Venlo, The 

144 Netherlands). The methods used and the samples collected are specified in Table 1.

145 Table 1. Molecular techniques for the detection of viral agents and protozoa.

Infectious 

agent

Target region Method Primer Sequence Reference 

protocol

Used 

material

First round: 

CDV-1F 

5'- ACT GCT CCT GAT ACT GC-

3'

CDV-2R 5'- TTC AAC ACC RAC YCC C-3’

Second round: 

CDV-3F 

5'- ACA GRA TTG CYG AGG 

ACY TRT-3'

Canine 

Distemper 

Virus (CDV).

N gene Nested 

RT-PCR 

CDV-4R 5'- CAR RAT AAC CAT GTA YGG 

TGC-3’

Da Budaszewski 

et al., 2014.  

[46]

Tissuea

5’- TTT AAG TTT GGT GCG ATG 

ATG AAG TC-3' (500 nM)

Alphaviruses. nsP4 Nested 

RT-PCR

First round: 

--

5'- GCA TCT ATG ATA TTG ACT 

TCC ATG TT-3' (500 nM)

Grywna et al., 

2010.  [47] 

Tissuea
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5’-GGT GCG ATG ATG AAG TCT 

GGG ATG T-3' (200nM)

5'- CTA TGA TAT TGA CTT CCA 

TGT TCA TCC A-3' (100 nM)

Second round:

--

5’-CTA TGA TAT TGA CTT CCA 

TGT TCA GCC A-3' (100 nM)

First round: 

MAMD

5’- AAC ATG ATG GGR AAR 

AGR GAR AA-3’

cFD2 5'-GTG TCC CAG CCG GCG 

GTG TCA TCA GC-3'

Second round: 

FS 778 

5’-AAR GGH AGY MCD GCH 

ATH TGG T-3'

Flaviviruses. NS5 gene Semi-nested 

RT-PCR 

cFD2 5'-GTG TCC CAG CCG GCG GTG 

TCA TCA GC-3'

Scaramozzino 

et al., 2001. 

[48]

Tissuea

M + 25 5'-AGA TGA GTC TTC TAA CCG 

AGG TCG-3'

M 124 5'-TGC AAA AAC ATC TTC TTC 

AAG TCT CTG-3’

Avian 

Influenza 

virus (AI).

matrix (M) gene qRT-PCR

M + 64 5'-FAM-TCA GGC CCC CTC AAA 

GCC GA-TAMRA-3’

Spackman et 

al., 2002. [49]

Tissueb

RAB504 5'-TAT ACT CGA ATC ATG AAT 

GGA GGT CGA CT-3'

Rabies virus. Nucleoprotein RT–PCR

RAB304 5'-ACG CTT AAC AAC AAR ATC 

ARA G-3' 

Primers: 

Oliveira et al. 

2010. [50]

Protocol:

Carnieli  et al. 

2008 [51]

Tissuec

Newcastle 

virus.

Fusion gene, F0 RT-PCR NCD3 5'-GTC AAC ATA TAC ACC TCA 

TC-3’

STAUBER, 

1995. [52]

Tissueb
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NCD4 5'-GGA GGA TGT TGG CAG 

CAT T-3’

Tox-8 5’-CCC AGC TGC GTC TGT CGG 

GAT-3’

Toxoplasma 

gondii.

529bp repetitive 

segment

PCR

Tox-11 5’-GCG TCG TCT CGT CTA GAT 

CG-3'

Homan et al., 

2000. [53]

 Reischl et al., 

2003. [54]

FFPEd

First round:

SSU4_F 

5'-GTG CCA GCA CCC GCG GTA 

AT-3'

18Sq1R 5'-CCA CCG ACC AAA AGC GGC 

CA-3'

Second round:

SSU561F 

5'-TGG GAT AAC AAA GGA 

GCA-3'

Trypanosoma 

cruzi.

18S rRNA gene Nested PCR

SSU561R 5'-CTG AGA CTG TAA CCT CAA 

AGC-3'

First round 

primer:

Pinto et al., 

2015. [55] 

Second round 

primer:

Noyes et al., 

1999. [56] 

Protocol: 

Aleman et al., 

2017. [57]

Murphy & 

O'Brien, 

2007.[58]

FFPEe

13A 5'- GTG GGG GAG GGG CGT 

TCT-3'

Leishmania 

spp.

Kinetoplast PCR

13B 5'-ATT TTA CAC CAA CCC CCA 

GTT-3’

Medeiros et al. 

2002. [59]

Sosa-Ochoa et 

al. 2015. [60]

FFPEf

FFPE: formalin-fixed paraffin-embedded;

 a brain and lung;
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 b Lung and Trachea and cloacal swab;

 c hippocampus, cerebellum, and medulla oblongata;

 d spleen, lung, and liver;

 e heart;

 f spleen

146

147 Bacteriological detection: Tissue samples from animals with inflammatory processes (suppurative or abscesses) 

148 were cultured following standard bacteriological procedures. For bacterial isolation, samples were inoculated 

149 on non-selective and selective agar media. Significant bacterial growth was identified using the automated 

150 VITEK-2 Compact system, software version 8.02 (bioMérieux, Marcy l'Etoile, France). VITEK test cards for Gram-

151 negative [GN], Gram-positive [GP], and anaerobes [ANC] were used for identification according to the 

152 manufacturer's instructions.

153 Parasites identification: All parasites recovered from animals of the two investigated classes were washed with 

154 physiological saline, preserved in alcohol, acetic acid, and formalin (AFA) solution, and subjected to 

155 identification to genus level [61]. Physical and morphometric characteristics were recognized after fixation and 

156 clarification with Hoyer's solution [62–64]. In addition, processed cestodes were stained with dilute Harris' 

157 hematoxylin solution.

158 Geocoding and spatial analysis

159 Each case was geocoded using the latitude and longitude generated by GPS of the point where the specimen 

160 was found by field personnel. When the GPS was not available, they were geocoded using the latitude and 

161 longitude of the approximate location where they were found, and this was generated by Google Earth Pro v7.3 

162 (2021, Google Inc.). The georeferenced points of each sample admitted created a map using ArcGIS 10.7 (ERSI) 

163 (S1 Fig).

164 Results
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165 Distribution of cases for age, sex, taxonomic classification and sender

166 Of the 85 specimens admitted to the study, there was an age distribution of 23 (27.1%) young animals and 62 

167 (72.9%) adults. The sex distribution was 48 (56.5%) males and 37 (43.5%) females. According to the taxonomic 

168 class, we received nine (10.5%) specimens of the birds and 76 (89.5%) of the mammals. The notification of cases 

169 was made by SINAC and the Animal Health Service SENASA, with 21 (24.7%) of the cases and 64 (75.3%) by 

170 wildlife rescue centers. The biological data of the admitted specimens are shown in S2 Table. Furthermore, cases 

171 of two mass fatality events were received. In the first case, field officials reported the death of hundreds of 

172 pelicans, of which we received two specimens and they were found positive for flaviviruses. The second case 

173 was the death of several carnivores who tested positive for the canine distemper virus.

174 Distribution of causes of death and injuries according to etiology

175 The distribution of the presumptive cause of death according pathological findings corresponded to 46 (54.1%) 

176 associated with traumatic events (mainly roadkill and electrocution), 23 (27.1%) with fatalities directly related 

177 to infectious agents, and 2 (2.4%) with degenerative disease. Additionally, in 3 (3.5%) cases, the death was 

178 presumptively associated with intoxication, and in 11 (12.9%), the cause of death was not determined. Of the 

179 individuals with a cause of traumatic death, 31 (67.4%) concomitantly presented lesions associated with an 

180 infectious etiology (24 with parasites, three with bacteria, one with protozoa and four with multiple 

181 microorganisms). Of the specimens with an infectious cause of death, ten presented lesions associated with 

182 viruses, five with parasites, two with protozoa, one with bacteria, and five presented lesions associated with 

183 multiple etiologies.

184 Of the identified lesions by analyzed organs (gross and microscopic injuries), 199 (74.8%) were associated with 

185 infectious processes, and 67 (25.2%) were associated with non-infectious processes (46 traumatic, five toxic, 

186 four degenerative diseases, and twelve non-relevant focal lesions). According to the predominant inflammatory 

187 infiltrate of the infectious processes, presumptively 69 (34.7%) lesions were associated with protozoa and 
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188 parasites (histiocytic and eosinophilic infiltrate, respectively), 55 (27.6%) were linked with viral infections 

189 (lymphoplasmacytic infiltrate), and 36 (18.1%) were related to bacterial processes (suppurative infiltrate). 

190 Examples of these inflammatory lesions is observed in Fig 1 (see legend). In 39 lesions, the infectious etiology 

191 was not investigated because they were considered non-relevant focal lesions. The distribution of lesions 

192 identified by taxon and etiology are described in Table 2. The description of the pathological findings identified 

193 by species is detailed in S2 Table.

194 Of the lesions associated with infectious etiology, in 44 (22.1%), the causal agent was not possible to be 

195 determined. In 21 of these lesions, a predominantly lymphoplasmacytic inflammatory infiltrate was observed, 

196 suggestive of viral etiology (11 pneumonia, five hepatitis, four encephalitis). In 18 lesions, the inflammatory 

197 infiltrate was suppurative, suggestive of bacterial etiology (five pneumonia, four nephritis, four myositis, one 

198 dermatitis). Five lesions had a predominantly histiocytic infiltrate suggestive of the presence of protozoa (n=2 

199 hepatitis, n=2 colitis, n=1 splenitis). All parasites associated with lesions were identified in the complementary 

200 analysis.

201 Table 2. Main morphological diagnoses identified in free-ranging wild animals analyzed in the years 2018-

202 2020.

Taxa
Cause of morbidity 

or mortality
Primate

(n=25)

Carnivora

(n=25)

Pilosa 

(n=11)

Marsupial 

(n=5)

Rodentia 

(n=4)

Ungulate 

(n=4)

Cingulate 

(n=2)

Bird 

(n=9)

Total

Infectious1         199

Viral 55

Meningoencephalitis 1 12 0 0 1 0 0 0 14

Pneumonia 4 12 1 3 1 0 0 3 24

Enteritis 1 3 0 0 0 0 0 0 4

Hepatitis 3 5 0 1 0 0 0 2 11

Nephritis 0 0 0 0 0 0 0 2 2
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Bacterial 36

Pneumonia 3 4 3 1 2 0 1 0 14

Enteritis 2 0 0 0 0 0 0 0 2

Hepatitis 2 0 0 0 0 0 0 0 2

Nephritis 2 4 0 1 0 0 0 0 7

Myositis 1 1 2 0 2 1 1 0 8

Osteomyelitis 1 0 1 0 0 0 0 0 2

Dermatitis 1 0 0 0 0 0 0 0 1

Protozoan-parasitic 69

Meningoencephalitis 2 0 0 1 0 0 0 0 3

Pneumonia 7 3 2 0 0 0 0 0 12

Myocarditis 0 0 0 3 0 0 0 0 3

Vasculitis 0 5 0 0 0 0 0 0 5

Colitis 15 5 0 0 0 0 0 0 20

Enteritis 2 2 0 1 0 0 0 0 5

Hepatitis 8 0 0 0 0 0 0 0 8

Gastritis 

(ventriculitis)
0 1 0 1 0 0 0 3 5

Nephritis 2 0 0 0 0 0 0 0 2

Splenitis 3 0 0 0 0 0 0 0 3

Dermatitis 0 1 0 1 1 0 0 0 3

Miscellaneous2 9 17 7 0 2 2 0 2 39

Non-infectious 67

Traumatic3 46

Cranioencephalic 

trauma
2 5 1 2 0 2 0 0 12

Laceration of internal 

organs
5 4 1 0 0 0 0 0 10
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Electrothermal burns 3 0 4 0 1 0 0 0 7

Multifocal 

perforating wounds
1 0 1 1 0 0 2 0 6

Multiple exposed 

fracture
1 1 0 0 0 0 0 2 4

Hip fracture 2 1 0 0 0 1 0 0 4

Central nervous 

system 

haemorrhages

1 0 2 0 0 0 0 0 3

Degenerative disease 4

Neoplasm 0 1 0 0 0 0 0 0 1

Myxomatous valve 

degeneration
0 1 0 0 0 0 0 1 2

Crystal deposits 0 0 0 0 0 0 0 1 1

Toxic 5

Hepatic necrosis 0 1 0 0 0 0 0 2 3

Haemorrhages 

generalized
0 0 0 0 0 0 0 2 2

Miscellaneous4 4 6 2 0 0 0 0 0 12

1infectious etiologies were inferred based on inflammatory infiltrate;

2miscellaneous infectious lesions are non-relevant focal lesions;

3main injury associated with the cause of traumatic death was recorded;

4miscellaneous non-infectious alterations are non-relevant focal lesions

203

204 Fig 1. Frequent pathological findings associated with inflammatory processes in wild animals. A) Brain (Procyon lotor-

205 raccoon). Perivascular lymphoplasmacytic encephalitis associated with CDV infection (Arrowhead; H&E 200x). B) Trachea 

206 (Pelecanus occidentalis-brown pelican). Ulcerative haemorrhagic pyogranulomatous tracheitis with pseudomembrane 

207 formation (arrowhead: H&E 200x). C) Heart (Didelphis marsupialis-opossum). Lymphoplasmacytic myocarditis associated 
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208 with Trypanosoma cruzi amastigotes (Arrowhead; H&E 200x). D) Liver (Pelecanus occidentalis-brown pelican). 

209 Lymphoplasmacytic and necrotizing hepatitis associated with flavivirus infection (arrowhead; H&E 200x) E) Kidney (Canis 

210 latrans-coyote). Lymphoplasmacytic interstitial nephritis (arrowhead; H&E 200x). F) Kidney (Jabiru mycteria-jabiru). 

211 Necrotizing granulomatous glomerulonephritis with crystal formation (arrowhead; H&E 100x).

212 Identification of viral, protozoan, bacterial and parasitic infectious agents by taxonomic group 

213 Ten virus, seven protozoa, and seven bacteria were identified in mammalian specimens. In 22 cases, these 

214 pathogens were involved with lesions or systemic disease, of which, 19 were directly associated with the cause 

215 of death of mammals.  Only Sarcocystis spp. detected in two cases was an incidental finding. Additionally, 38 

216 mammals had internal parasites (23 different genera). Multi-parasitosis was observed in 13 (17.1%) of the cases. 

217 Parasites such as Prosthenorchis spp. (n=15), Angiostrongylus spp. (n=6), and Cilycospirura spp. (n=1) were 

218 responsible for severe parasitosis with systemic disease. Some of the lesions such as pyogranulomatous and 

219 eosinophilic meningoencephalitis, pyogranulomatous abscessing bronchopneumonia and eosinophilic gastritis 

220 associated with infectious agents are observed in Fig 2 (see legend). In 69% (n=43) of the mammalian cases, 

221 infectious agents with zoonotic potential such as Klebsiella pneumoniae, Toxoplasma gondii, Angiostrongylus 

222 spp. were identified. The etiological agents identified by taxonomic groups and the number of specimens 

223 analyzed are specified in Table 3.

224 Table 3: Number of infectious agents tested and positive in mammals according to etiology.

               Etiological agent Mammalian taxonomic groups (positives)

Primate Carnivora Pilosa Marsupial Rodentia Ungulate Cingulate

Canine Distemper Virus (n=18) 0 10 0 0 0 0 0

Alphaviruses (n=9) 0 0 0 0 0 0 0

Flaviviruses (n=9) 0 0 0 0 0 0 0

Influenza virus (n=8) 0 0 0 0 0 0 0

Viral 

Rabies virus (n=76) 0 0 0 0 0 0 0

Bacterial Clostridium perfringens (n= 18) 0 0 0 0 0 1 0
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Escherichia coli (n=18) 1 0 0 0 0 0 0

Klebsiella pneumoniae (n=18) 1 0 0 0 0 0 0

Trueperella pyogenes. (n=18) 0 0 0 0 1 0 0

Staphylococcus aureus (n=18) 1 1 1 0 0 0 0

Mycobacterium spp. (n=18) 0 0 0 0 0 0 0

Toxoplasma gondii (n=4) 2 0 0 0 0 0 0

Trypanosoma spp. (n=14) 0 0 0 3 0 0 0

Leishmania spp. (n=8) 0 0 0 0 0 0 0

Protozoan 

Sarcocystis spp. (n=5) 0 1 0 0 0 1 0

Angiostrongylus spp. 0 5 0 1 0 0 0

Dirofilaria spp. 0 4 0 0 0 0 0

Dipetalonema spp. 5 0 2 0 0 0 0

Gnathostoma spp. 0 0 0 1 0 0 0

Baylisascaris spp. 0 1 0 0 0 0 0

Ancylostoma spp. 0 1 0 0 0 0 0

Cylicospirura spp. 0 1 0 0 0 0 0

Prosthenorchis spp. 10 5 0 0 0 0 0

Macracanthorhynchus spp. 0 1 0 0 0 0 0

Parasitic1

Spirometra spp. 0 2 0 0 0 0 0

n= Number  tested; 

1 Only zoonotic parasites are shown

225

226 Fig 2. Infectious agents in lesions identified in wild animals. A) Brain (Alouatta palliata-howler monkey). Presence of 

227 protozoan pseudocysts in the blood vessel, morphology compatible with Toxoplasma gondii (arrowhead; H&E 600x). B) 

228 Brain (Didelphis marsupialis-opossum). Pyogranulomatous and eosinophilic meningoencephalitis associated with 

229 Angiostrongylus spp. (arrowhead; H&E 400x). Inset: Nematode magnification (H&E 200x & 400x). C) Lung (Alouatta 

230 palliata-howler monkey). Pyogranulomatous abscessing bronchopneumonia associated with Klebsiella pneumoniae 

231 (arrowhead; H&E 200x). Inset: Bacterial aggregates magnification (H&E 600x). D) Lung (Cebus imitator-white-faced 
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232 monkey). Pyogranulomatous and eosinophilic pleuro-bronchopneumonia associated to multiple Filariopsis spp. 

233 nematodes (arrowhead; H&E 40x). Inset: Nematode magnification (H&E 200x). E) Ventricle (Pelecanus occidentalis- brown 

234 pelican). Pyogranulomatous ulcerative and eosinophilic ventriculitis associated with multiple Contracaecum spp. 

235 nematodes (arrowhead; H&E 40x). F) Jejunum (Ateles geoffroyi-spider monkey). Pyogranulomatous and necrotizing 

236 jejunitis associated with Staphylococcus aureus infection (arrowhead; H&E x200). G) Stomach (Herpailurus yagouaroundi-

237 jaguarundi). Eosinophilic gastritis associated with multiple Cylicospirura spp. nematodes (arrowhead; H&E 40x). H) Skeletal 

238 muscle (Nasua narica-coati). Presence of protozoan cyst, morphology consistent with Sarcocystis spp (arrowhead; H&E 

239 200x). I) Skin (Sphiggurus mexicanus-porcupine) Pyogranulomatous and eosinophilic dermatitis associated with massive 

240 infestation of Sarcoptex spp. (arrowhead; H&E 400x). Inset: Mites magnification (H&E 100x).

241 All birds submitted were evaluated for the presence of the (n=9) virus, two of the birds, which were involved in 

242 an episode of high mortality during the study period, were positive for flaviviruses. Additionally, three birds had 

243 internal parasites (2 different genera).  Most of the pathogens identified were directly associated as the cause 

244 of the death of birds and linked with lesions illustrated in Fig 2. Only Procyrnea spp. identified in one case was 

245 an incidental finding.  In 22.2% (n=2) of the birds cases, infectious agents with zoonotic potential such as  

246 Contracaecum spp. were identified. The etiological agents identified in birds and the number of samples 

247 analyzed are specified in Table 4.

248 Table 4: Number of infectious agents tested and positive in birds according to etiology.

           Etiological agent Birds

Positive

Alphaviruses (n=3) 0

Flaviviruses (n=3) 2

Influenza virus (n=9) 0

Viral diseases

Newcastle virus (n=9) 0

Clostridium perfringens (n=1) 0
Bacterial diseases

Escherichia coli (n=1) 0
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Klebsiella pneumoniae (n=1) 0

Salmonella spp. (n=1) 0

Staphylococcus aureus (n=1) 0

Parasites diseases Contracaecum spp. 2

n= number of tested;

1  only zoonotic parasites are shown

249

250 Geospatial distribution of detected infectious agents and their accumulation by geographic 

251 region 

252 We established a distribution of the most frequently identified infectious agents in the analyzed specimens (Fig 

253 3). First, a wide distribution of zoonotic parasites was evidenced in the country.  Then, there was an 

254 accumulation in the Central Pacific region of specimens with acanthocephaliasis (12 with Prosthenorchis spp., 

255 one with Macracanthorhynchus spp.), and an accumulation of specimens with gastrointestinal nematodes in 

256 the great metropolitan area and tourist areas of Guanacaste (six with Angiostrongylus spp., one with 

257 Baylisascaris spp., one with Ancylostoma spp.). Additionally, vector-borne diseases occurred exclusively in 

258 specimens from coastal regions and altitudes less than 300 meters above sea level (11 with filariae, two with 

259 flaviviruses). The CDV present in carnivores from various areas of the country did not show a specific pattern of 

260 distribution (n=10).  It is important to note that the Caribbean-south and southern part of the country do not 

261 present any pattern because there was no shipment of samples from this area, a caveat of this scheme of passive 

262 surveillance. The analyzed specimens associated with these infectious agents can be observed in S1 Fig. 

263

264 Fig 3. Geographical distribution of the most frequently identified infectious agents in the referred specimens. 

265 The individuals reported as negative were depicted even though the infectious agent was not detected in the 

266 complementary analyzes or no lesions suggestive of the disease were found in the pathological analysis.  
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267 Discussion 

268 The schemes aimed to develop epidemiological surveillance of infectious agents in free-living vertebrates have 

269 proven to be a fundamental tool in monitoring pathogens of zoonotic importance [65–67].  These surveillance 

270 systems are even more critical in geographical areas where high rates of biodiversity are prominent [7]. For 

271 example, Costa Rica is economically dependent on its ecotourism services, and its fauna is one of its most 

272 important assets [68]. However, currently, there is no epidemiological surveillance system directed to wildlife 

273 and to study outbreaks or any other health event involving them.

274 Evaluating the viability of implementing a passive surveillance system should be essential for a country 

275 considered a "hotspot" for the appearance or emergence of new infectious agents associated with its 

276 biodiversity and fauna characteristics [14,18]. However, some authors have established obstacles to 

277 implementing this type of system. These obstacles are mainly related to bureaucratic restrictions, financial 

278 disincentives, lack of legislation for data collection, and willingness to cooperate between agencies [69,70]. We 

279 encounter during this research those same obstacles for implementing surveillance systems in wildlife animals 

280 in Costa Rica. 

281 Centers specialized in wildlife disease surveillance and health have shown that it is possible to establish robust 

282 and sustainable disease surveillance systems with broad coverage and diagnostic capacity [25,65,66,71]. 

283 However, factors such as logistics, rescue centers location, and dependence on voluntary staff excluded the 

284 participation of some geographic regions of the country (remote or difficult-to-access areas), affecting the 

285 efficiency and sustainability of surveillance system implemented in our research. These findings are consistent 

286 with other studies, where significant constraints hindered the availability of carcasses for analysis [72,73].

287 Reporting and dispatching of carcasses by national wildlife and animal health authorities were lower than rescue 

288 centers. These patterns agree with previous reports indicating that notification of wildlife mortality or morbidity 

289 generally depends on the initial detection of cases by the general public [22,74–76]. As a result, cases are biased 
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290 towards events in populated or easily accessible areas with nearby wildlife management centers, this added to 

291 the logistic capacity (storage, packaging, and shipping) of some of these centers, would explain the higher 

292 dispatch of cases. An example of these biases is the accumulation of reported cases in the Central Pacific region.

293 Wildlife management centers often report data with similar mortalities between birds and mammals [67,76]. 

294 However, in our study, there is a higher number of mammalians received. This difference is probably related to 

295 the fact that the surveillance systems in those countries actively include avian influenza surveillance, leading to 

296 a higher reporting of birds than our study. In our case, there is no surveillance system for avian influenza in wild 

297 birds by the local veterinary authority, and the suspected cases of this virus are confined to the local poultry 

298 production systems [71]. On the other hand, most of the birds found were no longer suitable for the study, thus 

299 underestimating the number of birds that die for various reasons [77]. 

300 Regarding the mammals, two taxa presented a higher representation (carnivores and primates). These data can 

301 be associated with the fact that they are medium to large-sized animals and with a more significant contact of 

302 these species with human environments, facilitating the recognition of morbidities and mortalities [23]. Human 

303 proximity with these mammals enabled the detection of infectious diseases, which is highly represented in these 

304 groups [78,79]. 

305 The distribution of the causes of death established in our research is consistent with most studies, highlighting 

306 traumatic events (anthropogenic effect) as the leading cause of death in these wild species [73,80–82]. Most of 

307 the traumas correspond to vehicular collisions, with a high percentage reported in urban areas or roads that 

308 cross or pass near forest areas. However, the number of deceased animals may be underestimated since not all 

309 cases are reported or recorded, much less referred to the laboratory since the condition of the corpses is not 

310 suitable for the study [83,84].  
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311 In addition, most of the traumatic cases presented some pre-existing infectious pathology. Free-living animals 

312 are frequently exposed to infectious agents naturally, so it is common in post-mortem analysis to find incidental 

313 lesions associated [82,85,86]. In wild animals highly exposed to human conditions, factors such as climate 

314 change and anthropogenic impact could become stressful stimuli, which facilitate these infectious agents to 

315 evolve into severe disease and increase the risk of suffering a traumatic event [82,87]. However, it is difficult to 

316 establish a clear association [88,89]. 

317 Some of these identified infectious agents cause foodborne illness in human populations. Examples of these are 

318 Clostridium spp., Toxoplasma sp. and Sarcocystis spp. Although the law prohibits hunting in Costa Rica, there is 

319 the illegal consumption of wild animal meat. Consequently, this type of practice might favor the transmission of 

320 infectious agents and lead to local outbreaks or maintain circulating virulent strains in local human populations 

321 [90–93]. 

322 Our study shows the presence of potentially zoonotic bacterial infectious agents classified as emerging diseases 

323 in some regions [94–96]. The most relevant are Klebsiella pneumoniae, Escherichia coli, and Staphylococcus 

324 aureus, which were associated with primary disease in some of the analyzed specimens. The direct or indirect 

325 contact occurs through the handling of these wild animals, thus facilitating the transmission, which evidences a 

326 latent risk. In addition, these bacteria currently top the list of infectious agents with antibiotic resistance genes, 

327 making them considered within antimicrobial surveillance schemes [97,98]. Furthermore, cases of antimicrobial 

328 resistance have already been demonstrated in Costa Rica with other bacteria in wild animals in urban 

329 environments, thus reflecting the need for a wildlife pathogen surveillance scheme to consider active 

330 antimicrobial resistance monitoring [31,99].

331 Zoonotic vector-borne diseases arise when there is a conjunction of spatial-temporal factors and other variables 

332 (reservoirs, climate, susceptible population, among others) [100]. Environmental conditions in tropical regions 

333 favor these diseases that significantly impact public health and are recognized as agents with epidemic potential 
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334 in Latin America [101–103].  We identified many primates and carnivores with infectious agents of vector 

335 transmission, for example, Dirofilaria spp. and Dipetalonema spp. mainly present in low-lying areas (CoastLine). 

336 These regions are already defined as endemic areas for these parasites in domestic animals [104,105].  

337 Nevertheless, detecting this type of agent in a jungle cycle reveals a potential risk to public health in places with 

338 a high rate of visiting tourists in Costa Rica. This risk is reinforced by reports of the health system, which showed 

339 at least three disease cases in humans associated with Dirofilaria immitis and isolated cases of subcutaneous 

340 filariasis [106–108]. 

341 Similarly, several Latin American countries are considered endemic to various diseases caused by arboviruses 

342 [109]. In Costa Rica, other studies have identified the stationary circulation of this type of agent in humans and 

343 animals in various regions [33,110,111].  The cases of arbovirus-flaviviruses detected in our research are 

344 consistent with the high circulation of this type of virus in Costa Rica [33,111]. Furthermore, this agent was 

345 associated with a mass mortality of pelicans during the conduct of our research. Detecting virus-related 

346 mortalities such as West Nile in wild birds (as it was possibly our case) allows early alerts. It has been shown 

347 that there is a higher risk of exposure for human populations close to the regions where mortalities of wild birds 

348 occur [112,113].  

349 The canine Distemper virus (CDV) (genus: morbillivirus) is a pernicious infectious agent with a global distribution 

350 that affects at least 20 families of mammals. Especially susceptible are carnivores of all species [114,115]. 

351 Endemic CDV outbreaks have been reported anecdotally throughout Costa Rica and America in dog populations 

352 and, more recently, sporadic outbreaks in wild carnivores of urban and suburban areas in the country have been 

353 recorded [116,117].  CDV was identified in our studies, reflecting the relevance of this virus in the role of spillover 

354 towards carnivore species and possibly the implications of a spillback towards susceptible or non-vaccinated 

355 domestic canines [117–119]. Costa Rica has a domestic dog population of ~250 thousand animals, mainly 
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356 located in urban areas. Herd immunity data in this population is uncertain, especially for dogs without an owner 

357 or in non-urban areas, where owners neglect these vaccines. Indeed, this poses a risk to wild carnivores, 

358 especially in urban areas with susceptible canine populations. Furthermore, the possibility of transmission of 

359 this virus to other species beyond carnivores is a hypothesis that has been investigated [120]. Given the high 

360 diversity of vertebrates present in Costa Rica, this virus should be considered within epidemiological surveillance 

361 programs.

362 This study did not detect rabies virus infections. This findings are supported by previous studies in wild animals 

363 in Costa Rica [32]. However, human and productive animal fatalities have been reported associated with rabies 

364 infections, which stresses the relevance of its continuous monitoring [38,121]. A similar situation applies to 

365 Newcastle and Influenza virus. In our samples, none of the birds showed evidence of disease or associated 

366 clinical signs. However, due to the sanitary status (declared itself free) of Costa Rica for these avian viral agents 

367 and the risk for national poultry production, it is advisable to establish monitoring in any event of mortality of 

368 wild birds in the country [122,123].

369 The gastrointestinal and pulmonary parasites detected in this study are relevant for public health and wildlife 

370 conservation programs. For instance, the nematodes Baylisascaris spp., Ancylostoma spp., and Cylicospirura 

371 spp. were detected in mammalian species located in densely populated areas. Furthermore, we identified 

372 parasites transmitted by water or food of aquatic origin (such as the cestode Spirometra spp. and the nematodes 

373 Contracaecum spp. and Gnathostoma spp.) mainly in rural areas of the country's northern region. In this region, 

374 fishing and rivers for recreational, irrigation, and consumption purposes are common, showing possible 

375 contamination in both ways [124,125]. 

376 The last two reports of human angiostrongyliasis in Costa Rica have shown 12.9% seropositivity in the screening 

377 test, the majority were children under the age of ten who reside in San José, which is the province with the 

378 highest number of human samples [126,127]. In this study, six specimens of mammals infected by 
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379 Angiostrongylus spp. were identified, mainly in the Nasua narica species, from recreational parks in cities in the 

380 country's northern region. This species has been established as the definitive host in the parasite's life cycle 

381 [128]. The high degree of positive cases suggests a high prevalence of the parasite in the mammalian reservoir. 

382 This result evidences the urgency of expanding sampling with better diagnostic techniques in children and wild 

383 carnivores from these regions. The same situation happens with the number of cases detected with 

384 acanthocephalans (Prosthenorchis spp., Macracanthorhynchus spp.) in the Central Pacific region.  There is no 

385 information on the real prevalence in animal populations, nor are there samplings that allow detecting cases in 

386 humans in this region, despite the zoonotic risk previously mentioned  [129,130].

387 Finally, we could not identify the causative agent of lesions in some of the samples analyzed. However, 

388 histological changes suggest the presence of an infectious agent.  Although we analyzed samples for the main 

389 circulating infectious agents in Costa Rica, no conclusive data was obtained for some of them. Ranges of 17-22% 

390 have been reported in pathological studies in wild species, where the causative agent of the disease cannot be 

391 determined, mainly associated with the degree of autolysis and the diagnostic complexity [25,73,82,85]. These 

392 results are consistent with the percentages of an absence of identification of the etiological agent in our 

393 samples. These results show that further work is necessary to develop robust diagnostic techniques for wild 

394 animals and efforts and incentives financed by government authorities in the surveillance of pathogens in 

395 wildlife through the consistent implementation of new generation metagenomics [131–134]. 

396 Most of the pathogens detected in our study have already been previously identified in wild animals in Costa 

397 Rica, and the detection of an infectious agent in a wild specimen does not necessarily imply disease or affect 

398 wild populations [30,33,41,128]. However, monitoring the general health status of wild animals over time allows 

399 us to know the circulation and behavior of these pathogens, as well as to provide an early warning of epidemic 

400 events. This information can be used by health authorities together with a preventive strategy and a ONE 
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401 HEALTH approach to address zoonotic diseases, facilitating more specific public health interventions, 

402 implementing measures to reduce the risk of spread [25,66,73] .

403 This study was performed as a pilot and was the first structured attempt to test the establishment of a passive 

404 epidemiological surveillance scheme for diseases in wild vertebrates. However, it highlights the necessity of an 

405 inter-institutional and trans-institutional commitment with the sustainability over time of this surveillance 

406 scheme focused on the benefits beyond the economic part. For example, this work allowed us to estimate the 

407 general health status of the country's wildlife and know the distribution of pathogens in the national territory. 

408 This information is critical in regions established as hotspots for the emergence of infectious diseases due to 

409 their great biodiversity and social conditions [18].
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