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Summary 8 

Working memories are thought to be held in attractor networks in the brain. Because working 9 
memories are often based on uncertain information, memories should ideally come with a 10 
representation of this uncertainty for strategic use in behavior. However, the attractor states that 11 
hold these memories in attractor networks commonly do not represent such uncertainty. Focusing 12 
here on ring attractor networks for encoding head direction, we show that these networks in fact 13 
feature all the motifs required to represent uncertainty in head direction estimates. Specifically, 14 
they could do so by transiently modulating their overall activity by uncertainty, in line with a circular 15 
Kalman filter that performs near-optimal statistical circular estimation. More generally, we show 16 
that ring attractors can perform near-optimal Bayesian computation if they can flexibly deviate 17 
from their attractor states. Finally, we show that the basic network motifs sufficient for such 18 
statistical inference are already known to be present in the brain. Overall, our work demonstrates 19 
that ring attractors can in principle implement a dynamic Bayesian inference algorithm in a 20 
biologically plausible manner. 21 
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Introduction 25 

Many brain functions - including motor control, classification, and pattern completion - have been 26 
attributed to attractor networks, and they have proven particularly useful in modeling working 27 
memory1,2. More specifically, these networks support neural population activity patterns that 28 
persist even in the absence of inputs, endowing them with the ability to retain past information 29 
across time3. A change in the memory's content then corresponds to a change in the network's 30 
population activity pattern. At these attractor states, the networks only store "point estimates'' of 31 
these memories, without an associated sense of uncertainty. As this stands in conflict with the 32 
observation that memories include a sense of uncertainty (e.g., refs4,5), do we need to discard the 33 
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idea of memories being stored in attractor networks? Our work shows that this does not need to 34 
be the case. 35 

A ring attractor is a special case of an attractor whose set of stable activity profiles forms a ring in 36 
neural activity space and thus has the ability to represent circular variables. Head direction (HD) 37 
is a classic example of a circular variable that is encoded by a ring attractor network in the brain6. 38 
Many features of mammalian HD neurons are highly suggestive of ring attractors7–11. Moreover, 39 
recent work has revealed HD cells in the Drosophila brain, which not only function as a ring 40 
attractor, but also form a topographic map of HD12–14. Importantly, the brain often estimates HD 41 
under conditions of high uncertainty -- e.g., in unfamiliar environments, or in darkness. Ideally, 42 
these HD networks would respond differently to a new piece of information, depending on the 43 
current level of uncertainty in the HD estimate. Such an uncertainty-weighted response is a 44 
hallmark of Bayesian inference15. How exactly the ring attractor networks that track HD could 45 
implement Bayesian inference without an explicit notion of uncertainty, however, remains largely 46 
unknown.  47 

To address potential neural mechanisms for doing so, we took a normative modeling approach, 48 
and established how ring attractor networks could maintain and update uncertainty along with the 49 
encoded estimate (see Fig. 1 for an overview of our approach). Specifically, we first asked how 50 
uncertain HD estimates ought to be updated from unreliable information, irrespective of how these 51 
estimates are encoded in the activity of neural populations. We then combined the resulting 52 
Bayesian ideal observer model with a neural representation of uncertain HD estimates to arrive 53 
at a neural network architecture that can well-approximate the required computations. 54 
Interestingly, this network has the general connectivity structure of a ring attractor network. 55 
However, its ability to perform near-Bayesian inference depends on its connectivity strengths. A 56 
tightly connected, “strict” attractor network performs worse than a weakly connected, “loose” 57 
attractor network. This is because strict attractor networks rapidly decay back to their attractor 58 
states, while loose attractor networks can persistently deviate from these states. As we show, 59 
these deviations are essential to perform the required Bayesian computations. Nonetheless, the 60 
networks do not need to be finely tuned to achieve close-to-optimal HD tracking performance. 61 
Indeed, a large range of loose networks can adequately combine uncertain HD estimates with 62 
unreliable sensory information. Lastly, we showed that model ring attractors can implement 63 
dynamic Bayesian inference even after we incorporate constraints from neural connectivity data. 64 
In summary, our work provides a principled theoretical foundation for how attractor networks can 65 
maintain a sense of uncertainty in their memories, even without an explicit notion of uncertainty. 66 
Although we focus on HD encoding as a concrete example, our results are potentially also 67 
relevant to other ring attractors in the brain (e.g., the grid cell representation of an animal’s path).  68 
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 69 
Figure 1. Our approach combines an ideal Bayesian 70 
observer model for circular variables with a ‘bump’ 71 
encoding to derive ring attractor dynamics that 72 
perform a Bayesian computation. 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 

 82 

 83 

Results 84 

Circular Kalman filtering: a Bayesian ideal observer model for tracking 85 

circular variables 86 

We first focus on how uncertain memory ought to be updated from new sensory information 87 
irrespective of how this memory is encoded in the activity of a neural network. We do so with the 88 
example of HD tracking, by deriving the statistically best HD estimate from a continuous stream 89 
of unreliable absolute and relative HD information. This results in a generic algorithm - the circular 90 
Kalman filter - that tells us how an estimate of HD, or of any other dynamic circular variable (e.g., 91 
visual orientation, time of day, etc.), ought to be updated over time, and the role uncertainty plays 92 
in these updates. In the sections that follow we ask how this algorithm can be implemented by 93 
neural networks, and analyze the properties of these networks. 94 

HD estimates are informed by two qualitatively different types of sensory inputs (Fig. 2a). Relative 95 
HD observations (or angular velocity observations), e.g., vestibular or proprioceptive signals, 96 
provide information about changes in HD. As they tend to be noisy, integrating them over time 97 
results in gradual error accumulation, and a HD estimate that increasingly deviates from the true 98 
HD. Absolute head direction observations, such as the position of a visual landmark, provide 99 
direct HD information that can be used to re-calibrate the HD estimate. Since these observations 100 
are also noisy, they should be combined with the internal HD estimate according to their 101 
respective reliabilities.  102 

Here, we use dynamic Bayesian inference to properly handle the uncertainties arising from the 103 
aforementioned unreliable sensory inputs. We assume access to both angular velocity 104 
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observations !! ∈ # and absolute HD observations $!	 ∈ [−', '], which provide noisy information 105 
about true angular velocity *!̇ ∈ # and HD *! ∈ [−', '], respectively. Specifically, angular velocity 106 
observations are corrupted by Gaussian noise that limits the precision of these observations (with 107 
precision ,#, larger ,#= more reliable), while absolute HD observations are corrupted by von 108 
Mises noise with precision ,$, the Gaussian equivalent for circular variables. Dynamic Bayesian 109 
inference accounts for uncertainties arising from these noisy observations, by forming a posterior 110 
belief of HD -(*!|$%:! , !%:!) that is continuously updated in light of new incoming sensory 111 
evidence. Importantly, this belief constitutes a whole probability distribution, rather than a single 112 
point estimate, which automatically includes a measure of uncertainty around the best HD 113 
estimate15,16.  114 

Estimating circular variables, such as HD, precludes the use of standard dynamic Bayesian 115 
inference schemes such as the Kalman filter17,18 to update the posterior belief -(*!|$%:! , !%:!) over 116 
time. Instead, statistical inference turns out to be analytically intractable19 and needs to be 117 
approximated (see Methods). Here, we approximate this belief at each point in time by a von 118 
Mises distribution, -(*!|$%:! , !%:!) ≈ 23(4! , ,!), which is fully characterized by its mean 4!, which 119 
is the current best HD estimate, and its precision ,!, which measures the estimate’s certainty (Fig. 120 
2b). As these two posterior, or belief, parameters fully specify the HD belief, updates of the belief 121 
in light of sensory evidence simplify to updating these two parameters. We derived the parameter 122 
update dynamics by a technique called projection filtering20,21, resulting in 123 

54! = !!57 +
'()!*!
)"

9:; ($! − 4!),    (1) 124 

5,! = −
+()")
()#

,!57 + <2,$57 >?9 ($! − 4!).   (2) 125 

Here, @(,!) is a monotonically increasing nonlinear function that controls the speed of decay of 126 
one’s certainty ,! (see Eq. (10) in Methods). Equations (1) and (2) together define an algorithm 127 
that we call the circular Kalman filter (circKF)21. The circKF provides a general solution for 128 
estimating the evolution of a circular variable over time from noisy data. 129 

To provide intuition for the filter’s operation, let us represent the belief parameters in their polar 130 
coordinate form as a vector on the 2D plane (Fig. 2b inset). Then, the vector’s direction determines 131 
the mean HD estimate 4!, and its length the precision ,!. Let us now consider how this vector is 132 
updated in light of angular velocity and absolute head direction observations. 133 

Angular velocity observations. Without absolute head direction observations, i.e., ,$ = 0, the 134 
HD estimate 4! is fully determined by integrating angular velocity observations !! over time, i.e., 135 
angular path integration (Fig. 2c). In our vector representation, angular velocity information (the 136 
!!57 term in Eq. (1)) rotates the brain’s HD belief by adding a tangential vector (Fig. 2c, green 137 
vector). The increasing error from such angular path integration comes with an associated drop 138 
in the belief’s certainty ,! (@(,!)-related term in Eq. (2)), which causes the belief vector to shrink 139 
(Fig. 2c, bottom). Interestingly, angular velocity observations always decrease certainty. The 140 
decrease might be more modest for more precise velocity observations (i.e., ,# large), but 141 
nonetheless persists. Thus, if only angular velocity observations are present, the posterior 142 
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certainty ,! will inevitably decay towards zero (uniform posterior distribution, i.e., complete lack 143 
of knowledge), with a speed of decay that is determined by the angular velocity observation’s 144 
“informativeness” ,#. 145 

Absolute head direction observations. Absolute HD information, like observing a visual 146 
landmark, directly informs about the current HD, and thus calibrates the internal HD estimate. To 147 
weigh the reliability of such information against the current HD estimate’s certainty, its impact in 148 
Eqs. (1) and (2) is scaled by ,$: if the cue’s reliability ,$ is large, the observation $!	 will 149 
substantially change the mean 4! towards the direction of the cue. Conversely, if the current 150 
certainty ,! is large compared to the cue’s reliability, an absolute HD observation $! will hardly 151 
update the existing estimate. In vector form, this weighting by reliability corresponds to adding an 152 
absolute HD information vector to the current belief vector (Fig. 2d/f; see Methods). The direction 153 
and length of this HD information vector are determined by the observation’s position $! and 154 
reliability ,$, respectively (Fig. 2d, blue vector). Depending on how well the observation is aligned 155 
with the current belief (as measured by the cosine in Eq. (2)), the certainty ,! can either increase 156 
or, in the case of a strongly conflicting stimulus, even decrease (Fig. 2e). This interesting result is 157 
a consequence of the circular nature of the inference task22, and stands in contrast to the Kalman 158 
filter where absolute information always increases the estimate’s certainty23. It is thus a key 159 
distinction between the Kalman filter and the circKF.  160 

In a dynamic setting, both angular velocity and absolute HD observations are available as a 161 
continual stream. That is, at every point in time, the belief is updated according to Eqs. (1) and 162 
(2). In summary, angular velocity observations rotate the HD estimate and reduce certainty. 163 
Absolute HD observations, in contrast, update the HD estimate weighted by their reliability, and 164 
either increase certainty (if compatible with the current belief) or reduce certainty (if strongly 165 
conflicting with the current belief). These operations are continuously repeated to bring the current 166 
belief in line with the latest observations. 167 
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 168 

Figure 2. Tracking circular variables with the circular Kalman filter.  169 
The circular Kalman filter performs dynamic Bayesian inference for circular variables. Its operation 170 
is illustrated here for tracking HD. 171 

a) Two different types of observations inform the brain’s estimated head direction *!: angular 172 
velocity observations !! (green) provide noisy information about the true angular velocity 173 
*̇!, with precision ,# (larger = more reliable), and absolute HD observations $!  (blue) 174 
provide noisy information about the true HD *!, with precision ,$ (larger = more reliable). 175 

b) At every point in time, the belief -(*!|!%:! , $%:!) about HD is approximated by the unimodal 176 
von Mises distribution, the Gaussian equivalent for circular variables. It is fully 177 
characterized by its mean parameter 4!, which determines the position of the mode, and 178 
its precision parameter ,!, which determines our belief’s certainty. Interpreted as the polar 179 
coordinates in the 2D plane, these parameters provide a convenient vector representation 180 
of the belief (inset). 181 

c) Angular velocity observations !! rotate the current belief vector in the direction of the 182 
observations (angular path integration). Error accumulation from angular path integration 183 
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comes with an associated drop in certainty and a corresponding drop in the vector’s length 184 
(top vs. bottom). 185 

d) Integrating absolute HD observations corresponds to adding the absolute HD observation 186 
vector (cyan) to the current belief vector (purple). 187 

e) Absolute HD observations that are in conflict with the current belief (e.g., >120deg from 188 
the current estimate) result in a shortening of the belief vector (top vs. bottom) and an 189 
associated reduction of the belief’s certainty. 190 

f) Integration of multiple absolute HD cues, such as wind and vision, can be considered as 191 
a sum of multiple observation vectors. 192 

Neural encoding of HD estimate and uncertainty 193 

To link our ideal observer model to neural networks, we need to specify how the model’s belief 194 
might be encoded by this activity pattern. In other words, we need to link our “algorithmic model” 195 
to a network model. Consider a ring attractor network where the peak of a localized increase in 196 
activity, or bump, encodes the estimate 4! of the circular variable -- here, HD7,24. Here we assume 197 
that the bump’s amplitude scales with the encoded certainty ,!. This assumption is supported by 198 
some experimental evidence from the head direction system10,25,26. In any network where this 199 
assumption is correct, the activity of a neuron i with preferred head direction *. can be written as 200 
(Fig. 3a) 201 

B!(.) = ,! >?9 (*. − 4!) 	+	other components  (3) 202 

where 4! and ,! are the encoded belief’s mean and certainty, and the “other components” might 203 
be a finite activity baseline or minor contributions of higher-order Fourier components to the 204 
activity. Note that Eq. (3) does not imply that the tuning curve must be cosine-shaped. Rather, it 205 
implies that the cosine component of the tuning curve is modulated by certainty. This is 206 
satisfied, for example, by any unimodal bump profile (as the one in Fig. 2a) whose overall gain 207 
is governed by certainty. A particularly interesting case that matches Eq. (3) is a linear 208 
probabilistic population code27,28 with von Mises-shaped tuning curves and independent Poisson 209 
neural noise (see SI text and Fig. S1). 210 

This simple encoding scheme allows the network to encode both mean estimate 4 and associated 211 
certainty ,, as required for implementing the Bayesian update rules (Eqs. (1) and (2)). Moreover, 212 
the natural parameters of the von Mises belief, D/ = ,! >?9 (4!) and D( = ,! 9:; (4!), can be 213 
recovered by taking a weighted sum of the neural population’s activity (Methods). This makes 214 
these parameters accessible to downstream neurons via simple (linear) neural operations.  215 

Interestingly, D/ and D( represent the von Mises distribution in terms of Cartesian vector 216 
coordinates in the 2D plane, whereas 4 and , are its polar coordinates (cf. Fig. 2b). Such a 217 
representation is related to the phasor representation of neural activity29, which also translates 218 
bump position and amplitude to polar coordinates in the 2D plane (Fig. 3b). Since in our model 219 
the activity bump is scaled by certainty, the phasor representation of neural activity equals the 220 
vector representation of the von Mises distribution (Fig 3b,c).  221 
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Based on our ideal observer model (our “algorithmic model”), we know the vector operations 222 
required to implement the circular Kalman filter (Fig 2c-f). Thus, in what follows, we make use of 223 
this equality to implement the operations of the ideal observer model through neural dynamics. In 224 
other words, we show how the circKF algorithm could be implemented by a neural network. 225 

 226 

Figure 3. Encoding the HD belief in neural population activity. 227 
a) Neural population activity profile (e.g., average firing rate) encoding the HD estimate 4 =228 

'/4 with different values of certainty ,. Neurons are sorted by preferred head directions 229 
*..  230 

b) Vector representation of estimate 4 = '/4 for different values of certainty ,. This vector 231 
representation can be obtained by linearly decoding the population activity in a) (“phasor 232 
representation”). It also corresponds to the vector representation of the von Mises 233 
distribution in c), and thus connects neural activities with the probability distributions they 234 
encode. 235 

c) Von Mises probability densities for different values of certainty , and fixed HD estimate 236 
4 = '/4. Note that, unlike the population activity in a), the density sharpens around the 237 
mean with increasing certainty. 238 

Recurrent neural networks can track Bayesian HD estimates 239 

Linking the belief parameters to neural population activity (Eq. (3)) reveals the population activity 240 
dynamics required to implement our ideal HD tracking model (Eqs. (1) & (2)). We now ask how 241 
these dynamics can be implemented by a recurrent neural network (RNN). We start with an 242 
idealized network with a single neural population, similar to many generic ring attractor networks 243 
(e.g., refs3,7). Later, we will build on this idealized network to construct a more distributed network 244 
that satisfies the known constraints of a biological ring attractor that encodes HD. 245 

Simple and analytically accessible network dynamics that implement the circular Kalman filter 246 
(Eqs. (1) & (2)) are of the form 247 

,   (4) 248 

where B! denotes a vector of neural activities, with neurons ordered by their preferred head 249 
directions G(.), H is the network time constant (leak), I is the recurrent connectivity matrix, and 250 
J!
01! is a vector of external inputs to the network. The synaptic inhibition nonlinearity K(B!) is 251 
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closely related to the nonlinearity @(,!	) in Eq. (2): it is tuned such that its output increases with 252 
bump amplitude, and thus implements nonlinear global inhibition. 253 

The network dynamics in Eq. (4) allow us to attribute specific wiring patterns (or motifs) to the 254 
effect they have on the population activity vector, mimicking the transformations required to 255 
implement computations in the circKF (Fig. 2c,d). In particular, probabilistic angular path 256 
integration is implemented by an interplay between recurrent connectivity (I), leak (1/H), and 257 
synaptic inhibition (K(B!	)). The matrix of recurrent connectivity I can be divided into symmetric 258 
(even) and asymmetric (odd) components (Fig. 4a). The even component holds the bump of 259 
activity at its current location in the absence of any other input. Meanwhile, the odd component 260 
can push the bump of activity around the ring -- e.g., in response to an angular velocity 261 
observation (Fig. 4b). Leak and global inhibition together cause the amplitude of the bump to 262 
decay over time (Fig. 4c), corresponding to the progressive decay in certainty in the absence of 263 
new HD information. Absolute HD observations enter the network via the external input vector 264 
J!
01!, in form of a cosine-shaped bump with amplitude modulated by perceptual reliability ,$  (Fig. 265 

4d). This input activity effectively implements the vector addition required for proper absolute HD 266 
observation integration. Then, the external information’s weight is determined by the ratio 267 
between input amplitude and bump amplitude, in line with the weighting between cue reliability 268 
and own certainty required by the circKF. Bump position and amplitude dynamics derived from a 269 
network with these basic motifs well-approximate the parameter dynamics of the circKF (Eqs. (1) 270 
& (2); Fig. 4e; see Eqs. (13) & (14) in Methods for bump parameter dynamics).  271 

In the limit of infinitely many neurons, the network can even be tuned to implement the circKF 272 
exactly. Importantly, a network that exactly implements the circular Kalman filter is not a ring 273 
attractor network: in the absence of external absolute HD input, J!

01! = 0, the activity bump decays 274 
towards its single attracting state with zero amplitude (Fig. 4e). In contrast, ring attractor networks 275 
commonly settle on a constant activity bump with non-zero amplitude (the “attractor state”) if input 276 
is removed. In our “exact inference” network, activity decay is by design, and reflects the 277 
continuously decreasing certainty arising from pure angular path integration in the absence of 278 
absolute HD observations. 279 

Activity dynamics change qualitatively if we choose K(B!) such that the second term in Eq. (4) 280 
becomes a quadratic function of the bump amplitude (quadratic inhibition). This change in K(⋅) 281 
introduces ring attractor states with non-zero network activity, and has the additional advantage 282 
of making the network dynamics analytically accessible (see Methods). As a result, we can tune 283 
the network parameters such that this network implements a quadratic approximation to the 284 
circKF. This approximation becomes precise in the limit of large posterior certainties ,!. In other 285 
words, the bump’s amplitude dynamics will correctly reflect the posterior’s certainty for large bump 286 
amplitudes, but will deviate from it in the small-certainty/small-amplitude limit.  287 

Such a Bayesian ring attractor has two operating regimes: a regime close to the attractor state 288 
with constant, low bump amplitude, encoding approximately constant certainty, and a dynamic, 289 
high amplitude regime away from the attractor state, where the network correctly implements 290 
dynamic Bayesian inference. Numerical simulations confirm the existence of these two regimes: 291 
the network tracks the HD estimate and its associated certainty just like the circular Kalman filter 292 
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in the dynamic regime, but features a slightly lower HD tracking precision, and overestimates its 293 
confidence, close to the attractor state (Fig. 4f, orange vs. blue; SI Fig. S2 shows that performance 294 
is largely independent of ring attractor population size). We will analyze these two regimes further 295 
in the next section. 296 

In summary, the following three network motifs support the implementation of Bayesian inference 297 
in ring attractor networks (Fig. 4b-d): (i) asymmetric (odd) recurrent connectivity with strength 298 
modulated by angular velocity observations !!, (ii)  global inhibition that is approximately quadratic 299 
in bump amplitude, and (iii) a cosine-shaped external input at the position of the absolute HD 300 
observation, whose strength is modulated by the reliability ,$ of this observation. Motifs (i) and (ii) 301 
implement probabilistic angular path integration, whereas motif (iii) updates the network’s current 302 
HD estimate in light of uncertain absolute HD observations. Interestingly, these motifs are 303 
common in many generic ring attractor networks, and have been discussed in terms of their 304 
function individually (see e.g. refs7,30). Here, we show that, together, they can implement 305 
approximate dynamic Bayesian inference for circular variables - inference that becomes more 306 
precise in the limit of large amplitudes,  away from the attractor state.  307 
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 308 

Figure 4. A recurrent neural network implementation of the circular Kalman filter. 309 
a) Rotation-symmetric recurrent connectivities (here: neurons are sorted according to their 310 

preferred HD) can be decomposed into constant, cosine-shaped (even), sine-shaped 311 
(odd) and higher-order frequency components (basis function). Red and blue denote 312 
excitatory and inhibitory components, respectively. 313 

b) Network motifs sufficient to implement the circular Kalman filter (b-d). Rotations of the HD 314 
estimate are mediated by sine-shaped (or odd) recurrent connectivities, whose strength 315 
is modulated by angular velocity observations.  316 

c) Decay in amplitude arises from leak and global inhibition.  317 
d) A cosine-shaped input to the network provides external absolute HD cue input. The 318 

strengths of this input is modulated by observation reliability ,$. 319 
e) The dynamics of the network implement the dynamics of the ideal observer’s belief, as 320 

shown in a simulation of a network with 80 neurons. Here, we assume that vision provides 321 
the network with absolute HD information. When a ‘visual cue’ was present,  both absolute 322 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2021.12.17.473253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473253
http://creativecommons.org/licenses/by-nc/4.0/


12 

HD observations and angular velocity observations were available. During ‘darkness’, only 323 
angular velocity observations were available. 324 

f) The network implementation with quadratic leak approximation (circKF, quadratic approx) 325 
tracks the HD estimate with the same precision (top; higher = lower circular distance to 326 
true HD) as the circular Kalman filter (circKF, Eqs. (1) and (2)) if absolute HD observations 327 
are reliable (large ,$), but with slightly lower precision once they become less reliable 328 
(small ,$). This drop co-occurs with an overestimate in the estimate’s confidence ,! 329 
(bottom). Plots are averages over 5’000 simulations (see Methods for simulation details). 330 

Ring attractors approximate Bayesian inference for HD tracking through 331 

amplitude dynamics 332 

Our Bayesian ring attractor network qualitatively differs in two ways from classical ring attractor 333 
networks for working memory1,7,31. First, classical networks are not explicitly designed to represent 334 
uncertainty, and therefore assign no interpretation to their bump’s amplitude. Second, ring 335 
attractors are usually designed to operate close to their attractor states, where the bump 336 
amplitude tends to vary little. We now ask how important it is for network activity - including bump 337 
amplitude - to deviate from these attractor states to implement Bayesian inference.  338 

Our RNN with quadratic inhibition is a ring attractor network that exhibits attracting states with a 339 

finite amplitude. !"#"$%&'()*#'+#*,-.#*%(,-%,($/#0,12#2'*3%3'"#-.4"5$*#,2'"#40*'6,%$#78#3"2,%*#340 

3"#2('2'(%3'"# %'# %.$# (4%3'#0$%&$$"# 3"2,%#41263%,9$#:;# ($6340363%<#'+#40*'6,%$#78#-,$=#4"9#0,12#341 

41263%,9$#:;#'&"#-$(%43"%<=#:*$$#>?@#(13) in Methods). Jointly tuning the network parameters, in 342 

particular recurrent weights, network time constant, and inhibitory weights, allows us to change 343 
the bump amplitude dynamics (Eq. (15) in Methods) to explore different regimes of network 344 
operation. Specifically, we tuned the network parameters to modulate two amplitude 345 
characteristics. The first is the attractive amplitude fixed point , ∗ of the population activity bump 346 
(specified by the parameter , ∗, which defines both the bump amplitude and the uncertainty it 347 
encodes). The second is the effective decay speed O, which describes how fast the amplitude 348 
approaches this fixed point (larger O implies faster dynamics, Fig. 5a). 349 

In the limit of fast dynamics, O → ∞, the network becomes a “strict attractor” with a bump 350 
amplitude that never moves away from its fixed point. As the bump amplitude encodes the HD 351 
estimate’s uncertainty, such a strict attractor never updates its uncertainty, and consequently 352 
lacks proper reliability weighting of absolute HD observations. In general, we expect that such a 353 
network is not able to estimate HD as accurately as one that correctly implements Bayesian 354 
inference, as it does not properly account for the observation’s reliability. Strict attractors with a 355 
numerically optimized fixed point amplitude , ∗ (Fig. 5b inset) can still perform HD estimation 356 
reasonably well (Fig. 5b, green curve), but perform systematically worse than the tuned network 357 
(Fig. 5b, circKF with quadratic approximation, blue curve) or the circKF (Fig. 5b, orange curve). 358 
Here, we measure performance by how much the estimate (bump position) deviates on average 359 
from the ground-truth HD (circular average distance, see Methods). Adjusting the fixed point 360 
amplitude for each level of information reliability individually further boosted the network’s 361 
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estimation performance, and effectively re-established proper Bayesian reliability weighting of 362 
incoming absolute HD observations, similar to the circKF (Fig. 5c). Even then, strict attractors lack 363 
temporal adjustment of their internal certainty estimates, as required by Bayes-optimal evidence 364 
integration.  365 

We next asked whether we could increase performance by loosening the attractor. Such a 366 
relaxation would permit the network to operate farther away from its attracting state, to which it 367 
will decay in the absence of absolute HD observations (the dynamics that implement the quadratic 368 
approximation of the circKF are a special case of this network, see Fig. 5a). Indeed, the slower 369 
dynamics (slower decay speed O) of such a “loose attractor” boosted overall performance (Fig. 370 
5d). In fact, with network parameters tuned numerically to maximize performance, HD estimation 371 
performance becomes practically indistinguishable from that of the ideal Bayesian observer (light 372 
blue dot in Fig. 5d, light blue line in Fig. 5e). In this regime, the HD estimate and bump amplitude 373 
dynamics become almost identical to the dynamics of certainty representations in the circKF. On 374 
the other hand, more rigid networks with faster decay speed O (such as the strict attractor as an 375 
extreme case) clearly deviate from the circKF, despite optimized fixed-point values (Fig. 5e). 376 
Interestingly, the optimal network parameters do not necessarily coincide with the quadratic 377 
approximation of the circKF, which we found by analytically matching the certainty dynamics in 378 
the large-certainty limit rather than by numerical optimization. In fact, a wide range of network 379 
parameters lead to a relatively small performance loss (<10%, Fig. 5d). Therefore, accurate 380 
parameter tuning might be unnecessary, as long as the network dynamics remain sufficiently 381 
slow. 382 

Overall, this demonstrates that proper HD estimation relies on weighting absolute HD 383 
observations both globally (Figs. 5 b,c), i.e. according to the average level of reliability, and 384 
dynamically (Figs. 5d,e), according to the dynamics of one’s own certainty. Nonetheless, 385 
reasonable performance can be achieved over a wide range of network parameters. This may 386 
indicate a “built-in” implicit reliability weighting in attractor networks through their amplitude 387 
dynamics. As we just demonstrated, this requires sufficiently slow attractor dynamics around the 388 
fixed point and the possibility for deviations from the attractor state. This may explain why ring 389 
attractor networks perform evidence integration reasonably well in practice, even though they are 390 
unlikely to be precisely tuned to the task.  391 
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 392 

Figure 5. Attractor models with slow dynamics approximate Bayesian inference 393 
a) A linear RNN with quadratic inhibition can operate in different regimes. Its bump amplitude 394 

dynamics can be characterized by fixed point amplitude , ∗ and decay speed O. Note that 395 
the bump position dynamics is described by the same equation across all compared 396 
regimes (Eq. (13) in Methods). However, the position dynamics depend on bump 397 
amplitude, whose dynamics differ across regimes (Eq. (15) in Methods). This causes HD 398 
tracking behavior to differ across network regimes. 399 

b) HD estimation performance as measured by inference precision (as defined by 1 −400 
>:B>2RB, see Methods). Here, the blue curve shows performance of the analytically tuned 401 
ring attractor network, implementing the quadratic approximation to the circKF (yellow). 402 
For the strict attractor (green curve), we chose , ∗ to numerically maximize performance 403 
averaged across all levels of observation reliability, weighted by a prior -(,$) on this 404 
reliability (see Methods). For the optimized, but still strict, network (pink curve), we found 405 
the performance-maximizing , ∗ separately for each level of observation reliability. 406 

c) The weight with which a single observation contributes to the HD estimate varies with 407 
informativeness of both the absolute HD observations and the current HD estimate. We 408 
here illustrate this for an absolute HD observation that is orthogonal to the current HD 409 
estimate, resulting in the largest possible estimate change (|$!	 − 4!| = 90deg in Eq. (1)). 410 
The weight itself quantifies how much the observation impacts the HD estimate as a 411 
function of how informative this observation is (vertical axis, measured by Fisher 412 
information of a 10ms observation) and our certainty in the HD estimate (horizontal axis, 413 
also measured by Fisher information) before this observation. A weight of one implies that 414 
the observation replaces the previous HD estimate, whereas a weight of zero implies that 415 
the observation does not impact this estimate. The close-to-optimal update weight of the 416 
circKF (yellow) forms a nonlinear curve through this parameter space. Fisher information 417 
per observation is directly related to the observation reliability ,$, and the vertical red bar 418 
shows the equivalent range of observation reliabilities, ,$	 ∈ [102(, 10(], shown in panel b. 419 
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Update weights for the tuned network (circKF with quadratic approximation) are not shown 420 
as they would be visually indistinguishable from that of the circKF, and only deviate from 421 
it for very uninformative observations (see SI Fig. S3). 422 

d) Overall inference performance loss (compared to a particle filter; performance measured 423 
by avg. inference precision, as in b, 0%: same average inference precision as particle 424 
filter, 100%: average. inference precision = 0), averaged across all levels of observation 425 
reliability (weighted by prior -(,$), see Methods) as a function of the bump amplitude 426 
parameters , ∗ and O. For too small fixed point amplitudes and too fast dynamics, 427 
numerical simulations become unstable (grey area). 428 

e) Simulated example trajectories of HD estimate/bump positions of HD estimate/bump 429 
positions (top) and certainties/bump amplitudes (bottom). To avoid cluttering, we are not 430 
showing the quadratic approximation of the circKF (visually indistinguishable from circKF 431 
and best network). 432 

A biological ring attractor can implement the circular Kalman filter 433 

Having established the network motifs sufficient for implementing dynamic Bayesian inference in 434 
ring attractor networks, and the network parameter regimes that lead to good HD tracking 435 
performance, we finally asked if biological networks are in principle able to implement such 436 
inference. A biological implementation is plausible because the critical motifs of our model 437 
networks are actually common in many generic ring attractor networks. The most well-studied 438 
biological ring attractor network is the HD system of the fruit fly Drosophila13. Here we show how 439 
the motifs of this network -- and, by extension, any biological ring attractor network -- could 440 
potentially implement dynamic Bayesian inference. 441 

The ring attractor in the Drosophila HD system is composed of three core cell types, called EPG, 442 
PEN1 and T7 neurons32–34, cf. Fig. 6a-c. Head direction is represented as a bump of neural activity 443 
in the EPG population12. These neurons are recurrently connected with excitatory PEN1 neurons. 444 
When the fly turns, this differentially activates PEN1 neurons in the right and left brain 445 
hemispheres, and because PEN1 neurons have asymmetric (shifted) projections back to EPG 446 
neurons, they can rotate the bump of EPG activity in accordance with the fly’s rotation14,35. This 447 
motif effectively establishes the velocity-modulated odd recurrent connectivity required to initiate 448 
turns in ring attractor networks (Fig. 6d). Moreover, EPG neurons are recurrently connected with 449 
inhibitory T7 neurons, which establishes broad inhibition (Fig. 6e). Finally, EPG neurons receive 450 
inhibitory inputs from so-called ER neurons, which send absolute HD information to EPG 451 
neurons36–38 (Fig. 6f). In summary, the fly’s HD system is equipped with the basic motifs to 452 
implement a Bayesian ring attractor.  453 

To demonstrate that these motifs can in principle implement a Bayesian ring attractor, we 454 
analytically tuned the relative connection strength between (rather than within) the populations of 455 
our idealized network in Fig. 6c such that the dynamics of the bump parameters in the HD 456 
population implement the quadratic approximation to the circKF (see Eqs. (16)-(20) in Methods 457 
for network dynamics, SI for derivation). To achieve this, we additionally assumed that the broad 458 
inhibition implemented by the inhibitory population (Fig. 6c,e) was achieved by a subtractive signal 459 
that resulted from a multiplicative interaction between activities of INH and HD neurons. This 460 
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multiplicative interaction achieves the quadratic certainty decay required to approximate the 461 
circKF. We found that this network achieves a HD tracking performance indistinguishable to that 462 
of our idealized Bayesian ring attractor network (SI Figure S4). Thus, even when we add the 463 
constraints dictated by the actual connectivity patterns of neural networks in the brain, the 464 
resulting network is still able to implement dynamic Bayesian inference. 465 

466 
Figure 6. A Drosophila-like network implementing the circular Kalman filter. 467 

a) Cell types in the Drosophila brain that could contribute to implementing the circular Kalman 468 
filter. 469 

b) Connectivity between EPG, T7 and PEN1 neurons, as recovered from the 470 
hemibrain:v1.2.1 database33. ER neurons were omitted because they only form the inputs 471 
to the recurrently connected ring attractor. Here, neurons were grouped according to 472 
anatomical region as a proxy for preferred HD, and we used the total number of synaptic 473 
connections between two neurons to indicate connection strength. T7 to T7 connectivities 474 
are omitted, as the polarity of these connections (inhibitory or excitatory) remains unclear. 475 

c) The RNN connectivity profile that implements an approximation of Bayesian inference 476 
algorithm is strikingly similar to the connectivity of neurons in the Drosophila HD system. 477 
To avoid confusion with actual neurons, we refer to the neuronal populations in this 478 
idealized RNN as head direction (HD), angular velocity (AV+ and AV-, in reference to the 479 
two hemispheres), inhibitory (INH) and external input (EXT) populations. 480 

d) Differential activation of AV populations (left/right: high/low) in the two hemispheres as 481 
well as a shifted feedback connectivity from AV to HD populations effectively implement 482 
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the odd (or shifted) connectivity needed to turn the bump position (here: clockwise shift 483 
for anti-clockwise turn). 484 

e) Broad excitation of the INH population by the HD population, together with a one-to-one 485 
multiplicative interaction between INH and HD population, implement the quadratic decay 486 
of the bump amplitude needed for the reduction in certainty arising from probabilistic path 487 
integration. 488 

f) External input is mediated by inhibiting HD neurons with preferred direction opposite the 489 
location of the absolute HD observation, effectively implementing a vector sum of belief 490 
with absolute HD input. 491 

Discussion 492 

We have shown that ring attractor networks - prominent models for working memory of circular 493 
variables - can encode and compute with a sense of uncertainty, even when their attractor states 494 
are unable to do so. They can achieve this by operating in a dynamic regime away from these 495 
attractor states. In this regime, their bump amplitude can vary and thus can encode uncertainty. 496 
Such deviations from the attractor state are only possible in loose attractors with sufficiently weak 497 
connectivity strengths. Stronger connectivity leads to strict attractors that operate closer to their 498 
attractor states and feature worse performance. For a canonical working memory of a circular 499 
variable - our sense of head direction - we have shown that network motifs common to ring 500 
attractor networks are sufficient to implement the basic computations for dynamic Bayesian 501 
inference: (i) angular velocity-modulated odd recurrent connectivities implement incremental 502 
changes to the HD estimate, (ii) global inhibition implements the required decay in certainty over 503 
time, and (iii) reliability-modulated external input implements reliability-weighted absolute HD 504 
integration. We expect these findings to translate to working memories of other circular variables, 505 
like those that follow circadian rhythms, or encode memory about visual orientations5,39. We 506 
further found that close-to-optimal estimation does not require exact tuning of the ring attractor 507 
network’s connectivities, as long as the networks feature the aforementioned motifs and are 508 
flexible enough to deviate from their attractor states. Lastly, we demonstrated that a network with 509 
realistic biological constraints still supports the implementation of such a Bayesian ring attractor. 510 
Our findings thus suggest that ring attractor models can implement Bayesian computations for 511 
working memory.  512 

A key element of our approach is the representation of uncertainty as the amplitude of a neural 513 
activity bump. This differentiates our work from recent network models that only performed 514 
reliability-weighted cue integration at the level of the inputs40,41, without considering the resulting 515 
certainty of the HD estimate. In our framework, this certainty determines the weight with which 516 
new external evidence enters the estimate through the bump amplitude. As such, it plays a central 517 
computational role for updating the estimate, rather than being a passive measure of 518 
precision25,26. It predicts that the speed with which the activity bump reacts to changing absolute 519 
HD observations should depend on the HD estimation’s certainty, and thus bump amplitude: low 520 
bump amplitudes (low certainty) should lead to rapid bump shifts, whereas high bump amplitudes 521 
(high certainty) show lead to slower ones. Recent experimental evidence10 suggests that bump 522 
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amplitude varies in navigating rodents, and this amplitude modulates the speed with which their 523 
HD system reacts to changing absolute HD observations - in line with our predictions. 524 

By restricting ourselves to an analytically tractable ring attractor network, we were able to almost 525 
exactly map the certainty dynamics of the ideal-observer circKF to the bump amplitude dynamics. 526 
Having the network implement the circKF rather than a standard Kalman filter fully accounts for 527 
the circular symmetry of HD estimation. Thus, unlike previous work23, our network does not suffer 528 
from imprecise inference once absolute HD observations strongly deviate from the current HD 529 
estimate. As a result, it yields fundamentally different predictions for strongly conflicting absolute 530 
HD direction cues (Fig. 1e). Specifically, since in the circular Kalman filter a conflicting absolute 531 
observation (>90 deg from the current estimate) could yield a reduction in certainty, our network 532 
dynamics would predict a transient decrease in bump amplitude following a conflicting 533 
observation. Further, our network automatically adjusts its cue integration weights (Fig. 5c) to 534 
perform close-to-optimal Bayesian inference for absolute HD observations of varying reliability - 535 
from highly reliable to very unreliable or even completely absent observations. This stands in 536 
contrast to previous approaches42, that required hand-tuned weights to show that continuous ring 537 
attractors can track orientation and compute the running circular average of an absolute HD 538 
stimulus. Lastly, our network is to our knowledge the first to fully account for the effect of 539 
probabilistic angular path integration in a principled way: unlike, e.g., the disc attractor in ref43, the 540 
bump amplitude decay in our network matches the quadratic certainty decay of the ideal Bayesian 541 
observer in absence of absolute HD observations. We would expect to observe such a decay in 542 
biological ring attractors implementing Bayesian inference once absolute HD observations are 543 
removed. 544 

Even though our Bayesian HD tracking algorithm requires keeping track of the HD estimate’s 545 
uncertainty, we have shown that imperfectly tuned ring attractor networks can track head direction 546 
reasonably well. In fact, even strict attractor networks with a fixed amplitude, and fixed associated 547 
uncertainty, can perform close-to-Bayesian cue integration (Figs. 5b; cf. also ref44). This result 548 
raises the question of why neurons should encode uncertainty in the first place. First and foremost, 549 
for some animals, uncertainty influences their behavior directly to improve their performance (e.g., 550 
refs45–47). As a prime example, the homing behavior of the desert ant48 suggests that the 551 
performance gained from tracking one’s uncertainty justifies the added complexity for doing so. 552 
Further, uncertainty appears to impact the neural encoding of other navigation-related variables. 553 
For example, when absolute visual cues are in conflict with path integration cues, grid cells in 554 
mouse medial entorhinal cortex are more likely to remap when the visual cues are more reliable49. 555 
Identifying how uncertainty ought to be reflected in their neural activity, as we do here, is required 556 
for a comprehensive understanding of the role of uncertainty in the brain’s computations. 557 

In summary, our work shows how ring attractors could implement dynamic Bayesian inference, 558 
even in networks that obey some biological constraints, such as the Drosophila’s HD system. We 559 
expect similar network motifs to be present in the HD systems of other animals, such as that of 560 
mice9,10, monkeys50, humans51, or even in systems that yield three-dimensional HD cells, as those 561 
of bats52. More generally, we demonstrated how classic network motifs, like those common in ring 562 
attractor networks, can perform close-to-optimal Bayesian inference when considered in 563 
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combination, and expect our results to generalize to other circular variables that are represented 564 
in ring attractor networks.  565 
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Methods583

Ideal observer model: the circular Kalman filter584

Our ideal observer model - the circular Kalman filter (circKF)21 - performs dynamic Bayesian in-585

ference for circular variables. It computes the posterior probability of an unobserved (true) HD586

�t 2 [�⇡,⇡] at each point in time t, conditioned on a continuous stream of noisy angular velocity587

observations v0:t = {v0, vdt, . . . vt} with v⌧ 2 R, and absolute HD observations z0:t = {z0, zdt, . . . zt}588

with z⌧ 2 [�⇡,⇡]. Specifically, we assume that these observations are generated from some true589

angular velocity �̇t and HD �t, whose observations are corrupted by zero-mean noise at each590

point in time, via591

vt|�̇t ⇠ N
✓
�̇t,

1

v dt

◆
, (5)

zt|�t ⇠ VM
⇣
�t,

p
2z dt

⌘
. (6)

Here, N (µ,�2) denotes a Gaussian with mean µ and variance �2, VM(µ,) denotes a von Mises592

distribution of a circular random variable with mean µ and precision , and v and z denote the593

precision of the angular velocity and absolute HD observations, respectively. Note that as dt ! 0,594

the precision of both angular velocity and absolute HD observations approach 0, in line with the595

intuition that reducing a time step size dt results in more observations per unit time, which should596

be accounted for by less precision per observation to avoid "oversampling". More formally, the597

square-root scaling of the absolute HD observation precision with
p
2z dt ensures that the Fisher598

information of the observations about the true HD scales linearly in time and z in the continuum599

limit dt ! 0 (ref21, Theorem 2). The same applies to the dt�1 scaling of the Gaussian variance of600

the angular velocity observations, again achieving a Fisher information that scales linearly in time.601

To support integrating information over time, the model assumes that current HD �t depends602

on the past HD �t�dt. Specifically, in absence of further evidence, the model assumes that HD603

diffuses on a circle,604

�t|�t�dt ⇠ N
✓
�t�dt,

dt

�

◆
mod 2⇡, (7)

with a diffusion coefficient that decreases with �. In Results, we assume � ! 0, implying that605

HD can change arbitrarily across consecutive time steps, which was sufficient to convey intuition606

into the algorithm’s workings. However, when simulating stochastic HD trajectories, we assume607

they evolve according to Eq. (7) with � > 0, which needs to be accounted for when performing608

inference. Thus, we here assume a non-zero � for completeness and reproducibility.609

The circKF in Eqs. (1) and (2) assumes that the posterior distribution over HD can be approxi-610

mated by a von Mises distribution with time-dependent mean µt and certainty t, i.e. p(�t|v0:t, z0:t) ⇡611

VM(�t;µt,t). Such an approximation is justified if the posterior is sufficiently unimodal, and can,612

for instance, be compared to a similar approximation employed by extended Kalman filters for613

non-circular variables.614

An alternative parametrization of the von Mises distribution to its mean µt and precision t,615

are its natural parameters, ✓t = (t cosµt,t sinµt)T . Geometrically, the natural parameters can616

20
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be interpreted as the Cartesian coordinates of a "probability vector", and (µt,t) as its polar co-617

ordinates (Fig. 2b). As we show in the SI, the natural parameter parametrization makes including618

absolute HD observations (Eq. (6)) in the circKF straightforward. In fact, it becomes a vector ad-619

dition. In contrast, including angular velocity observations (Eq. (5)) is mathematically intractable,620

such that the circKF relies on an approximation method called projection filtering20 to find closed-621

form dynamic expressions for posterior mean and certainty (see ref21 for technical details, and the622

SI for a more accessible description of the circKF).623

Taken together, the circKF for the model specified by Eqs. (5)-(7) reads:

dµt =
v

� + v
vt dt+

p
2z dt

t
sin(zt � µt), (8)

dt = � f(t)

2(� + v)
tdt+

p
2z dt sin(zt � µt), (9)

where f(t) is a monotonically increasing nonlinear function,624

f() =
A()

t �A()� A()2
, with A() =

I1()

I0()
, (10)

and I0(·) and I1(·) denote the modified Bessel functions of the first kind of order 0 and 1, respec-625

tively. Setting � ! 0 yields Eqs. (1) and (2). Importantly, setting � ! 0 does not conceptually626

change the general vector operations we present in Fig. 2.627

For a sufficiently large  (i.e., high certainty), the nonlinearity f() approaches the linear func-628

tion, f() ! 2 � 2. In our quadratic approximation, we thus replace the non-linearity by a629

quadratic decay:630

dt = � 1

� + v

�
2t � t

�
dt+

p
2z dt sin(zt � µt), (11)

which well-approximates the circKF in the high certainty regime.631

Network model632

We derived a rate-based network model that implements (approximations of) the circKF, by encod-633

ing the von Mises posterior parameters in activity rt 2 RN of a neural population with N neurons.634

Thereby, we focused on the simplest kind of network model that supports such an approximation,635

which is of the form:636

drt = �1

⌧
rt dt� g(rt)rt dt+W · rt dt+ Iext

t , (12)

where ⌧ is the network time constant, g : RN ! R+ is a scalar nonlinearity, and the elements of rt637

are assumed to be ordered by the respective neuron’s preferred HD, �1, . . . ,�N (see Eq. (3)). We638

decomposed the recurrent connectivity matrix into W = w0
2 W const +weven

1 W cos +wodd
1 W sin, where639

W const denotes a matrix with constant entries, and W cos and W sin refer to cosine- and sine-shaped640

connectivity profiles (Fig. 4a). Specifically, due to the network’s circular symmetry, the entries of641

these matrices only depend on the relative distance in preferred HD, and are given by W const
ij

= 2
N

,642
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W cos
ij

= 2
N
cos(�i � �j), and W sin

ij
= 2

N
sin(�i � �j). The scaling factor 2

N
was chosen to facilitate643

matching our analytical results from the continuum network to the network structure outlined here.644

We further considered a cosine-shaped external input of the form Iext
t

(�i) = It(dt) cos(�t��i) that645

is peaked around an input location �t. Here, It(dt) denotes the maximum input in the infinitesimal646

time bin dt.647

As described in Results, we assume the population activity rt to encode the HD belief param-648

eters µt and t in the phase and amplitude of the activity’s first Fourier component. As we show in649

the SI, the described network dynamics thus lead to the following dynamics of the cosine-profile650

parameters µt and t:651

dµt = wodd
1 dt+

It
t

sin(�t � µt), (13)

dt =

✓
weven
1 � 1

⌧

◆
t dt� g(rt)t dt+ It cos(�t � µt). (14)

To derive these dynamics, we assumed the following:652

1. The network is rate-based.653

2. Our analysis assumes a continuum of neurons, i.e. N ! 1. For numerical simulations, and654

the network description below, we used a finite-sized network of size N that corresponds655

to a discretization of the continuous network. SI Fig. S2 demonstrates only a very weak656

dependence of our results on the exact number of neurons in the network.657

3. Our analysis and simulations focused on the first Fourier mode of the bump profile, and is658

thus independent of the exact shape of the profile (as long as Eq. (3) holds).659

Network parameters for Bayesian inference660

Having identified how the dynamics of the µt and t encoded by the network (Eqs. (13) & (14))661

depend on the network parameters, we now tuned these parameters to match these dynamics to662

those of the mean and certainty of the circKF (Eqs. (8) & (9)). Specifically, we find for the network663

parameters:664

• Odd recurrent connectivities are modulated by angular velocity observations, wodd
1 = v

�+v
vt,665

which shifts the activity profile without changing its amplitude7,8.666

• Absolute HD observations zt are represented as the peak position �t of a cosine-shaped667

external input whose amplitude is modulated by the reliability of the observation, i.e., It =668 p
2z dt. The inputs might contain additional Fourier modes (e.g., a constant baseline), but669

those do not affect the dynamics in Eqs. (13) and (14).670

• The even component of the recurrent excitatory input needs to exactly balance the internal671

activity decay, i.e., weven
1 � 1

⌧
= 0.672

• The decay nonlinearity is modulated by the reliability of the angular velocity observations,673

and is given by g(rt) = 1
2(�+v)

f
�
(rt)

�
, where f(·) equals the nonlinearity that governs674
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the certainty decay in the circKF (Eq. (10)). This can be achieved, e.g., through interaction675

with an inhibitory neuron (or a pool of inhibitory neurons) with activation function f(·) that676

computes the activity bump’s amplitude f
�
(rt)

�
.677

Quadratic approximation678

To gain additional analytical tractability, we further approximated the recurrent inhibition by one that679

takes the form g(rt)rt ! wquad
⇣
⇡
P

N

i=1[r
(i)
t
]+
⌘
·rt, where [·]+ denotes the rectification nonlinearity.680

The resulting recurrent inhibition can be shown to be quadratic in the amplitude t, and has the681

further benefit of introducing an attractor state at a positive bump aplitude (see below). In the large682

population limit, N ! 1, this leads to the amplitude dynamics (see SI for derivation)683

dt =

✓
weven
1 � 1

⌧

◆
t dt� wquad2tdt+ It cos(�t � µt). (15)

The dynamics of the phase µt does not depend on the form of g(·) and thus remains to be given684

by Eq. (13). If we set the network parameters to wquad = 1
�+v

and weven � 1
⌧
= 1

�+v
, while685

sensory input, i.e. angular velocity vt and absolute HD observations zt, enter in the same way as686

before, the network implements the quadratic approximation to the circKF (Eqs. (8) & (11)).687

Ring-attractor networks688

In absence of absolute HD observations (It = 0), the amplitude dynamics in Eq. (15) has a stable689

fixed point at ⇤ = w
even�1/⌧
wquad and no preferred phase, making it a ring-attractor network. Lin-690

earizing the t dynamics around this fixed points reveals that it is approached with decay speed691

� = weven � 1
⌧
. A large value of � denotes faster dynamics and thus indicates more rigid attractor692

dynamics. In the limit of � ! 1 we consider the attractor to be a "strict" attractor that, upon693

any perturbation, immediately moves back to its attractor state. For the quadratic approximation694

network, we find ⇤ = 1 and � = 1
�+v

. Further, in our simulations in Fig. 5, we explored network695

dynamics with a range of ⇤ and � values by adjusting network parameters accordingly.696

Multiple population network697

We extended the single population network dynamics, Eq. (12), to encompass five populations:698

a HD population, which we designed to track HD estimate and certainty with its bump parameter699

dynamics, two angular velocity populations (AV+ and AV-), which are tuned to HD and are differ-700

entially modulated by angular velocity input, an inhibitory population (INH), and a population that701

mediates external input (EXT), corresponding to absolute HD observations. The resulting network702

dynamics become (see SI for details):703
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ṙHD

t = � 1

⌧HD

rHD

t +WHD HD · rHD

t +WHD AV+ · rAV+
t

+WHD AV� · rAV�
t

(16)

+ (WHD INHrINH

t ) � rHD

t + Iextt , (17)

⌧AV + ṙAV
+

t = �rAV
+

t + (oAV + vt)WAV + HD · rHD

t , (18)

⌧AV � ṙAV
�

t = �rAV
�

t + (oAV � vt)WAV � HD · rHD

t , (19)

⌧INH ṙINH

t = �rINH

t +WINH HD · [rHD

t ]+ +WINH INH · rINH

t . (20)

Here, the Wto from denote connectivities within and between populations, and oAV is a constant704

activity baseline in the AV populations.705

The network parameters were tuned such that the activity profile in the HD population tracks706

the dynamics of the circKF quadratic approximation, in the same way as for the single-population707

network, Eq. (12). To limit the degrees of freedom, we further constrained the connectivity struc-708

ture between HD and AV+/- and INH populations by the known connectome of the Drosophila HD709

system (hemibrain dataset33). Specifically, we focused on the connectivities between EPG, PEN1710

and �7 neurons (which in our model corresponds to HD, AV+/- and INH neurons), sorted accord-711

ing to anatomical regions within the ellipsoid body and the protocerebral bridge (Fig. 6b). Thereby,712

we used total number of synaptic connections between two regions as a proxy for connection713

strength. We further assumed that interactions within AV+/- populations and between AV+/- and714

INH populations were negligible. The resulting connectivity profile in Fig. 6c was determined by715

matching the Drosophila connectome as closely as possible, while allowing for modulation of the716

across-population connection strengths cHD

0 ,cHD

1 , cAV
± HD, cHD AV

± ., cINH HD

0 , cINH HD

1 ,717

cINH

0 , cINH

1 , and cHD INH . We specify the specific analytic functions we used to create the con-718

nectivity matrix in Fig. 6c in the SI, where we also compute the connection strengths analytically.719

Simulation details720

Numerical integration721

Our simulations in Figs. 4 and 5 used artificial data that matched the assumptions underlying our722

models. In particular, the ‘true’ HD �t followed a diffusion on the circle, Eq. (7), and observations723

were drawn at each point in time from Eqs. (5) and (6). To simulate trajectories and observations,724

we used the Euler-Maruyama scheme54, which supports the numerical integration of stochastic725

differential equations. Specifically, for a chosen discretization time step �t, this scheme is equiv-726

alent to drawing trajectories and observations from Eqs. (7), (5) and (6) directly while substituting727

dt ! �t. The same time-discretization scheme was used to numerically integrate the SDEs of the728

circKF, Eqs (8) and (9), its quadratic approximation, Eq. (11), and the network dynamics, Eqs. (12)729

and (16)-(20).730

Performance measures731

To measure performance, in Figs. 4f, 5b and 5d we computed the circular average distance53 of732

the estimate µT from the true HD �T at the end of a simulation of length T = 20 from P = 50000733
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simulated trajectories by m1 =
1
P

P
P

k=1 exp
⇣
i
⇣
µ(k)
T

� �(k)
T

⌘⌘
. The absolute value of the imaginary-734

valued circular average, 0  |m1|  1 denotes an empirical precision (or ‘inference precision’), and735

thus measures how well the estimate µT matches the true HD �T . Here, a value of 1 denotes an736

exact match. The inference precision is related to the circular variance via Varcirc = 1 � |m1|. In737

SI Fig. S5, we provide histograms with samples µT ��T with different numerical values of |m1|, to738

provide some intuition for the spread of estimates for a given value of the performance measure.739

We estimated performance through such averages for all absolute HD observation reliabilities740

z in Figs. 4f and 5b. For the inset of Fig. 5b, and for Fig. 5d, we additionally performed a grid741

search over the fixed-point amplitude ⇤ (inset of Fig. 5b), or both the fixed-point amplitude ⇤ and742

of the inverse time constant � (Fig. 5d). For each setting of ⇤ and � we assessed the performance743

by computing an average over this performance for a range of observation reliability z, weighted744

by how likely each observation reliability is a-priori assumed to be. The latter was specified by a745

log-normal prior, p(z) = Lognormal(µz ,�
2
z
), favouring intermediate reliabilitiy levels. We chose746

µz = 0.5 and �2
z

= 1 for the prior parameters, but our results did not strongly depend on this747

parameter choice. The performance loss shown in Fig. 5d also relied on such a weighted average748

across z ’s for a particle filter benchmark (PF, see SI for details). The loss itself was then defined749

as 1� Performance
Performance PF .750

Update weights751

In Fig. 5c, we computed the weight with which a single observation with |zt � µt| = 90� changes752

the HD estimate. We defined this weight as the change in HD estimate, normalized by the value753

of the maximum possible change, w = �µt
⇡

= 1
⇡
tan�1 ↵(z dt)

t
. Here, ↵(z dt) denotes a function754

that ensures a linear scaling of the Fisher information with sampling time step (see ref21, Theorem755

2, for details about this function). Thus, by design of the observation model, the Fisher information756

of a single observation with reliability z during a time interval �t is given by Izt(�t) = z �t.757

We plot the weight as a function of the Fisher information of a single update (how reliable is the758

observation?) and the Fisher information of the current HD estimate (how certain is the current759

estimate?), which is given by760

Iµt,t(�t) = E
"✓

@

@�
logVM(�, µt,t)

◆2
#
= t

I1(t)

I0(t)
. (21)

Details on numerical simulations761

In our network simulations, we set the network decay constant ⌧ to an arbitrary, but non-zero,762

value. Effectively, this resulted in a cosine-shaped activity profile. Note that by setting higher-order763

recurrent connectivities accordingly, other profile shapes could be realized, without affecting the764

validity of our analysis above. From the neural activity vector rt, we retrieved the natural parame-765

ters ✓t with a decoder matrix A = (cos(�(i)), sin(�(i)))T , such that ✓t = A · rt, and subsequently766

computed the position of the bump by �t = arctan 2(✓2, ✓1), and the encoded certainty (length of767

the population vector) by t =
p

✓21 + ✓22.768

In all our simulations, times are measured in units of inverse diffusion time constant �, where769

we set � = 1s for convenience. Figures were generated based on simulations with the following770
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parameters:771

• Figure 4e: v = 2, z = 10 (during ‘Visual cue’ bout), z = 0 (during ‘Darkness’ bout),772

�t = 0.01.773

• Figure 4f, 5b, 5d: v = 1, T = 20, �t = 0.01. Results are averages over P = 5000 simulation774

runs.775

• Figure 5e: v = 1, z = 1, T = 10, �t = 0.01.776

Trajectory simulations and general analyses were performed on a MacBook Pro (Mid 2019)777

running 2.3 GHz 8-core Intel Core i9. Parameter scans were run on the Harvard Medical School O2778

HPC cluster. For all our simulations, we used Python 3.9.1 with NumPy 1.19.2. Jupyter notebooks,779

Python scripts, and data to reproduce the figures will be made available upon acceptance of the780

manuscript.781
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