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 16 

Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in 17 

microbiome assembly remain largely elusive. Here, 16S amplicon and metagenomic features of 18 

the rhizosphere microbiome were mapped as quantitative traits of a recombinant inbred line 19 

population of a cross between wild and domesticated tomato. Gene content analysis of prioritized 20 

tomato QTLs suggested a genetic basis for differential recruitment of various rhizobacterial 21 

lineages, including a Streptomyces-associated 6.31-Mbp region harboring tomato domestication 22 

sweeps and encoding, among others, the iron regulator FIT and the aquaporin SlTIP2.3. Within 23 

metagenome-assembled genomes of the rhizobacterial lineages Streptomyces and Cellvibrio, we 24 

identified microbial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, 25 

and vitamins, whose genetic variation associated with either modern or wild tomato QTLs. 26 

Integrating ‘microbiomics’ and quantitative plant genetics pinpointed putative plant and reciprocal 27 

microbial traits underlying microbiome assembly, thereby providing the first step towards plant-28 

microbiome breeding programs. 29 

1. Main 30 

Root and shoot microbiomes are fundamental to plant growth and plant tolerance to (a)biotic stress 31 

factors. The outcome of these beneficial interactions is the emergence of specific microbiome-32 

associated phenotypes (MAPs)1, such as drought resilience2, disease resistance3, development4 and 33 

heterosis (i.e. hybrid vigor)5. The microbes inhabiting the surface or internal tissues of plant roots 34 

are selectively nurtured by diverse plant-derived compounds in the form of primary and secondary 35 

metabolites6,7. Microbes reciprocate by supporting plant growth and producing metabolites that 36 

mediate processes such as nutrient acquisition and pathogen suppression8,9. Developing a blueprint 37 

of the genetic architecture for this ‘chemical dialogue’ and how these interactions lead to specific 38 

MAPs is a one of the key focal points in current plant microbiome research. The promise is that 39 

these genomic and chemical blueprints can be integrated into microbiome breeding programs for 40 
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a new generation of crops that can rely, in part, on specific members of the microbiome for stress 41 

protection, enhanced growth and higher yields10.  42 

Selective breeding for yield-related traits has left a considerable impact on the taxonomic 43 

and functional composition of modern crop microbiomes11,12. Wild plant relatives represent a 44 

‘living library’ of diverse genetic traits that may have been lost during domestication13. For 45 

example, recombinant inbred lines (RILs) of crosses between wild tomato relatives and modern 46 

tomato cultivars have been used to identify genetic loci controlling important agronomic traits, 47 

including tolerance to abiotic14 and biotic stress15, as well as nutritional quality and flavor 48 

profiles16. To date, microbiome traits are not yet considered for breeding purposes, except for 49 

specific quantitative MAPs such as the number of nodules in legume-rhizobia symbioses17. 50 

However, technological advances in sequencing now make it feasible to treat microbiomes as 51 

quantitative traits for selection. This approach has been adopted for the phyllosphere microbiome 52 

and, recently, for the Arabidopsis and sorghum rhizosphere microbiomes18,19. For most plant 53 

species, however, investigations leveraging diverse plant populations to map microbiome 54 

Quantitative Trait Loci (QTL) are still at their infancy20,19,18. In these recent studies, the 55 

microbiomes were characterized by amplicon sequencing to detect loci involved in alpha and beta 56 

diversity as well as individual OTU abundances21. These studies provide strong evidence that 57 

microbiome recruitment has a genetic component, but the functional nature of the corresponding 58 

plant-microbe interactions cannot be elucidated from amplicon data. Hence, functional genomic 59 

features of the microbiome as well as intraspecific diversity within microbial species have not yet 60 

been taken into account22. 61 

Here, we used both amplicon and shotgun metagenome sequencing to generate taxonomic 62 

as well as functional microbiome features as quantitative traits. Using an extensive recombinant 63 

inbred line (RIL) population of a cross between modern Solanum lycopersicum var. Moneymaker 64 

and wild Solanum pimpinellifolium23, we were able to identify reciprocal associations between 65 

specific plant and microbiome traits and to infer putative mechanisms for rhizosphere microbiome 66 

assembly. While both wild and modern alleles were identified, the large number of QTLs linked 67 

to modern alleles suggests that domestication has had a significant impact on rhizosphere 68 

microbiome assembly. The plant traits identified were related to growth, stress, amino acid 69 

metabolism, iron and water acquisition, hormonal responses, and terpene biosynthesis, whereas 70 

the microbial traits were related to metabolism of plant cell wall polysaccharides, vitamins, sulfur, 71 

and iron. Furthermore, we show that amplicon-based approaches allow detection of QTLs for rarer 72 

microbial taxa, whereas shotgun metagenomics allowed mapping to smaller and thus more defined 73 

plant genomic regions. Together, these results demonstrate the power of an integrated approach to 74 

disentangle and prioritize specific genomic regions and genes in both plants and microbes 75 

associated with microbiome assembly. 76 

2. Results 77 

2.1 Baseline analyses of the tomato Recombinant Inbred Line population 78 

Prior to detailed metagenome analyses of the microbiome of the tomato RIL population, we first 79 

investigated whether QTLs previously identified in the same RIL population under sterile in vitro 80 

conditions could be replicated in our experiment conducted under greenhouse conditions with a 81 

commercial tomato greenhouse soil (Figure 1A and B, Supplemental table 1)24. We identified 82 

QTLs for Shoot Dry Weight (SDW) coinciding with a QTL identified previously on chr924. 83 
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Similarly, we identified QTLs for Rhizosphere Mass (RM), defined here as a the total mass of the 84 

roots with tightly adhering soil, which coincide with root trait QTLs previously identified for 85 

lateral root number, fresh and dry shoot weight, lateral root density per branched zone and total 86 

root size (Figure 1B)24. An analysis of variance (ANOVA) yielded significant variation in SDW 87 

based on the additivity of alleles linked to SDW (zero, one or two alleles) (F(2, 186) = 16.02, p = 88 

3.76 e-07) (Figure 1C and 1D). A post hoc Tukey test further demonstrated significant differences 89 

between all pairwise comparisons (p < 0.05). For RM, an ANOVA yielded a significant difference 90 

(F(2, 186) = 16.02, p = 3.76 e-07); a post hoc Tukey test demonstrated a statistically significant 91 

difference only between presence of either one or two alleles (p < 0.05), but did not support 92 

additivity (p = 0.15) (Figure 1E and 1F). Collectively, our results confirm and extend earlier work 93 

conducted on the same tomato RIL population in vitro24, providing a solid basis for QTL mapping 94 

of taxonomic and genomic features of the rhizosphere microbiome. 95 

 96 

Figure 1: Identification of shoot dry weight (SDW) and rhizosphere mass (RM) QTLs in the recombinant inbred line (RIL) 

population of tomato. (a) QTLs identified for SDW on chromosome 9 position 63.63719184 and on chromosome 2 position 

42.7291229, coinciding with a QTL identified previously (chromosome 9 position 62.897108) by Khan et al 2012. (b) QTL of RM 

on chromosome 5 position 62.00574891, and chromosome 9 position 62.71397636, which coincide with root trait QTLs previously 

identified by Khan et al 2012 for lateral root number chromosome 5 position 53.4-86.1, and several on chromosome 9, including 

fresh and dry shoot weight, (chromosome 9 position 81.3-95.3), lateral root density per branched zone (chromosome 9 position 

33.8-88.7), and total root size (chromosome 9 position 39.4-75.1). (c) Scatter plots showing the distribution of SDW measurements 

on chromosome 2 position 42.7291229 and chromosome 9 position 63.63719184 for both modern (AA) and wild (BB) tomato 

alleles. (d) Significant additivity of tomato alleles for shoot dry weight (p < 0.05); n of 42, 80 and 70 for tomato plants containing 

neither allele (labeled zero), either BB allele on chromosome 2, or AA on chromosome 9 (labeled one), or both AA and BB alleles 

(labeled two), respectively. (e) Scatter plots showing the distribution of RM measurements on chromosome 5 (pos 62.00574891), 

and chromosome 9 (pos 62.71397636) for both modern (AA) and wild (BB) alleles. (f) No additivity of alleles was observed for 

RM. 
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2.2 Taxonomic microbiome features as quantitative traits 97 

To investigate molecular features of the microbiome as quantitative traits, we conducted 16S 98 

amplicon sequencing of 225 rhizosphere samples, including unplanted bulk soil, parental tomato 99 

genotypes, and all 96 RIL accessions in duplicate (Supplemental table 2-5, BioProject ID 100 

PRJNA787039). We observed a separation between the microbiomes of rhizosphere and bulk soil, 101 

between the microbiomes of the two parental tomato genotypes and the RIL accession 102 

microbiomes (Figure 2A). To limit multiple testing and to focus on common microbiome features 103 

with sufficient coverage across all accessions, we prioritized the rhizosphere-enriched amplicon 104 

sequence variants (ASVs) to those present in 50% or more of the RIL accessions (Figure 2B). A 105 

QTL analysis with these prioritized ASVs was run with R/qtl225 using a high-density tomato 106 

genotype map26, harvest date, post-harvest total bulk soil mass, RM, number of leaves at harvest 107 

and SDW as co-variates. 108 

 109 

We identified 48 QTL peaks, across 45 distinct loci, significantly associated with 33 ASVs 110 

(Supplemental table 6). Our logarithm of the odds (LOD) thresholds for significance had been 111 

determined by pooled permutations from all ASVs to attain a genome-wide threshold of P 0.05 112 

(LOD 3.35) and P 0.2 (LOD 2.64). Of the significant QTLs, 16 were more abundant in a wild 113 

tomato allele and 32 in a modern tomatos allele. The QTLs on chromosomes 11, 10, 8 and 2 were 114 

all linked to ‘modern’ alleles; the sole QTL on chromosome 7 was linked to a ‘wild’ tomato allele. 115 

All other chromosomes contained a mix of QTLs linked to either modern or wild alleles (Figure 116 

3A). While many rhizobacterial lineages were linked to a single QTL (14 taxa out of 25), others 117 

were linked to two or more QTLs (7 and 4 taxa, respectively) (Figure 3B). Of the lineages with 118 

multiple QTLs, most were linked only to modern tomato alleles. One salient exception was 119 

Figure 2: PCoA analysis of the 16S rRNA amplicon data obtained for the microbiomes of bulk soil and the rhizosphere of modern 

and wild tomatoes and their recombinant inbred line (RIL) population. (a) PCoA analysis of amplicon sequence variants (ASVs) 

demonstrating a separation between the bulk soil and rhizosphere microbiomes. The rhizosphere microbiome of the 96 RIL 

accessions distributed around those of the wild and modern rhizosphere microbiomes. Separation between the two replicate RIL 

populations was not observed. (b) To limit multiple testing, a QTL analysis was conducted only on ASVs that were observed in 

more than 50% of the RIL accessions. 
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Methylophilaceae, with increased abundance linked to a total of 9 QTLs, from both wild and 120 

modern alleles, and distributed across chromosomes 3 (modern, x2), 4 (modern), 7 (wild), 11 121 

(modern x2) and 12 (wild x3) (Figure 3D). Another salient feature of the QTL analysis was the 122 

hotspot for microbiome assembly identified on chromosome 11, including ASVs from 123 

Adhaeribacter, Caulobacter, Devosia, Rhizobiaceae, Massilia and Methylophilaceae (Figure 3D). 124 

The effect size of the 48 QTLs on ASV relative abundance ranged from 1.3 to 17%, with 125 

an average effect size of approximately 5%, comparable to the effects seen for SDW and RM 126 

(Figure 1C and E). The largest effect was a single modern QTL for an ASV in the genus 127 

Figure 3: Association between 16S rRNA amplicon sequence variants (ASVs) and tomato QTLs (a) A color-coded summary of the 

number of 16S rRNA QTLs identified per chromosome of wild and modern tomato alleles. (b) A summary of the number of 16S 

rRNA QTLs linked to bacterial taxonomies, with the chromosome number of each QTL represented within each square. The 

presence and absence of dark borders around each square are used to indicate a QTL linked to higher abundance for a wild allele 

and modern allele, respectively. (c) Effect size for four rhizobacterial lineages with 3 or more QTLs. (d) Hierarchical network 

depicting the 16S rRNA QTLs identified in this study. From top to bottom: the first row represents tomato chromosomes (Chr), 

which are linked to specific ASVs in the next row, which taxonomically belong to different families and classes of bacteria in 

subsequent rows. The size of the chromosome nodes is weighted by the number of outbound edges. The ASV, family, and class node 

sizes are weighted by the number of in-bound edges. A complex network emerges, whereby the abundance of individual ASVs, at 

different taxonomic levels, is determined by a network of interactions of multiple tomato alleles from both modern and wild origin. 
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Qipengyuania (17%), and a second modern QTL in Edaphobaculum (10%). No statistical 128 

difference was found between modern and wild alleles on their effect size (p = 0.78, two-tailed t-129 

test). For those lineages with sufficient representation at the class level (Bacteroidia, 130 

Alphaproteobacteria, and Gammaproteobacteria), there was no statistically significant difference 131 

between effect size (F(3, 16) = 0.072, p = 0.974). However, an ANOVA on the positive effect size 132 

at genus level demonstrated significant differences between lineages (F(3, 16) = 12.94, p = 1.15 133 

e-04). A post hoc Tukey test demonstrated QTLs for Massilia with a larger positive effect size 134 

than other lineages with sufficient sample size for comparison (Figure 3C). Together, the amplicon 135 

analysis provided a broad picture, suggesting that microbiome assembly is a complex trait 136 

governed by a combination of multiple loci, some being ASV specific, some being pleiotropic to 137 

different ASVs and with heterogenous effect sizes (Figure 3D). While positive effects were 138 

identified linked to both wild and modern alleles, the large number of QTLs linked to modern 139 

alleles, suggests domestication has had a significant impact on rhizosphere microbiome assembly.  140 

 141 

2.3 Functional microbiome features as quantitative traits  142 

To understand the functional traits associated with rhizosphere microbiome assembly, we 143 

generated shotgun metagenomes for each accession in the tomato RIL population (96 total), as 144 

well as six samples of the modern tomato parent, five samples of the wild tomato parent and seven 145 

bulk soil samples (BioProject ID PRJNA789467). After pre-processing, assembly, back-mapping, 146 

CSS normalization and binning, QTL mapping was conducted for the rhizosphere enriched contig 147 

and bin abundances. Binning was done using Metabat2 (version 2:2.15)27 and genomic quality of 148 

the output was evaluated by CheckM28 (Supplemental Table 7). The bins and assembled contigs 149 

larger than 10kb can be found on Open Science Framework (https://osf.io/f45ek/). All contigs of 150 

10kb and larger were taxonomically assigned using Kraken29 (Supplemental Table 8). With nearly 151 

40 million contigs being assembled, we took numerous prioritization steps to reduce the effects of 152 

multiple testing. Only rhizosphere-enriched contigs larger than 10kb and with a rhizosphere 153 

enrichment greater than 4-fold were selected resulting in 1249 contigs. Only bins with greater than 154 

90% completion and less than 5% contamination were mapped (33 out of 588 bins). As with the 155 

ASVs, harvest date, bulk soil mass, rhizosphere mass (RM), number of leaves at harvest, and SDW 156 

were used as co-variates in QTL mapping (supplemental table 11 and 12, respectively). 157 

We identified 7 significant bin QTLs (LOD > 3.40, P < 0.05) (Supplemental table 9) 158 

including Streptomyces bin 72 associated with a modern allele on tomato chromosomes 6 and 11. 159 

For the contigs, a total of 717 QTLs at 26 unique positions on chromosomes 1, 4, 5, 6, 9 and 11 160 

were identified (Supplemental table 10), corresponding to 476 metagenomic contigs from 10 161 

different genera (LOD > 3.47, P < 0.05). The largest number of contig QTLs belonged to the 162 

Streptomyces, Cellvibrio and Sphingopyxis lineages (Figure 4A). The Streptomyces contigs 163 

mapped to QTLs on tomato chromosomes 4 (46 contigs, wild tomato), 6 (190 contigs, modern 164 

tomato) and 11 (257 contigs, modern tomato), with a subset of contigs mapping to two or all three 165 

of these positions (Figure 4B). These findings corroborate and expand upon the Streptomyces QTL 166 

identified on chromosome 6 using our 16S amplicon data, as well as that of the bin QTLs identified 167 

on chromosomes 6 and 11. The Cellvibrio contigs mapped to chromosome 1 (42 contigs, wild) 168 

and chromosome 9 (94 contigs, wild), again corroborating the findings from our 16S amplicon 169 

analysis described above. In contrast, the Sphingopyxis QTLs identified on chromosome 5 (24 170 

contigs, wild) and 9 (49 contigs, modern) did not correspond to the QTLs identified on 171 

chromosomes 8 and 3 in the 16S amplicon analysis. Interestingly, 4 contigs for Devosia also 172 

corroborated the results of the 16S QTL analysis. The effect sizes ranged from 9 to 21 % and were 173 
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significantly different (F(14, 702) = 530.9 p < 2e-16) between QTL and lineages (Figure 4C). 174 

Interestingly, as with the 16S amplicon analysis, some of the highest LOD scores were for contigs 175 

belonging to Devosia. Also, the effect size of the Sphingopyxis contigs was large (± 20% on 176 

average), above 15% for Cellvibrio, and approximately 10% for Streptomyces.  The average QTL 177 

region was 51.59 Mbps for the 16S amplicon sequences and 26.64 Mbps for the metagenomic 178 

contigs (two-sided t.test, p = 3.32E-09) (Figure 4E). A more striking contrast was observed in the 179 

difference between the median size of amplicon and contig QTL regions which were 58.56 Mbp 180 

and only 6.47 Mbp, respectively. In summary, while many more taxa were identified in the 181 

amplicon-based QTL analysis, the metagenome-based QTL analysis provided QTLs with much 182 

smaller confidence intervals (Figure 4E).  183 

 
Figure 4: Association between metagenomic contigs of the rhizosphere microbiome and tomato QTLs (a) A color coded summary 

of the number of contig QTLs identified per chromosome to wild and modern alleles. (b) A summary of the number of contig QTLs 

found by taxonomies, with the chromosome of each QTL represented within each square. The presence and absence of dark borders 

around each square are used to indicate a QTL linked to higher abundance for a wild allele and modern allele, respectively. (c) 

The effect sizes for each lineage were significantly different as indicated by letters (F(14, 702) = 530.9 p < 2e-16) (d) A 

hierarchically structured network depicting the contig QTLs identified in this study. From top to bottom are the tomato 

chromosomes (Chr), which are associated with specific metagenomic contigs and taxonomically linked to different families and 

classes of bacteria. The size of the chromosome nodes is weighted by the number of outbound edges. The ASV, family, and class 

node sizes are weighted by the number of in-bound edges. (e) Comparison between the size of the QTL regions identified based on 

16S amplicon data and based on metageonomic contigs. The 95% confidence interval of contig QTLs was significantly smaller 

than the 95% confidence interval of 16S rRNA QTLs (two-sided t.test, p = 3.32E-09). 
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2.4 Amplicon-based bulk segregant analysis of Streptomyces and Cellvibrio abundance  184 

The two most abundant rhizosphere taxa with replicated patterns for amplicon and metagenome-185 

based QTLs were Streptomyces and Cellvibrio. Therefore, we sought to provide additional 186 

independent support for these QTLs using a bulk segregant analysis of an independent population 187 

of parental and RIL genotypes (Supplemental_Table_11). In particular, we tested the previously 188 

identified amplicon-based QTLs associated with higher Cellvibrio abundance at markers 464 and 189 

3142 on chromosomes 1 and 9, respectively with higher Streptomyces abundance at marker 2274 190 

on chromosome 6 (Figure 5). In each case, ANOVA showed a statistical difference between 191 

genotypes and bulk soil, respectively (F(4, 396) = 21.56, p = 4.16 e-16), (F(4, 396) = 18.43, p = 192 

6.68 e-14), (F(4, 396) = 8.423, p = 1.57 e-06). A post hoc Tukey test supported the conclusion that 193 

wild allele at markers 464 and 3142 on chromosomes 1 and 9, respectively, are indeed associated 194 

with increased abundance Cellvibrio (p = 3.913 e-04, and p = 0.08 respectively), while the modern 195 

allele at markers 2274 on chromosome 6 was significantly associated with increased abundance of 196 

Streptomyces (p = 1.152 e-04).  197 

 198 

2.5 Host genetics and rhizosphere microbiome assembly 199 

A subset of 5 regions consistent across both the amplicon and metagenome-based analyses were 200 

prioritized with an average size of 2.68 Mbps (Supplemental Table 12). These included positions 201 

on chromosome 1 (positions 87.36 - 90.49 Mbps), chromosome 9 (pos 62.03 – 63.32 Mbps), 202 

chromosome 5 (pos 61.54 – 63.38), chromosome 6 (pos 33.99 – 40.3 Mbps) and chromosome 11 203 

(pos 53.06 - 53.89 Mbps). In total, 1359 genes were identified in these regions. Potential candidate 204 

genes with root-specific transcriptional patterns, defined as a 4 fold increase in the roots compared 205 

to leaf samples, were further prioritized using a publicly available RNAseq dataset30. Based on 206 

this analysis, a subset of 192 root specific genes were identified (Supplemental table 13). A total 207 

Figure 5: Validation of Cellvibrio and Streptomyces 16S rRNA QTLs with bulk segregant analysis in an independent experiment 

with modern, wild and 77 RIL accessions (see Supplemental table 13). The number of replicates for each treatment is detailed in 

the top row of each panel. The number of replicates within the RIL population are represented by either an A (modern) or B (wild) 

allele, which depends on the marker in question. The row below represents the statistical group based on Tukey’s HSD; a different 

letter indicates a statistically significant difference. (a) The relative abundances of Cellvibrio 16S rRNA in bulk soil, modern, wild, 

and RIL accessions at SNP marker position 464 on chromosome 1. At this position, 32 and 45 RIL accessions with modern and 

wild alleles were used (130 and 177 samples with biological replication respectively). (b) Similarly, for SNP marker 3142 on 

chromosome 9, there were a total of 35 and 42 RIL accessions with modern and wild alleles, (143 and 164 samples with biological 

replication respectively). (c) The relative abundances of Streptomyces 16S rRNA and sequences in bulk soil, modern, wild, and 

RIL accessions at SNP marker 2274 on chromosome 6. There was a total of 42 and 35 RIL accessions with modern and wild 

alleles, (166 and 141 samples with biological replication, respectively). 
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of 98 root specific genes were linked to Streptomyces on chromosome 6 (84 genes) and 11 (14 208 

genes) (Figure 6). Intriguingly, 61 of these genes were found in regions previously identified to be 209 

subjected to selective sweeps related to tomato domestication as well as to subsequent sweeps 210 

related to improvements in fruit quality31(Supplemental Figure 1). 211 

Two of the most salient genes in this list included genes with high transcription in the roots; 212 

an aquaporin and a Fer-like iron deficiency-induced transcription factor (FIT). The aquaporin 213 

(SlTIP2.3) is one of eleven tonoplast intrinsic proteins in the tomato genome32 and has the highest 214 

fold change in the roots compared to all other organs33. The FIT gene is a bHLH transcriptional 215 

regulator controlling iron homeostasis in tomato34,35. Other genes of interest on chromosome 6 216 

include a glycine rich protein, a receptor like kinase known to be upregulated during drought36, 217 

alcohol dehydrogenase, numerous phosphatases, expansins, ethylene-responsive transcription 218 

factors, gibberellin receptors, aminocyclopropane-1-carboxylate oxidase (ACO), an enzyme 219 

involved in the last step of ethylene biosynthesis, and finally, alpha-humulene and (-)-(E)-beta-220 

caryophyllene, a known tomato terpene and signaling molecule in tomato37,38 and also acting as a 221 

volatile in microbiome assembly39. Root specific genes involved in carbohydrate, protein and 222 

amino metabolism were also identified, including trypsin-alpha amylase inhibitor, prolyl 4-223 

hydroxylase, polygalacturonase, trehalose phosphatase, glycogenin, xyloglucan fucosyltransferase 224 

and a metallocarboxypeptidase inhibitor, spermidine synthase, acetolactate synthases, alanine 225 

aminotransferase, and an amino acid permease. On chromosome 11, a ferrodoxin, an aluminum 226 

activated malate transporter40 and a cluster of various acetyltransferases and a sulfotransferase 227 

were identified. 228 

A total of 57 root specific genes were identified in the QTL regions on chromosome 1 and 229 

9 linked to Cellvibrio. These include a cytochrome p450 involved in coumarin synthesis, numerous 230 

extensins, phosphatases, respiratory burst oxidase-like protein, iron chelator nicotianamine 231 

synthase41,42 and on chromosome 11 phenazine biosynthesis. On chromosome 5, 37 root specific 232 

genes were identified including multiple peroxidases, glutamine synthetase, rhamnogalacturonate 233 

lyase, pectinesterase, metacaspase and trehalose-phosphatase. Furthermore, numerous ethylene 234 

responsive transcription factors and receptor like kinases were observed. The QTL on chromosome 235 

Figure 6: Prioritized regions of the Streptomyces-associated QTLs on tomato chromosomes 6 and 11 overlaying previously 

published data30 on root-specific gene expression and genetic sweeps due to domestication31 (in red). Within each region, the log2 

ratio gene expression patterns from leaf and root materials were calculated and those with a log2 greater than 2, as delineated by 

the dotted line, were further prioritized. The log2 root transcript abundances are depicted by the size of the bubble. a) The 6.31 

Mbp region on chromosome 6, position 33.99-40.3 Mbps. Abbreviations of highlighted genes: LOB - LOB domain protein 4, 

2OGDD - 2-Oxoglutarate-dependent dioxygenases, FIT - FIT (Fer-like iron deficiency-induced transcription factor), Spermidine 

- Spermidine synthase, AD - Alcohol dehydrogenase 2, ALS - Acetolactate synthase, ACO - 1-aminocyclopropane-1-carboxylate 

oxidase, Polygalacturonase, AHL - AT-hook motif nuclear-localized protein, Trehalose-P - Trehalose 6-phosphate phosphatase, 

Aquaporin - Tonoplast intrinsic protein 23 / Aquaporin, GPR TomR2 - Glycine-rich protein TomR2, P - Acid phosphatase (x3). b) 

The 0.83 Mbp region on chromosome 11, position 53.06-54.89 Mbps. Abbreviations of highlighted genes: ABC-2 - ABC-2 type 

transporter, Acyl – Acyltransferase (x4), Sulfo – Sulfotransferase, ALMT- Aluminum-activated malate transporter. 
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1 contains genome-wide sweeps related to the initial tomato domestication and subsequent 236 

improvements of fruit quality traits, suggesting that one or both of these events was linked to a 237 

decreased abundance of root-associated Cellvibrio. 238 

2.6 Illuminating metagenomic traits in Cellvibrio and Streptomyces 239 

To further investigate the potential functional importance of the 476 rhizosphere-enriched 240 

metagenomic contigs mapped as QTLs, we performed a deeper analysis into their functional gene 241 

content (Supplemental Table 14-16). An antiSMASH43 analysis identified 30 biosynthetic gene 242 

clusters (BGCs) across these contigs. These BGCs largely originated from contigs taxonomically 243 

assigned to Cellvibrio and Streptomyces. They included several gene clusters potentially 244 

associated with root colonization, such as two melanin BGCs (c00216, NODE_5919; c00255, 245 

NODE_7250) from Streptomyces (which have been positively associated with colonization44) and 246 

a Cellvibrio aryl polyene BGC (c00185, NODE_4941), which is thought to protect bacteria against 247 

reactive oxygen species generated during immune responses of the host plant45. The contigs also 248 

contained gene clusters potentially beneficial to the host, such as BGCs encoding iron-scavenging 249 

siderophores, which have been associated with disease suppression in tomato46; specifically, 250 

homologues of coelichelin and desferrioxamine BGCs from streptomycetes were found (c00269, 251 

NODE_7969 and c00122, NODE_3362), three IucA/IucC-like putative siderophore synthetase 252 

gene clusters (c00106, NODE_2973; c00041, NODE_1131; c00238, NODE_6661), as well as a 253 

Cellvibrio NRPS-PKS gene cluster (c00001, NODE_101) most likely encoding the production of 254 

a siderophore based on the presence of a TonB-dependent siderophore receptor-encoding gene as 255 

well as a putative tauD-like siderophore amino acid β-hydroxylase-encoding gene47. The 256 

Cellvibrio contigs also contain several genes relevant for carbohydrate catabolism. For example, 257 

homologs of xyl31a (B2R_23365) and bgl35a (B2R_06825-06826) were detected (with 78%, 79% 258 

and 65% amino acid identity, respectively), genes that have been shown to be responsible for 259 

utilization of the abundant plant cell wall polysaccharide xyloglucan in Cellvibrio japonicus48. In 260 

addition, a possible homologue of the β-glucosidase gene bgl3D49 (B2R_26663), involved in 261 

xyloglucan utilization, was also identified, having high similarity to bgl3D from Cellvibrio 262 

japonicus (64% amino acid identity). Also, putative cellulose-hydrolizing enzymes were detected, 263 

such as a homologue (B2R_21082) of the cellobiohydrolase cel6A from Cellvibrio japonicus50 264 

encoded in a complex locus of nine carbohydrate-acting enzymes annotated on this contig 265 

(NODE_5090) by DBCAN51 (Supplemental Table 14). Collectively, these results point to a 266 

possible role of microbial traits related to iron acquisition and metabolism of plant polysaccharides 267 

in tomato rhizosphere microbiome assembly. 268 

 269 

Contigs of the metagenome-assembled genome (MAG) associated with Streptomyces ASV5 (the 270 

key taxon associated with tomato QTLs described above) contained a multitude of functional genes 271 

potentially relevant for host-microbe interactions. Taxonomically, the ASV5 MAG was most 272 

closely related to a clade of streptomycetes that includes type strains of species such as arenae, 273 

flavovariabilis, variegatus, and chartreusis. To understand how tomato might differentially recruit 274 

ASV5 streptomycetes, we analyzed the MAG for genes and gene clusters potentially involved in 275 

colonization. Intriguingly, we found contigs to be rich in genes associated with plant cell wall 276 

degradation. In particular, we identified a family 6 glycosyl hydrolases (B2R_10154) of which the 277 

glycosyl hydrolase domain has 84% amino acid identity to that of the SACTE_0237 protein that 278 

was recently shown to be essential for the high cellulolytic activity of Streptomyces sp. SirexAA-279 

E31. Additionally, we detected a homologue (82% amino acid identity) of Streptomyces reticuli 280 
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avicelase, a well-studied cellulase enzyme that degrades cellulose into cellobiose52 (B2R_29198). 281 

Larger gene clusters associated with degradation of plant cell wall materials were also found. 282 

These included an 8-kb gene cluster coding for multiple pectate lyases and pectinesterases 283 

(B2R_31553-31558), and an 8-kb gene cluster encoding a family 43 glycosyl hydrolase, a pectate 284 

lyase L, a rhamnogalacturonan acetylesterase RhgT, a GDSL-like lipase/acylhydrolase, a family 285 

53 glycosyl hydrolase, and an endoglucanase A (B2R_15915-15920). Together, these findings 286 

suggest that ASV5 Streptomyces has the capacity to effectively process complex organic materials 287 

shed by plant roots during growth. These results are in line with a recent study on plant-associated 288 

streptomycetes that indicated that their colonization success appears to be associated with the 289 

ability to utilize complex organic material of plant roots53. 290 

 291 

Root exudates also play a key role in recruitment of microbes. Prominent sugar components of 292 

tomato root exudates are glucose, but also xylose and fructose54. The Streptomyces MAG contains 293 

xylA and xylB genes (B2R_19014, B2R_19013) and a putative xylFGH import system 294 

(B2R_29274, B2R_23438, B2R_23439) facilitating xylose catabolization. Similarly, a frcBCA 295 

import system was identified in the genome (B2R_17966- B2R_17968) as well as a glucose 296 

permease (B2R_32780) with 91,5% amino acid identity to glcP1 SCO5578 of Streptomyces 297 

coelicolor A3(2)55. Other genes putatively involved in root exudate catabolism were also found in 298 

the ASV5 MAG, such as sarcosine oxidase (soxBAG, B2R_20550- 20551 and B2R_21105), which 299 

has been shown to be upregulated in the presence of root exudates of various plants56,57.  300 

 301 

In summary, the Cellvibrio and Streptomyces contigs encoded a range of functions that likely allow 302 

them to profit from tomato root exudates as well as complex organic material shed from growing 303 

tomato roots. How these plant traits differ between wild and domesticated tomatoes and if/how 304 

these influence differential colonization of roots of wild and domesticated tomato lines by these 305 

two bacterial lineages will require detailed comparative metabolomic analyses of the root exudates 306 

of both tomato lines as well as isolation of the corresponding Cellvibrio and Streptomyces ASVs, 307 

analysis of their substrate utilization spectrum followed by site-directed mutagenesis of the 308 

candidate genes, root colonization assays and in situ localization studies.  309 

2.7 Genomic structure in Cellvibrio and Streptomyces provides insights into adaptations for 310 

differential recruitment. 311 

Bacterial populations often contain significant genomic heterogeneity. This heterogeneity may be 312 

associated with differential recruitment through altered nutrient preferences or host colonization 313 

mechanisms. The use of metagenomics enabled us to investigate the population structure within 314 

each rhizobacterial lineage and identify intraspecific differences. To do so, we first identified a 315 

unique set of 697,731 microbiome SNPs in a subset of parental and bulk metagenomes using 316 

InStrain22. A set of 15,026 SNPs enriched in either the wild or modern tomato rhizosphere were 317 

selected and the abundance of each allele at each SNP was calculated. Using these abundances, 318 

QTL mapping was performed using R/qtl2 as described in the methods. A total of 3,357 QTL 319 

peaks were identified (LOD > 3.01, P < 0.05), to 1229 independent loci. A total of 1,354 QTL 320 

peaks were more abundantly associated to a modern, and 2,001 to a wild plant allele, derived from 321 

2,898 unique SNPs, and corresponding to 810 and 1,068 unique rhizobacterial genes respectively 322 

(Supplemental Table 17). 323 
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 We investigated the 103 Streptomyces SNP QTLs at 94 unique positions within annotated 324 

genes whose mapping coincided with the previously identified Streptomyces contig QTLs to 325 

chromosomes 4, 6 and 11 (Supplemental Table 17). Numerous SNPs were associated with a higher 326 

abundance to the modern tomato alleles on chromosome 6 and 11. In particular, alpha-327 

galactosidase (B2R_16136) and arabinose import (B2R_29105) had the highest LOD and smallest 328 

overlapping confidence intervals with chromosomes 6 and 11 (Figure 7). Indeed, many SNPs in 329 

genes involved in the degradation of xylan58, one of the most dominant non-cellulosic 330 

polysaccharides in plant cell-walls59, as well as carbohydrate and protein metabolism were linked 331 

to chromosomes 6 and 11, including xyloglucanase Xgh74A (B2R_10589), alpha-xylosidase 332 

(B2R_23763), endo-1,4-beta-xylanase (B2R_20609), extracellular exo-alpha-L-333 

arabinofuranosidase  (B2R_20608), multiple protease HtpX (B2R_19218), cutinase (B2R_19356), 334 

and putative ABC transporter substrate-binding protein YesO (B2R_09821) which has been 335 

implicated in the transport of plant cell wall pectin-derived oligosaccharides60. A Streptomyces 336 

SNP in acetolactate synthase (B2R_28001) was linked to chromosome 6 where a plant acetolactate 337 

synthase was located. Similarly, multiple SNPs in Streptomyces genes involved in putrescine 338 

transportation (B2R_25489) were linked to chromosomes 6 and 11, which contain genes for 339 

spermine synthase, suggesting a possible metabolic cross-feeding from plant to microbe. A 340 

majority of these SNPs were synonymous. However, some were non-synonymous, including the 341 

histidine decarboxylase SNP (B2R_16511) mapping to both chromosomes 6 and 11 (Figure 7). 342 

Streptomyces SNPs that were more abundantly associated with the wild tomato allele on 343 

chromosome 4 included an antibiotic resistance gene (daunorubicin/doxorubicin, B2R_28992) and 344 

maltooligosyl trehalose synthase (B2R_07820) among others. 345 

Figure 7: 94 unique SNP within annotated genes on the Streptomyces contigs that mapped to QTL positions on tomato chromosomes 4, 6 and 

11. The figure depicts various features of both the QTL analysis and the SNPs. In particular, the circular nodes represent the tomato 

chromosomes 4,6 and 11. The size of these nodes is relative to the number of outgoing edges, which represent individual QTLs. The width of 

edges is relative to the LOD score and are color coded depending on whether a QTL is linked to increased abundance in the modern or wild 

allele. The Streptomyces SNPs, which were the microbial molecular features mapped as QTLs, are represented by square nodes with 

annotations alongside. Those SNPs with confidence intervals <10 Mbp are shaded in dark. Non-synonymous SNPs have a thick border edge. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/


 346 

 Similarly, we investigated the 324 Cellvibrio SNP QTLs within annotated genes whose 347 

mapping coincided with the previously identified Cellvibrio contig QTLs to chr. 1 and 9. Again, 348 

numerous SNV QTLs were identified in genes were related to sugar catabolism, including a gene 349 

encoding an extracellular exo-alpha-(1->5)-L-arabinofuranosidase (B2R_16093), fructose import 350 

FruK (B2R_22268), a cellulase/esterase-encoding celE homologue (B2R_11067), and genes 351 

involved in malate (B2R_18213), mannonate (B2R_14081), xyloglucan (B2R_10668) and 352 

xylulose (B2R_22179) metabolism. Furthermore, many additional SNP QTL were identified in 353 

genes related to vitamin and cofactor metabolism as well as sulfur and iron metabolism. In 354 

particular, these included genes for a phosphoadenosine phosphosulfate reductase (B2R_15720), 355 

vitamin B12 transporter BtuB (10 different genes, see Supplemental Table 17), a siroheme 356 

synthase (B2R_24033), a pyridoxal phosphate homeostasis protein (B2R_17481), a heme 357 

chaperone HemW (B2R_12751), a hemin transport system permease protein HmuU (B2R_09175), 358 

a Fe(2+) transporter FeoB (B2R_19968), a biotin synthase (B2R_30007), a catecholate 359 

siderophore receptor Fiu (B2R_17486), and a Fe(3+) dicitrate transport ATP-binding protein Fec 360 

(B2R_09176) (Supplemental Table 17). Taken together, this analysis suggests that a shotgun 361 

metagenomic approach integrated with quantitative plant genetics can be instrumental in a high-362 

throughput manner to discover the reciprocal genetic links between plant and microbial 363 

metabolisms, such as those identified here for polysaccharides, trehalose, iron, vitamin, amino 364 

acid, and polyamine metabolism. 365 

3. Discussion 366 

Breeding for microbiome-assisted crops is a complex phenomenon encompassing ecological, 367 

evolutionary, and cultural processes. What constitutes a desirable trait for selection is context-368 

dependent and differs between societies, crops and locations61. As society grapples with modern 369 

challenges such as a rapidly changing environment, water scarcity and land degradation, it is 370 

becoming increasingly clear that a new era of trait selection is needed with increased focus on 371 

sustainability and microbiome interactions62–65. In this regard, it is also time to reckon with the 372 

consequences of historic yield-centric trait selection and accompanying genomic sweeps31, 373 

especially with regards to plant-microbe interactions. Current approaches to investigating the 374 

genomic architecture determining microbiome assembly rely primarily on mutational studies in 375 

known genes and pathways. More recently, studies leveraging the natural variation within plant 376 

populations have been used to conduct GWA and QTL of the leaf66,20 and rhizosphere18. To date, 377 

the microbiome has been primarily characterized through amplicon sequencing, thereby providing 378 

limited functional resolution of microbiome structure. Increasing the resolution of phenotyping of 379 

quantitative traits has been shown to improve the precision and detection of QTLs67. Thus, 380 

integrating microbial genomics into microbiome QTL analysis plays dual purpose; increasing the 381 

ecological resolution with which microbial traits may be mapped, and second, affording the 382 

identification of the reciprocal microbial adaptations that drive plant-microbe interactions. In this 383 

investigation, we addressed these challenges by integrating amplicon and shotgun metagenome 384 

sequencing to identify microbiome QTLs. 385 

 One major difference between the amplicon and contig QTL analysis is the number of 386 

lineages for which QTLs were identified. In this regard, amplicon-based sequencing provided a 387 

broader picture and was able to capture QTLs of both abundant and relatively rare rhizobacterial 388 

lineages. In contrast, the majority of contig QTLs mapped to the most predominant lineages, yet 389 

failed to identify QTLs for more rare lineages. Nevertheless, besides the fact that the shotgun-390 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/


based approach provided functional insights into the associated bacterial taxa, the size of the 95% 391 

confidence interval of the QTL region was significantly smaller using contig QTLs, with a median 392 

size of just 6.47 Mbp compared to 58.56 Mbp for the amplicon-based QTL regions. Furthermore, 393 

for Streptomyces, the number of unique QTLs identified was greater in the contig-based approach. 394 

Thus, we identified a trade-off between amplicon and shotgun-based technologies, whereby 395 

amplicon sequencing provides a deeper view into broad community structure, whereas shotgun-396 

based approaches provided a more nuanced picture. In particular, the smaller regions identified by 397 

our contig-based metagenome mapping provided considerably more functional insights as it 398 

enabled us to analyze the genomic content contained in the regions linked to Cellvibrio and 399 

Streptomyces. 400 

The increased QTL mapping resolution provided by shotgun-based phenotyping of the 401 

microbiome combined with SNP analysis provided a novel approach to leverage both the host 402 

diversity of the RIL and the natural microbiome population diversity to disentangle the reciprocal 403 

genomic adaptions between plants and natural microbiomes. For example, understanding the 404 

driving forces driving the abundances of rhizospheric Streptomyces is of increasing interest and 405 

has been linked to both iron68 and water limitations53. Here, we pinpointed the genetic basis for 406 

these interactions among the short list of highly expressed root-specific tomato genes linked 407 

positively to Streptomyces abundance including both aquaporin and FIT. More specifically, the 408 

aquaporin (SlTIP2.3) has the highest fold change in the roots of all tonoplast intrinsic proteins in 409 

the tomato genome32,33, while the FIT gene has been shown to largely control iron homeostasis in 410 

tomato34,35.  411 

In addition to these high priority genes, many other key genes were identified in these 412 

regions. Those previously shown to contribute to microbiome assembly included 1-413 

aminocyclopropane-1-carboxylate oxidase, which plays a central role in plant regulation of various 414 

processes including bacterial colonization and root elongation69 and alpha-humulene/(-)-(E)-beta-415 

caryophyllene synthase, a terpene known to modify microbiome structure39. In addition, numerous 416 

genes related to growth, development and cell wall loosening70 known to be involved in microbial 417 

colonization71 and aluminum-activated malate transporter, which has been linked to microbiome 418 

mediated abiotic stress tolerance40.  419 

The historic impact of domestication on genomic regions linked to microbiome assembly 420 

is also apparent (Figure 6, Supplemental Table 14, and Supplemental Figure 1). However, the 421 

processes and consequences of these sweeps, and possible subsequent recombination events on 422 

microbiome assembly remain unclear. In particular, the discontinuity of sweeps in microbiome 423 

QTL regions suggests that evolutionary pressure for recombination of key (microbiome 424 

associated) traits, such as iron homeostasis and water transport, may have acted against selective 425 

sweeps. The results obtained here provide the means to illuminate such complex eco-evolutionary 426 

questions, forming the basis of integrating the microbiome into the classic genotype by 427 

environment model of host phenotype10. 428 

From the microbial perspective, the increased resolution in QTL analysis afforded by our 429 

shotgun-based approach also provided a window into the host-specific bacterial adaptations to wild 430 

and modern alleles. In particular, the SNP QTL analysis demonstrated that genes related to the 431 

degradation of various plant-associated polysaccharides in Streptomyces were highly associated 432 

with various modern tomato alleles. It should be further noted, that many other functions were 433 

identified in both plant and microbe, such as trehalose metabolism, polyamine metabolism and 434 

acetolactate synthase, suggesting either a direct link through cross-feeding72 or signaling73, or 435 

perhaps shared ecological pressures. While the microbial adaptations related to polysaccharides74, 436 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/


vitamins75 and iron metabolism46,68 are well documented in relation to plant colonization, here we 437 

demonstrate for the first time that the reciprocal adaptations that drive plant-microbe interactions 438 

can be investigated simultaneously to uncover their genetic architecture in both host and 439 

microbiome. 440 

4. Methods 441 

4.1 Greenhouse and Lab work 442 

4.1.1 Recombinant inbred line population 443 

100 lines of an F8 recombinant inbred line (RIL) population derived from the parental lines 444 

Solanum lycopersicum cv. Moneymaker (Modern) and Solanum pimpinellifolium L. accession 445 

CGN14498 (Wild) were used23. A high density map produced from this population was used to 446 

map QTLs26. 447 

4.1.2 Growth conditions for RIL 448 

The soil was collected in June 2017 from a tomato greenhouse in South-Holland, The Netherlands 449 

(51°57’47”N 4°12’16”E). The soil was sieved, air dried, and stored at room temperature until use 450 

in 2019. Before the beginning of the experiment, soil moisture was adjusted to 20% water by 451 

volume using deionized water. All soil was homogenized by thorough mixing and allowed to sit, 452 

covered by a breathable cloth, in the greenhouse for one week prior to potting. The soil was then 453 

homogenized once again and then potted. Each pot was weighed to ensure all pots were 175g±0.5 454 

(wet weight). Duplicate pots for each accession were planted, as well as 6 replicates of each 455 

modern and wild parental accession, and 8 bulk soil pots that were left unseeded. Each replicate 456 

was prepared simultaneously. Planting was done separately representing biological replicates. 457 

 458 

In each pot, 3 seeds were planted in a triangular pattern to ensure the germination success for all 459 

pots. The first seedling to emerge in each pot was retained and others were removed after 460 

germination. All pots were randomly distributed in trays containing approximately 10 plants. 461 

Throughout growth, careful attention was given to randomize the distribution of plants. First, tray 462 

location and orientation with relation to each other were randomized on a nearly daily basis. In 463 

addition, the distribution of plants within trays was randomized three times during growth. All pots 464 

were kept covered until germination, which was scored daily. After germination, plants were 465 

visually monitored and watered at the same rates. To minimize the impact of environmental 466 

differences between pots on microbiome composition, the watering regime for all plants was 467 

standardized and leaks from the bottom of the pot and overflows were completely prevented. To 468 

achieve this, a minimal volume (2.5 mL to 5.0 mL) of water was used at each watering. This 469 

strategy was successful as washout was never observed. Moisture content was measured by 470 

weighing the pots at the middle and end of the experiment to ensure all pots had similar moisture 471 

contents. 472 

4.1.3 Harvesting and processing of plant materials 473 

All plants had between 5-7 true leaves at harvest (Supplemental Table 1). Plants were gently 474 

removed from the pot and roots and were vigorously shaken. Soil that remained attached to the 475 
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roots after this stage was considered the rhizosphere. The remaining bulk soil and rhizosphere 476 

(plus roots) fractions were weighed. The root and attached rhizosphere fraction were treated with 477 

4 mL of lifeguard, vortexed and sonicated. Roots were then removed. The remaining rhizosphere 478 

sample was then stored in LifeGuard Soil Preservation Solution (Qiagen) at -20 °C until DNA 479 

extraction. 480 

The dry weight of shoots was measured after drying at 60°C. The dry weight of the bulk 481 

soil was measured after storing at room temperature in open paper bags for 1 month. The DNA 482 

was extracted using the DNeasy PowerSoil extraction kit (Qiagen). The protocol was optimized 483 

for the soil in the following manner: each sample was vortexed and then a volume of approximately 484 

1.5 mL was transferred into 2 mL tubes. This subsample was centrifuged at 10,000g for 30 seconds 485 

such that a pellet was formed. The supernatant was removed, and a new subsample was transferred, 486 

and centrifuged until the total volume of the original sample, without sand, had been transferred 487 

to the 2 mL tubes. The resulting pellet was recalcitrant to disruption through bead beating, and 488 

therefore was physically disrupted by a pipette tip before proceeding with DNA extraction 489 

protocol. In test samples, DNA extractions from the sand fraction yielding no, or marginal levels 490 

of DNA. 491 

4.2 Amplicon and shotgun metagenomics analysis 492 

4.2.1 rRNA amplicon sequence processing  493 

All DNA was sent to BaseClear (Leiden, The Netherlands) for both 16S and 18S 300 bp paired-494 

end amplicon sequencing (MiSeq platform). MiSeq primers targeted the V3-V4 region of Bacteria: 495 

341F CCTACGGGNGGCWGCAG, 805R GACTACHVGGGTATCTAATCC. In total, 496 

20,542,135 16S read pairs over 225 samples were generated. The raw reads were processed using 497 

the DADA2 workflow (v1.14.1) to produce amplicon sequence variants (ASV) and to assign 498 

taxonomy76. ASVs tagged as non-bacterial, chloroplast, or mitochondria were removed. Next, 499 

ASV counts were normalized using the cumulative sum scaling (CSS) and filtered based on the 500 

effective sample size using the metagenomeSeq package (v1.28.2)77. Differential abundances 501 

between rhizosphere and bulk soil were determined using the eBayes function from the limma 502 

package. Enriched rhizosphere ASVs with a greater than log(2) fold change in abundance were 503 

analyzed based on their presence and absence, standard deviation and mean values. Using these 504 

statistics, stochastic ASVs (<50% of samples) were removed from further analysis. 505 

4.2.2 Metagenomics analysis 506 

For the one set of replicates for each accession, paired-end sequence read libraries were generated 507 

in the length of 150 bp per read on NovaSeq paired-end platform by BaseClear B.V. 508 

Demultiplexing was performed before the following analysis. It is computationally expensive to 509 

assemble the 114 read libraries all at once. Therefore, a strategy of (merging) partial assemblies 510 

was undertaken. Two assemblers were used to create the assembled contigs, namely SPAdes 511 

(version 3.13.2)78 and MEGAHIT (version 1.2.9)79. Assembly quality was assessed by running 512 

MultiQC (version 1.8)80 with Quast Module81(Supplemental Figure 2). First, 6 modern parents, 5 513 

wild parents and 1 bulk soil sample were co-assembled via SPAdes with the metagenomic mode 514 

and parameter of -k 21,33,55,99, generating the first assembly (A1). Subsequently, a second 515 

assembly (A2) was done using the unmapped reads from the remaining metagenomes using 516 

MEGAHIT with the parameter of --k-list 27,33,55,77,99. The third assembly (A3) was performed 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473370doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473370
http://creativecommons.org/licenses/by-nc-nd/4.0/


similarly as A2, however included the unmapped reads, ambiguously mapped reads, and mapped 518 

reads with a low mapping quality score (MapQ < 20) (Supplemental Table 18). Read mapping was 519 

done with BWA-MEM with default settings82 and SAMtools was used to convert resulting SAM 520 

files into sorted and indexed BAM files (version 1.10). Extraction of these reads were conducted 521 

by samtools bam2fq. Redundancy between assemblies was evaluated by alignment to A1 via 522 

nucmer package of MUMmer with --maxmatch option (version:4.0.0)83.  523 

 524 

Firstly, 111.5 Gbp of reads from the parental samples were assembled, labelled as A1 and 525 

yielded a total assembly length of 8.6 Gbp with the largest contig of 933.0 kilobase pairs (Kbp). 526 

After aligning the reads from RIL samples to A1, unmapped reads, ambiguously mapped reads, 527 

and mapped reads with a low mapping quality score (MapQ < 20) were retrieved and assembled, 528 

yielding the second and third assembly (A2 and A3). Specifically, A2 stemmed from solely the 529 

unmapped reads while A3 included the ambiguously mapped reads and mapped reads with MapQ 530 

< 20 in addition to the unmapped reads. A2 and A3 produced a total assembly length of 9.6 Gbp 531 

and 14.0 Gbp, with the largest contig of 56.2 Kbp and 86.3 Kbp respectively. There were 1.2, 2.0 532 

and 2.8 million contigs with the length over 1 Kb for A1, A2 and A3 respectively. In particular, 533 

912 contigs in A1 were greater or equal to 50 Kbp whereas 1 or 2 such large contigs were 534 

successfully assembled in A2 or A3. The detailed assembly statistics is given in Supplemental 535 

Table 18 and the numbers of contigs with different ranges of length for each assembly are 536 

presented in Supplemental Figure 2. 537 

 538 

The sequence similarities of the contigs in each assembly (≥ 1 Kbp) were compared using 539 

the nucmer package in MUMer. No contigs in A2 were reported to share an overlapped region 540 

with A1, therefore contigs in A1 and A2 could be merged directly. When A3 was aligned to A1, 541 

1.1% of the total length (≥ 1 Kbp) of A3 was reported to be overlapped with A1, however, only 18 542 

contigs from A3 were 100% identical to regions in larger contigs in A1. The sensitivity of filtering 543 

the overlapping contigs was evaluated by a benchmarking test using a random RIL sample to 544 

calculate the mapping rates (Supplemental Figure 3). 83.4% reads were mapped to A1+A3 at 545 

MapQ ≥ 20 without filtering. Excluding the contigs from A3 that were completely and identically 546 

covered by A1, the mapping rate was nearly the same as the one without filtering. Nevertheless, 547 

the removal of all aligned contigs in A3 resulted in a slight drop of mapping rate to 82.6%. To 548 

conclude, the final assembly was determined as A1+A3 with the 18 redundant contigs from A3 549 

removed. 550 

 551 

To assess the overall assembly quality and quantify the abundance of contigs among all 552 

samples, metagenomic reads were mapped to A1, A1+A2 and A1+A3 (deduplicated) respectively. 553 

Afterwards, the mapping rates were calculated for the mapped reads with MapQ > 20 in each 554 

sample. As shown in Supplemental Figure 4, approximately 70% reads among rhizosphere 555 

samples could be mapped to A1, while the mapping rates were 55% to 65% in the bulk soil 556 

samples. With the unmapped reads assembled and added to A1, the mapping rates for A1+A2 557 

increased by 10%. The read recruitment was further improved by assembling and adding 558 

ambiguously mapped reads and mapped reads with low MapQ in the final assembly (A1+A3).  A1 559 

as well as de-replicated A3 were merged to acquire the final assembly. All the ‘contigs’ mentioned 560 

below are referring to the contigs in this final assembly. 561 
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4.2.3 Binning of metagenomic contigs 562 

Metabat2 (version 2:2.15)84 was used for assigning the contigs into genomic bins. Based on tetra-563 

nucleotide frequency and abundance scores, 588 genomic genomics bins were generated. 564 

Afterwards, genomic quality of those genomes was evaluated by CheckM (version: 1.1.1)28 with 565 

the command “checkm linage_wf” (Supplemental Table 9). The 33 genomes displaying the 566 

completeness larger than 90% and contamination smaller than 5% were used for further study as 567 

quantitative traits. 568 

4.2.4 Making phenotype files based on contig depth 569 

Read counts for each position on the assembled contigs were acquired using bedtools genomecov 570 

(version: 2.29.2)85. A custom Python script was applied to calculate the average depth (defined as 571 

the number of total mapped reads divided by contig length) and coverage (defined as the number 572 

of covered base pairs divided by contig length) of every contig. Furthermore, the average 573 

abundance of contigs assigned into a bin was calculated for the high-quality genomic bins detected 574 

by CheckM28.  575 

4.2.5 Feature selection 576 

Average depths of the contigs were first normalized using the cumulative sum scaling (CSS) and 577 

filtered based on the effective sample size using metagenomeSeq package (v1.28.2)77. Differential 578 

abundance analysis was performed by moderated t-tests between groups using the makeContrasts 579 

and eBayes commands retrieved from the R package Limma (v.3.22.7)86. Obtained P-values were 580 

adjusted using the Benjamini–Hochberg correction method. Differences in the abundance of 581 

contigs between groups were considered significant when adjusted P-values were lower than 0.01 582 

(Supplemental Table 19).  583 

 584 

In either comparison, the contigs that were significantly enriched in the rhizosphere were 585 

gathered and regarded as the statistically rhizosphere-enriched contigs after removing the 586 

replicated ones. To perform QTL analysis for the abundance of these enriched rhizosphere contigs, 587 

only the contigs with biological meanings were kept, i.e. the log (2) fold-change of mean values 588 

for the normalized abundances of RIL and bulk samples should be greater than 2, and the contig 589 

should be in enough depth with at least the mean value of a group larger than 1. This selection step 590 

resulted in 1249 rhizosphere-enriched contigs in the end. The statistics of the filtered normalized 591 

abundance were further inspected based on the presence and absence of contigs, standard deviation 592 

and mean values of the counts.  593 

4.2.6 Taxonomic and functional annotation of the metagenome 594 

Taxonomic classifications were assigned to the contigs in the final assembly using Kraken2 595 

(version: 2.0.8)29 based on exact k-mer matches. A custom Kraken2 database was built to contain 596 

RefSeq complete genomes/proteins of archaea, bacteria, viral, fungi and protozoa. Univec_Core 597 

was also included in the custom database (20200308). Using the Kraken2 standard output, a python 598 

script based on TaxonKit87 was utilized to add full taxonomic names to each contig in the format 599 

of tab-delimited table. 76.22% of the contigs > 1kb were classified. Among the contigs > 10kb, up 600 

to 99.44% contigs were classified. Prokaryotic microbial genes were predicted by Prodigal 601 

(version: 2.6.3)88 with metagenomics mode. 10,246,55 genes were predicted from contigs > 1kb 602 

(Supplemental_Table_8). Open reading frames (ORFs) on contigs >10kb were annotated by 603 
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prokka (v1.14.5) and the Streptomyces ASV5 bin (MAG.72) was further annotated by DRAM 604 

(v1.2.0) integrating UniRef, Pfam, dbCAN and KEGG databases89. 605 

4.2.7 Single Nucleotide Variant analysis 606 

To investigate strain level QTLs, we mapped Single Nucleotide Variants (SNV) identified using 607 

inStrain on the 1249 contig enriched genomes. A total of 555,382 and 535,432 SNPs were 608 

identified in the modern and wild parental metagenomes respectively. Of these, 162,299 and 609 

142,349 SNPs were unique to each dataset respectively, as they either contained only reference 610 

alleles or did not exceed the inStrain SNP calling thresholds. For each unique SNP locus, coverage 611 

in the other dataset was determined using SAMtools depth after read filtering with settings 612 

comparable to inStrain, and was considered identical to the reference allele frequency. Including 613 

the unique SNPs, this resulted in a final set of 697,731 SNPs. To select SNPs that showed 614 

differential reference allele frequencies between MM and P, first the difference in reference allele 615 

frequency (MM – P) was calculated per SNP. From the distribution of all SNPs, the 95% 616 

confidence interval (CI) was determined to select the 5% (30,911) most different SNPs 617 

(Supplemental Figure 5). SNPs were further selected using a Fisher’s exact test based on the allele 618 

read count differences between MM and P. P-values were sorted, and a final selection of 15,026 619 

differentially abundant SNPs distributed over 1,037 contigs was obtained using a Benjamini-620 

Hochberg false discovery rate (FDR) correction of 0.01. SNV allele read counts were extracted 621 

from the RIL dataset using the pysam Python package after filtering with settings comparable to 622 

inStrain. 623 

4.2.8 Quantitative Trait Locus Analysis 624 

The QTL analysis linking selected amplicon, contig, bin, and SNV features with plant loci was 625 

performed using the R package R/qtl225. Pseudomarkers were added to the genetic map to increase 626 

resolution, with a step distance of 1 Mbp between the markers and pseudomarkers. Plant genome 627 

probabilities were calculated using the genetic map with pseudomarkers, plant loci cross data and 628 

error probability of 1E-4. Plant locus kinship matrix was calculated as proportion of shared alleles 629 

using conditional allele probabilities of all plant chromosomes, which were calculated from the 630 

plant genome probabilities. A genome scan using a single-QTL model using a linear mixed model 631 

was performed on the SNP allele read counts as phenotypes, plant genotype probabilities as input 632 

variables and as covariates the number of leaves, harvest day, rhizosphere soil weight (g), soil 633 

starting weight (g) and plant dry weight (g). The log10 likelihood (LOD) score was determined for 634 

each plant locus SNP allele combination. A permutation test was performed with 1000 635 

permutations to assess the distribution of the LOD scores. The 95% quantile was used as threshold 636 

for the selection of LOD peaks, as well as a P = 0.95 Bayes credible interval probability. 637 

4.3 Independent validation of QTLs through bulk segregant analysis 638 

To validate the QTLs, 33 Solanum lycopersicum cv. Moneymaker (Modern), 30 Solanum 639 

pimpinellifolium L. accession CGN14498, and 77 RIL accessions (with replicates of 4 each) were 640 

grown and their microbiomes characterized through 16S sequencing. Parental lines and RIL 641 

accessions were germinated in pots filled with 300 g agricultural soil. For each accession, were 642 

planted with six plants per replicate pot. The plants were arranged randomly in the growth chamber 643 
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(25°C, 16h daylight) and watered every day. Bulk soil samples without plants were used as controls 644 

(N = 31). 645 

 646 

Rhizospheric soil was collected according to standard methods90. In order to synchronize the 647 

developmental stage, the plants were harvested after 21 days, or when the 3rd trifoliate leaf was 648 

reached. The soil loosely attached to the roots was removed and the entire root system was 649 

transferred to a 15 mL tube containing 5 mL LifeGuard Soil Preservation Solution (MoBio 650 

Laboratories). The tubes were vigorously vortexed and sonicated. Subsequently, the roots were 651 

removed and at least 1 g (wet weight) of rhizospheric soil was recovered per sample for RNA 652 

extraction. For the bulk soil samples, approximately 1 g of soil was collected and mixed with 5 653 

mL of LifeGuard solution. 654 

 655 

To extract rhizospheric DNA, PowerSoil Total DNA/RNA Isolation Kit (MoBio Laboratories, 656 

Inc., USA) was used in accordance with manufacturer’s instruction. Rhizospheric DNA was 657 

obtained using RNA PoweSoil DNA Elution Accessory Kit (MoBio Laboratories, Inc. USA). The 658 

quantity and quality of the obtained DNA was checked by ND1000 spectrophotometer (NanoDrop 659 

Technologies, Wilmington, DE, USA) and Qubit 2.0 fluorometer (ThermoFisher Scientific, USA). 660 

DNA samples were stored at -20°C until further use. 661 

 662 

The extracted samples were used for amplification and sequencing of the 16S rRNA, targeting the 663 

variable V3-V4 (Forward Primer= 5’CCTACGGGNGGCWGCAG-3’ Reverse Primer= 5’-664 

GACTACHVGGGTATACTAATCC-3’) resulting in amplicons of approximately ~460 bp. Dual 665 

indices and Illumina sequencing adapters using the Nextera XT Index Kit were attached to the V3–666 

V4 amplicons. Subsequently, library quantification, normalization and pooling were performed 667 

and MiSeq v3 reagent kits were used to finally load the samples for MiSeq sequencing. For more 668 

info please refer to the guidelines of Illumina MiSeq System. The RDP extension to PANDASeq91, 669 

named Assembler92, was used to merge paired-end reads with a minimum overlap of 10 bp and at 670 

least a Phred score of 25. Primer sequences were removed from the per sample FASTQ files using 671 

Flexbar version 2.593.  672 

5. Data availability 673 

The sequencing data generated in this study are available under ID BioProject ID PRJNA787039 674 

(16S amplicons) and PRJNA789467 (shotgun metagenomics). Bacterial ASV reference 675 

sequences, and metagenome assembled genomes are available at https://osf.io/f45ek/. 676 

 677 

6. Code availability 678 

The code used in the analysis can be found at https://osf.io/f45ek/. 679 
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