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Abstract:Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a debili-
tating illness characterised by severe fatigue and associated with immune dysfunction. Previous studies
of DNAmethylation (epigenetic changes that can affect the gene transcription) have found evidence of
changes in immune cells for ME/CFS. However these studies have been limited by their small sam-
ple size, precluding the ability to detect changes to methylation of smaller magnitude. Therefore, to
achieve a larger sample size and detect small changes to DNA methylation, we aggregate three com-
parable datasets and analyse them in unison. We find 10,824 differentially methylated genes, with a
very small average change. We then turn our attention to the network structure of the Protein-Protein
interaction, which we built from the currently known interactions of relevant proteins, and localising
the network cartography framework, we identify 184 hub genes. A distinct structuring emerges, with
different hub types playing differing, meaningful, biological roles. Supporting previous theories about
ME/CFS, Gene ontology enrichment analysis of these hubs reveal that they are involved in immune
system processes, including response to TGF-𝛽 and LPS, as well as mitochondrial functioning. We also
show that dopaminergic signalling may potentially contribute to immune pathology in ME/CFS. Our
results demonstrate the potentiality of network cartographic approaches in shedding light on the epi-
genetic contribution to the immune dysregulation of ME/CFS.

1

Introduction

Chronic Fatigue Syndrome, also known as Myalgic Encephalomyelitis (ME/CFS), is a devastating and
heterogeneous disease characterised by severe fatigue that is made worse by exertion (Carruthers et al.,
2011; Fukuda et al., 1994). The disease probably results from immune dysregulation (Cortes Rivera
et al., 2019; Komaroff, 2019; Missailidis et al., 2019; Morris and Maes, 2013), in response to previous
viral infection, such as Sars-Cov-2 (Covid-19) (Komaroff et al., 2021). The symptoms of Long Covid are
also similar to ME/CFS, but it is too early to fully delineate the relationship between these two illnesses
(Jason et al., 2021; Wong and Weitzer, 2021). None the less, it is now more important than ever to
understand the pathophysiology of ME/CFS, and its potential implications on Long Covid.

Despite the huge impact ME/CFS has on the lives of its sufferers, efforts to find stable immune abnor-
malities have been largely unsuccessful. This is especially true of the investigations of cytokines, which
often have conflicting results (Blundell et al., 2015; Corbitt et al., 2019). However these variations are
perhaps unsurprising as cytokines function in an autocrine and paracrine manner, so their levels in the
blood do not necessarily represent levels of inflammation elsewhere (Vanelzakker et al., 2019). There
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have also been varying perturbations to the T cell populations found in ME/CFS, as well as B cells and
natural killer (NK) cells (EkuaWeba Brenu et al., 2014; Cliff et al., 2019; Curriu et al., 2013). The source
of these varying changes is unclear. Still, it is likely that the pathophysiology of ME/CFS is dominated
by the effects of this inflammation (Cortes Rivera et al., 2019; Komaroff, 2017; Morris and Maes, 2013).

DNA methylation is an epigenetic modification to DNA strands which can affect gene transcription
(Moore et al., 2013). Methylation can be inherited but can also be moderated by environmental cir-
cumstances during a person’s life (Martin and Fry, 2018; Matosin et al., 2017). As a result, if there
are methylation changes in ME/CFS immune cells, these may function differently to that of healthy
controls, even in response to habitual levels of signalling molecules (such as cytokines). Attempts at
finding methylation changes in immune cells of ME/CFS have been moderately successful (E. Brenu
et al., 2014; De Vega et al., 2017, 2014; Helliwell et al., 2020; Herrera et al., 2018; Trivedi et al., 2018;
Vega et al., 2018). Previous studies have been often limited by small patient samples, precluding the
detection of small changes in gene methylation. Data acquisition through clinical procedure is, indeed,
a delicate, time and resource consuming, task. Yet, the volume of publicly available datasets is rapidly
growing.

Here, we hypothesise the presence, in the cells of patients with ME/CFS, of a large number of slightly
differentially methylated genes (DMGs) potentially missed by studies with smaller sample sizes. To
test this, we firstly merged and reconciled three highly comparable studies with publicly available data
(De Vega et al., 2017, 2014; Herrera et al., 2018). Secondly, we built a Protein-Protein interaction net-
work, looking for known interactions of proteins corresponding to differentially methylated genes in
the STRING database (Szklarczyk et al., 2021, 2019). Then, adapting the notion of network cartography
(Guimerà and Amaral, 2005) to our scenario, we identified network hubs (genes playing a central role
between the DMGs). Finally, we conducted a Gene Ontology (GO) enrichment analysis of these genes.

Our data enrichment and network analysis shed light on the origins of ME/CFS immune pathology.
In particular, we found that the hub proteins, 0.017% of the differentially methylated genes, interact
with over half of the Protein-Protein interaction network. Moreover, the different hub types play dis-
tinct, and biological relevant, roles in ME/CFS pathology as is evidenced by their network properties
and by the results of the GO enrichment analysis. Overall, we found that terms associated to response
to cytokine, lipopolysaccharide (LPS) and transforming growth factor beta (TGF𝛽) feature in the GO
analysis, as well as terms related to dopaminergic processes. This suggests that dopaminergic deregu-
lation may underlie some immune dysfunction in ME/CFS. It is not yet clear whether long covid will
share dysregulated responses to these molecules, however dopaminergic processes may play a role in
long covid as dopamine has already been shown to play a role in COVID-19 itself Nataf (2020a)

2

Materials and methods

We selected and merged three different, but comparable, datasets (De Vega et al., 2017, 2014; Herrera
et al., 2018) and gathered a combined list of probes. Using METAL (Willer et al., 2010) we filtered for
significant probes and produced a list of Differentially Methylated Genes (Maksimovic et al., 2021).
Then, starting from these DMGs, we built a Protein-Protein interaction networks assembling known
interactions in humans present in the STRING database (Szklarczyk et al., 2021, 2019). We adapted
Guimerà and Amaral (2005)‘s network cartography methodology to characterise nodes’ roles in the
Protein-Protein network. identifying different types of central nodes (hub types). Then, we used TopGO
(Alexa et al., 2006; Alexa, 2021) to discover enriched Gene Ontology terms, and we performed cluster
analysis (using GoFigure! (Reijnders and Waterhouse, 2021)).

To better understand the role played by the hubs, we computed the distribution of minimum distances
between each node in the network and the set of hubs. We repeatead the same analysis for each set of
hub types.

We contrasted our results with those found randomly sampling an equally sized set of genes. For these
randomly selected genes we assessed distance distributions, and we searched for significant Gene On-
tology terms.

We offer a schematic overview of our analytic workflow in fig. 1.
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Figure 1 A schematic view of our analytical
pipeline. In green the external data sources
we used in our analysis. In purple the novel
steps we introduce, namely: the merging of
three different datasets and the localisation of
Guimerà and Amaral (2005) network analytic
framework. In pink the outcomes of our anal-
ysis (a list of differential methylated genes, a
classification of genes in differen network hub
types, and a list of enrichedGeneOntology net-
works). In azure some of the software we used.
In yellow the analytic pipeline for the valida-
tion (random) data: as explained in the results
section, we could not perform clustering on the
validation GO terms because not enough terms
we significant.
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2.1. Data From NCBI’s Gene Expression Omnibus website (GEO, (Barrett et al., 2012; Edgar et al.,
2002)), we obtained three datasets covering gene methylation of peripheral blood mononuclear cells
(PBMCs) in ME/CFS (De Vega et al., 2017, 2014; Herrera et al., 2018) (accession numbers GSE93266,
GSE59489, andGSE156792 respectively). All three datasetswere producedusing the platformGPL13534,
Illumina HumanMethylation450 BeadChip. The data is analysed using the GEO2R service (Barrett
et al., 2012) provided by GEO. The processed data provided by the authors of the original studies is
analysed by GEO2R and each probe is given a log fold change (LogFC) and p-value. We performed p-
value adjustment via false discovery rate (FDR) as suggested by Benjamini and Hochberg (1995). These
datafiles are then imported into R.

We identified the probes that were assessed in all three studies. Each probe, for each study, was anno-
tated with an effect direction based on the sign of log fold change (LogFC) and given a weight based
on the sample size of the relevant study. We imported probe identifier, adjusted p-values, effect direc-
tion and study weight in METAL (Willer et al., 2010) and performed a sample size based analysis. We
filtered for probes with a p-value less than 0.05, which we annotated with associated gene names and
gene regions as found in the original datasets. We discarded probes not related to a gene or associated
to a contradictory effect direction across studies. Analysis were performed in R (Team, 2021).

2.2. Probe annotation and gene expression Starting from the identified significant probes, we pro-
ceeded to identify genes of interest for six gene regions: namely, TSS200, TSS1500, Body, 3’UTR, 5’UTR,
and 1st exon. We considered for analysis all the genes present in probe with a splice variant correspond-
ing to one of the six regions.

We approximated gene methylation level in each region covered by our study following the work of
Maksimovic et al. (2021). Methylation in different gene regions results in differing effects on expression
(Moore et al., 2013; Varley et al., 2013). The most consistent relationship is an inverse relationship
between promoter associated regions and gene expression (Martino and Saffery, 2015; Moore et al.,
2013). This may also apply to the 5’UTR and 1st exon regions (Brenet et al., 2011; Moore et al., 2013;
Varley et al., 2013). In the gene body and 3’UTR, the relationship with gene expression is more complex
but may be positive (Martino and Saffery, 2015; Maussion et al., 2014; McGuire et al., 2019; Yang et al.,
2014). We calculated average LogFC for each analysed probe as the mean of the LogFCs over each
study per probe. Let 𝐺𝑅 be the total (weighted) LogFC of a gene 𝐺 over a certain region 𝑅, that is, the
sum of the (weighted) LogFCs over all the probes’ in region 𝑅 annotated to that gene. For the inverse
regions, 𝐺𝑅 < 0maymean upregulated gene expression whilst in the positive regions𝐺𝑅 > 0maymean
upregulated gene expression. More details in the Supplementary Material.

Therefore, we classified genes with 𝐺𝑅 greater than zero as potentially upregulated and genes with
𝐺𝑅 less than zero as potentially down regulated. For upregulated genes, we added the sum of 𝐺𝑅 in
inverse regions per gene and subtracted the sum of the 𝐺𝑅 of the positive regions; gene regions with
a 𝐺𝑅 suggesting down regulation would cancel out a degree of the 𝐺𝑅 suggesting upregulation. For
upregulated genes we defined their total LogFC as 𝐺𝑡 =

∑
⊕ 𝐺𝑅 −

∑
⊖ 𝐺𝑅 where ⊖ and ⊕ denote the

inverse and positive regions respectively. Then, we discarded any upregulated genewith a negative total
logFC,𝐺𝑡 < 0, . Similarly, for downregulated geneswe defined their total LogFCas𝐺𝑡 =

∑
⊖ 𝐺𝑅−

∑
⊕ 𝐺𝑅

and we discarded any gene with a positive total logFC, 𝐺𝑡 > 0.

2.3. Protein protein interaction network We built a protein-protein interaction network (PPIN) from
upregulated and downregulated genes, using Network Analyst (Zhou et al., 2019) and the STRING
database (Szklarczyk et al., 2021, 2019). The network was constructed such that each node represents
a gene, and an edge connecting two nodes represents a known protein-protein interaction between the
proteins encoded by the genes. The protein-protein interactions came from the STRING database and
required a confidence score of at least 900. The confidence score is calculated by STRING and based on
the quality of each source of evidence for an interaction (VonMering, 2004). The only genes considered
for the network are the differentially methylated genes previously identified.

In this way, we obtained a zero-order network (that is, we considered only direct interactions) of which
we picked the giant connected component, comprising 4770 node (which we will refer to as “the net-
work” in the following).

Our method for identifying hub proteins builds upon the notion of network cartography, introduced by
Guimerà and Amaral (2005).

4 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473375
http://creativecommons.org/licenses/by/4.0/


Figure 2 For any node 𝑖 in our network, we
denote ⋆(𝑖) the network induced by the first-
order neighbours of 𝑖. That is, the set of nodes
of the network ⋆(𝑖) is given by 𝑖 and the all
nodes at most one step away from 𝑖; the edges
are given by all the edges in the original net-
work between any two node in the set of nodes
of ⋆(𝑖). The figure shows which nodes and
edges from the original network (left) are pre-
served in the induced network (right).

We defined the normalised degree, 𝑍𝑖 , of a node 𝑖 in the the network as its scaled and centralised degree:
𝑍𝑖 =

𝐷𝑖−𝐷

𝜎(𝐷)
, where 𝐷𝑖 is the degree of the node 𝑖, and 𝐷 and 𝜎(𝐷) are the the average and the standard

deviation of the degrees of all nodes in the network respectively.

We denote ⋆(𝑖) be the network induced by the first-order neighbours of 𝑖 (that is, 𝑖, the nodes at most
one step away from 𝑖, and all the interactions between these, see fig. 2). We denote 𝐷⋆(𝑖) the average
node degree over⋆(𝑖). Then, we define the participation coefficient of 𝑖, 𝑃𝑖 , as 𝑃𝑖 = 1− 𝐷⋆(𝑖)

𝐷𝑖
. This index

provides information about the connectivity of a node 𝑖 with respect to its local community. Notice
that, due to the constraints imposed by the sparsity of the network reconstruction, we substituted the
community identification step adopted in (Guimerà and Amaral, 2005) with a local averaging over the
neighbourhood.

Using the normalised degree and the participation score of each node, each gene was assigned a role
based on the cutoffs suggested by Guimerà and Amaral (2005). Specifically, nodes with a normalised
degree score 𝑍𝑖 ≥ 2.5 were designated as hubs. These nodes were further split into three role groups
based on participation scores:

• city hubs are the nodes with 𝑃𝑖 ≤ 0.3: their neighbours area all highly connected to each other;

• suburban hubs are the nodes such that 0.3 ≤ 𝑃𝑖 ≤ 0.75: they are connected to more than one
large cluster;

• transit hubs are the nodes with 0.75 ≤ 𝑃𝑖 : their neighbours are in general not part of large
clusters.

Using Graphs (James Fairbanks and Karpinski, 2021) in Julia (Bezanson et al., 2017), we computed the
distribution of minimum distances from each node in the network to any of the nodes in the set of all
hubs. We did the same for the sets of city hubs, suburban hubs, and transit hubs.

2.4. Gene Ontology enrichment analysis We performed gene ontology (GO) enrichment analysis
using the bioconductor package topGO (Alexa et al., 2006; Alexa, 2021) in R (Team, 2021). We used
a list of the hub genes abnormally methylated in ME/CFS, with a background list of all genes assayed
by the 450k array so to identify significantly enriched GO terms. We used the Gene Ontology Biologi-
cal Processes (GObp) dataset (Ashburner et al., 2000; “The gene ontology resource: Enriching a GOld
mine,” 2021) and an elimination algorithm provided by topGO (Alexa et al., 2006; Alexa, 2021; Ash-
burner et al., 2000; “The gene ontology resource: Enriching a GOld mine,” 2021), with a threshold of at
least 3 genes being annotated to a GObp term for inclusion in the analysis. Raw p-values provided by
topGO were corrected for false discovery rate. With the same methodology, we analysed the genes of
each hub type separately.

Using GO-Figure! (Reijnders and Waterhouse, 2021), we visualised the statistically significant GO
terms from all hubs together as well as each hub type separatelly; assessed semantic similarity; and
identified clusters in the semantic space, considering a similarity index cutoff (𝑠𝑖) of 𝑠𝑖 = 0.45, 𝑠𝑖 = 0.5,
and 𝑠𝑖 = 0.7. GO-Figure! (Reijnders and Waterhouse, 2021) assigned cluster names based on a list of
termsmanually selected from themost general terms for each possible process within the full list of GO
Terms (see Supplementary Material).
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Figure 3 (A) the distribution of minimum
distances from each node in the network to the
set of all hubs; in yellow the distribution for the
184hubs, in gray the distribution for each of the
random replicates of 184 genes. (B) the distri-
bution of minimum distances from each node
in the network to each of the sets of specific hub
types.

2.5. Validation To validate our results, we compared them to those we would get by sampling at ran-
dom equally sized set of the genes from the DMGs. For each random sample we repeated the same
analysis as above. We ran a total of 200 repetitions for the GO enrichment and 1000 repetions for the
distances distribution analysis.

2.5.1 Reproducibility Elaborated data and scripts can be found in a public repository github.com/officinadata/CFS_Proteomic.

3

Results

3.1. Probes and genes Combining the three datasets, we obtained a total of 478,165 probes to analyse.
Filtering for statistical significance at a level of 𝛼 = 0.05, we reduced the set to 42,439 probes, of which
32,318 associated with a gene. We computed total methylation change and loocked for evidence of up
or down regulation, finding 10,824 genes differentially methylated (5,532 genes up regulated and 5,292
down regulated). Of these, we discarded 4,354 genes with a small absolute average LogFC (|𝐺𝑠| < 0.01).

Summary Total Down Regulated Up Regulated

Number of genes 10824 5292 5532
Average estimated LogFC (abs) 0.103 -0.095 0.111
Median LogFC (abs) 0.053 -0.053 0.053
Highest LogFC (abs) 9.62 -9.662 3.304
Average Num Probes 3.41 3.39 3.43
Highest Num Probes 84 84 50

3.2. Hub Identification We built a zero-order network from the 4770 genes with |𝐺𝑠| > 0.01. The
protein protein interactions (PPIs) network contained 40811 edges (interactions between two proteins)
coded by genes. We computed 𝑍 and 𝑃𝑖 scores for each node in the network, and filtered as hubs those
184 proteins with a 𝑍 ≥ 2.5. We found that 63 of the associated genes to be downregulated and 121
upregulated. We classified hubs based on their 𝑃𝑖 scores into 61 Transit hubs, 40 suburban hubs, and
83 City hubs.

The edges connected to the 184 hubs include over half of all the edges in the network, and the set of
hubs and their first neighbours includes almost half of all genes in the network (2220).

We found that the genes in the network are significantly closer to the set of all hubs than random, as see
in fig. 3 (A) there are significantly more nodes one step away from the set and significantly less nodes
two steps away than in a random selection of a same sized set of nodes. This was accentuated for the set
of the 61 Transit hubs, whilst the set of City and Suburban hubs tend to be further away from the rest
of the networks, as visible in fig. 3 (B).

Downregulated proteins are predominantly Transit hubs (43%), whilst Transit hubs are 28% of the up-
regulated proteins. The proportions are reversed for City hubs (52% of upregulated and 32% of down-
regulated proteins).
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3.3. Gene Ontology enrichment Analysing the 184 hub genes, we identified 341 GO biological pro-
cess (GObp) significantly enriched. Of these, 131 terms are associated withmore than 50 genes. Briefly,
the terms of note include ones related to lipopolysaccharide (LPS), transforming growth factor𝛽 (𝑇𝐺𝐹𝛽),
cytokine production, reactive oxygen species (ROS), circadian rhythms, gene expression, G-protein cou-
pled receptor (GPCRs), dopaminergic signalling, inflammatory response, and MAPK cascade.

We found 82 were significant terms for the City hubs, 24 terms for the suburban hubs, and 386 terms
for the Transit hubs.

Dopamine is the only specific chemical signallingmolecule appearing for both City and Suburban hubs.
GPCR, phospholipase C, adenylate cyclase, and cytosolic calcium ion related terms also appear in both
lists. RNA and viral processes appear in both Transit and Suburban hubs GO terms. LPS, circadian
rhythms, inflammatory response, dopaminergic processes, and MAPK related signalling are common
themes in the City and Transit hubs lists. The only chemical to appear in all 3 lists is dopamine.
Dopamine appears in 5 terms in the City hubs list, and 1 term each in suburban and Transit hubs lists.
No theme runs through all 3 type of hubs.

3.3.1 City hubs The terms enriched inCity hubs aremainly related to signalling processes (44 terms).
Of these, 16 are related to GPCRs, 9 of which are related to adenylate cyclase modulating receptors. We
found 11 terms related to monoaminergic processes (5 related to dopaminergic processes). Glutamin-
ergic, GABAergic, acetylcholinergic, purinergic and opioidergic terms also feature in small numbers,
once again mainly to do with GPCRs. Calcium signalling and regulation of cytosolic calcium ion gradi-
ent terms appear as well, with 6 terms. In regards to immune system processes, inflammatory response,
lipopolysaccharide signalling, chemokine signalling, and positive regulation of inflammation terms are
enriched. Monocyte, neutrophil, dendritic cell, and general, cell chemotaxis also appear in the list.

3.3.2 Suburban hubs The Suburban Hubs featured 4 terms related to GPCRs, including both acti-
vating and inhibiting GPCRs coupled to adenylate cyclase. cAMP biosynthesis, protein kinase A and
phospholipase C activity also occur, along with RNA transcription processes. We also found terms re-
lated to dopamine receptor signalling pathway and to viral transcription.

3.3.3 Transit hubs Transit hubs had the most terms related to immune processes. We found 16
terms related to cytokine signalling, 4 to B cells and 5 terms to T cells respectively, 3 each related to
macrophages, leukocytes generally, and LPS. Interestingly viral process, regulation of defense response
to virus, and negative regulation of NF-kB are also enriched, as well as 6 terms related to theMAPK cas-
cade. We found terms related to growth factor and hormonal signalling but not to GPCRs. In total, 53
GO Terms include the word “signal.” Also of note, 9 terms related to RNA processes and 7 included the
word DNA, of which 11 terms related to transcription. Histone deacyelation also featured twice, as well
as both positive and negative regulation of gene expression, and histone phosphorylation. Circadian
rhythmic processes appeared, including circadian regulation of gene expression. Positive regulation of
reactive oxygen species production, cellular response to reactive oxygen species, and cellular response
to hydrogen peroxide also appeared in the list. Finally, the transit hubs also hadmultiple energy produc-
tion ormitochondria-related terms, including negative regulation ofmitochondrialmembrane potential
and negative regulation of glycolytic process.

We performed clustering analysis for the 131 terms enriched from the hubs and identified 20 different
groups at a similarity index cut off (𝑠𝑖) of 0.45 and 31 groups at 𝑠𝑖 = 0.7. These can be seen in fig. 4. As
seen in the figure, at both 𝑠𝑖 levels, clusters have been associated predominantly to immune processes,
and in lesser measure to dopamine was also selected by and GPCR signalling pathway.

In the following table we provide the identities of each cluster at the two 𝑠𝑖 levels.
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Figure 4 Clustering of GO Terms. (a): The
clustering of 131 GO Terms by GO-Figure! at
si = 0.45. Ordered by highest number of as-
sociated genes to lowest number of associated
genes. Identity of the clusters in text. (b): clus-
tering of the same terms by GO-Figure! at si =
0.7. Ordered by clusters with the highest num-
ber of associated genes to clusters with the low-
est number of associated genes. Identity of the
cluster in text.

cut off Terms

𝑠𝑖 = 0.45 1. G protein-coupled receptor signaling pathway, 2. cellular
response to dopamine, 3. positive regulation of cell population
proliferation, 4. cytokine-mediated signaling pathway, 5. immune
response, 6. sensory perception of pain, 7. cell-cell signaling, 8.
positive regulation of cytosolic calcium ion concentration, 9.
positive regulation of ERKl and ERK2 cascade, 10. positive
regulation of cell migration, 11. negative regulation of transcription
by RNA polymerase II, 12. regulation of cytokine production
involved in inflammatory response, 13. cell chemotaxis, 14.
inflammatory response, 15. wound healing, 16. Aging, 17.
locomotory behavior, 18. endocrine system development, 19.
positive regulation of DNA-binding transcription factor activity, 20.
response to hypoxia

𝑠𝑖 = 0.7 1. G protein-coupled receptor signaling pathway, 2. cell-cell
signaling, 3. positive regulation of cell population proliferation, 4.
cellular response to dopamine, 5. cytokine-mediated signaling
pathway, 6. adenylate cyclase-activating G protein-coupled receptor
signaling pathway, 7. regulation of cytokine production involved in
inflammatory response, 8. positive regulation of apoptotic process,
9. negative regulation of transcription by RNA polymerase II 10.
positive regulation of cytosolic calcium ion concentration, 11.
response to lipopolysaccharide, 12. positive regulation of cell
migration, 13. regulation of potassium ion transport, 14. leukocyte
migration, 15. blood circulation, 16. wound healing, 17. ephrin
receptor signaling pathway, 18. cell chemotaxis, 19. locomotory
behavior, 20. response to cAMP, 21. positive regulation of ERKl and
ERK2 cascade, 22. regulation of small GTPase mediated signal
transduction, 23. cognition, 24. Fe-gamma receptor signaling
pathway involved in phagocytosis, 25. regulation of hormone
secretion, 26. cellular response to reactive oxygen species, 27.
positive regulation of cell growth, 28. positive regulation of protein
kinase B signaling, 29. positive regulation of epithelial to
mesenchymal transition, 30. positive regulation of
phosphatidylinositol 3-kinase signaling, 31. stimulatory C-type
lectin receptor signaling pathway.

For the list of cluster members, see supplementary content.

Clustering of the individual hub types lists revealed a distinct structure to the terms annotated to each
type, see fig. 5. The City hubs reduced to 14 clusters, with very little overlap. Manual analysis of the
terms in each cluster revealed sets of processes which are related but may be better represented by a
general term rather than the terms chosen by GO-Figure!. However, the terms themselves clustered
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Figure 5 Clustering of GO Terms for Hubs.
(a): The clustering of 82 GO terms enriched
from the list of City hubs created on GO-
Figure! (b): clustering of the 24 terms by GO-
Figure! related to suburban hubs. (c): cluster-
ing of the 386 Transit hub GO terms. (d): clus-
tering of 82 randomly selected Transit hub GO-
terms for comparison to City hubs.

into immune, signal transduction and chemical signalling processes. The suburban hubs clustered into
3 clusters of little relation. Most crucially, the Transit hubs clustered into 46 individual clusters with a
huge degree of overlap. This may suggest that the Transit hubs do indeed represent genes involved in
many biological processes which are not necessarily highly related to each other. Overall we found that
the GO Terms resultant from the City hubs are more closely related than those of the Transit hubs.

Validating our results against random replications, we found that for 197 of 200 Gene Ontology valida-
tion resulted in no statistically significant enriched GO terms at 𝛼 = 0.05 (both for the set of all hubs
and for each hub type hub set). All of the three analyses that had some significant GO terms had only
one significant GO term in one analysis, therefore no clustering could be performed.

4

Discussion

For the first time we analysed the data from these three studies together, within a network analytic
framework. The three studies we selected share the same platform, the same diagnostic criteria, and the
same cell type. Thus, we considered the datasets highly compatible. The combined data includes 207
participants: almost double the size of the next largest methylation study of peripheral blood mononu-
clear cells (PBMCs) in ME/CFS (109 participants (Herrera et al., 2018)). This large sample size gives
us more power to detect small logFCs. Two of the original studies (De Vega et al., 2017, 2014) identi-
fied 826 and 5,544 DMGs respectively. The other original study does not report how many genes were
differentially methylated as it was looking for associations between methylation and single nucleotide
polymorphisms (SNPs) (Herrera et al., 2018). Another study on methylation in ME/CFS found 17,296
differentially methylated probes, annotated to 6,368 DMGs (Trivedi et al., 2018). This suggests that
whilst we did find 10,824 DMGs, it is not inconsistent with previous reports from smaller sample sizes.
Hence, as we hypothesised, we found a large number of DMGs in ME/CFS PBMCs, often with a small
LogFC.
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4.1. Limitations It is important to note that peripheral methylation does not necessarily represent
methylation in the central nervous system (Non and Thayer, 2015; Walton et al., 2016). Because of
the cell type analysed, the results discussed here focus on implications for the immune system. As
we used publicly available data, we can not directly correlate the changes seen in methylation with
symptomology or gene expression data of the same patient population. The protein-protein interaction
networks are intrinsically biased toward protein interactions that have already been studied. Likewise,
the array platform usedmay be biased towards known cancer related genes as it was originally invented
with these genes in mind (Barker et al., 2018; Non and Thayer, 2015). Thus, the hubs we identified
may be biased towards those proteins already well characterised and may be missing some less studied
proteins.

Moreover, whilst the gene expression can be indicated by the logFC methylation, the latter is not a per-
fect proxy: other factors may affect gene expression downstream of gene methylation. The relationship
between non promoter methylation and gene expression is complex. Different studies produced con-
trasting results about the effect of gene bodymethylation, finding both positive and inverse relationships
with gene expression, potentially depending on the methylation of other gene regions (Damgacioglu et
al., 2019; De Almeida et al., 2019; Jjingo et al., 2012; Moore et al., 2013; Tang et al., 2017; Yang et al.,
2014). Furthermore, the relationship may even be non-linear (Jjingo et al., 2012). While encouraging
results have already been shown (Damgacioglu et al., 2019; Levy et al., 2020; Silva et al., 2021; Zhong
et al., 2019), additional work needs to be done to robustly relate methylation changes with changes in
gene expression. Moreover, histone aceylation and microRNA (miRNA) changes have been found in
ME/CFS and these will change the transcription of genes (Almenar-Pérez et al., 2020; Ekua W. Brenu
et al., 2014; Brenu et al., 2012; Jason et al., 2011; Petty et al., 2016).

4.2. Interpreting the set enriched terms The results of theGeneOntology enrichment analysis of the
hub protein subtypes pivot around four themes touching on wider epigenetic changes, immune system
processes, signalling pathways, and dopaminergic process.

4.2.1 Methylation changes underlying wider epigenetic changes Our results strengthen the hy-
pothesis that epigenetics may play a role in ME/CFS (Almenar-Pérez et al., 2019; Cortes Rivera et al.,
2019; Vega et al., 2018). However, the methylation changes inME/CFSmay partially mediate the wider
epigenetic changes found in ME/CFS. Considering the list of GO terms for transit hubs, we identified
6 abnormal pathways related to the regulation of miRNA production and transcription. Furthermore,
Almenar-Pérez et al. (2020) found 8 upregulatedmiRNA in PBMCs ofME/CFS patients; our analysis in-
dependently identifies 5 of these genes as upregulated. Other studies have analysed miRNA expression
in ME/CFS (Almenar-Pérez et al., 2020; EkuaW. Brenu et al., 2014; Brenu et al., 2012; Nepotchatykh et
al., 2020; Petty et al., 2016) and one has attempted to integrate differential methylation with miRNA ex-
pression (Almenar-Pérez et al., 2019). We consider plausible that a degree of the miRNA abnormalities
found inME/CFSmay be caused by differential methylation of their genes. Additionally, histone acety-
lation pathways also appear in the list of enriched terms from transit hubs. One study in ME/CFS pa-
tients found elevated levels of HDAC2 andHDAC3, suggestive of decreased gene transcription (Jason et
al., 2011). Another suggests that hypoacetylation caused by upregulated expression of theHDAC family
may contribute to post exertional malaise (McGregor et al., 2019), a key feature of ME/CFS symptomol-
ogy (Beyond myalgic encephalomyelitis/chronic fatigue syndrome: Redefining an illness., 2015; Fukuda
et al., 1994). We found methylation changes suggestive of upregulation of multiple HDAC genes, in-
cluding HDAC3. Thus, the widespread methylation changes we found may contribute to the other
epigenetic abnormalities previously reported.

4.2.2 Responses to perturbed immune system processes In terms of immune system processes, a
few GO terms stood out. Response to LPS and LPSmediated signalling appeared in the list of GO terms
for both transit and city hubs. In fact, increased antibodies to LPS (Maes et al., 2012, 2007) and elevated
blood levels of LPS (Giloteaux et al., 2016) have been reported in ME/CFS: this has been postulated
to contribute to immune activation both centrally and peripherally (Morris and Maes, 2013). Another
key molecule is reactive oxygen species (ROS). Terms related to response to ROS appeared in the transit
hubs list, as well as positive regulation of their metabolism. ROS are suggested to contribute toME/CFS
as they are a crucial aspect of oxidative stress (OS) (Cortes Rivera et al., 2019; Jammes et al., 2012, 2005;
A. Komaroff and Cho, 2011; Morris et al., 2019). OS related damage (DAMPs) may initiate and main-
tain an immune response whilst ROS may also disrupt mitochondrial functioning leading to reduced
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ATP production (Cortes Rivera et al., 2019; A. L. Komaroff and Cho, 2011; Morris andMaes, 2013). Un-
surprisingly, we also found terms related to cytokine response. Finally, terms related to viral response
appeared in the transit and suburban hubs enrichment. This is important becausemuch work has been
done exploring the association between ME/CFS and viruses (Bansal et al., 2012; Rasa et al., 2018). If
viral responses are dysregulated by methylation changes, patients with ME/CFS may react differently
to viruses than a healthy control would: relatively small changes to levels of O&NS, virus or LPS could
be creating significant immune responses in an unpredictable manner.

Additionally, the GO terms relating to mitochondrial membrane potential and glycolytic activity are
intriguing. There have been some findings of lowered mitochondrial membrane potential in patients
with ME/CFS (Mandarano et al., 2020; Missailidis et al., 2020a, 2020b) as well as lowered glycolytic
activities (Mandarano et al., 2020; Nguyen et al., 2019; Tomas et al., 2020), though the latter has been
less consistent (Missailidis et al., 2021).

4.2.3 Disruption of signalling pathways Many GO terms were related to signalling processes. As
discussed in the results section, the city hubs and suburban hubs had a high degree of GPCR associated
processes enriched. These included a wide range of monoaminergic processes, including 5 dopaminer-
gic processes. This may suggest that signalling by monoamines contributes to immune dysregulation
in ME/CFS. Monoaminergic contribution to ME/CFS is not new, we present for the first time evidence
for a direct implication in immune dysfunction. The finding of dysregulated acetylcholinergic and opi-
oidergic signalling also supports suggestions that these chemicals may contribute to ME/CFS immune
dysregulation (Anderson and Maes, 2020; Marshall-Gradisnik et al., 2016; Tanaka et al., 2003; Wirth
and Scheibenbogen, 2020). The same can be said of adrenergic signalling (Johnston et al., 2016; Loebel
et al., 2016; Scheibenbogen et al., 2018; White et al., 2012). Calcium signalling also appeared in the
GO terms list: it has been suggested that abnormalities in calcium signalling may contribute to natural
killer (NK) cell hypofunction in ME/CFS (Cabanas et al., 2019; Eaton-Fitch et al., 2019; Nguyen et al.,
2017). Considering the widely reported presence of autoantibodies to GPCRs in ME/CFS (Loebel et al.,
2016; Tanaka et al., 2003; Wirth and Scheibenbogen, 2020), it is likely that methylation changes com-
pound the effect of already disrupted GPCRs. In the transit hubs, terms related to immune signalling
were present. Specifically, signalling mediated by both B and T cell receptors, cytokines generally, IL-
6, TGF-b, and LPS. This may suggest dysregulated response to antigens and cytokines. As TGF-b was
found to be the only consistently upregulated cytokine in one systematic review (Corbitt et al., 2019),
it seems likely that TGF-b may underlie some of the immune dysregulation if its signalling mediation
is also disrupted. In sum, signalling by neurotransmitters, immune receptors, and cytokines may be
abnormal and may contribute to the immune pathophysiology of ME/CFS.

4.2.4 Dopamine Dopaminergic processes were the only processes to feature in the results for the GO
enrichment analysis of all hub types. The fatigue in ME/CFS seems likely to be partially dopaminergic
centrally, considering the efficacy of multiple dopaminergic agents in ME/CFS (Blockmans et al., 2006;
Blockmans and Persoons, 2016; Crosby et al., 2021; Goodnick et al., 1992; Kaiser, 2015). This would also
fit with the high rates of Attention Deficit Hyperactivity Disorder (ADHD) in ME/CFS (Sáez-Francàs et
al., 2012), and monoamine metabolite levels in cerebrospinal fluid (Demitrack et al., 1992). Moreover,
levels of both general and mental fatigue in ME/CFS have been inversely correlated with basal gan-
glia activation as assessed by fMRI, potentially secondary to dopaminergic deficits (Miller et al., 2014).
Numerous other neuroimaging studies also support this notion (see (Almutairi et al., 2020; Cook et
al., 2017; Gay et al., 2016; Josev et al., 2019; Manca et al., 2021; Shan et al., 2020; Shan et al., 2018;
Tanaka et al., 2006; Van Der Schaaf et al., 2018, 2017; Wortinger et al., 2017; Wortinger et al., 2016)).
Furthermore, Carandini et al. (2021) found an inverse correlation between levels of mental fatigue and
DA tract abnormalities in MS. Carandini et al. (2021) suggested that this is evidence of dopaminergic
abnormalities underlying mental fatigue, as hypothesised by Dobryakova et al. (2015). Research in
animals, and in patients given cytokine therapies, has demonstrated that peripheral inflammation can
lead to central dopaminergic hypofunction (Anisman et al., 1996; Felger et al., 2013; Felger and Miller,
2012; Lee et al., 2021). Hence it can be postulated that the immune dysregulation and inflammation in
the periphery may lead to central dopaminergic deficits, which thenmay lead to some of the experience
of fatigue in ME/CFS. It is important to note that this does not dismiss the impact of other mediators,
such as impaired mitochondrial functioning (Holden et al., 2020; Mandarano et al., 2020; Tomas et al.,
2017). Dopaminergic hypo-functioning would simply make the fatigue caused by peripheral processes
feel significantly worse for the patients involved.

Our results suggest that dopaminergic signalling may also be abnormal in an immune context. The

11 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473375
http://creativecommons.org/licenses/by/4.0/


potential discovery of a dopaminergic element to ME/CFS immune dysregulation is consistent with its
involvement in other autoimmune diseases includingmultiple sclerosis (Pacheco et al., 2014; Vidal and
Pacheco, 2020a, 2020b). The effects of dopaminergic signalling in the immune system are wide, varied,
and beyond the scope of this article. For review see (Arreola et al., 2016; Castorina et al., 2020; Feng and
Lu, 2021). However, it is worth noting that signalling through the dopaminergic receptors D2 and D3,
both of which are hub proteins and potentially hyper-expressed, may have relevant immune effects.
D2-like receptor agonists have been shown to bias T cells towards a Th2 type differentiation (Huang
et al., 2010). Furthermore, D2 receptor activation is thought to inhibit natural killer cell activation
and cytotoxicity (Capellino et al., 2020; Zhao et al., 2013). Of note considering the consistently found
decreased NK cell cytotoxicity (Brenu et al., 2011; Fletcher et al., 2010; Huth et al., 2016; Levine et
al., 1998; Maher et al., 2005; Marshall-Gradisnik et al., 2016) as well as a shift towards a Th2 response
(Brenu et al., 2011; Broderick et al., 2010; Skowera et al., 2004; Torres-Harding et al., 2008) in ME/CFS.

It is worth noticing that suggestive evidences propose a role for dopamine in Covid-19 pathophysiology
(Attademo and Bernardini, 2021b; Berber and Doluca, 2021; Nataf, 2020b). However, dopaminergic
antagonists in ME/CFS would may have sedating effect. Hence, dopaminergic agents in ME/CFS may
constitute the object of careful study, considering immune parameters, symptom perception, and side
effects.

4.3. Different hubs play a different biological role The participation coefficient is a combination of
the clustering coefficient (Chalancon et al., 2013;Wasserman and Faust, 1994;Watts and Strogatz, 1998)
and the original participation coefficient defined by Guimerà and Amaral (2005). However, whilst the
clustering coefficient can be used to find modules of a network (Chalancon et al., 2013; Li et al., 2009;
Nascimento, 2014; Zaki et al., 2013), andGuimerà andAmaral (2005)’s participation coefficient is based
on modules, we use a combination of the two and a local averaging over network neighbours to over-
come modularisation of an incomplete network. Our adapted participation coefficient highlights how
much interaction there is between a group of neighbours: if a node has a high participation coefficient,
its neighbours are sparsely connected, and the gene in question participates in many distinct biological
processes. This is the case for transit hubs which GO enrichment terms are more numerous and cluster
into smaller, more overlapping, clusters than either the terms for city hubs or suburban hubs, as we can
see in fig. 5. The genes classified as transit hubs are commonly involved in signal transduction. Sug-
gestively, whilst a few cytokine genes also appeared, transit hubs were associated to many immunity
response terms.

City hubs, 𝑃𝑖 < 0.3, are located in densely connected neighbourhood: therefore, their associated genes
take part in well connected processes. By nature of their participation coefficient, they form functional
units to a certain extent, whichmay interact with other units to a lesser degree. Hence an abnormality in
a city hubmay result in larger functional impact due to multiplying cascading effects (Shin et al., 2014),
although this may be regulated by interaction strengths (Gaiarsa and Guimarães, 2019; Guimarães et
al., 2018). From a biological perspective, this may suggest utility of drugs that modulate the signalling
pathways seen from the GO enrichment. This can be seen in their clustering, where the clusters overlap
less and contain more terms than the transit hubs.

The neighbours of suburban hubs may have varying degrees of connectivity between and within town
groups of neighbours. However, whilst these hubs and their neighbours are not as interconnected as
city hubs, there is still some degree of connectivity between their neighbours. These hubs almost seem
to be the “go-betweens” of the city and transit hubs, as the terms enriched for them include both GPCR
signalling and viral processes, not contained by the transit hubs and city hubs respectively.

4.4. Conclusions Our result suggest that small, widespread, changes in gene methylation may medi-
ate some of the immune system pathology seen in ME/CFS. If Covid-19 does indeed lead to ME/CFS as
Komaroff et al. (2021) are suggesting, then methylation profiling a large sample of patients would be
beneficial in understanding its pathogenesis. Efforts to understand the cause of methylation changes in
ME/CFS, and Long Covid if applicable, should also occur. Moreover, analysing relationships between
the DMGs is necessary: few signalling pathways that activate key effectors, their receptors are probably
present in the hubs of this study. If these proteins do exist, they may lead to the discovery of druggable
targets for ME/CFS immune dysregulation.

Our results further support the presence ofmethylation changes contributing to the immune dysregula-
tion that characterises ME/CFS. They also suggest that responses to LPS, cytokines, O&NS, and viruses
function differently to what is seen in healthy controls, exacerbating immune abnormalities beyond

12 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473375
http://creativecommons.org/licenses/by/4.0/


what would be expected otherwise. Finally, signalling by multiple endogenous chemicals is also per-
turbed and may affect immune activation. Depending on whether Long Covid is related to ME/CFS,
our findings may be of interest for consideration when studying treatment implications.
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