
Title: Cerebellar associative learning underlies skilled reach adaptation 1 
 2 
Authors: Dylan J. Calame, Matthew I. Becker, Abigail L. Person 3 
 4 
Abstract:  5 
Cerebellar output has been shown to enhance movement precision by scaling the decelerative phase of 6 
reaching movements in mice. We hypothesized that during reach, initial kinematics cue late-phase 7 
adjustments through cerebellar associative learning. We identify a population-level response in mouse 8 
PCs that scales inversely with reach velocity, suggesting a candidate mechanism for anticipatory control 9 
to target limb endpoint. We next interrogate how such a response is generated by combining high-density 10 
neural recordings with closed-loop optogenetic stimulation of cerebellar mossy fiber afferents originating 11 
in the pontine nuclei during reach, using perturbation schedules reminiscent of classic adaptation 12 
paradigms. We found that reach kinematics and PC electrophysiology adapt to position-locked mossy 13 
fiber perturbations and exhibit aftereffects when stimulation is removed. Surprisingly, we observed partial 14 
adaptation to position-randomized stimulation schedules but no opposing aftereffect. A model that 15 
recapitulated these findings provided novel insight into how the cerebellum deciphers cause-and-effect 16 
relationships to adapt. 17 
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Introduction: 35 
In humans and animals with altered cerebellar function, movement is disorganized, causing hallmark 36 
symptoms of endpoint dysmetria1,2 and impaired abilities to adapt movements in the face of novel 37 
conditions3–7. These observations lend to the idea that the cerebellum acts as a feedforward controller 38 
that learns anticipatory control8–10 making movements fast, smooth, and accurate11,12.  39 
     Exploring these learned anticipatory signals, researchers have focused on two dominant paradigms: 40 
associative learning and motor adaptation. In associative delay eyeblink conditioning, a neutral cue 41 
predicts an aversive corneal air puff through repeated pairing. Over many trials, the subject learns to 42 
anticipate the air puff with a well-timed eyeblink. Importantly, the neutral cue (the conditioned stimulus) 43 
can be fully replaced by stimulation of cerebellar mossy fibers13,14 and the air puff (the unconditioned 44 
stimulus) can be fully replaced by stimulation of climbing fibers14 – the teaching signals that drive complex 45 
spike (Cspk) mediated plasticity at the Purkinje cell (PC) dendrites15,16. PCs learn to pause at the 46 
predicted time of the unconditioned stimulus causing bursts of activity in cerebellar nucleus neurons that 47 
drive eyeblink closure (the conditioned response). Related associative learning paradigms that pair 48 
neutral cues with cerebellar-driven limb movements extend these principles to multiple effectors17–19. 49 
Associative learning has been thematically linked to motor adaptation of simple movements, such as in 50 
VOR adaptation, where sensory signals such as vestibular information conveyed via mossy fibers may 51 
act as conditioned stimuli used as predictive cues for novel cerebellar output over learning20–22. 52 
Perturbations that result in movement error and associated Cspks lead to adaptation of PC simple spike 53 
tuning with correlated changes in behavior23–25. This iterative tuning of simple spikes is interpreted as a 54 
remapping of mossy fiber inputs conveying sensorimotor information onto novel cerebellar outputs25. 55 
     Yet, with more complex motor skills such as reach, both cerebral cortex and cerebellum are proposed 56 
as sites of learning26–28, with long-range loops likely functioning synergistically29. Thus, learning-related 57 
changes in cerebellum could either be inherited from cortical plasticity, generated by cerebellar plasticity, 58 
or both30. Notably, acute disruption of either cortical input to the cerebellum or output from the cerebellum 59 
impairs skilled reach kinematics2,31,32, indicating that cerebellar learning may play an important role in 60 
regulating the execution of skilled movements. Indeed, in well-coordinated reaches, early kinematic 61 
features like peak reach velocity covary with subsequent limb deceleration, which is causally scaled by 62 
graded cerebellar nuclear activity2,33. We hypothesize that cerebellar output during reach is 63 
mechanistically akin to a conditioned response, such that decelerative output is cued by predictive mossy 64 
fiber activity that encodes within-movement kinematic features, thereby reducing error. 65 
     Here, we performed experiments designed to link the cerebellum’s role in associative learning with its 66 
generation of anticipatory control of reaching movements. We superimposed a variant of associative 67 
learning onto a skilled reach task through repeated optogenetic manipulation of mossy fiber activity in 68 
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closed loop with reach, triggered at a consistent kinematic landmark.  In addition to monitoring the 69 
kinematic effect of stimulation over trials, we also measured changes in PC response to stimulation with 70 
adaptation. To test reliance of temporal specificity on learning, we randomized the position of stimulation. 71 
A cerebellar model of timed adaptation within a movement recapitulated our key experimental findings 72 
and gives mechanistic insight into the circuit properties underlying cerebellar reach adaptation. Together, 73 
these experiments unify the frameworks of cerebellar associative learning and motor adaptation in skilled 74 
movements, an important step in understanding mechanisms of motor learning. 75 
 76 
Results: 77 
A pause-based PC population code tuned to reach velocity 78 
Neurons in the anterior interposed nucleus fire proportional to reach velocity and causally scale limb 79 
deceleration, such that the limb lands on target despite initial kinematic variability2,33, consistent with the 80 
cerebellum implementing anticipatory control. To determine whether upstream PCs may drive these 81 
decelerative bursts in the cerebellar nuclei, we combined kinematic and electrophysiological recordings 82 
in mice engaged in a skilled head-fixed reach task. After mice were proficient at the task, we recorded 83 
reach kinematics with high-speed cameras via an IR-reflective marker affixed to the mouse’s hand (Fig. 84 
1a, Fig. S1). Acute recordings in cerebellar cortex were made simultaneously, using either single 85 
electrodes or Neuropixel probes (Fig. 1a, Video S1). Recordings were targeted to a cerebellar cortical 86 
site situated between Lob 4/5 and Simplex known to influence forelimb movements in mice17. We found 87 
that activity in PCs was highly modulated around the time of the reach across cells and sessions (Fig 88 
1c,f, Fig. S3b), often preceding reach onset and following reach termination by 100s of ms.  89 
     To test the prediction that decelerative signals in the cerebellar nuclei derive from Purkinje neuron 90 
activity patterns during reach, we first sought to understand what individual PCs encode. We used least 91 
absolute shrinkage and selection operator (LASSO) regression to model PC simple spike firing rate 92 
using limb kinematics on a trial-by-trial basis, with a ten-fold cross validation step to avoid over-fitting34 93 
(see Methods). On average, kinematics of the limb alone could explain 15.6 ± 1.7 % (mean ± SEM) of 94 
the variance in simple spike firing rate on individual trials, although trial-averaged data was a much 95 
closer fit (59.1 ± 3.6 %, Fig. 1c, d) consistent with other studies of PC simple spike tuning to limb 96 
movements in primates35–39. Kinematic encoding was not a result of generic movement-related 97 
modulation, but was specific to the kinematics of individual reaches as demonstrated by a reach shuffled 98 
control that reassigned reaches with PC firing recorded during separate reaches, and a spike shuffled 99 
control where simple spike times on each trial were time shuffled and regressed against kinematics. In 100 
both cases, regression performance on the empirical data was significantly higher than the shuffled 101 
controls indicating that simple spike firing rates encode reach kinematics on a reach-by-reach basis (Fig. 102 
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1d; n = 46 cells; empirical vs. reach shuffle: p = 4.21 x 10-11; empirical vs spike shuffle: p = 2.80 x 10-14, 103 
Wilcoxon signed rank test). The regression model performance did not change across the spatial 104 
trajectory of the movement, suggesting kinematic encoding is continuous in individual cells (Fig. 1e). To 105 
assess which kinematic variables in the regression model were the most important in modeling simple 106 
spike firing rate, we repeated the regression with each variable independently time shuffled and 107 
measured the change in variance explained relative to the complete model40 (Fig. S3d). Positional terms 108 
-- outward, upward, and lateral – accounted for approximately 10% of the explained variance of the 109 
complete model, with each of the remaining 20 variables accounting for < 5%, although there was a 110 
wide variety in the relative importance of different kinematic variables across cells.  111 
     As has been noted previously, PCs tend to show complex patterns that predominate as positive or 112 
negative spike rate modulations41,42. Of 46 recorded cells, 22 displayed increases in activity during the 113 
reach epoch (bursters) and 24 showed a decrease (pausers) (Fig. 1f). When grouped as bursters and 114 
pauses, both populations showed a deeper modulation during reaches that extended farther in the 115 
outward direction than closer reaches (Fig. 1g). Binning the endpoint position of reaches across sessions 116 
relative to the median for each session showed that the modulation in firing rate during outreach linearly 117 
increased with the distance of reaches for bursters and pausers (Fig. 1h; Bursters: n = 22 cells, 1051 118 
reaches; R2 = 0.40, slope = 25.2 with 95% CI [6.7, 43.6], p = 0.011; Pausers: n = 24 cells, 1255 reaches; 119 
R2 = 0.75, slope = -34.5 with 95% CI [-46.4, -22.6], p = 2.9 x 10-5). The population activity in bursters 120 
and pausers was nearly equivalent, aside from a notch in the burster population, raising the question of 121 
how these diverging patterns may contribute to a coordinated control policy – i.e. a mapping of input to 122 
output that achieves a goal.  123 
     Populations of ~40 PCs converge onto single nuclear cells43. In the oculomotor vermis – where 124 
bursting and pausing profiles of PCs strongly resemble the patterns we saw during reach – grouping 125 
PCs into populations across bursting and pausing classes revealed much stronger kinematic 126 
relationships with saccades41,44. Speculating that independent PCs firing patterns might have combined 127 
population activity inverse of decelerative nuclear bursts, we next grouped all PCs across all animals 128 
and looked at average activity for reaches binned by outward velocity. Strikingly, the broad onset of 129 
activity seen in individual Purkinje cells vanished at the population level. Rather, there were sharp drops 130 
in net activity during the reach epoch that scaled with the velocity of outreach (Fig. 1i). Quantifying the 131 
simple spike firing rate during this pause (see Methods) showed a strong negative relationship with 132 
outreach velocity (Fig. 1j; n = 46 cells, 2077 reaches; R2 = 0.83, slope = -2.19 with 95% CI [-2.67, -1.71], 133 
p = 1.0 x 10-8).  The timing of this pause coincided with the time of peak outward acceleration during 134 
outreach, just before the transition to the decelerative phase of reach (Fig. 1k). 135 
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     Summarizing, we found that individual PCs are privately tuned to specific kinematic features of reach 136 
but weakly related to previously observed patterns of firing in the cerebellar nuclei. Yet, at the population 137 
level, PC activity shows scaled drops in activity shortly before deceleration, consistent with a disinhibitory 138 
mechanism driving decelerative bursts in nuclear cells. We hypothesize that these pauses may be 139 
mechanistically akin to conditioned responses seen in delay eyeblink conditioning – learned pauses that 140 
produce anticipatory movements in response to predictive cues. Both the precise timing and scaling of 141 
the pausing population activity observed here are consistent with learned cerebellar responses linked 142 
to motor and sensory contingencies to control movement. As such, this behavior offers a unique 143 
opportunity to test theories relating motor adaptation to associative learning in service of skilled 144 
movement24,45–47.  145 
 146 
Cspks signal movement onset and reach outcome 147 
To probe mechanisms that might shape cerebellar cortex scaling of output as a function of kinematics, 148 
we first identified cerebellar recordings with Cspks, the drivers of learning in PCs. In 14 of 46 recorded 149 
cells, Cspks could be sorted across the experiment (see Methods). Within these cells, Cspk probability 150 
increased dramatically shortly before movement onset, consistent with reports of synchronized Cspk 151 
activity occurring at movement initiation48–50, then remained elevated during and after reach (Fig. 2a). 152 
We analyzed the 13 cells that displayed Cspks during or shortly after reach endpoint (reach onset to 153 
250 ms after limb reversal) and found that in 5 of 13 cells, trials with Cspks had significantly different 154 
endpoint positions in the outward and lateral directions (Fig. 2b; p < 0.05, paired t-test). The remaining 155 
8 cells showed no discernable tuning of Cspks to position. Additionally, trials with Cspks had significantly 156 
elevated simple spike rates during outreach compared to non-Cspk trials (Fig. 2c; p = 0.0199, n = 13 157 
cells; paired t-test). Thus, Cspks are responsive to movement features and suggest they could act as a 158 
homeostatic check on movements where simple spike rate is elevated23,51–54. These results imply that 159 
PC simple spike rate patterns during reach are likely modified by behavior-specific Cspk activity.  160 
 161 
Repeated closed-loop optogenetic perturbation of cerebellar inputs during reach causes 162 
hallmark characteristics of sensorimotor adaptation 163 
Next, we sought to probe how cerebellar inputs shape movement kinematics and how erroneous PC 164 
simple spike activity alters tuning to these inputs. Previous work has shown that stimulation of pontine 165 
afferents to the cerebellum perturbs reaching movements in mice32. This effect is interpretable as 166 
corrupted cortical information entering the cerebellum which initially drives an erroneous cerebellar 167 
control policy and acute kinematic effects. If cerebellar associative learning underlies the formation of 168 
an anticipatory control policy, a number of predictions emerge: pontocerebellar mossy fiber stimulation 169 
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that drives errant reaching will, when repeated over many reaches, lead to adaptation of PC responsivity. 170 
Removing the perturbation should lead to aftereffects due to accumulated learning of new contingencies. 171 
Finally, adaptation and aftereffects will be dependent upon the temporal context of the perturbation 172 
within the movement, where learning only accumulates when perturbations are temporally locked to the 173 
execution of the movement.    174 
     To drive erroneous activity in PCs during reaching movements, we injected AAV-expressing hSyn-175 
ChR2 into the pontine nuclei in mice, a major hub relaying motor commands from motor cortex to the 176 
cerebellum 32,55–59 (Fig. 3, Fig. S4a). Recordings of PCs showed that optogenetic stimulation of mossy 177 
fiber afferents in the cerebellar cortex drove both increases and decreases in simple spike firing rates 178 
(Fig. S4b; 15/34 cells, 9 increase, 6 decrease; p<0.05, paired t-test). This diverging stimulation effect is 179 
likely due to network properties in the cerebellar input layers leading to either net excitatory or inhibitory 180 
drive onto PCs32,60. Interestingly, cells with sorted Cspks (see Methods) showed an increase in Cspk 181 
rate in response to mossy fiber stimulation (Fig. S4c; n = 19 cells; p = 0.026, paired t-test), consistent 182 
with previous findings during electrical mossy fiber stimulation61. Cspks time-locked to mossy fiber 183 
stimulation suggest that optogenetically-driven simple spikes may engage plasticity mechanisms to 184 
respond to perturbation.   185 
    To assess whether repeated closed-loop stimulation could engage cerebellar learning mechanisms 186 
to produce sensorimotor adaptation, optical fibers were implanted in cerebellar cortex at the interface 187 
between Lobule Simplex and Lobules 4/5 (Fig. S5). Experiments were structured in a block format where 188 
animals reached unperturbed in a baseline block, followed by a stimulation block where closed-loop 189 
stimulation of pontocerebellar axons (50-ms train) was delivered on every reach when the hand passed 190 
a 1-cm threshold in the outward direction, and finally a washout block where stimulation was removed 191 
to assess any aftereffects of learning. Each block was roughly 15-30 reaches long determined by each 192 
individual animal’s endurance in the task (Fig. 3a; baseline: 23.1 ± 6.24 reaches; stimulation: 22.4 ± 5.77 193 
reaches; washout: 20.56 ± 6.65 reaches; mean ± SD; n = 5 animals, 104 sessions). Early in the 194 
stimulation block, we found that stimulation caused acute changes in reach kinematics: in 4/5 animals it 195 
caused hypermetric reaches in outward position and in 1 animal it caused hypometric reaches (Fig. 3b-196 
c, Fig. S6a examples 1 and 2). To assess the relative change in hand position over the stimulation block, 197 
we measured the magnitude of the stimulation effect over the block, defining the initial direction of the 198 
stimulation effect on hand position as positive and the opposing direction as negative. We found that the 199 
magnitude of the stimulation effect decreased over the stimulation block. When the stimulation was 200 
removed, early in the washout block reaches deviated in the direction opposite the initial stimulation 201 
direction, before eventually correcting back to baseline at the end of the washout block (Fig 3d,e; n = 5 202 
animals, 104 sessions; end baseline to early stimulation: p = 0.012, early stimulation to middle 203 
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stimulation: p = 1.27 x 10-3, end baseline to early washout: p = 0.014, late stimulation to early washout: 204 
p = 0.043, early washout to late washout: p = 6.25 x 10-3; paired t-test).  The magnitude of the initial 205 
stimulation effect predicted the magnitude of the initial washout aftereffect across animals (Fig. 3f, R2 = 206 
0.820, slope = -0.608 with 95% CI [-1.13, -0.0853], p = 0.0342); however, hypometric effects were 207 
generally larger than hypermetric effects (both during stimulation and washout), possibly due to 208 
biomechanical constraints of the limb and reaching apparatus imposing a ceiling effect on hypermetric 209 
movements. Interestingly, the aftereffect did not manifest until the time that stimulation would have been 210 
delivered during outreach (Fig. 3c, Fig. S6d). In control experiments using red light (635 nm) we 211 
observed no kinematic deviations or adaptation profiles as seen with blue-light stimulation (Fig. S6e). 212 
Further, blue-light stimulation at rest produced negligible movements (Fig. S6f; n = 4 animals, 21 213 
sessions; maximum outward velocity during stimulation: 0.26 cm/s).  214 
     To summarize, we have shown that animals adapt to a precisely timed internal perturbation of 215 
pontocerebellar mossy fibers and this learning is reflected in opposing aftereffects when the perturbation 216 
is removed. Adaptation was temporally precise, with changes in limb kinematics early in the washout 217 
block timed to the predicted point of perturbation. 218 
 219 
PC recordings show electrophysiological correlates of adaptation at the time of perturbation 220 
To investigate cellular correlates of learning in PCs during behavioral adaptation to this circuit-level 221 
perturbation, we performed stimulation experiments while recording near the optical fiber with a 222 
Neuropixel probe. To assure that any firing rate changes were not attributable to unstable cell isolation 223 
across the experiment, we assessed the stability of every PC using two metrics: a correlation of spike 224 
template waveforms and the displacement of units along the electrode in the baseline and washout 225 
blocks (Fig. S7, see Methods). 126 of 231 recorded cells were stable across the experiment, 85 of which 226 
were modulated with reach. To assess optogenetic stimulus responsivity in these neurons, we compared 227 
simple spike firing rates between baseline and stimulated reaches within the 50-ms stimulation epoch. 228 
Consistent with mossy fiber stimulation at rest, we observed a diverging effect pattern with stimulation 229 
during reach: 19 cells showed significant increases in simple spike firing and 10 cells showed decreases 230 
(Fig. 4a,b, p < 0.05, paired t-test). Grouping cells by the initial stimulation effect (increase or decrease) 231 
and analyzing simple spike firing rate differences from the last 5 baseline reaches revealed patterns of 232 
perturbation and adaptation consistent with kinematic data. The depth of modulation to stimulation was 233 
greatest during the first stimulated trial, then progressively restored to baseline levels across the 234 
stimulation block, a pattern which held for both stimulation-increase and -decrease cells (Fig. 4c,d). We 235 
performed statistical analysis with a sliding window and observed significant differences appearing at 236 
the timepoint of stimulation early in the block. By contrast, in later trials, no significant changes in firing 237 
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rate were evident relative to baseline (Fig. 4c,d; Stimulation-increase cells: n = 19 cells; first stim: p = 238 
3.81 x 10-6, first 5 stim: p = 9.45 x 10-3, middle 5 stim: p = 0.08, last 5 stim: p = 0.21; Stimulation-decrease 239 
cells: n = 10 cells; first stim: p = 1.95 x 10-3, first 5 stim: p = 9.77 x 10-3, middle 5 stim: p = 0.32, last 5 240 
stim: p = 0.49; one sample Wilcoxon test).  241 
     To determine the electrophysiological basis for aftereffects in the behavior, we analyzed cells that 242 
had significant differences between baseline and the washout block in the stimulation window (Fig. 243 
S8a,b). While cells with a stimulation effect and adaptation profile had mixed responses during washout, 244 
we identified a population that decreased during the stimulation block, then increased back to baseline 245 
during washout (Fig. 4e). Like stimulation responsive cells, significant differences were timed to the 246 
stimulation window, and faded over the course of the washout block (n = 25 cells; first wash: p = 5.96 x 247 
10-8, first 5 wash: p = 0.011, middle 5 wash: p = 0.43, last 5 wash: p = 0.73; one sample Wilcoxon test). 248 
Interestingly, some of these aftereffect cells showed no acute response to the optogenetic stimulus, 249 
indicating that adaptation may be distributed across more PCs than receive erroneous inputs (Fig. 4e), 250 
explored in a model below.   251 
 252 
Dissociation of adaptation and aftereffects with a randomized perturbation schedule 253 
In both behavioral and electrophysiological data, we have shown that adaptation is temporally specific. 254 
We hypothesized that the temporal specificity of perturbation within the reach produced a fixed 255 
association between active inputs and error, facilitating adaptation. We therefore predicted that by 256 
presenting spatially inconsistent stimuli trial to trial, mice would exhibit little adaptation to stimulation. To 257 
test this, we repeated block-stimulation experiments, but rather than stimulating when the hand passed 258 
the 1-cm outward plane, we stimulated at a pseudorandomized position in the outward direction 259 
uniformly distributed between 0.3 and 1.8 cm (Fig 5a,b).  To assess the effect of stimulation at different 260 
points in the reach, we aligned reaches to the time of stimulation and measured the difference in position 261 
compared to aligned baseline block reaches. Baseline subtracted reach profiles showed a characteristic 262 
change in outward position aligned to the time of stimulation, similar to results in fixed-position 263 
stimulation experiments. Interestingly, even though perturbation positions were distributed across the 264 
stimulation block, we found that animals still exhibited adaptation to the stimulation early in the 265 
stimulation block, but this adaptation plateaued to intermediate levels between middle and late block 266 
epochs (Fig. 5c,d; n = 5 animals, 60 sessions; Early stim to mid stim: p = 0.037, paired t-test). To assess 267 
the presence of aftereffects, we analyzed the positional differences between baseline and washout 268 
reaches near the mean of the distribution of stimulus thresholds (50-100 ms after crossing the 1-cm 269 
outward plane). Despite evidence for adaption to the randomized stimulation, there were no consistent 270 
aftereffects; instead, reaches tended to have a greater distribution of positional differences that averaged 271 
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to roughly zero (Fig. 5e; early washout difference from end baseline: -2.58 x 10-3 cm; p = 0.957, one-272 
sample t-test).  273 
 274 
A cerebellar model accounts for experimental adaptation and aftereffect dissociation 275 
To better understand the non-intuitive adaptation profile of position-randomized stimulation, we modified 276 
a simple model of PC firing based on a previously published study62. As an input, the model takes 2 277 
populations of 500 parallel fibers, each modulated briefly for 30 ms, that as a population tiled a 400-ms 278 
epoch, modeling a hypothetical movement (Fig. 6a).  At equilibrium, the two populations of parallel fibers 279 
are perfectly balanced during the movement and cause no deviation in the PC firing rate from trial to 280 
trial. The model employed a learning rule such that any elevation of the PC rate from this equilibrium 281 
would lead to depressing the weights of parallel fibers active at the time of deviation through a Cspk-like 282 
error signal, as in cerebellar LTD. Conversely, parallel fibers with depressed weights relax back to 283 
baseline levels in the absence of Cspks. We titrated the learning rate to match that observed in fixed-284 
position stimulation experiments (see Methods). 285 
     First, we modelled fixed-position optogenetic-perturbation experiments by artificially increasing 286 
parallel fiber activity in a random subset of 100 parallel fibers for 50 ms in the middle of the hypothetical 287 
movement (Fig. 6a). Initially, this caused a large deviation in the PC firing rate in the stimulated window, 288 
resulting in an error and synaptic depression of the concomitantly active parallel fibers (Fig. 6b). Over 289 
several repeated perturbation trials this reweighting minimized the effect of the perturbation, correcting 290 
PC firing rate back to baseline. After 20 trials, we removed the perturbation. The model output then 291 
exhibited opposing aftereffects in PC firing rate at the previous time of perturbation, before eventually 292 
relaxing back to baseline. The adaptation profile was quantitatively similar to the empirically observed 293 
behavior. Importantly, we note that the aftereffect seen in the PC firing profile is a consequence of 294 
depressed weights in both perturbed parallel fibers and other unperturbed parallel fibers that were 295 
coincidentally active at the time of the perturbation (Fig. 6c,d). Thus, the model was unable to distinguish 296 
the difference between parallel fibers that caused or did not cause a deviation from the target PC activity 297 
within the perturbation epoch.    298 
   Next, we modeled the position-randomized mossy fiber stimulation paradigm (Fig 6e-g). As with the 299 
empirical results, we saw a reduction in the magnitude of the perturbation effect, consistent with high 300 
probabilities of Cspks around the time of a perturbation – that is, the perturbed inputs are subject to 301 
learning because they are always aligned to the error that follows (Fig. 6e). While the magnitude of 302 
adaptation was smaller than observed in the fixed position model, we found that the model learning 303 
plateaued late in the perturbation block, similar to empirical observations (Fig. 6g). When the 304 
perturbation was removed, there were minimal aftereffects, also consistent with experimental data. 305 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473247
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model weights at the end of perturbation show that this absence of aftereffects is explained by the lack 306 
of accumulated learning in coincidentally active parallel fibers; i.e., when perturbations are distributed 307 
across the movement, coincidently active parallel fibers are different from trial to trial, and therefore 308 
subjected to only transient plasticity (Fig. 6f). Thus, in randomized stimulation, the presence of 309 
adaptation illustrated a mechanism by which the cerebellum distinguishes cause-and-effect using time: 310 
adaptation is explained by the conserved causal relationship between stimulated PC inputs and error, 311 
while the absence of an aftereffect is the result of unaccumulated trial-over-trial learning in coincidentally 312 
active non-stimulated inputs. By contrast, aftereffects in the fixed position paradigm are a consequence 313 
of the system generalizing attribution of error to fibers that were merely coincidently active relative to 314 
perturbation but did not necessarily drive error.  315 
 316 
Discussion 317 
Here we discovered a naturally occurring PC population pause during mouse reaching movements that 318 
scaled with the velocity of outreach and occurred shortly before the transition to the decelerative phase 319 
of movement, reminiscent of emergent PC population kinematic coding in oculomotor vermis during 320 
saccades41. We speculate that this pause is a type of conditioned response: sensorimotor information 321 
relayed through mossy fibers act as learned cues for PCs to scale the decelerative phase of movement 322 
via disinhibition of the anterior interposed nucleus. We further demonstrate kinematic effects of mossy 323 
fiber stimulation that decrease over trials, akin to sensorimotor adaptation, with concordant changes in 324 
PC activity that imply cerebellar associative learning. We observed a surprising dissociation of the 325 
adaptation and aftereffect profile seen with block perturbation experiments when randomizing the 326 
position of stimulation during reach, designed to test the reliance of adaptation on perturbation context. 327 
A model demonstrated that aftereffects are a consequence of misattribution of error to consistently 328 
coactive parallel fibers. Conversely, the dissociation of adaptation and aftereffects reflects a lack of 329 
accumulated plasticity at a single point during the movement. 330 
     By demonstrating remapping of inputs to outputs of the cerebellar cortex, we link concepts developed 331 
in delay eyeblink conditioning to adaptation of a skilled volitional movement. Specifically, the mossy fiber 332 
stimulation used here to drive reach perturbations is analogous to mossy fiber stimulation used as a 333 
conditioned stimulus in eyeblink conditioning. We speculate that motor plan or early kinematic 334 
information acts endogenously as such a conditioned stimulus associated with reach outcome that, 335 
when erroneous, drives cerebellar learning47. We note some nuanced differences between paradigms, 336 
however. For instance, adaptation to pontocerebellar stimulation occurs within tens of trials, many fewer 337 
than conditioned eyeblink responses, which require hundreds of pairings 63. However, non-human 338 
primates and cats exhibit rapid adaptation consistent with our results in other sensorimotor adaptation 339 
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paradigms30,64.  One possible explanation for these different learning speeds is the richness of a 340 
temporal basis set that may emerge in the cerebellar granule cell layer in response to inflow of efferent 341 
commands and sensory feedback during movement compared to a relatively impoverished basis set 342 
from an invariant, unimodal conditioned stimulus. Indeed, locomotion concurrent with eyeblink training 343 
expedites learning65, consistent with this view. Further, eyeblink responses are generated de novo, 344 
where PCs must develop a novel response to an unfamiliar stimulus. Conversely, pontocerebellar 345 
stimulation during reach alters the execution of a movement for which a mossy fiber to cerebellar output 346 
mapping may already exist. Thus, PCs must simply adjust already existing responses, potentially 347 
speeding the rate of learning. 348 
     Another conspicuous departure from learning seen in eyeblink conditioning is that mossy fiber 349 
stimulation during reach drives an error. Thus, the unconditioned stimulus is not externally imposed but 350 
is rather the erroneous behavior that results from the perturbed mossy fiber activity. In this sense, the 351 
mossy fiber activity that interferes with cerebellar control acts as both a conditioned stimulus and 352 
generates a movement error that acts as an unconditioned stimulus to drive learning. In addition, 353 
eyeblink conditioning involves the cerebellum associating two stimuli that are not causally linked (i.e., 354 
the tone does not cause an air puff) while reach adaptation associates sensorimotor information that is 355 
causal to reach error (i.e., the erroneous motor commands generated by the cerebellum cause a reach 356 
error). Because this conditioned stimulus cannot be decoupled from the movement error, adaptation 357 
should always occur with repeated stimulation even under randomized stimulus conditions. In the case 358 
of external perturbations of limb movements, randomizing the direction of perturbations on reaching 359 
movements manifests as reach adaptation on the subsequent trial66, but adaptation does not accumulate 360 
because the cause of errors cannot be predicted. Our randomization experiments have a key difference: 361 
the internally perturbed mossy fibers are a consistent source of error, allowing the system to drive 362 
adaptation to these inputs. Importantly, because these perturbed inputs have no temporal correlation 363 
with the movement, no aftereffects are produced in the native population of mossy fibers active in the 364 
absence of stimulation.   365 
     Isolating a locus of skilled reach adaptation to the cerebellum poses an important conceptual hurdle. 366 
Cerebral cortex is a major input to the pontine nuclei – the focus of perturbation in this study – thus 367 
learning in motor cortex must be accounted for in cerebellar contributions to movement. Likewise, 368 
cerebellar outputs relay information back to motor cortex indirectly via thalamus67–70. Previous work has 369 
demonstrated that reach-associated pontocerebellar stimulation drives activity in motor cortex32, 370 
meaning each learner in this loop stays apprised of the activity in the other. Could plasticity sites outside 371 
the cerebellum account for our observations? Our data argue for a locus of learning in the cerebellum 372 
in two major ways: First, we observe a reduced efficacy of mossy fiber drive onto Purkinje cells over 373 
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many repeated trials. A parsimonious explanation is that highly-plastic parallel fiber synaptic weights are 374 
changing during adaptation rather than cortical commands overriding these proximal perturbations. 375 
Second, if PC firing rate changes were caused by modulated afferents to the cerebellum, it would be 376 
difficult to reconcile such a mechanism with adaptation to randomized stimulation because these 377 
compensatory cerebellar inputs could not predict the time of stimulation. 378 
     How might multiple connected brain regions, all of which are implicated in learning, accomplish 379 
learning a task in parallel? In our study, mice were expertly trained when we introduced optogenetic 380 
perturbation of inputs. Thus, stimulating pontocerebellar fibers, we corrupted the relationship of action 381 
directed by motor cortex and the established cerebellar response tuned to that action. Through 382 
adaptation, the cerebellum learned to assist movements with these newly modified inputs as evidenced 383 
by the diminishing kinematic effect on the limb; when stimulation was removed, the novel mismatch of 384 
cortical and adapted cerebellar contribution to the movement again manifests as movement errors. 385 
While our data are in line with associative learning paradigms as an explanation for motor adaptation 386 
(i.e., direct policy learning71), they do not preclude the possibility that associative mechanisms are being 387 
used to tune a forward internal model that, when erroneous, changes to adapt the efficacy of the inputs 388 
and thus the accuracy of the model. 389 
 390 
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Methods: 407 
Animals  408 
All procedures followed National Institutes of Health Guidelines and were approved by the Institutional 409 
Animal Care and Use Committee at the University of Colorado Anschutz Medical Campus. Animals were 410 
housed in an environmentally controlled room, kept on a 12 h light/dark cycle and had ad libitum access 411 
to food and water except during behavioral training and testing as described below. Adult C57BL/6 412 
(Charles River Laboratories) mice of either sex (11 females, 6 males) were used in all experiments.  413 
 414 
Surgical procedures 415 
All surgical procedures were conducted under Ketamine/Xylazine anesthesia. After induction of 416 
anesthesia, the surgical site was cleaned and subcutaneously injected with bupivacaine (2.5 mg/mL). 417 
Pressure injections of approximately 150 nL of AAV2-hSyn-ChR2-mCherry were stereotaxically targeted 418 
to the left pontine nuclei (-4.0 mm anterior-posterior, -0.5 mm medial-lateral, -5.4 mm dorsal-ventral, 419 
measured from bregma) and animals were allowed to recover for a minimum of 8 weeks to ensure 420 
expression in mossy fiber terminals in the cerebellar cortex. Custom made aluminum head plates were 421 
affixed to the skull centered on bregma with luting (3M) and dental acrylic (Teet’s cold cure).  Optical 422 
fibers (105 mm core diameter, Thor Labs) attached to a ceramic ferrule (1.25 mm, Thor Labs) were 423 
implanted into the primary fissure, between Lob 4/5 and Simplex (-6.25 mm anterior-posterior, 1.9 mm 424 
medial-lateral, measured from bregma) at a depth of 1.2 mm72. For recording experiments, a craniotomy 425 
was made medial to the fiber placement and a recording chamber was secured with dental acrylic as 426 
previously described73. 427 
 428 
Behavioral task  429 
Animals were allowed a minimum of 2 days of recovery after head fixation surgery, then were food 430 
restricted to 80-90% of their baseline weight for reach training. Mice were habituated to the headfixed 431 
apparatus by presenting food pellets (20 mg, BioServ #F0163) that could be retrieved with their tongue, 432 
then pellets were progressively moved further from the mouth until animals began reaching for food. 433 
Pellets were positioned to the right of the animal to encourage reaching with the right forelimb and moved 434 
to a consistent position specific to each mouse ~1.2 – 2.5 cm from reach start. Sessions lasted until 435 
animals successfully retrieved 20 pellets or until 30 minutes had elapsed, whichever came first. Mice 436 
were trained for a minimum of 15 days and were considered fully trained once they could successfully 437 
retrieve 50% of pellets 3 days in a row.  438 
 439 
Kinematic tracking and closed-loop optogenetic stimulation 440 
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Hand position was tracked in real time using an infrared-based machine-vision motion-capture system 441 
(6 Optitrack Slim3U Cameras mounted with LED ring arrays, Motive software) at 120 frames-per-second 442 
as previously described2. Cameras were positioned in front and to the right of the animal and focused 443 
on the approximately 8 cm3 spatial volume that covered the reach area of the right forelimb. 1-mm 444 
diameter retroreflective markers were used for camera calibration and affixed to the mouse hand for 445 
kinematic tracking. A custom-built calibration wand and ground plane were used to set position and 446 
orientation of the cameras in Optitrack Motive software. Camera calibration was refined monthly to 447 
account for any drift of the cameras over time. Calibrations that reported a mean triangulation error <0.05 448 
mm were considered passes. The spatial origin was set to be at the center of the bar where mice placed 449 
their hand during rest. Spatial blocking and camera detection thresholds were adjusted to prevent 450 
erroneous tracking of minimally infrared-reflective objects.  451 
     Real-time hand positions were streamed into MATLAB (2018a) with a latency under 1 ms. Custom-452 
written MATLAB code was used to detect when the hand passed a positional threshold 1-cm outward 453 
from the bar where the mice rested their hand then send a ‘go’ signal to an Arduino microcontroller (Uno) 454 
which triggered a laser (1.5-5 mW) with TTL pulses. To ensure low-latency closed-loop stimulation we 455 
used an open-source C++ dynamic link library74 edited to reflect the parameters of laser stimulation (50-456 
ms stimulation, 100 Hz, 2-ms train). This system has a closed-loop latency of 9.5 ms from the time of 457 
threshold crossing (120 fps camera frame rate, 0.5 ± 0.1 ms (mean ± SD) MATLAB-Arduino 458 
communication). Hand positions and stimulation times were streamed into MATLAB and saved for post-459 
processing.  460 
 461 
Kinematic analysis 462 
All kinematic analysis was performed using custom-written MATLAB code. First, erroneously tracked 463 
objects were removed using a nearest neighbor analysis, which assessed the closest markers in 464 
subsequent frames and removed others, to produce a single positional trajectory of the hand marker 465 
over time. Any dropped frames where the marker was not detected were interpolated over, then data 466 
were filtered using a 2nd-order low-pass Butterworth filter (10 Hz)75 using MATLAB’s zero-phase filter 467 
function “filtfilt”. Last, interpolated points were removed such that the filtered marker positional data 468 
reflected only data captured during the experimental session.  469 
     To segment continuous data into reaches, we found instances of the marker passing the 1-cm 470 
positional threshold in the outward direction and clipped 10-s segments centered on this time point. We 471 
defined outreach as the segment of this data from the time before threshold crossing that the hand 472 
exceeded 2 cm/s in outward and upward velocity to the time after threshold crossing where the hand 473 
stopped moving in the positive outward direction (outward velocity < 0 cm/s). Occasionally, the marker 474 
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would become obscured behind the pellet holder during reach or spurious detection of the nose would 475 
jump the marker position to the nose and be detected as a reach. Therefore, to prevent against analyzing 476 
reaches that had large segments of data missing, any threshold crossings where the marker dropped 477 
greater than 25% of points between the start and end of outreach were not considered for further 478 
analysis. 479 
     Reach velocity and acceleration were calculated using the numerical gradient between position 480 
timepoints in each dimension. To produce aligned reach position curves, we interpolated data at 10 ms 481 
centered on the time the hand passed the 1 cm positional threshold crossing in outward direction. The 482 
effect of stimulation was assessed by measuring changes in stimulation and washout reaches (early, 483 
middle, and late) relative to the last 5 baseline reaches in the 50-ms interval following the end of 484 
stimulation. To assess the unadapted effect of stimulation or washout, early reaches were defined as 485 
the first reach in each block; middle and late reaches were the middle 5 and last 5 reaches of reach 486 
block, respectively. To align random-stimulation position reaches, we found the positional threshold of 487 
stimulation on each reach, then aligned stimulation reaches and baseline reaches to the time they 488 
crossed this boundary during outreach, averaged across reaches, then measured the difference in these 489 
curves, yielding the stimulation-aligned positional difference between end baseline and stimulation 490 
reaches. For washout reaches in random-position stimulation experiments, reaches were aligned to the 491 
time of the threshold crossing at 1 cm such that the aftereffect could be compared to fixed-position 492 
stimulation experiments. To account for varying effects of stimulation seen across animals (hypermetric 493 
and hypometric movements), the direction of positional change in early stimulation reaches relative to 494 
baseline for each animal in random- or  fixed-position stimulation experiments was defined as the 495 
positive direction and the opposing direction as negative for that animal in each paradigm, allowing us 496 
to group data across animals with diverging effects. To assess the time course of stimulation effects 497 
within individual animals, we measured differences in position at each timepoint between the early 498 
stimulation reaches and baseline reaches using a Wilcoxon signed rank test. Reach endpoint probability 499 
density heatmaps (Fig. 2) were made by filtering endpoint positions with a two-dimensional gaussian 500 
filter (sd 0.35 mm). 501 
 502 
Electrophysiology 503 
Craniotomies were made over the cerebellum ipsilateral to the reaching arm of in fully trained animals. 504 
A custom-made recording chamber was implanted over the craniotomy, the brain was covered with 505 
triple-antibiotic cream (Globe), and the recording chamber was sealed with Quik-sil silicone (World 506 
Precision Instruments) such that it could be preserved for multiple recordings.  507 
 508 
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 509 
 510 
Single electrode recordings 511 
Single-electrode recordings were performed with 3-5 MOhm platinum/tungsten optrodes (Thomas 512 
Recording). Once animals were headfixed, the electrode was targeted to -6.25 mm anterior-posterior, 513 
1.9 mm medial-lateral (measured from bregma) then lowered into the brain up to a depth of 1.8 mm with 514 
a motorized micromanipulator (Newport Motion Controller, Model 861). Signals were band-pass filtered 515 
at 300-5000 Hz, amplified with a MultiClamp 700A amplifier (Axon Instruments), then digitized (CED 516 
Power3 1401) and recorded with Spike2 software (CED). Once a putative PC was isolated, the brain 517 
tissue was allowed to relax for 15 minutes. Cell sorting was performed offline using Psort76. 518 
      519 
Neuropixel recordings 520 
Neuropixels were lowered into the brain using a motorized micromanipulator (Sensapex uMp 521 
micromanipulator). Once the electrode shank spanned the putative PC layer, the tissue was allowed to 522 
relax for 15 minutes. Electrophysiology data was acquired using an OpenEphys system (https://open-523 
ephys.org/gui). Data were sorted offline in Kilosort277 and manually curated in phy 524 
(https://github.com/cortex-lab/phy).  525 
 526 
Neural data analysis 527 
Following sorting, isolated units were analyzed offline using custom-written MATLAB code. In well-528 
isolated single-electrode units, simple spikes and identifiable Cspks were sorted using Psort. To identify 529 
Cspks in Neuropixel recordings, we cross-correlated cells with high firing rates in the cortex with adjacent 530 
low-firing-rate clusters and looked for the presence of a Cspk-aligned simple spike pause and 531 
characteristic simple spike and Cspk waveforms. In many cells Cspks could not be identified across the 532 
length of the experiment. In these cases, we identified PCs based on cortical location and 533 
electrophysiological criteria using the firing rate, CV2, and median absolute difference from the median 534 
interspike interval (MAD)78. Cerebellar cortical cells with a firing rate > 40 spikes/s, CV2 > 0.20, MAD < 535 
0.008 were labeled as PCs (Fig. S2). Instantaneous firing rates for PCs were calculated by taking the 536 
inverse of the ISI between spikes, convolving with a 20-ms gaussian, then sampling at 10-ms intervals. 537 
In Neuropixel recording adaptation experiments we analyzed reach modulated PCs, defined as exhibiting 538 
a firing rate change during the reach epoch ≥ 1 standard deviation of the mean firing rate of the cell. To 539 
find the time and magnitude of firing rate pause in grouped population PC data, we found the first local 540 
minimum in smoothed firing rate traces that occurred after reach onset.  541 
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     In pontocerebellar stimulation experiments, to assure that observed simple spike adaptation was not 542 
the result of changing unit isolation across the experiment, we assessed unit stability with two metrics: 543 
waveform correlation and unit displacement across the experiment79. To assess waveform correlation, 544 
we isolated the template waveforms for each unit on the electrode with the greatest spike amplitude and 545 
the 32 surrounding electrodes (33 total). We averaged 1000 randomly selected spike waveforms for 546 
each channel from the baseline block and the washout block, concatenated waveform templates across 547 
the 33 channels, then correlated the concatenated waveforms from the baseline and washout blocks 548 
(Pearson correlation). As a shuffled control, we correlated concatenated templates from neighboring 549 
units in the baseline and washout block. Neighboring units were defined as those whose 32 surrounding 550 
electrodes overlapped with the unit of interest. PCs whose across experiment waveform correlation did 551 
not exceed the 99th percentile (0.735) of the across-unit shuffled control correlation were excluded from 552 
further analysis.  553 
     To assess cell displacement across the experiment we calculated the position of unit (𝑥𝑥,𝑦𝑦) using 554 
 555 

(𝑥𝑥,𝑦𝑦) = �
∑ 𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖2𝑁𝑁
𝑖𝑖=1
∑ 𝑎𝑎𝑖𝑖2𝑁𝑁
𝑖𝑖=1

,
∑ 𝑦𝑦𝑖𝑖𝑎𝑎𝑖𝑖2𝑁𝑁
𝑖𝑖=1
∑ 𝑎𝑎𝑖𝑖2𝑁𝑁
𝑖𝑖=1

� 556 

 557 
where 𝑁𝑁 is the number of electrodes, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the lateral and upward position of the electrode, and 558 
𝑎𝑎𝑖𝑖 is the peak-to-peak spike waveform amplitude on the ith electrode. Unit displacement was defined as 559 
the Euclidean distance between unit positions in the baseline and washout blocks. As a shuffled control, 560 
the displacement between neighboring units (as defined above) across the experiment was calculated. 561 
PCs whose displacement was above the 1st percentile (2.172 µm) of shuffled control were excluded 562 
from further analysis.   563 
 564 
LASSO regression 565 
To quantify the variance of PC simple spike firing rate that could be explained by reach kinematics, we 566 
used least absolute shrinkage and selection operator (LASSO) regression34. LASSO has the advantage 567 
of performing both regressor selection and regularization, producing a sparse model of many correlated 568 
kinematic regressors. 23 kinematic variables were used as regressors, including position, velocity, and 569 
acceleration in the upward, outward, and lateral directions, speed, unsigned acceleration, with each 570 
velocity and acceleration term additionally broken into positive and negative components. A full list of 571 
regressors is included in Fig. S3.  Data for each reach were clipped into 2-s segments centered at the 572 
time of a 1-cm threshold crossing in the outward direction. Regression was performed using a custom-573 
written MATLAB code using the “lasso” function. All kinematic data were standardized to have a mean 574 
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of 0 and a variance of 1, and regression was performed with a 10-fold cross validation to avoid overfitting. 575 
To find the appropriate offset of firing rate and kinematics, instantaneous simple spike firing rates for 576 
each reach were offset by lags from 0 ms to -300 ms (firing rate leading kinematics) in 10-ms steps. The 577 
lag that minimized the mean squared error (MSE) of the regression was selected for each cell. To 578 
calculate the variance of firing rate explained, the predicted firing rates from the best fit regression were 579 
calculated from the kinematic data and compared to empirical data. R2 was calculated using: 580 
 581 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

 582 

 583 
where 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 is the sum of squared residuals and 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 is the total sum of squares.  584 
     For the spike shuffled control, spike times on individual trials were shuffled in time so that each reach 585 
epoch had the same mean firing rate, then converted to instantaneous firing rates as described above. 586 
For the reach shuffled control, reaches were assigned to firing rates recorded on different reaches. For 587 
both controls regressions were performed at the lag that minimized the MSE for empirical data and 588 
repeated 100 times; R2 values of each shuffled control were taken as the average of these 100 589 
regressions. To assess the unique contribution of individual kinematic regressors to the fraction of 590 
variance explained in the empirical data regression, each regressor was time shuffled independently 591 
and regressions were repeated. The change in R2 value between the regressor shuffled regression 592 
compared to the complete empirical data model is the fraction of unique contribution to total variance 593 
explained for each kinematic variable40.  594 
 595 
Cerebellar model 596 
The cerebellar model in the paper was derived from a previously published model62 and written using 597 
custom code in Python. A major difference between our paper’s model and the cited model is the 598 
assumption of a continuous temporal input of parallel fiber activity distributed across a hypothetical 400-599 
ms movement, rather than a single parallel fiber input trial over trial. The model PC was fed 1000 parallel 600 
fibers that either increased or decreased their activity from baseline for 30 ms during a 400-ms interval, 601 
mimicking hypothesized temporal basis sets produced by the granule cell layer80–82. PC firing at time t 602 
on the nth trial was calculated as the sum of the weighted contribution of all parallel fibers at time t: 603 
 604 

𝑃𝑃𝑃𝑃𝑛𝑛(𝑡𝑡) =  𝑃𝑃𝑃𝑃0(𝑡𝑡) +  � 𝑤𝑤𝑛𝑛𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖(𝑡𝑡)
1000

𝑖𝑖

   605 

 606 
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Here, 𝑤𝑤𝑛𝑛𝑖𝑖  is the weight of parallel fiber i on the nth trial and PC0 is the baseline firing rate of the PC. 607 
Parallel fiber weights were adjusted following each trial according to two parameters: the probability of 608 
a Cspk as a function of trial error 𝛽𝛽𝑃𝑃(𝑃𝑃𝑆𝑆|𝐸𝐸𝑛𝑛) where 𝛽𝛽 dictates the strength of synaptic depression in 609 
response to a Cspk, and a decay term, 𝛼𝛼𝑃𝑃𝑃𝑃, that relaxes parallel fiber weights back to their initial value 610 

𝑤𝑤0𝑖𝑖 : 611 
 612 

𝑤𝑤𝑛𝑛+1𝑖𝑖 =  �
𝑤𝑤𝑛𝑛𝑖𝑖 − (1 − 𝛼𝛼𝑃𝑃𝑃𝑃)�𝑤𝑤𝑛𝑛𝑖𝑖 − 𝑤𝑤0𝑖𝑖� − 𝛽𝛽𝑃𝑃(𝑃𝑃𝑆𝑆(𝑡𝑡)|𝐸𝐸𝑛𝑛(𝑡𝑡)) if 𝑃𝑃𝑃𝑃𝑖𝑖(𝑡𝑡) > 0
𝑤𝑤𝑛𝑛𝑖𝑖 − (1 − 𝛼𝛼𝑃𝑃𝑃𝑃)�𝑤𝑤𝑛𝑛𝑖𝑖 − 𝑤𝑤0𝑖𝑖�                                       if 𝑃𝑃𝑃𝑃𝑖𝑖(𝑡𝑡) < 0

 613 

 614 
The probability of a Cspk is a function of t, where greater deviations in the PC rate from baseline at time 615 
t lead to greater probabilities of Cspks. Specifically, we took the mean error in the preceding 25-ms 616 
interval (𝐸𝐸𝑛𝑛 (𝑡𝑡)) to calculate the probability of a Cspk at each time in the movement interval: 617 
 618 

𝑃𝑃(𝑃𝑃𝑆𝑆(𝑡𝑡)|𝐸𝐸𝑛𝑛(𝑡𝑡)) =  𝑎𝑎
1+𝑟𝑟−𝜏𝜏𝐸𝐸𝑛𝑛(𝑡𝑡) −

𝑎𝑎
2

 619 

 620 
To obtain values for the parameters 𝑎𝑎 and 𝜏𝜏, we fit a curve to the change in position of early, middle, 621 
and late stimulated reaches in fixed-position stimulation experiments, then took the derivative of this 622 
curve to obtain the error correction (trial-over-trial positional change) for a given error magnitude.  623 
     We ran the simulations mimicking the experimental block structure used for empirical data, including 624 
a baseline block with no perturbation, an experimental block with a perturbation on every trial, and a 625 
washout block with the perturbation removed. For perturbation trials, we added activity to a random 626 
subset of 100 parallel fibers at t = 200 ms for 50 ms that, when combined, drove 40 simple spikes/second 627 
in PCs at their initial weights. After 20 such trials, the perturbation was removed, and the model was run 628 
for an additional 20 washout trials. To simulate random-position perturbation experiments, the time of 629 
perturbation was changed on every trial.  630 
 631 
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Figure 1. Net population activity in PCs predicts reach velocity.  
a. PCs of the deep central sulcus were recorded with either single electrodes or Neuropixel probes while the reaching hand was 

tracked in real-time with high-speed cameras.  
b. Kinematic regressors in multilinear LASSO regression were used to model firing rates on individual reaches across sessions.  
c. Examples of 3 PCs fit with LASSO regression. Top: trial-averaged empirical and LASSO predicted firing rates. Bottom: outward 

position and velocity aligned to firing rate at optimal lag. 
d. Modest single-trial R2 for single cells in empirical, reach shuffled, and spike shuffled LASSO regressions.  
e. Stable continuous encoding of reach kinematics across reach epoch seen with invariant absolute value of the difference in 

empirical firing rate and predicted firing rate (model error) across outward, upward, and lateral positions binned at 0.1 cm.  
f. During reach (green), PCs group roughly into bursters (red) and pausers (blue), aligned to the time the hand passed ‘threshold’, 

1-cm in the outward direction.  
g. Depth of modulation scales with reach distance for both bursters (red) and pausers (pausers). 50% farthest and 50% closest 

reaches grouped. 
h. Change in firing rate for bursters (red) and pausers (blue) during outreach for endpoints binned at 0.05 cm in the outward 

direction relative to the median endpoint for each session. 
i. Pooling burst and pause PC populations reveals net pausing activity that scales with reach velocity. Top: Reach velocity curves 

binned at 4 cm/s for the population of reaches across all recorded PCs. Bottom: PC population firing rate corresponding to 
each bin (left y axis), firing rate change relative to 1-2 s before threshold crossing (right y axis). 

j. Firing rate during the pause in population activity was strongly negatively related to reach velocity binned at 1 cm/s. 
k. Time of population pause corresponds to time of peak outward acceleration and precedes deceleration. Plot relates the median 

timing of reach start, peak outward acceleration, peak outward velocity, and peak outward deceleration to the time of population 
simple spike pauses for all reach velocity bins (n = 21 bins, 1 cm/s). 
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Figure 2. Reaches with Cspks have erroneous kinematics and elevated simple spike rates.  
a. Positive modulation of Cspks around the time of reach. Top: Mean velocity of reaches with Cspks recorded. Bottom: PETH of 

Cspk activity relative to the time of threshold crossing. Window used to define trials with Cspks spanned the outreach +250 
ms (red bar). 

b. Kinematics from an example session separated into reaches with (red) and without Cspks (black). Left: positional profiles. 
Right: probability density heatmap of upward and outward endpoints.  

c. PC simple spike (Sspk) rates were significantly higher during outreach in trials with Cspks (n = 13 cells).  
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Figure 3. Adaptation to mossy fiber stimulation during reach. 
a. Headfixed mice expressing ChR2 in pontocerebellar mossy fibers were trained to reach for food pellets while the hand was 

tracked with high-speed cameras. On laser trials, light directed to cerebellar primary fissure through an implanted fiber was 
triggered in closed loop after the hand crossed a plane 1 cm outward from reach start position. Bottom: Perturbation 
schedule followed canonical adaptation structure, with a baseline (no-stimulation) block, stimulation block with stimulation 
on every reach, followed by a washout block with stimulation omitted. 

b. Hand position 100 ms after threshold crossing in the first stimulated (blue) and washout (red) reaches heading to the target 
(white).  

c. Hand position during baseline (grey), compared to hand position measured across the adaptation and washout blocks in an 
example mouse (n = 20 sessions). Blue shading denotes the time of mossy fiber stimulation.  

d. Summary of stimulation-induced kinematic effects, which decay over the adaptation block and show opposing aftereffects. 
Baseline subtracted hand position, rectified relative to the direction of kinematic effect of stimulation, is shown for reaches 
in the early (first reach), middle (middle 5), and late (last 5) phases for both stimulation (blue) and washout (red) blocks. 
N=5 mice; 104 sessions. 

e. Summary of adaptation effects across animals and sessions. Relative change in outward position was assessed in the 50-
ms window following the end of stimulation. Asterisks indicate statistically significant differences between blocks (p values 
reported in main text). 

f. The magnitude and direction of early stimulation effect was related to aftereffects. Plot shows linear regression relating the 
magnitude of the early stimulation effect and early washout effect compared to baseline reaches. 
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Figure 4. PCs show electrophysiological correlates of behavioral adaptation over the stimulation and washout blocks. 
a. Mossy fiber stimulation effect during reach of all reach-modulated PCs. The difference in simple spike rate during the stimulation 

window is compared to the same epoch during baseline reaches (n = 85 cells). Significant differences are denoted by the color 
map on the right.  

b. Two example cells showing stimulation responses over the adaptation block. (Left) A cell that was positively modulated by 
stimulation. Colors denote firing rates computed at different points in the session. Black, end of baseline; Blue, light-dark first 
5; middle 5, and last 5 reaches of the stimulation block. (Right) Same as left but for a PC that was negatively modulated by 
stimulation. Blue shading denotes the time of the 50-ms stimulation window. 

c. Population summary of activity of PCs firing rate adaptation over stimulation block for all PCs positively modulated by 
stimulation. Top: mean reach velocity for all sessions. Middle: Average baseline subtracted simple spike rates for the last 5 
baseline reaches and the first, first 5, middle 5, and last 5 stimulated reaches. The heat map below indicates the point-by-point 
significance of differences of the first 5, middle 5, and last 5 stimulated reaches relative to the last 5 baseline reaches (10-ms 
bins). Bottom: Quantification of changes of PC rates compared between stimulation and baseline reaches, measured during 
the time window of the stimulation epoch. n = 19 cells. 

d. Same as in c. but for the population of PCs negatively modulated by stimulation. n = 10 cells 
e. Same as in c. but for the population of cells that showed significant decreases in washout block relative to baseline reaches, 

measured during the stimulation epoch. The pie chart indicates the number of “aftereffect cells” that also responded to 
stimulation. n = 25 cells 
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Figure 5. Dissociation of adaptation and aftereffects with randomized stimulation position. 
a. Stimulation location during outreach was distributed pseudorandomly between 0.3 and 1.8 cm in the outward direction during 

the stimulation block. 
b. Examples of reaches stimulated at 5 different locations during outreach. Each stimulated reach is compared to the last 5 

baseline reaches of each session. The horizontal dashed line indicated the threshold crossing that triggered stimulation.  
c. Summary data of relative change in outward position for stimulation reaches in the early, middle, and late block. N=5 mice; 60 

sessions.  
d. Quantification of stimulation effect on outward position across adaption block. For each reach, the analysis window was the 50-

100 ms after stimulation onset aligned to the time of threshold crossing for each reach (inset).  
e. Quantification aftereffects on outward position during washout block. Here, the analysis window is the 50-100 ms after crossing 

the 1-cm threshold for each reach – the same as the analysis in fixed-position stimulation experiments. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473247
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 6. A cerebellar model accounts for adaptation and aftereffect dissociation. 
a. Schematic diagram of the temporal cerebellar-learning model. The model input is 1000 parallel fibers, divided into 2 balanced 

populations, activated during a brief window during a simulated 400-ms movement. The output of the PC module that receives 
this information is compared to the input in the cerebellar nuclei. At equilibrium, the 2 parallel fiber populations are perfectly 
balanced (one increases, and one decreases activity; bottom) and the PC module outputs an activity curve (gaussian) that 
spans the movement. Deviations from this normal curve (errors) lead to mismatch in the nuclei and subsequent activation of 
the inferior olive, which reduces the weights of parallel fibers active shortly before the error. To simulate optogenetic 
perturbation experiments (bar-code like pattern at 200 ms), a step of activity was added to a subset of parallel fibers for 50 
ms in the center of the movement (fixed stim) or randomized across the block (random stim).  Note that stimulation can either 
activate a cell twice (e.g. parallel fiber 617 *) or overlap with endogenous activity (e.g. 756 #), and non-stimulated neurons 
can be endogenously active during the stimulus window (e.g. 805 arrow). 

b. PC simple spike activity during the stimulation block (top, blue) and washout block (bottom, red) showing progressively 
adapting response magnitudes during the adaptation block and progressively decaying aftereffects during washout. 

c. Parallel fiber weights at the end of the fixed-position stimulation block. Top: change in weights of “artificially” stimulated and 
non-stimulated parallel fibers plotted by time of endogenous activation. Bottom: heatmap of parallel fiber weight changes. 
Note population weight change concentrated at time of stimulation, seen in both artificially stimulated and unstimulated fibers 
during stimulation epoch. 

d. Comparison of model output to empirical observations for fixed-position stimulus conditions (Fig.3). Model closely matches 
behavioral adaptation.   

e. Same as b. but here the stimulation window is randomized across the reach.  
f. Same as c. but for random position stimulation experiments. Note the absence of clustered weight changes in unstimulated 

parallel fibers. 
g. Comparison of model output to empirical observations for random-position stimulus conditions (Fig.5) showing that both 

model and empirical observations show adaptation but not directional aftereffects.   
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Figure S1. Reach tracking and reach performance over sessions. 
a. The right hand was tracked with high-speed cameras as mice reached upwards and outwards towards a food pellet. Positional 

outreach trajectories from a single session viewed are shown from a lateral (left) or bottom-up (right) vantage point with traces 
colored by the magnitude of outward velocity. 

b. Mice were trained for a minimum of 15 days on the reaching task. Pellet retrieval success was tracked throughout training for 
each mouse, mean is shown in red (n = 17 mice). 

c. Quantification of success rate on day 1 of training and day 15. 
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Figure S2. PC identification by firing rate characteristics. 
a. Cerebellar recordings using single electrodes were first anatomically targeted to cerebellar cortex. If a recorded cell had visible 

Cspks they were classified as PCs. Otherwise, if cells had a firing rate > 40 Hz, a median absolute difference firing rate from the 
median interspike interval (MAD) < 0.008, and a CV2 > 0.2, they were classified as PCs78. 

b. Neuropixel-recorded single units were cross correlated with nearby (<200 microns) low firing rate (<5 Hz) single units. If this 
cross correlation exhibited the characteristic firing rate pause seen in PC simple spikes after a Cspk, these units were classified 
as the simple spikes and Cspks of a single PC. If no pause was seen, cells that exhibited the same firing rate, MAD, and CV2 
profile described in a. were classified as PCs.  

c. Example simple spike pause aligned to the time of a Cspk from a Neuropixel recording. 
d. MAD and CV2 values plotted for all recorded cells. Colors indicate whether a cell was a PC classified with Cspks (red), a PC 

classified by firing rate criteria (blue), or cells not classified as PCs (black).  
e. Same as in d. but plotting CV2 and firing rate for each cell.  
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Figure S3.  Lasso regression details. 
a. Schematic of lasso regressions. 23 kinematic variables were regressed against firing rate at different lags from 0 to -300 ms. 

The lag that minimized the mean squared error (MSE) of the regressions was selected. 
b. Peak modulation time of all cells across all reaches (n = 2391 reaches, 46 cells).  
c. Optimal lags of the LASSO regression for each cell.  
d. Fraction of the unique contribution to total variance explained for each regressor.  
e. Fraction of regressions with each variable selected. 
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Figure S4. Changes in PC firing during optogenetic stimulation of mossy fibers. 
a. Mossy fiber boutons expressing hSyn-ChR2-mCherry in the cerebellar cortex.  
b. Simple spike responses to mossy fiber stimulation. Left: examples of single-cell simple spike responses to mossy fiber 

stimulation. Right: quantification of simple spike responses to all recorded cells. Significance of differences are indicated by the 
color and corresponding p-value map. 

c. Cspk responses to mossy fiber stimulation. Left: PSTH of the population of recorded cells with Cspks binned at 250 ms. A single 
trace showing a Cspk after stimulation is shown above. Right: Quantification of Cspk probability in the stimulated and non-
stimulated epochs for each cell.  
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Figure S5. Opsin expression for mice in behavioral experiments. 
a. Histological section showing ChR2-mCherry expression at the injection site in the left pontine nuclei (Pn: pontine nuclei; RtTg: 

reticulotegmental nuclei; PnO: pontine reticular nuclei, oral part; PnC: pontine reticular nuclei, caudal part). 
b. Contours of ChR2 expression in the pontine nuclei for mice used in behavioral experiments. 
c. Right cerebellum of the animal shown in a. Mossy fiber axons (grey arrow) and boutons (white arrow) can be seen expressing 

ChR2 in the cerebellar cortex. The approximate location of the optical fiber and recording site path are shown in white. 
d. Location of fiber placement in a representative section for animals used in behavioral experiments. 
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Figure S6. Fixed-position stimulation supplemental data 
a. Two example mice with differing effects of stimulation on early reaches in the stimulation block. To account for diverging effects 

we define the direction of deviation with stimulation as positive and the opposing direction as negative. 
b. Summary of the relative change in upward position for the same data shown in Fig. 3e. Relative change in upward position was 

assessed in the 50-ms window following the end of stimulation. 
c. Summary of the relative change in lateral position for the same data shown in Fig. 3e. 
d. Summary of the relative change in outward position for in the 50-ms window before stimulation. 
e. Stimulating with 635-nm light did not cause deviations in position or adaptation profiles.  
f. Stimulating while the mouse was awake with its hand at rest on the bar produced virtually no movement.  
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Figure S7. Assessing unit stability across recording sessions. 
a. Left: Waveforms templates detected on each Neuropixel electrode for a cell during baseline and during washout. Right: 

Histogram of waveform correlation of PCs across sessions (red) and of mismatched neighboring cells, across the session 
(shuffled control, grey). PCs with an across-session waveform correlation that fell below the 99th percentile of the shuffled control 
(dashed line) were excluded from further analysis.  

b. Left: Unit displacement for cells across a session. Baseline unit position is shown in grey and washout position is shown in red. 
Right: Histogram of unit displacement of PCs across sessions (red) and of mismatched neighboring cells, across the session 
(shuffled control, grey). PCs with an across-session displacement that fell below the 1st percentile of the shuffled control (dashed 
line) were excluded from further analysis.  
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Figure S8. Firing rate profiles of aftereffect cells in stimulation and washout. 
a. Cells with a decreased firing rate in washout compared to baseline showed a progressive decline in the stimulation block and 

recovery during washout (same as in Fig. 4e). 
b. Cells with an increased firing rate through stimulation and washout.  
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