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  19 

Abstract 20 

Deep learning-based cell segmentation is increasingly utilized in cell biology and molecular 21 

pathology, due to massive accumulation of diverse large-scale datasets and excellent progress in 22 

cell representation. However, the development of specialized algorithms has long been hampered 23 

by a paucity of annotated training data, whereas the performance of generalist algorithm was limited 24 

without experiment-specific calibration. Here, we present a deep learning-based tool called Scellseg 25 

consisted of novel pre-trained network architecture and contrastive fine-tuning strategy. In 26 

comparison to four commonly used algorithms, Scellseg outperformed others in average precision 27 

and Aggregated Jaccard Index on three disparate datasets. Interestingly, we found that eight images 28 

are sufficient for model tuning to achieve satisfied performance based on a shot data scale 29 

experiment. We also developed a graphical user interface integrated with functions of annotation, 30 

fine-tuning and inference, that allows biologists to easily specialize their self-adaptive segmentation 31 

model for analyzing images at the single-cell level. 32 

 33 

MAIN TEXT 34 

 35 

Introduction 36 

Image-based single cell profiling is widely used in biological, pharmaceutical and medical 37 

applications, including in quantitative cytometry1, spatial transcriptomics2, high-content drug 38 

screening3 and cancer metastasis analysis4. However, due to a lack of robust and facile algorithms 39 

for single-cell analysis, average profiling remains as the most commonly used method which may 40 

cause loss of information and mislead interpretation of feature associations5. In recent years, deep 41 

learning has revolutionized the field of computer vision6 and catalyzed the advancement of single 42 

cell segmentation methods. 43 
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Differences across cell types, microscopy instruments, treatment methods, imaging modalities, 44 

and staining protocols can generate cell images with considerable diversity. As a consequence, cell 45 

segmentation algorithms were mostly developed for specific datasets7-9 and these methods 46 

performed poorly when applied to other styles of cell images. To overcome this limitation, 47 

generalist algorithms have been developed. In 2018, a data science bowl challenge tried to segment 48 

nuclei from a large number of different styles of microscopy images using 841 diverse images 49 

containing 37,333 nuclei10. Inspired by this competition, Stringer et al. annotated 608 images 50 

containing more than 70,000 segmented objects and developed a generalist algorithm named 51 

Cellpose, which exhibited excellent performance in segmenting cell bodies from many image 52 

styles11. Although deep-learning based generalist algorithms outperformed compared to traditional 53 

machine learning approaches like logistic regression and Random Forest (RF), the state-of-art 54 

segmentation tools still lack of capability to be self-adaptive for all kinds of cellular images. 55 

Therefore, transfer learning of segmentation models from certain source domain to in-house 56 

datasets remains an important challenge for biologists with few computational knowledges. 57 

Fine-tuning of pre-trained models has been successfully used in computer vision12-15 and 58 

natural language processing16-17 due to its lower input requirements and more rapid convergence to 59 

a better performance. For cell instance segmentation, only few preliminary attempts were reported, 60 

such as fine-tuning of a nuclear segmentation model to satisfy different needs from distinct 61 

laboratories18, or transferring a pre-trained model of in vitro images to in situ tissue images19. 62 

However, these studies used only nuclei images for pre-training and performed binary or multiclass 63 

classification instead of instance topological maps, hence are hard to capture enough prior 64 

knowledge for fine-tuning on different kinds of cell images. Besides, they primarily tested model 65 

transferability on different nuclei images, specialized evaluation datasets for various cell-like 66 

instances such as C. elegans20, are far from well developed and studied. Hence, the development of 67 

a high-performance universal computational pipeline based on the fine-tuning of pre-trained models 68 

remains a challenging but important objective in automated image analysis. 69 

In this work, we established a fine-tuning pipeline for cell segmentation algorithms and present 70 

a style-aware cell segmentation architecture named Scellseg based on attention mechanisms and 71 

hierarchical information to improve the extraction and utilization of style features. We furthermore 72 

incorporate a contrastive learning strategy to leverage information from unlabelled and pre-trained 73 

data. To evaluate the generalizability of the pipeline, we benchmarked our model on three 74 

fundamentally different styles of data from C. elegans, label-free phase-contrast cell images, and 75 

sub-cellular organelles. Furthermore, it is our first effort to estimate the minimal extent of data 76 

required for a satisfying fine-tune model and to demonstrate how instance representation and pre-77 

trained datasets can influence model transferability. To facilitate uptake of this pipeline, we 78 

developed a graphical user interface (GUI) which can conduct annotation, fine-tuning and inference, 79 

thus making the model accessible for a wide range of users without coding experience. The model 80 

can be found at https://github.com/cellimnet/scellseg-publish. 81 

 82 

 83 

Results  84 

Design of Scellseg with pre-trained architecture and contrastive fine-tuning 85 

Firstly, we established a pre-trained and fine-tuning pipeline for the cell segmentation model. 86 

For initial training, we utilized a dataset containing various cell types to build a generalist model. 87 

Generally, segmentation of untrained images by this model will exhibit limited performance, such 88 

as fail of detecting instances or boundary of segmentation instance. To improve the specificity of 89 

model and avoid time-consuming re-training, several images from novel data pool can be annotated 90 

for fine-tuning established model using few new labelled data (shot data) (Fig. 1a). This workflow 91 

generated a style-aware structure to better extract and comprehend style-related information and 92 
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developed a new fine-tuning strategy based on contrastive learning to better make use of diverse 93 

data features, including the unlabelled data (query data) and pre-trained data. The resulting model, 94 

which we named Scellseg, contains two branches, a mask branch to compute the segmentation map 95 

of input and a contrast branch to explore the information between three types of data (Fig. 1b). The 96 

mask branch is utilized during pre-training, fine-tuning and inference, whereas the contrast branch 97 

worked only during fine-tuning. 98 

The mask branch was based on Cellpose model which is a member of the U-Net21 family of 99 

algorithms that consist of a downsampling pass that extracts features from input data, an 100 

upsampling pass that organizes different features to fit for the final task, and a concatenation 101 

operation that relays the information extracted from downsampling process to the upsampling pass.  102 

For convenient adjustment, we re-divided this structure, the last Conv Unit was split from 103 

upsampling pass and named as Tasker, and the left was named as Extractor, containing the 104 

downsampling, upsampling and concatenation parts. To improve the sensitivity of model for 105 

different styles, we added attention gates (AGs) when passing the features extracted from 106 

downsampling to the upsampling pass. These AGs give the feature map weights to highlight salient 107 

features useful for a specific task and suppress feature activation in irrelevant regions. We used 108 

dense units to consider the information from early upsampling layers, aiming to delineate accurate 109 

object boundaries. To consider different-level style information, we also fed corresponding 110 

hierarchical style embeddings into different-level dense units (Extended Data Fig. 1). 111 

Unlike conventional fine-tuning strategies only use labelled data, to augment data utilization, 112 

we developed a contrastive fine-tuning (CFT) method to employ information from either labelled 113 

data or unlabelled and pre-trained data based on contrastive learning. Seven common cellular styles 114 

of images were chosen from pre-trained data to form contrast data (Extended Data Fig. 2). In the 115 

contrastive fine-tuning process, the contrast branch is used to compute the respective style 116 

embeddings of these three data and then a contrast loss function was designed to minimize the 117 

difference between embeddings of shot and query data from the same experiment while maximizing 118 

the difference between embeddings of shot and contrast data (Fig. 1b). This contrast loss was added 119 

into the segmentation loss function, then the total loss optimizes the model via backpropagation. 120 

 121 

Transferability of Scellseg with contrastive fine-tuning strategy on three evaluation datasets 122 

To compare the performance of Scellseg in the transferability of models with other algorithms, 123 

we adopted three difference datasets named BBBC010_elegans20, LIVECell_bv222, and mito (in-124 

house prepared dataset containing mitochondrial images), representing three levels of cell-like 125 

images from model organism, cells to subcellular structures (Fig. 2a). In total, the datasets contained 126 

230 images and 91,024 segmentation objects. We visualized the distribution of areas and numbers 127 

for cells per image (Extended Data Fig. 3). The average areas for three datasets are about 1000, 150 128 

and 100,000, and numbers of instance in each image ranged from 2 to 2,815. We used t-distributed 129 

stochastic neighbor embedding23 (t-SNE) to visualize the style embeddings (see definition in ref. 130 
11) of these evaluation datasets together with pre-trained datasets and noted that the style of data in 131 

each dataset was determinant in major cluster  (Fig. 2b). 132 

To compare the influence of different instance representation, we benchmarked Scellseg 133 

against four other models, U-Net221, U-Net324, HoVer25 and Cellpose11. These four models were 134 

set with identical network structure and pre-trained with the same datasets and training strategies. 135 

We used the training data of each dataset to fine-tune the model at ten different random states, most 136 

models achieved great improvements after fine-tuning, for the BBBC010_elegans dataset, all 137 

models yielded at least 35% higher average precision. For U-Net3 model, fine-tuning strategy even 138 

yielded a dramatic increase of 62.1% in average precision. The different models differed drastically 139 

in performance, and representation of Cellpose (used in Cellpose and Scellseg model) outperformed 140 

other methods. Scellseg with contrastive fine-tuning achieved the best performance on all three 141 
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datasets, especially on the BBBC010_elegans dataset. At the universally used intersection over 142 

union (IoU) threshold of 0.5, our Scellseg and Cellpose both achieved high average precision when 143 

segmenting C. elegans (0.882 for Scellseg; 0.868 for Cellpose), microglial cell BV-2 (0.783 for 144 

Scellseg; 0.784 for Cellpose), and mitochondria in cardiomyocytes (0.927 for Scellseg; 0.922 for 145 

Cellpose). In contrast, Scellseg performed considerably better at higher thresholds, such as 0.75 on 146 

all three data sets ([0.670, 0.493, 0.634] for Scellseg compared to [0.587, 0.475, 0.571] for Cellpose, 147 

respectively; Fig. 2c-e). 148 

We also compared the performance of Scellseg with or without contrastive fine-tuning strategy. 149 

As shown in Fig. 3, it is clear that the fine-tuned model exhibited considerably better capability of 150 

instance detection. Importantly, fine-tuning strategy improved the ability of distinguishing adjacent 151 

cells, which allowed the segmentation of scattered mitochondria around the nuclei in mito dataset. 152 

Furthermore, our contrastive fine-tuning strategy outperformed the classic method on the Cellpose 153 

test set after fine-tuning on the three evaluation datasets. However, as expected, all re-trained 154 

models suffered a sharp decline compared with the initial generalization ability (Extended Data Fig. 155 

4). 156 

 157 

Pre-trained dataset scale experiments 158 

To explore how the pre-trained dataset can influence model transferability, we used different 159 

subsets of the Cellpose training set. The initial subset (Sneuro) only contains one style of images 160 

from the Cell Image Library26, then additional styles of images were sequentially added, such as 161 

fluorescent cells (Sfluor), non-fluorescent and membrane-labelled cells (Scell), other microscopy 162 

data (Smicro), as well as non-microscopy images (“Sgeneral”, corresponding to the full Cellpose 163 

train set; Fig. 4a). 164 

We pre-trained Scellseg with Sneuro, Sfluor, Scell, Smicro and firstly tested the generalization 165 

ability of each model by applying it directly without any adaptation on three evaluation datasets. 166 

For C. elegans, the model trained with Sneuro, Sfluor, and Scell does not result in successful 167 

recognition until the pre-trained dataset contains microscopy instances with structures beyond cells. 168 

For small and round BV-2 cells, the generalization ability also increased with the richness of the 169 

dataset from Sneuro to Smicro, and model trained on Smicro even outperformed the model trained 170 

on Sgeneral. For the segmentation of mitochondria, surprisingly the model trained with Sfluor and 171 

Smicro outperformed all others (Fig. 4b). 172 

Next, we tested the transferability of each model (Fig. 4c). As expected, the transferability of 173 

Scellseg increased with the richness of the dataset from Sneuro to Smicro, and Scellseg pre-trained 174 

with Smicro achieved similar transfer performance on three evaluation datasets compared to 175 

Scellseg pre-trained with Sgeneral ([0.555, 0.451, 0.564] and [0.554, 0.454, 0.557], mean average 176 

precision [mAP] of Smicro and Sgeneral respectively). On the BBBC010_elegans dataset, a model 177 

pre-trained on Sneuro achieved only very poor transfer performance (0.013 mAP) and performance 178 

increased substantially only after the addition of different styles of fluorescent images (0.436 mAP). 179 

As more cell-like images added, performance increased further to 0.554 with the full pre-trained 180 

dataset. 181 

 182 

Shot data scale experiments and ablation experiments 183 

To explore the extent of annotated data required for fine-tuning, we made a shot data scale 184 

experiment on these evaluation datasets. We set 10 scale levels, and for each shot number, we 185 

randomly sampled 10 times from the training pool to fine-tune the model, followed by testing of 186 

transferability. For this evaluation, we focused on Scellseg with CFT and Cellpose with classical 187 

fine-tuning because these models clearly outperformed the other three algorithms. For all datasets, 188 

we observed that initial performance is relatively low with large variance (Fig. 5a). As the number 189 
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of shot images increases, the performance improves drastically and variance becomes smaller while 190 

Scellseg significantly outperformed Cellpose. For BBBC010_elegans, LIVECell_bv2 and mito 191 

dataset, Scellseg with CFT get [2.0%, 4.8%, 18.5%] final improvement respectively compared to 192 

[4%, 6%, 12.2%] for Cellpose with classical fine-tuning. We conducted curve fitting using 193 

Hyperbola function for each method per dataset for further inspection of the transferability across 194 

different shot numbers. The results show that, when increasing shot number, different methods 195 

converged to different values and the mAP converged differently across datasets. For mito dataset, 196 

mAP persistently increased while for BBBC010_elegans, the rate of its convergence is relatively 197 

fast, and whatever the dataset is, performance plateaued at eight shots. Similar results were obtained 198 

using the mean Aggregated Jaccard Index27 as a means to evaluate transfer performance (Extended 199 

Data Fig. 5). Therefore, it is suggested that at least of eight images is required to achieve satisfied 200 

transfer learning based on generalized model. 201 

To verify the function of our contrastive fine-tuning strategy, we conducted ablation 202 

experiments. Importantly, our contrastive fine-tuning strategy outperformed Scellseg using the 203 

classic fine-tuning method at different shot-number experiments on all three evaluation datasets 204 

(Fig. 5b). Due to the similar performance of the model when “only” trained on Smicro, we 205 

conducted the same shot data scale experiments and ablation experiments as Scellseg pre-trained 206 

on the Sgeneral dataset and, excitingly, our style-aware pipeline worked and again outperformed 207 

Cellpose with classic fine-tuning strategy (Extended Data Fig. 6). 208 

 209 

Graphical user interface 210 

To facilitate Scellseg accessible for scientists without coding experience, we designed a GUI 211 

(Fig. 6) with three functional parts, i) view and draw, ii) fine-tune, and iii) inference. For basic 212 

annotations, users can modify the mask of an instance directly at single-pixel resolution without 213 

deleting the whole mask. We also developed a cell list management system to help users edit the 214 

corresponding mask and provide annotations, thereby allowing to provide ground truth for 215 

segmentation and cell class prediction simultaneously. Furthermore, users can easily save or load 216 

cell lists. 217 

In the second module, users can fine-tune the pre-trained model with their own manually 218 

labelled data. The system allows users to choose a pre-trained model from Scellseg, Cellpose and 219 

HoVer. Furthermore, each model can be combined with either the contrastive or classic fine-tuning 220 

strategy, presented above. It will not only give biologists and pathologists more flexibility and 221 

versatility for their image analysis tasks, but also help algorithm engineers to easily conduct 222 

experiments to study such pre-trained and fine-tuning pipelines. Finally, users can use the fine-223 

tuned model to conduct inference either for one image or use batch inference. After annotation or 224 

inference, users can also acquire images of each single instance for further analysis. 225 

 226 

 227 

Discussion  228 

Accurate cell instance segmentation is still a challenging task for many laboratories. Although 229 

generalization models have been developed, these typically require large annotated datasets, which 230 

is time- and labor-consuming in data collection, particularly when a large number of segmented 231 

objectives are supposed to be covered. To augment data utilization, we firstly established a pipeline 232 

for the fine-tuning of pre-trained cell segmentation algorithms. On this basis, we proposed a style-233 

aware pipeline, yielding the best transferability on three different benchmarking datasets. 234 

Specifically, the work achieved three main innovations: Firstly, we refined the architecture of 235 

Cellpose through introducing attention mechanisms and hierarchical information, making the 236 

model more sensitive to different styles. Secondly, we implemented a contrastive fine-tuning 237 
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strategy to leverage the information from both unlabelled and pre-trained data based on contrastive 238 

learning, which have also achieved great success in other deep learning applications28-32. Finally, 239 

we organized three benchmarking datasets containing three levels of cell images for further use in 240 

segmentation algorithm development. 241 

Importantly, after fine-tuning, AP for BBBC010_elegans and mito can reach up to about 0.9 242 

at a threshold of 0.5, more than 37% and 36% improvements respectively, resulting in model 243 

performance that is generally acceptable for researchers to conduct reliable downstream analysis. 244 

Our benchmarking showed that among four different instance representations, topological maps 245 

generated by the Cellpose model constituted the best way to introduce rich instance information. 246 

Results could be further improved by our style-aware pipeline, which exhibited the best 247 

transferability on all three evaluation datasets, indicating that introducing such style relevant 248 

information can benefit the fine-tuning process. Notably, while generalization ability overall 249 

declined after fine-tuning to a specific task, our contrastive fine-tuning considerably improved 250 

generalizability. Furthermore, emerging methods like continual learning33 are also worth to 251 

investigate in this context. 252 

In the pre-trained dataset scale experiments, we observed that transferability of Scellseg-CFT 253 

increased with the richness of the pre-trained dataset, suggesting that our Scellseg-CFT pipeline 254 

can also benefit from large-scale and high-diversity datasets. Notably, the generalization ability of 255 

Scellseg pre-trained with Sfluor containing different styles of fluorescent images, outperformed all 256 

other models on the mito evaluation dataset, indicating that model pre-training on diverse but 257 

specialized data may yield greater performance than both low-diversity specialized dataset (such as 258 

Sneuro) or high-diversity generalized datasets (such as Scell that also contains nonfluorescent 259 

images). However, we did not observe similar phenomena on transferability. We also noted that the 260 

generalization ability increased with the addition of more different microscopy instances beyond 261 

cells to other non-cell instances like C. elegans, again demonstrating the success of our style-aware 262 

pipeline. 263 

For the shot data scale experiment, it is not surprising that performance increases along with 264 

shot number. However, what excited us is that we observed a large payoff when increasing shot 265 

number from 1 to 3, whereas performance plateaued after approximately eight shots. These results 266 

are of high practical relevance as they indicate that the annotation of only about eight images is 267 

sufficient to yield a sufficiently fine-tuned model. Few-shot34, one-shot35 and zero-shot36 learning 268 

strategies can be studied to further reduce the number of annotated images needed. Notably, at small 269 

shot numbers, different shot data can have very large impacts on the fine-tuning process, whereas 270 

we observed that as the shot number increases variance becomes substantially smaller. In the future, 271 

active learning37 on cell instance segmentation promises to refine shot data selection for fine-tuning. 272 

In this work, we did not research the influence of basic model backbone and all models were 273 

based on convolutional neural networks (CNN). In recent years, self-attention architectures (such 274 

as Transformer38) have shown great success and there have been studies attempting to apply them 275 

to computer vision39. Such transformer architectures have better expressive ability but require more 276 

data for accurate training. Nevertheless, we believe that such approaches will eventually provide 277 

an important improvement in computer vision compared to CNN. 278 

By integrating attention mechanisms and hierarchical information for style-aware 279 

segmentation with a contrastive fine-tuning strategy, Scellseg features the highest transferability 280 

when benchmarked on three diverse imaging datasets against currently used segmentation methods. 281 

Scellseg optimizes cell and object recognition in diverse microscopy data and, combined with an 282 

easy-to-use GUI, can make advanced parallelized segmentation accessible also to researchers and 283 

histologists without coding experience. Moreover, the Extractor and Tasker design can facilitate 284 

the adaption to other computer vision tasks, such as segmentation and simultaneous class 285 
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prediction25, or conducting feature extraction for phenomics analysis40. We anticipate Scellseg will 286 

serve not only for cell segmentation, but also other for a wide range of other applications in cell 287 

biology and biomedicine. 288 

 289 

 290 

Methods 291 

The code was written in Python programming language v.3.7.4. All experiments were 292 

conducted on NVIDIA GeForce RTX 2080Ti. The deep learning framework used Pytorch41 v.1.7.1. 293 

 294 

Datasets 295 

Pre-training datasets. We used the Cellpose dataset published by Stringer et al11 which 296 

contains a total of 608 images and over 70,000 segmented instances. 540 images were used as 297 

training set (the last of every 8 images was chosen as validation set) and 68 images were used as 298 

test set. Here, the whole training set (also named as Sgeneral) was used to pre-train the models and 299 

the test set was used to evaluate the generalization ability in Extended Data Fig. 4. Furthermore, a 300 

subset of the training set containing a total of seven styles of images with five images per style was 301 

used as the contrast data (Extended Data Fig. 2). 302 

Evaluation datasets. Three datasets were used to evaluate the transferability of different 303 

models, here called BBBC010_elegans, LIVECell_bv2 and mito. BBBC010_elegans was 304 

downloaded from the Broad Bioimage Benchmark Collection42, containing 100 images of C. 305 

elegans in a screen to find novel anti-infectives. There are two phenotypes in this dataset, for worms 306 

treated with ampicillin, they appear curved in shape and smooth in texture, while untreated worms 307 

appear rod-like in shape and slightly uneven in texture. Only the brightfield channel was used. We 308 

discarded images with heavily crossed instances because it is not the focus of our work, the problem 309 

may be solved by some special postprocessing algorithm20 or introducing the z-axis information 310 

when designing the ground truth. Finally, 49 images were reserved, 10 were used as the training set 311 

and 39 were used for testing. 312 

The LIVECell_bv2 dataset22 consists of 536 phase-contrast images and over 330,000 313 

segmented instances. These images were achieved using label-free phase-contrast imaging and cells 314 

in this dataset have small spherical morphology and are homogeneous across populations. Of the 315 

available images, 386 were used as the training set and 152 were used for testing. 316 

We also generated a novel dataset called Mito dataset, which consisted of 49 fluorescent 317 

images of mitochondria from high content screening studies. The images were acquired by 318 

ImageXpress Micro Confocal (Molecular Devices). Each image contains two distinct channels, a 319 

nuclear channel stained with Hoechst-33342 (Sigma) and a mitochondria channel stained with 320 

tetramethylrhodamine methyl ester (TMRM, Sigma). All these images were manually annotated by 321 

a single human operator (D.J.X.), 10 images were used as training set and 39 were reserved for 322 

testing. Because there was no clear boundary between individual cells, the Mito dataset was used 323 

to compare the performance of different algorithms regarding mitochondrial segmentation at the 324 

single cell level. 325 

All these three datasets were organized in Cellpose format. The summary information can be 326 

seen in Extended Data Table. 1. 327 

 328 

Models 329 

When training a cell instance segmentation model, we usually provide raw images and the 330 

corresponding masks which label the individual instances with different positive integers per image. 331 
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Although different values can represent different instances in these masks, it is impractical to 332 

directly predict such masks because the max value in each mask represents the number of instances, 333 

which are different across images. Thus, the model has to pre-set a very large shape of last conv 334 

unit in Pytorch41 tensor shape format to cover all instances. However, such approaches can result 335 

in inefficient memory usage and may not learn well in such a high dimensionality. It is challenging 336 

to find an excellent representation of instances and until now there have been four main methods: 337 

U-Net221, U-Net324, HoVer25 and Cellpose11. 338 

For the classic U-Net model (usually called as U-Net2), we directly map the annotated masks 339 

to 2-classes, zero represents background and one represents instance. This method usually performs 340 

poorly on touching cells because instance information was completely discarded. In 2018, Fidel et 341 

al24 introduced cell borders as the third class to make the network notice the original gap between 342 

cells (usually called as U-Net3), they yield a significant improvement compared with U-Net2. In 343 

2019, Simon et al25 further developed the model on multiple independent multi-tissue histology 344 

image datasets. For each cell per image, they generated horizontal and vertical distance maps to 345 

bring in rich instance information when inference, marker-controlled watershed43 was used as the 346 

postprocessing to create the final masks. In 2020, Stringer et al11 generated topological maps 347 

through a process of simulated diffusion from masks, and when on a test image, they used gradient 348 

tracking44 to recover individual cells.  349 

Here, we wanted to compare how expressive power different methods can provide, so we used 350 

the same architecture as Cellpose, only changed the final shape of convolutional layer, loss function 351 

and postprocessing to adapt to each method. Scellseg model adopted the representation of Cellpose 352 

because the best performance in the experiments. Expect the different parts of Scellseg, all other 353 

architecture sets were same as Cellpose too. 354 

Two-channel 224×224 images were set as input for all 5 models in this work. The primary 355 

channel contains instances to segment and the second optional channel can provide extra 356 

information such as nuclei channel to support model learning. The hierarchical level of Conv Units 357 

was set as [32, 64, 128, 256]. We computed the style embeddings through applying the average 358 

pooling on feature map of last Conv Unit and the dimensionality of each level style embeddings 359 

after being concatenated in upsampling pass is [256, 384, 448, 480]. 360 

 361 

Pre-train segmentation models 362 

Pre-train different models with Sgeneral. We trained five models (U-Net2, U-Net3, HoVer, 363 

Cellpose, Scellseg) with Sgeneral, which contains totally 540 images, 64 of which were reserved 364 

for validation. 365 

For U-Net2 and U-Net3, a learning rate of 0.002 was selected to achieve good model 366 

convergence. For HoVer and Scellseg, the loss function is same as Cellpose, which was defined as: 367 

𝐿𝑠𝑒𝑔𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  𝐵𝐶𝐸(𝑦𝑏,2, 𝑙𝑏𝑙𝑏,0) + 0.5 × 𝑀𝑆𝐸(𝑦𝑏,0:2, 5 × 𝑙𝑏𝑙𝑏,1:3) (1) 368 

Where BCE represents the binary cross-entropy loss, MSE represents the mean square error loss, y 369 

represents the ultimate output of model, lbl represents the ground truth, and subscripts corresponded 370 

to respective dimensions in y or lbl, b represents the batch size, which we here set to 8. 371 

All models were trained for 500 iterations with stochastic gradient descent, the mean diameter 372 

was set to 30, all other training hyper-parameters were same as Cellpose. 373 

Pre-training Scellseg for pre-trained dataset scale experiments. We trained four other 374 

models across different subsets of Cellpose mentioned above: Sneuro, Sfluor, Scell, Smicro. For 375 

each subset, the last of every 8 images was reserved for validations (11, 36, 47, 56, respectively). 376 

All other training hyper-parameters were the same as for Scellseg pre-trained with Sgeneral. 377 
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Training logs of all models are shown in Extended Data Fig. 7. 378 

 379 

Fine-tune segmentation models 380 

Classic fine-tuning strategy (FT). When fine-tuning, batch size was set to 8, epoch was set 381 

to 100, the optimizer was Adam, the initial learning rate was set to 0.001 and every quarter of 382 

epochs it was reduced by 50%. Before being fed to the network, the image-mask pairs were resized, 383 

randomly rotated and reshaped with the ultimate shape of input as (8, 2, 224, 224). 384 

Contrastive fine-tuning strategy (CFT).  The contrast loss function was defined as: 385 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
𝑀𝑆𝐸(𝑠ℎ𝑜𝑡,𝑞𝑢𝑒𝑟𝑦)

𝑀𝑆𝐸(𝑠ℎ𝑜𝑡,𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡)+10−5  (2)  386 

Where MSE represents the mean square error and was used to compute the difference between 387 

embeddings, and 10-5 was added to prevent divisions by zero. This contrast loss was added into the 388 

segmentation loss function during contrastive fine-tuning, so the final loss function was defined as:  389 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(α) (3) 390 

Where α is a scalar to control the weight of contrast loss, also learnt during the fine-tuning process. 391 

A sigmoid function was used to assure that the coefficient of contrast loss changed smoothly 392 

between zero and one. The initial α in the contrast loss function was set to 0.2, initial learning rate 393 

of α was set to 0.1, with reductions by 50% every quarter of epochs. For query and contrast data, 394 

they were resized, randomly cropped, randomly rotated and reshaped before being fed to the 395 

network with identical input shapes. Other parameters were the same as for the classic fine-tuning 396 

strategy. 397 

For both classic and contrastive fine-tuning strategies, we fine-tuned all layers because this 398 

method performed best compared with downsampling part or the whole extractor (Extended Data 399 

Fig. 8). For each dataset, we computed the instance diameter using shot data without using the 400 

automated method provided by Cellpose, which was used in resizing the current mean diameter of 401 

instances to the mean diameter used for model pre-training. 402 

 403 

Benchmarking 404 

Metrics. We used average precision (AP) and the Aggregated Jaccard index (AJI) to evaluate 405 

segmentation performance (See ref. 11 for detailed definitions). Except in Fig. 2c-e, we averaged 406 

the AP or AJI over IoU from 0.50 to 0.95 with a step size of 0.05 for convenient comparison and 407 

reserving the overall performance information simultaneously as detailed below: 408 

mAP =  (𝐴𝑃0.50 + 𝐴𝑃0.55 + ⋯ + 𝐴𝑃0.90 + 𝐴𝑃0.95) / 10 (4) 409 

mAJI =  (𝐴𝐽𝐼0.50 + 𝐴𝐽𝐼0.55 + ⋯ + 𝐴𝐽𝐼0.90 + 𝐴𝐽𝐼0.95) / 10 (5) 410 

Shot data scale experiments. We set a total of 10 scale levels; for BBBC010_elegans and 411 

mito we used [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and for LIVECell_bv2 [1, 2, 4, 8, 16, 32, 64, 128, 256, 412 

386]. For each shot number experiment, we randomly sampled 10 times from the training set to 413 

fine-tune the pre-trained model. To eliminate issues due to different training data, the random state 414 

was kept identical across models. For example, we sampled the 9th, 5th, and 2nd image from the 415 

total of 10 images in the training set of a 3-shot experiment for the mito dataset, and then used the 416 

same images as training data for all five models. 417 

 418 

Statistical Analysis 419 
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All figures were made using GraphPad PRISM 8.0 software (GraphPad Software, Inc., CA, 420 

USA). All graphs display mean values, and the error bars represent the standard deviation (SD). 421 

Statistical analyses were conducted with two-way repeated measures analysis of variance (ANOVA) 422 

followed by Sidak's multiple comparisons test in Fig. 2c-e and two-way ANOVA in Fig. 5a. A 423 

nonlinear regression curve fit was performed using a hyperbolic function in Fig. 5a, given as: 424 

Y =
𝐵𝑚𝑎𝑥∗𝑋

𝐾𝑑+𝑋
 (6) 425 

Where Bmax and Kd are constants. 426 

 427 

 428 

Data availability 429 

Three evaluation datasets used in this work will be made available at https://scellseg-430 

data.s3.cn-northwest-1.amazonaws.com.cn/evaluation_datasets.zip upon publication. 431 

 432 

 433 

Code availability 434 

The Scellseg software, including detailed tutorial, can be freely available at GitHub 435 

(https://github.com/cellimnet/scellseg-publish). 436 

 437 
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Figures and Tables 593 

Fig. 1 | Pipeline of pre-trained and fine-tuning strategy. a, Overview of fine-tuning a 594 

pre-trained model for a new experiment. The shot data means hand-labelled data while 595 

query data means unlabelled data. b, Diagram of the proposed contrastive fine-tuning 596 

strategy. The contrast data is a subset of pre-trained data. The network is a representation 597 

of U-Net family, the detailed architecture of our proposed model is shown in Extended 598 

Data Fig. 1. Different colored lines and arrows mark the flow of data. 599 
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Fig. 2 | Transferability of Scellseg with contrastive fine-tuning strategy on three 601 

evaluation datasets. a, Example images of three datasets. b, Visualization for style 602 

embeddings of three datasets and pre-trained dataset using t-SNE. c-e, Performance of 603 

different models on BBBC010_elegans (c), LIVECell_bv2 (d) and mito (e) dataset. 604 

Different colors correspond to different models, the dotted lines denote the performance of 605 

applying models directly and the solid lines denote the performance after fine-tuning. For 606 

Scellseg, we use contrastive fine-tuning (CFT) and for others is classic fine-tuning 607 

strategy (FT). We did not plot the line which corresponding performance is less than 0.01. 608 

Each pre-trained and fine-tuning pipeline was conducted 10 times at various random 609 

states, error bars represent the mean ± SD. * means P-value<0.05, determined by two-way 610 

ANOVA followed by Sidak’s multiple comparisons test for Scellseg with CFT and 611 

Cellpose with FT. 612 
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Fig. 3 | Example Scellseg segmentation results with and without contrastive fine-614 

tuning on three evaluation datasets. The right two columns show the direct topological 615 

maps outputted by Scellseg model. The left two columns show ultimate masks of different 616 

datasets, the ground truth masks are shown in yellow solid line, and the predicted masks 617 

are shown in dotted red line. Symbol “-” represents results of applying models directly and 618 

symbol “+” represents results after contrastive fine-tuning. Green arrows emphasize the 619 

segmentation of adherent cells. 620 

  621 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2021.12.19.473392doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.19.473392
http://creativecommons.org/licenses/by-nc/4.0/


                                                                                                                                                                                        Page 17 of 28 

 

Fig. 4 | Pre-trained dataset scale experiments. a, Composition of different subsets from 622 

Cellpose train set. b, Generalization ability of different pre-trained Scellseg models on 623 

three evaluation datasets. Generalization ability means the performance of employing pre-624 

trained model directly. c, Transferability of different pre-trained Scellseg models on three 625 

evaluation datasets. Transferability means the performance of employing the pre-trained 626 

model after fine-tuning. Each pre-trained and fine-tuning pipeline was conducted 10 times 627 

at various random states, error bars represent the mean ± SD. 628 
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Fig. 5 | Shot data scale experiments (a) and ablation experiments (b). Each pre-trained 630 

and fine-tuning pipeline was conducted 10 times at various random states, error bars 631 

represent the mean ± SD. a, Performance of Cellpose-FT and Scellseg-CFT on three 632 

evaluation datasets at 10 shot data scales. Cellpose-FT represents Cellpose with classic 633 

fine-tuning and Scellseg-CFT represents Scellseg with contrastive fine-tuning strategy. 634 

Another metric to evaluate the models is shown in Extended Data Fig. 5. We performed 635 

nonlinear regression based on hyperbola function and corresponding R-value of fitted 636 

curve is plotted in the picture. A two-way ANOVA analysis was conducted for group 637 

comparison of Scellseg-CFT and Cellpose-FT per dataset and corresponding Pm-value is 638 

plotted in the picture. Pm-value<0.05 was considered the performance between Scellseg-639 

CFT and Cellpose-FT is significant. b, Ablation experiments for contrastive fine-tuning 640 

strategy. Scellseg-FT represents Scellseg with classic fine-tuning strategy, data of 641 

Scellseg-CFT is completely same as Scellseg-CFT in (a). 642 
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Fig. 6 | Graphical user interface (GUI). This GUI contains six modules: Menu Bar, List 644 

Box, Display Window, Prompt Bar, Cycle Bar and Function Box. There are three main 645 

functions: “View and draw”, “Fine-tune” and “Inference”. 646 
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Extended Data 648 

Extended Data Fig. 1 | Architecture of the proposed Scellseg. a, The Residual Unit 649 

refers to Cellpose11, Dense Unit refers to Hover-Net25, Attention Gate refers to Attention 650 

U-Net45, Conv Unit represents a set of operations including BatchNorm2d, ReLU and 651 

Conv2d in Pytorch41. The blue parts (including Max-pooling operations) were called as 652 

downsampling pass, the dot lines (including operations marked on them) were called as 653 

concatenation part, specially, the orange parts (including Avg-pooling operations) were 654 

called as upsampling pass, and the last green Conv Unit was named as Tasker, 655 

downsampling, upsampling together with concatenation part were named as Extractor. 656 

Input images are progressively encoded and decoded to get the ultimate segmentation 657 

map. Style embeddings of each scale is obtained by using global average pooling on 658 

respective convolutional map. b, Detail architecture of Dense Unit. Conv Unit2 represents 659 

a set of operations including Conv2d, BatchNorm2d and ReLU. c, Detail architecture of 660 

Attention Gate. Conv Unit3 represents a set of operations including Conv2d and 661 

BatchNorm2d. Symbol “+” represents tensor plus and Symbol “*” represents tensor 662 

multiplication. Conv Unit4 represents a set of operations including Conv2d, BatchNorm2d 663 

and Sigmoid. 664 
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Extended Data Fig. 2 | Example image per style of Contrast data. There are totally 7 666 

styles of images we used in our contrastive fine-tuning strategy, each style includes five 667 

images. 668 
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 670 

Extended Data Fig. 3 | Statistics of three evaluation datasets. a-f, Distribution of cell 671 

areas in px for each image in query or shot data of BBBC010_elegans (a, b), 672 

LIVECell_bv2 (c, d), mito (e, f) dataset, error bars represent the mean ± SD. g-h, 673 

Distribution of number of instances for each image in query data (g) or shot data (h) of 674 

three datasets, each dot represents one image in corresponding dataset, error bars represent 675 

the mean ± SD. 676 
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Extended Data Fig. 4 | Generalization ability on Cellpose test set of Scellseg with 678 

different fine-tuning strategies. Scellseg-FT represents Scellseg with classic fine-tuning 679 

and Scellseg-CFT represents Scellseg with contrastive fine-tuning strategy. Red dot line 680 

represents employing Scellseg directly on test set. Each pre-trained and fine-tuning 681 

pipeline was conducted 10 times at various random states, error bars represent the mean ± 682 

SD. 683 
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Extended Data Fig. 5 | Using mean Aggregated Jaccard Index metric to evaluate 685 

segmentation performance in shot data scale experiments. Error bars represent the 686 

mean ± SD. 687 
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Extended Data Fig. 6 | Shot data scale experiments (a) and ablation experiments (b) 689 

on Scellseg pre-trained with Smicro. Each pre-trained and fine-tuning pipeline was 690 

conducted 10 times at various random states, error bars represent the mean ± SD. Data of 691 

Scellseg-CFT in (a) is completely same as Scellseg-CFT in (b). 692 
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Extended Data Fig. 7 | Train logs of models in the paper. 694 
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Extended Data Fig. 8 | Performance of different fine-tuning methods. We compared 696 

three kinds of fine-tuning methods for Scellseg-CFT (a) and Cellpose-FT (b) on three 697 

evaluation datasets, respectively are fine-tuning all layers of the model, fixing the 698 

downsampling layers and fixing downsampling-upsampling layers. Each fine-tuning 699 

method was conducted 10 times at various random states, error bars represent the mean ± 700 

SD. 701 
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 703 

Extended Data Table. 1 | Summary statistics of three evaluation datasets. 704 
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