
 1 

Mechanisms underlying sequence-dependent DNA hybridisation 
rates in the absence of secondary structure 

Sophie Hertel1,^, Richard E. Spinney1,2^, Stephanie Y. Xu1, Thomas E. Ouldridge3, Richard G. 
Morris1,2, and Lawrence K. Lee1,4* 

1 EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, 
2052, Australia 
2 School of Physics, University of New South Wales - Sydney 2052, Australia 
3 Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, 
SW7 2AZ, United Kingdom 
4 ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia 

 

^ These authors contributed equally 

* To whom correspondence should be addressed. Email: lawrence.lee@unsw.edu.au 

 

ABSTRACT  

The kinetics of DNA hybridisation are fundamental to biological processes and DNA-based technologies. 
However, the precise physical mechanisms that determine why different DNA sequences hybridise at different 
rates are not well understood. Secondary structure is one predictable factor that influences hybridisation rates 
but is not sufficient on its own to fully explain the observed sequence-dependent variance. Consequently, to 
achieve a good correlation with experimental data, current prediction algorithms require many parameters 
that provide little mechanistic insight into DNA hybridisation. In this context, we measured hybridisation rates 
of 43 different DNA sequences that are not predicted to form secondary structure and present a parsimonious 
physically justified model to quantify their hybridisation rates. Accounting only for the combinatorics of 
complementary nucleating interactions and their sequence-dependent stability, the model achieves good 
correlation with experiment with only two free parameters, thus providing new insight into the physical 
factors underpinning DNA hybridisation rates.  

 

INTRODUCTION 

DNA is a biopolymer formed from four different nucleotides, adenine, thymine, guanine and cytosine 

(A,T,G and C respectively), whose order or sequence is used to encode information that is the 

foundation of biology. Complementary DNA strands hybridise via Watson and Crick base pairing 

between A-T or G-C bases to form the DNA double helix or duplex (1), whose structural (2) and 

physical (3-5) properties are well characterised. In addition to its essential role in biology, DNA 

hybridisation also underpins DNA nanotechnology (6-8), which utilises DNA self-assembly for the 

construction of rationally designed nanoscale structures and machines (9-16). DNA nanotechnology 
has led to the development of a broad range of technologies including applications in molecular 

sensing (17-20), coordinating complex reaction cascades (21-23), drug delivery vessels (24-27) and 

super resolution imaging methods, such as DNA points accumulation for imaging in nanoscale 
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topography (DNA-PAINT) (28). Thus, understanding the thermodynamics, kinetics and mechanisms 

for DNA hybridisation is fundamentally important for biology and biotechnology.  

The thermodynamics of DNA hybridisation have long been observable via spectrophotometric or 

viscometric observations of thermal melt curves and are well studied (29-31). The reaction is 

dominated by states consisting of completely dissociated DNA strands or fully hybridised DNA 

duplexes. The stability of a DNA duplex can therefore be estimated from the structure of a fully 

hybridised duplex and is dependent on hydrogen bonds between paired bases in DNA duplexes and 

hydrophobic base stacking that occurs between neighbouring base pairs; both these interactions are 

sequence dependent (32, 33). Models predicting the melting temperature 𝑇! of a DNA duplex adopt a 

two-state nearest neighbour approach, which postulates that the stability of a given base pair 
depends on the identity of the nucleotide bases involved (A-T or G-C) and its nearest neighbour base 

pairs. In turn, the 𝑇! associated with the formation of any DNA duplex can be estimated from the sum 

of the free energy of all 2 contiguous base-pairing interactions, as well as additional parameters to 
account for the relative stabilities of the ends of the duplex (32, 33). Given that there are only 10 

unique combinations of 2-base sequences, nearest neighbour models can be parameterised 

experimentally including in different buffer conditions (34-41), and algorithmic implementations predict 

hybridisation 𝑇! reasonably well (42, 43). 

The kinetics of DNA hybridisation are also sequence-dependent (44-47). However, the pathways to 

DNA hybridisation are difficult to observe, and therefore the physical basis for sequence-dependent 

hybridisation rates remains poorly understood. Based on early thermodynamic and kinetic 

measurements of DNA hybridisation, Pörschke and colleagues proposed a reaction mechanism in 
which hybridisation proceeds via a slow, rate limiting bimolecular nucleation step, followed by fast 

monomolecular ‘zippering’ into a fully formed DNA duplex (30, 48, 49). More recent developments in 

coarse-grained molecular dynamics (MD) simulations enabled an in silico view of hybridisation 

pathways, in which the rate-limiting nucleation step consisted of a short stretch (~3 bp at 300 K) of 

contiguous and complementary base-pairing interactions (50-52). Since there are typically many such 

possible nucleating interactions, it therefore follows that the combination and relative stability of all 

possible nucleating interactions, which is entirely determined by the DNA sequence, defines the 

overall activation free energy and therefore the rate of any DNA hybridisation reaction. However, DNA 
strands can also form intramolecular interactions that result in secondary structures such as hairpins 

that influence both the rates of hybridisation and melting. Such secondary structure can reduce 

hybridisation rates either by limiting the availability of a subset of nucleating interactions or by 

lowering the probability that any given nucleating interaction is stable enough to favour the 

displacement of the secondary structure, which must be denatured prior to zippering into a fully 

formed duplex (53-55).  

Two algorithms have recently been developed for predicting sequence dependent hybridisation rates. 

A ‘weighted neighbour voting’ algorithm was used to examine 50 different sequence-dependent 

physical ‘features’ and found 35 different features that correlated with hybridisation rates (56). 
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Perhaps unsurprisingly, of these features, the ensemble standard free energy of secondary structure 

emerged as the single best predictor of DNA hybridisation rates, reporting predictions of hybridisation 

rate constants (𝑘") of ~60% accuracy within a factor of two. The inclusion of five additional features 

resulted in a six-parameter model, which achieved a reported ~80% prediction accuracy within a 

factor of two. However, apart from secondary structure, the physical mechanisms underpinning how 

these additional features influence hybridisation rates remain unclear. Hata et al. subsequently 

presented an alternative, physically motivated, model by estimating the relative binding capability for 
all 3 consecutive base sequences involved in all possible nucleation interactions, including those 

which were off-register or mis-matched (45). This capability was dependent on an estimate of the 

propensity of any of the 32 possible 3-base nucleating interactions to seed full hybridisation and on 

the probability of predicted secondary structures sterically hindering nucleating interactions. 

Surprisingly however, seeding propensities did not correlate with the stability of nucleating 

interactions and accurate predictions required these propensities to be determined empirically by 

fitting 32 free parameters to experimental data. Thus, secondary structure remains the only physically 

well-defined determinant for algorithms predicting sequence dependent hybridisation rates. However, 
accurate predictions require multiple additional parameters that are not physically well defined. This 

suggests that there are other dominating physical factors apart from secondary structure that are yet 

to be identified.  

Coarse grained MD simulations, for example, indicate that nucleation can occur from base pairing 

interactions that are off-register from a fully formed duplex (50-52). In these instances, off-register 
nucleation states can progress to metastable intermediaries such as misaligned duplexes that can 

move into register via inchworming or pseudoknot internal displacement mechanisms, followed by the 

final zippering step into the fully hybridized DNA double strand (50). Like zippering, these 

monomolecular rearrangements also occur much more rapidly than nucleation. Consequently, 

repetitive sequences, which have a greater number of possible off-register nucleating interactions 

were predicted to hybridise more rapidly than non-repetitive sequences (50). 

Here we explored the impact of off-register nucleating states on the hybridisation rate of DNA strands 

experimentally. To reduce the complexity of hybridisation pathways and to identify physical elements 

yet to be explicitly accounted for in predictive models, we focused on sequences that were not 

predicted to form secondary structures. Using surface plasmon resonance (SPR) we measured the 

hybridisation rates of 43 different DNA strands with varying GC content and degree of sequence 

repetition and demonstrate that repetitive sequences do indeed hybridise more rapidly than non-

repetitive sequences. We also present a simple, physically-justified model, which demonstrates that it 
is possible to capture much of the variance in sequence dependent hybridisation rates with only two 

free parameters that account for the combination and stability of all possible nucleating interactions, 

including those that are off-register.  
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MATERIALS AND METHODS 

DNA oligonucleotides 

All DNA was purchased from IDT. The salt purified oligonucleotides were resuspended in milliQwater 

and stored at -20 °C. To ensure that the measured hybridization kinetics only depended on 

differences in the sequence, DNA strands were designed to have no or negligible secondary 

structures (2bp or less) and nearly the same free energy of the lowest energy double stranded 

complex, using NUPACK and IDT (Table 1).  

Surface plasmon resonance experiments 

SPR experiments were performed with a Biacore S200 system. A CM5 chip was coated with 4000-
5000 RU streptavidin purchased from Sigma-Aldrich. The experimental setup for the surface plasmon 

resonance measurements was chosen as described before (57), shown in figure 1A. To ensure a 

Langmuir 1:1 interaction model, an anchor DNA strand was immobilized on the chip surface by biotin-

streptavidin coupling at a density of 1.7 × 10#	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑚𝑚$ so that intermolecular crosslinking of 

the immobilized DNA strands was minimized. The anchor strand then captured the template strand, 
which had a free complimentary binding site for the target strand. By referring to the mass and length 

of the anchor and template strands, the highest signal expected for binding of the target strand to the 

template was 11 RU (10bp) and 12 RU (14bp), respectively. 

The biotinylated anchor strand was immobilized on two flow cells of the sensor chip, leaving two flow 

cells as blank reference cells. DNA samples were prepared in 10 mM HEPES pH 7.5, 150 mM NaCl, 
3 mM EDTA and 0.005 % Tween20 running buffer and SPR experiments were performed in the same 

buffer at 25 °C and a flow rate of 60 µl/min. The SPR chip could be regenerated for reuse by 

removing the template strand with a 60 sec injection of 10 mM glycine pH 2.5. Sensorgrams were 

double-referenced and three repeats of each data set were carried out. The corrected binding curves 

were fitted with a 1:1 binding model to obtain apparent association constants, 𝑘"%%, and dissociation 

constants, 𝑘&. 𝑘"%% were plotted as a function of the target concentration and fit to a linear function 

whose slope corresponded to the association rate constant, 𝑘". 𝐾' from steady state measurements 

was calculated using the RUmax values obtained from binding curve fits, plotted as a function of the 

target concentration. All data was fit using Prism and MATLAB. Final ka and kd values are averages of 

at least three replicates and errors reported are standard deviations. 

 

Estimation of binding free energies with NuPACK 

Binding free energies were determined using NUPACK version 4.0.0.21 with the following 

parameters: 25	℃, 0.15 M NaCl, material setting to ‘dna2004’ and ensemble parameter to ‘stacking’. 
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RESULTS 

Repetitive DNA sequences hybridise more rapidly than non-repetitive sequences 

To experimentally test predictions that additional off-register nucleating interactions in repetitive 

sequences result in faster hybridisation rates, we compared association rates of two 14 base 

sequences previously analysed in coarse grained MD simulations (50). The first was a non-repetitive 

sequence (14NR) with 50% GC content that was designed to minimise hairpin formation and off-

register interactions with its complementary strand. The second consisted of seven successive AC 
repeats (14AC), which maintains the same GC content as 14NR but allows for more off-register 

nucleating interactions. The absence of complementary bases precludes the formation of secondary 

structure via intramolecular base pairing. In addition, we measured hybridisation kinetics of a 

repeated sequence consisting of seven successive AG repeats (14AG). Unlike the 14AC sequence, 

the AG repeat sequence has the capacity to form G-quadruplexes including GAGA quartets (58), and 

GAGAGAGA heptads (59). Thus, the 14AG sequence provided a convenient means to assess the 

relative impact of secondary structures and the additional off-register nucleation sites in repeated 
sequences on DNA hybridisation rates. We also performed measurements with variants of the 14-

base DNA sequences that were truncated to a length of 10 bases. Details of all DNA sequences used 

in this study are summarised in Table 1.  

Table 1. All DNA sequences with associated rate constants measured in this study. 

Number Name Sequence 5’ > 3’ ka (M-1s-1) x 106 kd (s-1) x 10-2 

 Anchor B-TTTGACCTCCTTGGCAGCACTG 
 Template *XnTTTCAGTGCTGCCAAGGAGGTC   
1 14NR GCTGTTCGGTCTAT  1.04 ± 0.12 NA 
2 14AC CACACACACACACA 4.82 ± 0.55 NA 
3 14AG TCTCTCTCTCTCTC 2.02 ± 0.07 NA 
4 10NR GTTCGGTCTA 1.15 ± 0.09 0.89 ± 0.05 
5 10AC ACACACACAC 3.84 ± 0.15 0.67 ± 0.09 
6 10AG TCTCTCTCTC NA NA 

50 % GC content   
7  ACCAACCAACCAAC 5.21 ± 0.08 NA 
8  CAACAACACCACCA 3.24 ± 0.40 NA 
9  AAACCACCCAACAC 2.75 ± 0.13 NA 
10  CCACCAACAACAAC 4.06 ± 0.18 NA 
11  CAACACCCAAACAC 2.12 ± 0.26 NA 
12  ACCAAACCACCAAC 1.19 ± 0.16 NA 
13  CAAAACCCCAACAC 1.83 ± 0.08 NA 
14  ACCAACACCAACCA 3.19 ± 0.14 NA 
15  AACCACCACAAACC 3.66 ± 0.43 NA 
16  ACACACACCACACA 4.44 ± 0.33 NA 
17  CAACACAACCAACC 3.76 ± 0.40 NA 
18  AAACCCACCACACA 1.89 ± 0.40 NA 
19  AACCAACACCACCA 3.36 ± 0.33 NA 
20  CAACCAACCA 3.96 ± 0.40 0.50 ± 0.04 
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21  ACAACACCAC 2.56 ± 0.18 0.24 ± 0.01 
22  ACACCAAACC 2.18 ± 0.31 0.78 ± 0.15 
23  CCACCAACAA 2.83 ± 0.33 1.27 ± 0.16 
24  CAACACCCAA 2.51 ± 0.34 1.75 ± 0.21 
25  ACCAAACCAC 2.17 ± 0.25 0.32 ± 0.01 
26  CAAAACCCCA 2.65 ± 0.23 1.79 ± 0.19 
27  ACCAACACCA 2.77 ± 0.44 0.87 ± 0.05 
28  AACCACCACA 3.87 ± 0.37 0.75 ± 0.05 
29  ACACACACCA 4.16 ± 0.37 0.66 ± 0.06 
30  CAACACAACC 2.70 ± 0.39 0.40 ± 0.02 
31  AAACCCACCA 2.53 ± 0.45 1.64 ± 0.09 
32  AACCAACACC 2.66 ± 0.32 0.43 ± 0.04 

57 % GC content 
33  CCCAAACCCAACCA 2.98 ± 0.24 NA 
34  CACCACAACCACCA 3.81 ± 0.39 NA 
35  CCCCACACAACAAC 3.96 ± 0.67 NA 
36  ACACCACCAC 5.61 ± 0.47 0.11 ± 0.01 
37  CCCCACACAA 5.45 ± 0.08 0.74 ± 0.10 

42 % GC content 
38  CCAAAACCAACAAC 2.30 ± 0.09 NA 
39  AAAAACCCACCCAA 2.43 ± 0.37 NA 
40  CAACACCAAACAAC 1.78 ± 0.30 NA 
41  CCAAAACCAA 1.67 ± 0.17 4.10 ± 1.04 
42  AAAAACCCAC 2.36 ± 0.24 2.08 ± 0.10 
43  AAACCACACA 1.81 ± 0.30 3.34 ± 0.31 

*Xn represents a DNA stand complementary to the target sequence of length n = 10/14 

DNA hybridisation kinetics were measured with SPR as previously described (57). DNA strands that 

were complementary to target strands were immobilised to the surface of an avidin-coated SPR chip 

by hybridisation to biotinylated ‘anchor’ strands (Figure 1A). During association measurements, target 
strands were flowed over the surface of the chip at fixed concentrations [T] resulting in pseudo-first-

order binding kinetics. The response units (RU) from all SPR sensorgrams were therefore well 

described by the following monoexponential equation: 

𝑅𝑈( = −𝑅𝑈!")𝑒*!"#( + 𝑅+,     (1) 

where 𝑅𝑈!") is the RU value when all binding sites are occupied and R0 is the RU value at the zero 

time point (Figure 1B and C and S1-3). Association rate constants (𝑘") could then be calculated from 

sensorgrams according to: 

𝑘" =
*!"#,*!$$

[.]
       (2) 

The repetitive 14AC sequence (𝑘" = 4.8 ± 0.5	 × 100𝑀,1𝑠,1) hybridised approximately five times 

faster than the non-repetitive 14NR sequence (𝑘" = 1.0 ± 0.1	 × 100𝑀,1𝑠,1) (Figure 1D). This is 

consistent with MD simulations, suggesting that the additional possible off-register nucleating 

interactions in repetitive sequences result in faster hybridisation rates (50). As expected, given the 
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propensity for the 14AG sequence to form secondary structures (58, 59), the 14AG sequence 

hybridised more slowly than the 14AC sequence. Interestingly however, the association rate for the 

14AG sequence (𝑘" = 2.0 ± 0.07	 × 100𝑀,1𝑠,1) was faster than that of the non-repetitive 14NR 

sequence, suggesting that additional off-register nucleation states in the AG sequences are sufficient 

to off-set the reduction of the hybridisation rate associated with the presence of secondary structures. 

Truncating DNA strands to 10 bases did not appear to have a large effect on association rates. There 

was no detectable difference in association rates between the 14NR and the truncated 10NR 

sequence (𝑘" = 1.2 ± 0.1	 × 100𝑀,1𝑠,1) and while slower than the 14AC sequence, the 10AC 

sequence (𝑘" = 3.8 ± 0.2	 × 100𝑀,1𝑠,1) still hybridised 4 times faster than the 10NR sequence. 

Dissociation rates were drastically faster for the AG sequence compared with the AC and NR 

sequences. The 10AG sequence dissociated too rapidly to be captured within the limits of 
experimental measurements. Since observed binding curves also depend on dissociation rates (see 

equation 2), neither association nor dissociation sensorgrams could be fit to monoexponential 

equations to obtain accurate association or dissociation rates for the 10AG sequence. In contrast, 

dissociation rates for the 10NR and 10AC sequences were similar and much slower than the 10AG 

sequence, with a mean dissociation rate of 8.9 ± 0.5	 × 10,2𝑠,1 and 6.7 ± 0.9	 × 10,2𝑠,1, respectively 

(Figure 1E). This is consistent with predictions that secondary structures in DNA sequences not only 

decrease association rates but have a pronounced tendency to increase dissociation rates, possibly 

originating from the formation of secondary structures during melting (55). It also follows that the 

relatively slow dissociation rates of the AC and NR sequences reflects the lack of significant 

secondary structures in these sequences as predicted.  
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Figure 1: Binding kinetics for non-repetitive and repetitive DNA sequences. (A). Schematic 

depiction of the surface chemistry used to measure DNA hybridisation kinetics with SPR. First, a 20-

base biotinylated DNA strand (anchor, dark grey) binds irreversibly to the streptavidin coated surface 

of the SPR chip. Second, a longer strand of DNA (template, light grey) that is complementary to the 

anchor binds (capture). The template strand has an extension consisting of a 3-thymine spacer and a 

sequence that is complementary to the target strand. Third, association and dissociation kinetics 

(association and dissociation respectively) of the target strand (red) can then be measured in real 

time. The chip can be re-used for replicate experiments after a regeneration step that denatures all 
DNA duplexes leaving only the black anchor strand (regeneration). (B and C) Representative raw 

SPR sensorgrams (red) with mono-exponential fit (dashed black) to association phase for 14bp 

sequences (B) and to association and dissociation phase for 10bp sequences, fit locally for each 

concentration (C). The apparent high association rate of the 10AG sequence was due to the use of 

high concentration of target strand required to get an appreciable yield, and the fast dissociation, 

which increases the rate at which the system approaches equilibrium. Replicate data for sequences in 

(B) and (C) are in figure S1. (D) Association rate constants for 14bp (dark grey) and 10bp (light grey) 
sequences. (E) Dissociation rate constants for 10bp sequences. * indicates that no kinetic rates could 

be determined. (F) Association rate constants for all DNA sequences without secondary structure in 
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this study as measured by SPR and indexed according to Table 1. As in (D), light and dark grey 

correspond to 10 and 14 base sequences respectively. Sequences with 42% and 57% GC content are 

marked with magenta and cyan labels respectively. All other sequences have 50% GC content. Error 

bars are standard deviation from at least three independent measurements. Raw SPR sensorgrams 

fitted with monoexponential equations are in figure S2-3. 

 

Association rates of randomly generated AC sequences  

DNA sequences consisting only of AC bases (AC sequences) provide a useful means to explore the 

mechanisms underlying sequence-dependent hybridisation rates in the absence of secondary 

structure. We therefore measured the hybridisation rates of an additional 38 randomly generated DNA 

sequences consisting of only adenine and cytosine bases. These DNA strands were either 10 or 14 

bases in length with a GC content between 40% and 60%. As above, kinetic traces of all sequences 

were consistent with pseudo-first-order binding kinetics (Figure S2-3) allowing for reliable 

determination of binding rates, which are presented in order of increasing rates in figure 1F. The 
kinetic rate constants for all sequences in this study are summarised in table 1 and supplementary 

table 1, which also shows, where applicable, consistent equilibrium dissociation constants (𝐾') as 

calculated from kinetic rates and steady state measurements, further confirming the reliability of SPR 
data.  

The repetitive 14AC and 10AC sequences were among those with the fastest hybridisation rates 

ranking 4th and 11th respectively, whereas the non-repetitive 14NR and 10NR had the slowest 

hybridisation rates (Figure 1F). Furthermore, consistent with previous reports (46), sequences with a 

higher GC content tended to hybridise more rapidly. Thus, increased hybridisation rates appear to 
broadly correlate with a greater number and stability of possible nucleating interactions. The 

dependence of DNA hybridisation rates on strand length may also provide important mechanistic 

insight. Previous studies are in agreement that dissociation rates significantly decrease with increased 

DNA strand length. However, data on association rates are mixed with reports of weakly increasing 

rates (60), decreasing rates (61, 62) or an absence of an effect on the rates (63). Our data also shows 

no obvious correlation between DNA hybridization rates and sequence length. This suggests either 

that a length dependent effect on hybridisation rates is insignificant between lengths of 10 and 14 bp 

or that length related hybridisation properties off-set each other to result in the apparent lack of 
correlation. 

Simple physically motivated model for capturing the variance in DNA hybridisation rates 

To explore the underlying mechanisms dominating DNA hybridisation kinetics in more detail, we 

constructed a simple, physically motivated model to quantify the correlation between hybridisation 

rates and the number and stability of nucleation states, including those that are off-register, that result 

in a fully formed duplex. This simple model is predicated on the idea that in the absence of other 
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factors such as secondary structure, sequence-dependent hybridisation rates are based 

fundamentally on two factors, the combinatorics of available nucleation sites, and their stability.  As 

illustrated in figure 2, the model assumes that hybridisation proceeds via a nucleation state consisting 

of a small sub-sequence of 𝑛 contiguous intermolecular base pairing interactions (30, 48-50, 52). 𝑛 

thus constitutes a model parameter controlling the effect of combinatorics of the sub-sequences in the 

strands. From this nucleated state, the strands either dissociate and return to solution or transition 

into one of a vast number of complicated states associated with various intermediary and meta-stable 
complexes including partially zippered, off-register structures from where the complex can proceed to 

a fully hybridised duplex (50).  

If transitions from an unbound state into a nucleated state are rate-limiting, and progression to 

eventual full hybridisation from a meta-stable structure is very likely (50), then a faithful description of 

the kinetics between the unbound, nucleation and meta-stable states will provide an approximate 
measure of the total observed rate of hybridisation. We can thus construct a framework for modelling 

the effective hybridisation rate constant using the simple form: 

𝑘" = ∑ ∑ 𝑘3,56,781
591

6,781
391 .     (3) 

Here, 𝐿 is the length of the strand expressed as an integer number of bases, whilst 𝑖 and 𝑗 are indices 

corresponding to the position of the first of 𝑛 contiguous bases which make up the nucleation state, in 

the 5’ → 3’ direction, for the strand and its complement, respectively (Figure 2B – top). The double 

sum therefore includes (𝐿 − 𝑛 + 1)! contributions from all such nucleation states, regardless of 

whether they are on-register, or whether they are formed from complementary bases (Figure 2B - 

bottom). 𝑘",$ then quantifies the specific contribution arising from the nucleation state at positions 𝑖 

and 𝑗 on the strand and its complement, respectively. Crucially, unlike previous models (45), this 

allows the contribution of any particular nucleation state to vanish in the case of mis-matched bases, 

thus naturally capturing the combinatorics of nucleating interactions, and for the contribution of 

nucleating interactions to vary with the stability of the nucleated state when they do match.  

To account for the relative stability of each 𝑖, 𝑗 nucleation site we can approximate the associated 

contributing rate constant 𝑘3,5 as arising from an idealised sub-system consisting of free or dissociated 

strands in solution, a single i,j nucleation state, and a ‘bound’ state representing all configurations 

where the strands are in one of many more complicated subsequent complexes including fully 

hybridised duplexes or pseudoknots etc. (Figure 2C). Thus, for any given individual 𝑖, 𝑗 nucleation site, 

this three state sub-system is then fully described with the specification of the rate constants 

associated with transitions between these states (Figure 2). Various assumptions can then be 
implemented to define the rates at each step.  
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First, we specify a transition rate from a nucleated state to dissociated strands in solution, which we 

capture as a stability term measured through the free energy of binding of the nucleation state, and 

thus introducing explicit sequence dependence into the model, 

𝑟7:;<→>?<
3,5 = 𝑟′7:;<→>?<𝑒@A%,'

( B⁄ . .     (4) 

Here 𝛥𝐺3,5+  is the free energy of binding of the nucleation state associated with binding locations 𝑖 and 

𝑗 measured in J/mol, 𝑟′7:;<→>?< is a rate constant that is independent of the binding sequence, R is the 

gas constant and T is the temperature in Kelvin. Second, we ignore any entropic effects of unbound 

DNA bases surrounding the nucleation site and assume that all specific nucleation sites are equally 

accessible from dissociated strands. The rate for forming any given 𝑖, 𝑗 nucleating interaction is 

assumed to be constant across all nucleation sites, and can be given by 𝑟>?<→7:;<
3,5 = 𝑟D(𝐿 − 𝑛 + 1),$ 

where rD is an overall scaling factor representing the rate of a nucleation event occurring in any pair of 

locations on the strands independently of their length, comprising a rate constant κ and any 

concentration dependence (e.g. rD = κ[𝑇] in the pseudo-first-order conditions above), and the 

(𝐿 − 𝑛 + 1)%! term imposes the observed lack of scaling of hybridisation rates with strand length on 

the model. Third, we assume that the rate of transitions from the bound state to the nucleated state is 

slow relative to the time scales of hybridisation and hence these transitions are ignored in the model. 

Finally, as a first approximation, we assume that the microscopic rate of transition from any nucleated 

site into an intermediary or metastable state is constant across all nucleation sites and sequences 

(𝑟&'()→+,'&-
",$ = 𝑟&'()→+,'&-).  

The effective rate for hybridisation via any given 𝑖, 𝑗 nucleating interaction can be arrived at by 

computing the inverse of the mean first passage time taken to transition from state 1 to state 3. From 

the rates defined above this rate is given by (Supplementary Note 1): 

𝑟3,5 =
E)(6,781)*+H,-./→"!-,1

HI,-./→#!/J
23%,'

( /56
8E)(6,781)*+8H,-./→"!-,1

.    (5) 

While nucleation is the rate limiting step, the rate of transitions away from the nucleated state are 

much faster than the rate of transitions into the nucleated state (𝑟7:;<→K?:7& , 𝑟′7:;<→>?< ≫

rD(𝐿 − 𝑛 + 1),$). As such we can simplify this expression, to leading order in rD(𝐿 − 𝑛 + 1),$/

𝑘7:;<→K?:7&, 	and then convert to the relevant rate constant to find 

𝑘3,5 ≈
D(6,781)*+

78,-./→#!/
7,-./→"!-,1

J
23%,'

( /56
81
= D(6,781)*+

J
9:23%,'

( /56
81

    (6) 

where 𝛾 = ln	(𝑟 ′7:;<→>?< 𝑟7:;<→K?:7&⁄ ). The rate constant for hybridisation via any single (𝑖, 𝑗) 

nucleation state can thus be directly interpreted as a uniform and limiting rate,	κ(𝐿 − 𝑛 + 1),$, into the 

nucleation state from solution multiplied by a probability of continuing through to full hybridisation from 

the nucleation state, 
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 𝑝3,5
LMKH3&3>J = 1

J
9:23%,'

( /56
81

.      (7) 

Consequently, the value of 𝛾 coincides with the value of −𝛥𝐺3,5+ /𝑅𝑇 for which the probability of 

continuing on to hybridisation is 𝑝3,5
LMKH3&3>J = 1 2⁄ . Substituting equation (6) into equation (3) we arrive 

at 

𝑘" = κ(𝐿 − 𝑛 + 1),$ ∑ ∑ 1

18J
9:23%,'

( /56
6,7,1
591

6,781
391     (8) 

fully specifying our model up to estimation of the nucleation free energies of the nucleation state. 

When a nucleation state (𝑖, 𝑗) constitutes a mismatch the model considers the nucleation free energy 

to be infinity such that the probability of hybridisation is zero. For complementary nucleation states, 

nucleation free energies, 𝛥𝐺3,5+  were obtained using the NUPACK 4.0.0.21 implementation of the 

nearest neighbour model (see materials and methods).  

Given a fixed 𝑛, the terms κ and 𝛾 then constitute the free parameters of the model, which can be fit 

to data. However, of the two, only 𝛾 controls the sequence dependence, with κ simply acting as a 

scaling factor. In physical terms 𝛾 controls how sharply the increases in the stability of the nucleation 

states increases the likelihood of continuing through to full hybridisation. Crucially, the fact that the 

sequence dependent stability of nucleating interactions is controlled by a single free parameter 

dramatically restricts model complexity such that over-fitting can be avoided as much as possible.  

 

Figure 2. Cartoon depiction of nucleation and hybridisation underpinning the simple model 
with a nucleation length of two. From the unbound state (A) the system can transition into one of 

(𝐿 − 𝑛 + 1)$ possible nucleation states, where 𝐿 is the length of the DNA strands and 𝑛 is the length 

of the nucleating interaction. (B) illustrates examples of the many possible nucleation states of length 

𝑛 = 2. From any of these states the system can either return to an unbound state, or it can continue 

through to full hybridisation via a complicated network of possible intermediary and meta-stable bound 

states as illustrated in (C). The model assumes negligible transitions from bound states back to 

nucleated states. Rates are for transitions to and from a single specified location (𝑖, 𝑗), where 𝑖 and 𝑗 

refer to the index of the first base involved in the nucleating interaction from the 5’ end, on each 

strand respectively. For each possible nucleation location there exists a constant rate of nucleation 
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equal to rD(𝐿 − 𝑛 + 1),$ such that the overall rate of nucleation is independent of length. Then there is 

a sequence dependent rate from the nucleated state back to solution that depends on the stability of 

the nucleated binding complex. Finally, there is a constant rate of transitioning from the nucleated 

state into a bound state. From these rate definitions, the effective rate of hybridisation due to 

nucleation location (𝑖, 𝑗) is taken as the inverse of the mean first passage time from the solution state 

to the bound state (equation (6), Supplementary Note 1). 

Fits to experimental data 

We first determine how well nucleation site combinatorics alone correlate with relative hybridisation 

rates, without accounting for stability. This is achieved simply with the model described above 

(Equation 8) by replacing the probability of hybridisation with a value of one if the nucleation site is 

formed from complementary base pairs, or zero with mismatched base pairs. All other aspects of the 

model are unchanged. The resulting model rates can then be scaled to fit with experimental data by 

varying the scale factor, κ, using a Nelder-Mead optimisation algorithm taking the sum of the squared 

residuals as the objective function to be minimised. Fits were performed with nucleation lengths of 

𝑛 = 1,2,3	𝑎𝑛𝑑	4 and predicted rates plotted against measured rates (Figure 3A) from which correlation 

coefficients were calculated. Given the complexity of DNA hybridisation, and the potential that many 

rate determining factors were not accounted for in our simple model, it was important to ensure that 

reported correlations were a true reflection of model accuracy. We therefore performed careful 

statistical analysis to estimate standard deviations and confidence intervals to quantify the certainty in 
correlation coefficients. In addition, we performed permutation tests to determine p-values based on 

the probability that similar correlations could be obtained from null-distributions of randomly reshuffled 

datasets. Where correlations between model and experiment were high (𝜌 > 0.5) p-values were low 

(𝑝 < 0.001), thus providing confidence that the observed trends were not spurious. Further, null 

distributed correlations were very close to 0 (Supplementary Table 2) providing confidence that the 

observed correlations were not due to overfitting. A detailed description of error analyses performed in 
this study is in supplementary note 2. Standard deviations, confidence intervals and p-values for all 

reported correlation coefficients are in supplementary table 2, and model parameters from all fits in 

this study are in supplementary table 3. For completeness, we also report correlation coefficients 

calculated from point values in supplementary table 4, which do not account for experimental 

uncertainty.  

With a nucleation length of 𝑛 = 1, combinatorics alone provides no distinguishing power between 

different AC sequences with the same GC content, since these sequences necessarily have the same 

number of possible complementary one base interactions. Consequently, predicted rates using 

combinatorics alone were essentially flat for AC sequences when 𝑛 = 1 (Figure 3A). Additionally, the 

NR sequences, which also consist of G and T bases, can make far fewer complementary single base 

pair interactions and thus have lower predicted hybridisation rates, consistent with experiment. 

Indeed, any weakly existing correlation when 𝑛 = 1 can be attributed to the slower hybridisation rates 

for the NR sequences. With increasing nucleation length, there is a larger variation in the number of 
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complementary nucleating interactions. This variation yields a clearly positive correlation between 

predicted and measured hybridisation rates (Figure 3A) that increases with nucleation length reaching 

a maximum when 𝑛 = 3, which has a correlation coefficient of 𝜌 = 0.56 ± 0.04.  

To incorporate base-pair stability in the model, we next fit the full model in equation (8) to 

experimental data to determine whether improved fits could be obtained over predictions based on 

nucleation site combinatorics only. Accounting for stability introduces the single free parameter, 𝛾, 

which along with the scaling parameter κ, was varied, again taking sum of the squared residuals as 

the objective function to be minimised for each nucleation length (𝑛 = 1,2,3	𝑜𝑟	4). Relative to 

combinatorics alone, the full model resulted in an improved correlation between model and 

experimentally measured hybridisation rates across all nucleation lengths (Figure 3B). We note in 

particular a high correlation with a nucleation length of 𝑛 = 1 (𝜌 = 0.68 ± 0.03), where there was a 

lack of correlation from combinatorics alone and which therefore can be attributed almost exclusively 

to the inclusion of nucleation site stability.  

For higher binding lengths, 𝑛 > 1, stability reliably improves the achieved correlation, but none attain 

the correlation captured by the n=1 case. We observe however that the model consistently over-

estimates the related, and most repetitive sequences, 10AC and 14AC, possibly indicative of a lurking 

feature limiting the increase of hybridisation rates due to increasing combinatorics not captured by the 

model. If we omit these two related sequences the maximal correlation between predicted and 

measured hybridisation rates is improved to 𝜌 = 0.73 ± 0.03, occurring at 𝑛 = 3 (Figure 3B and S4 

and Supplementary Table 2). 

 

Figure 3. Predicted vs measured hybridisation rates. Predicted rates from combinatorics alone in 

(A) and from the full model in (B) with 𝑛 = 1 to 𝑛 = 4 from left to right. Errors are standard deviations 

from at least three independent measurements. Red data points depict rates for repetitive 10AC and 
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14AC sequences. Each plot is labelled with correlation coefficients for the entire dataset (black) and 

for data omitting the repetitive 10AC and 14AC sequences.  

 

DISCUSSION/CONCLUSION 

This study explores the complex processes underpinning DNA hybridisation and sequence-dependent 

binding kinetics. While previous studies identified secondary structure as a key contributing factor to 

hybridisation rates (45, 56), we focus on other, equally relevant but poorly defined physical factors to 

gain a more complete understanding of DNA hybridisation. In particular, by combining careful 

experimental design and measurements with a physically justified theoretical model, significant 

progress is made in cementing several principles, proposed to be fundamental to DNA hybridisation 

mechanisms. These principles are: that the rate of forming nucleating interactions limits the rate of 

DNA hybridisation (30, 48, 49); that the combination and stability of all possible nucleating interactions 
is therefore a rate determining factor (45, 50); and that rate-limiting nucleating interactions can be off-

register from a fully formed duplex (50). The study experimentally verifies previous predictions that 

repetitive sequences, which have a greater number of off-register nucleating interactions, hybridise 

more rapidly than non-repetitive sequences (50). Additional measurements were then performed to 

capture the variance in hybridisation rates between 41 different strands that have little or no 

secondary structure (Figure 2). Finally, a simple physically motivated model has been developed that 

captures a large part of this variance by accounting only for the combination of possible nucleating 

interactions, including those that are off-register, and their relative stability.  

A guiding principle in the construction of our model is to use as few free parameters as possible, to 

avoid over-fitting and enable the inference of broad physical mechanisms in the context of limited 

and/or noisy data. However, such a principle is always in tension with a faithful representation of the 

complicated physical processes that underpin DNA hybridisation. We sought to achieve a useful 

balance by focussing on two physically plausible rate determiners: the combinatorics and 
thermodynamic stability of nucleation states. Our model in turn captures these factors with a minimal 

number of parameters, the nucleation length 𝑛 and the stability term 𝛾. We have purposely avoided 

introducing additional confounding factors as much as possible with the exclusive focus on DNA 
sequences that exhibit very little to no secondary structure. A consequence of this approach is that we 

do not expect, nor is it our intention, that we will perfectly capture all the observed variance in 

experimental hybridisation rates. Instead, our goal was to capture as much variance as possible by 

modelling physically plausible mechanisms with as few parameters as possible. Consequently, the 

strong correlation achieved between model and experimental data (𝜌 = 0.73 ± 0.03) provides valuable 

insight into the physical mechanisms of DNA hybridisation and sequence dependent hybridisation 

rates. 

Our approach is in contrast to several recent studies. For instance, Hata et al. achieved a very good 
correlation with experimental data using a model with a physically motivated component based on 
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secondary structure. However, the high correlation is contingent on an additional sequence 

dependent component involving 32 free parameters which are difficult to interpret physically (45). 

Other studies lean more heavily on data driven methodologies, again obtaining reasonable 

correlations, but requiring the use of a large number of data features. These studies thus provide little 
insight into physical mechanisms apart from secondary structure, that may be underpinning the 

process.  

The repetitive 10AC and 14AC sequences had the greatest combination of nucleating interactions, 

particularly at longer nucleation lengths, which resulted in model predictions that were substantially 

higher than experiment, but only when 𝑛 ≥ 3 (Figure 3). Indeed, the results of the model are highly 

contingent on the choice of the binding nucleation site length, 𝑛. Moreover, there was no single choice 

of nucleation length (𝑛 = 1,2,3	𝑜𝑟	4) that yielded correlations that were drastically better than the 

others. Here we must emphasise, the restriction to a single nucleation length is highly idealised 

whereas in reality, nucleation is a progressive and complicated process. Microscopically, a practically 

innumerable number of nucleation and hybridisation pathways will exist from free strands to full 

hybridisation, and these pathways will be distinct for different initial interactions between the strands. 

Along different parts of these pathways further progression will be practically guaranteed, whilst at 

others it may be highly unlikely. As such, the success of any given binding nucleation length does not 

imply importance to the exclusion of other characteristic lengths, but simply reflects that it is possible 

to capture the variance in the data by examining an ostensibly critical part of the nucleation process. 

In this respect one can view the choice of the nucleation state being 𝑛 bases as constituting the 

implicit assumptions that any nucleation state with fewer than 𝑛 bases will disassociate if they cannot 

lead to a contiguous nucleation state of 𝑛 bases, and that binding states of more than 𝑛 contiguous 

bases are very likely to lead to full hybridisation. In reality however, it is unlikely that there exists a 

single threshold nucleating length that fulfils the criteria above. Indeed, plotting the distribution of 

binding free energies at different 𝑛 shows considerable overlap in the distribution of binding free 

energies at different nucleation lengths (Figure S5). These distributions suggest, according to 

NUPACK predictions, that a larger 𝑛 does not necessarily translate to a more stable nucleating 

interaction. Thus, the true threshold length of a nucleating interaction according to the definition 

above, is highly sequence dependent and will differ not only between DNA strands with different 

sequences but also within any given DNA strand. One could extend this model to account for variable 

nucleation lengths, but this would unavoidably lead to a proliferation of associated free parameters, 

drastically increasing the chance of over-fitting. 

The probability that any matched nucleating interaction will proceed towards a fully formed duplex, 

can be calculated from the stability of nucleating interactions (as determined by NUPACK) combined 

with the 𝛾 value obtained from fits to experimental data according to equation (7). These probabilities 

for all such interactions in this study are reported in model outputs, which are available in a GitHub 

repository, with a mean probability of 𝑝3,5
LMKH3&3>J = 0.40	 ± 0.2, which is similar to previous observations 

from MD simulations (50). However, model probabilities rely on the stipulation that there is a constant 

rate of progression from an initial nucleation state to more strongly bound metastable or fully 
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hybridised states, which is also a simplification of the real underlying physical hybridisation process. 

Attempting to account for such variation would again inevitably introduce large numbers of additional 

free parameters, risking over-fitting which, even if appropriately implemented, may in turn serve only 

to obscure more primary physical principles behind the variation of hybridisation rates.  

The hybridisation rates of 10 base and 14 base DNA strands were similar with no obvious correlation 

between sequence length and hybridisation rates (Figure 2I), which informed the decision to 

normalise the model prediction by the number of possible nucleation states, (𝐿 − 𝑛 + 1),$ , thus 

removing length dependence from our model. For completeness however, we also performed 

optimisations with the negative square replaced by a free exponent, 𝛼. Fitted values of 𝛼 that are less 

than or greater than -2 would be suggestive of a positive or negative dependence of hybridisation 
rates with strand length. However, the use of such an additional parameter conferred very little 

increase in model performance, with optimised values of 𝛼 very close to -2 (Supplementary Table 2), 

as emerges from the initial model choice and confirming that the dependence on length in our data is 
extremely weak. While a weak dependence of hybridisation rates on length cannot be expected to 

hold true for all lengths of DNA strands, the lack of length dependence in our data could be the result 

of many possible physical processes. A natural interpretation in terms of the presented model is that 

the number of nucleation attempts per unit time were constant across sequence lengths, perhaps due 

to similar effective diffusion coefficients and molecular cross-sections over the range of lengths 

utilised. In turn this property may be contingent on the designed lack of secondary structure in our 

data set. 

Despite these strong assumptions, our model has favourable properties, which strengthen its claims 

for a faithful capturing of basal physical processes. First, the model is constructed from minimal free 

parameters, and second, the variation possible in the model is strongly constrained by physical 

plausibility arguments. Consequently, the capacity for fitting arbitrary patterns in data is severely 

constrained. Explicitly, all other factors being equal, the model always assigns greater hybridisation 
rates to sequences that have a larger number of repetitive sub-sequences and when the stability of 

those binding states is stronger, with the sole variation controlling the size of such an effect. If some 

other physical property were more dominant, which conflicted with the property that more stable 

nucleation sites hybridise faster for example, the model would be unable to capture it. Thus, while our 

model cannot be taken as a precise account of the hybridisation process, it enables us to conclude 

the correlations it achieves with data lends strong evidence to the claim that both binding site 

combinatorics and the stability of those sites are strongly implicated as dominant mechanisms 

underlying the sequence-dependent hybridisation rates of DNA strands in vitro. These findings will be 
useful for the design of applications in DNA nanotechnology such as DNA PAINT where control over 

hybridisation kinetics is imperative for achieving adequate signal to noise within practical acquisition 

times (28, 64, 65) (66, 67). Future work could incorporate our findings with approaches such as by 

Hata et al. (45), whose algorithm explicitly accounts for the consequences of secondary structure on 

nucleation propensities. 
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DATA AVAILABILITY 

Code for fitting the model to experimental data, all model outputs, and binding energies for all 

nucleating interactions for all DNA sequences in this study are available in the GitHub repository 

(https://github.com/llee0905/DNA-bind) 
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Supplementary Data are available at NAR online. These include Supplementary Figures and 
Supplementary Tables in Supplementary Data File 1 and Supplemental Notes in Supplementary Data 
File 2. 
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