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Abstract 36 

The increasingly large amount of proteomics data in the public domain enables, among other 37 

applications, the combined analyses of datasets to create comparative protein expression 38 

maps covering different organisms and different biological conditions. Here we have 39 

reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets, 40 

respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained 41 

23 individual datasets, including a total of 211 samples coming from 34 different tissues 42 

across 14 organs, comprising 9 mouse and 3 rat strains, respectively. 43 

 44 

In all cases, we studied the distribution of canonical proteins between the different organs. 45 

The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in 46 

mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein 47 

abundances compared across different datasets and organs for both species. As a key point 48 

we carried out a comparative analysis of protein expression between mouse, rat and human 49 

tissues.  We observed a high level of correlation of protein expression among orthologs 50 

between all three species in brain, kidney, heart and liver samples, whereas the correlation of 51 

protein expression was generally slightly lower between organs within the same species. 52 

Protein expression results have been integrated into the resource Expression Atlas for 53 

widespread dissemination. 54 

  55 
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Author summary 56 

 57 

We have reanalysed 23 baseline mass spectrometry-based public proteomics datasets stored 58 

in the PRIDE database. Overall, the aggregated dataset contained 211 samples, coming from 59 

34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively. We 60 

analysed the distribution of protein expression across organs in both species. We also studied 61 

how protein abundances compared across different datasets and organs for both species. Then 62 

we performed gene ontology and pathway enrichment analyses to identify enriched biological 63 

processes and pathways across organs. We also carried out a comparative analysis of baseline 64 

protein expression across mouse, rat and human tissues, observing a high level of expression 65 

correlation among orthologs in all three species, in brain, kidney, heart and liver samples. To 66 

disseminate these findings, we have integrated the protein expression results into the resource 67 

Expression Atlas.    68 
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1. Introduction 69 

 70 

High-throughput mass spectrometry (MS)-based proteomics approaches have matured 71 

significantly in recent years, becoming an essential tool in biological research [1]. This has 72 

been the consequence of very significant technical improvements in MS instrumentation, 73 

chromatography, automation in sample preparation and computational analyses, among other 74 

areas. The most used MS-based experimental approach is Data Dependent Acquisition 75 

(DDA) bottom-up proteomics. Among the main quantitative proteomics DDA techniques, 76 

label-free intensity-based approaches remain very popular, although labelled-approaches, 77 

especially those techniques based on the isotopic labelling of peptides (MS2 labelling), such 78 

as iTRAQ (Isobaric tag for relative and absolute quantitation) and TMT (Tandem Mass 79 

Tagging), are becoming increasingly used as well. 80 

 81 

Following the steps initiated by genomics and transcriptomics, open data practices in the field 82 

have become embedded and commonplace in proteomics in recent years. In this context, 83 

datasets are now commonly available in the public domain to support the claims published in 84 

the corresponding manuscripts. The PRIDE database [2], located at the European 85 

Bioinformatics Institute (EBI), is currently the largest resource worldwide for public 86 

proteomics data deposition. PRIDE is also one of the founding members of the global 87 

ProteomeXchange consortium [3], involving five other resources, namely PeptideAtlas, 88 

MassIVE, iProX, jPOST and PanoramaPublic. ProteomeXchange has standardised data 89 

submission and dissemination of public proteomics data worldwide. 90 

 91 

As a consequence, there is an unprecedented availability of data in the public domain, which 92 

is triggering multiple applications [4], including the joint reanalysis of datasets (so-called 93 
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meta-analysis studies) [5-7]. Indeed, public proteomics datasets can be systematically 94 

reanalysed and integrated e.g., to confirm the results reported in the original publications, 95 

potentially in a more robust manner since evidence can be strengthened if it is found 96 

consistently across different datasets. Potentially, new insights different to the aims of the 97 

original studies can also be obtained by reanalysing the datasets using different strategies, this 98 

includes repurposing of public datasets [8], including for instance approaches such as 99 

proteogenomics studies for genome annotation purposes [9-12]. 100 

 101 

In this context of reuse of public proteomics data, PRIDE has started to work on developing 102 

data dissemination and integration pipelines into popular added-value resources at the EBI. 103 

This is perceived as a more sustainable approach in the medium-long term than setting up 104 

new independent bioinformatics resources. One of them is Expression Atlas [13], a resource 105 

that has enabled over the years easy access to gene expression data across species, tissues, 106 

cells, experimental conditions and diseases. Only recently, protein expression information 107 

coming from reanalysed datasets has been integrated in the ‘bulk’ section of Expression 108 

Atlas. As a result, proteomics expression data can be integrated with transcriptomics 109 

information, mostly coming from RNA-Seq experiments. So far, we have performed two 110 

meta-analysis studies involving the reanalysis and integration of: (i) 11 public quantitative 111 

datasets coming from cell lines and human tumour samples [13]; and (ii) 24 human baseline 112 

datasets coming from 31 different organs [14].  113 

 114 

The next logical step is to perform an analogous study of baseline protein expression in two 115 

of the main model organisms: Mus musculus and Rattus norvegicus. To date, there are only a 116 

small number of bioinformatics resources providing access to reanalysed MS-based 117 

quantitative proteomics datasets, and even fewer if one considers only mouse and rat data. In 118 
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this context, at the end of 2020, ProteomicsDB [15] released a first version of the mouse 119 

proteome, based on the reanalysis of five label-free datasets. To the best of our knowledge, 120 

there is no such public resource storing accurate MS-derived data for rat data yet. PaxDB is a 121 

resource [16] that provides protein expression information coming from many species 122 

(including mouse and rat) but the reported data relies on spectral counting, a technique that 123 

generally does not provide the same level of accuracy than intensity-based label-free 124 

approaches. Additionally, although antibody-based human protein expression information is 125 

provided via the Human Protein Atlas [17] , their efforts are focused on human protein 126 

expression.  127 

 128 

Here, we report the reanalysis and integration of 23 public mouse (14 datasets) and rat (9 129 

datasets) label-free datasets, and the incorporation of the results into the resource Expression 130 

Atlas as baseline studies. Additionally, we report a comparative analysis of protein 131 

expression across mouse, rat and human (in this case using the results reported at [14] using 132 

the same methodology). 133 

  134 
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2. Results 135 

 136 

2.1. Baseline proteomics datasets 137 

Overall, we quantified protein expression from 34 healthy tissues in 14 organs coming from 138 

23 datasets. The analyses covered a total of 1,173 MS runs from 211 samples that were 139 

annotated as healthy/control/non-treated samples, thus representing baseline protein 140 

expression. Non-control/disease samples associated with these datasets were also reanalysed 141 

but are not discussed here. Normalised protein abundances values (as ppb, parts per billion, 142 

see Methods for calculation) from both control/healthy/non-treated and disease/treated tissue 143 

samples are available to view as heatmaps in Expression Atlas. The protein abundances along 144 

with sample annotations, sample quality assessment summary and experimental parameter 145 

inputs for MaxQuant can be downloaded from Expression Atlas as text files. A summary of 146 

the data selection and reanalysis protocols is shown in Fig. 1. The total number of peptides 147 

and proteins identified in these datasets are shown in Table 1. 148 

 149 

Figure 1. An overview of the study design and reanalysis pipeline. QA: Quality assessment.150 
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Expression 
Atlas 
accession 
numbers 

PRIDE dataset 
identifiers Tissues Organs Species Strains Fractionation 

Number 
of MS 
runs 

Number of 
samples 

Number of 
protein 
groups† 

Number 
of 
peptides
† 

Number of 
unique 
peptides† 

Number of 
unique 
genes 
mapped† 

E-PROT-7§ PXD000867 [18] Liver Liver Mus musculus C57BL/6J Yes 24 4 12,792 246,738 167,725 9,715 

E-PROT-10§ PXD000288 [19] Triceps muscles 
Triceps 
Muscles Mus musculus C57BL/6 Yes 36 3 10,870 189,553 126,670 6,421 

E-PROT-16 PXD003155 [20] 
Cerebellum, 
Liver 

Brain, 
Liver Mus musculus C57BL/6 No 24 12 4,508 59,696 45,728 3,797 

E-PROT-74 PXD004612 [21] 
Achilles and 
Plantaris tendon Tendon Mus musculus C57BL/6 No 8 8 457 6,643 3,271 273 

E-PROT-75 PXD005230 [22] 

Hippocampus, 
Cerebellum, 
Cortex Brain Mus musculus C57BL/10J Yes 72 36 7,663 63,479 41,683 6,037 

E-PROT-76 PXD009909 [23] Retina Eye Mus musculus 
ND4 Swiss 
Webster Yes 12 1 5,002 29,454 24,961 3,686 

E-PROT-77 PXD012307 [24] Lung Lung Mus musculus C57BL/6 No 32 2 6,809 106,391 73,950 5,795 

E-PROT-78 PXD009639 [25] Lens Eye Mus musculus CD1 Yes 10 1 4,519 20,779 18,006 3,064 

E-PROT-79 PXD019394 [26] 

Heart, Kidney, 
Liver, Lung, 
Brain, Spleen, 
Testis, Pancreas 

Heart, 
Kidney, 
Liver, 
Lung, 
Brain, 
Spleen, 
Testis, 
Pancreas Mus musculus 

Swiss-
Webster Yes 96 8 9,853 141,506 105,701 8,185 

E-PROT-81 PXD012636 [27] 

Left atrium, 
Left ventricle, 
Right atrium, 
Right ventricle Heart Mus musculus C57BL/6 Yes 120 4 7,772 146,966 99,577 6,435 

E-PROT-82 PXD019431 [28] 
Articular 
cartilage 

Articular 
cartilage Mus musculus BALB\_c No 72 6 1,815 17,695 15,191 1,518 

E-PROT-83 PXD022614 [29] Brain Brain Mus musculus 

C57BL/6J:
Rj 
C57BL/6JR
ccHsd Yes 120 6 6,645 97,443 69,884 5,673 
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E-PROT-84 PXD004496 [30] Hippocampus Brain Mus musculus C57BL/6J Yes 204 17 4,192 37,363 30,100 3,424 

E-PROT-85 PXD008736 [31] 
Right atrium, 
Sinus node Heart Mus musculus C57BL/6J Yes 143 6 7,906 144,926 94,379 6,554 

E-PROT-86§ PXD012677 [32] Amygdala Brain 
Rattus 
norvegicus 

Sprague 
Dawley No 3 3 1,872 15,326 12,367 1,382 

E-PROT-87§ PXD006692 [33] Lung Lung 
Rattus 
norvegicus 

Sprague 
Dawley No 10 10 2,079 14,440 11,696 1,398 

E-PROT-88§ PXD016793 [34] Liver Liver 
Rattus 
norvegicus 

Sprague 
Dawley No 8 8 4,787 57,998 46,411 3,743 

E-PROT-89§ PXD004364 [35] Testis Testis 
Rattus 
norvegicus 

Sprague 
Dawley No 3 3 2,351 15,880 13,674 1,601 

E-PROT-91 PXD001839 [36] Left ventricle Heart 
Rattus 
norvegicus F344/BN No 12 12 1,345 10,310 8,804 925 

E-PROT-92§ PXD013543 [37] Left ventricle Heart 
Rattus 
norvegicus Wistar No 8 8 1,858 17,303 13,622 1,340 

E-PROT-93 PXD016958 [38] 

First segment of 
proximal 
tubule, second 
segment of 
proximal 
tubule, third 
segment of 
proximal 
tubule, 
medullary thick 
ascending limb, 
cortical thick 
ascending limb, 
distal 
convoluted 
tubule, 
connecting 
tubule, cortical 
collecting duct, 
outer medullary 
collecting duct, 
inner medullary 
collecting duct Kidney 

Rattus 
norvegicus 

Sprague 
Dawley Yes 132 32 7,846 103,886 83,662 6,130 
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E-PROT-94 PXD003375 [39] 

Caudal and 
rostral segments 
of spinal cord Spinal cord 

Rattus 
norvegicus Wistar Yes 21 18 2,477 29,213 22,025 1,926 

E-PROT-95§ PXD015928 [40] Tendon Tendon 
Rattus 
norvegicus Wistar No 3 3 199 1,253 1,063 101 

TOTAL 
 23 datasets 
(Mouse: 14, 
Rat: 9) 

 34 tissues 
(Mouse: 21, 
Rat: 18) 

 14 organs 
(Mouse: 
12, Rat: 8) 

   

1,173 MS 
runs 
(Mouse: 
973, Rat: 
200) 

211 samples 
(Mouse: 114, 
Rat: 97) 

   

 

 151 

 152 

Table 1. List of mouse and rat proteomics datasets that were reanalysed. §Only normal/untreated samples within this dataset are reported in this 153 

study. However, results from both normal and disease samples are available in Expression Atlas.  † Numbers after post-processing.154 
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2.2. Protein coverage across organs and datasets 155 

One of our main aims was to study protein expression across various organs. To enable a  156 

simpler comparison [14] we first grouped 34 different tissues into 14 distinct organs, as 157 

discussed in ‘Methods’. We defined ‘tissue’ as a distinct functional or structural region within 158 

an ‘organ’. We estimated the number of ‘canonical proteins’ identified across organs by first 159 

mapping all members of each protein group to their respective parent genes. We defined the 160 

parent gene as equivalent to the UniProt ‘canonical protein’ and we will denote the term 161 

‘protein abundance’ to mean ‘canonical protein abundance’ from here on in the manuscript. 162 

 163 

2.2.1. Mouse proteome 164 

A total of 21,274 protein groups were identified from mouse datasets, among which 8,176 165 

protein groups (38.4%) were uniquely present in only one organ and 70 protein groups 166 

(0.3%) were ubiquitously observed (see the full list in Supplementary File 2). This does not 167 

imply that these proteins are unique to these organs. Merely, this is the outcome considering 168 

the selected datasets. Mouse protein groups were mapped to 12,570 genes (canonical 169 

proteins) (Supplementary File 3). We detected the largest number of canonical proteins in 170 

samples coming from liver (9,920, 78.9% of the total) and the lowest numbers in samples 171 

from tendon (273, 2.2%) and articular cartilage (1,519, 12.1%) (Fig. 2A). In the case of 172 

tendon and articular cartilage, both experiments did not include sample fractionation in their 173 

sample preparation methodology, which can also explain the lower number of detected 174 

proteins. The comparatively even lower number of proteins identified in tendon could be 175 

attributed to the smallest sample size (only one sample out of 114, 0.9%). Also, tendon is a 176 

relatively hypocellular tissue, which has a low protein turnover rate. Dataset PXD000867, 177 

containing mouse liver samples, had the highest number of canonical proteins detected 178 
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(9,715, 77.3%), while the smallest number of proteins was detected in dataset PXD004612 179 

(tendon, 273, 2.2%), as highlighted above (Fig. 2C).  180 

 181 

We studied the normalised protein abundance distribution in organs (Fig. 2B) and found that 182 

all organs, except tendon, had similar median abundances. However, one cannot attribute 183 

further biological meaning to these observations, since by definition the method of 184 

normalisation fixes each sample to have the same “total abundance”, which then gets shared 185 

out amongst all proteins. The normalised protein abundance distribution in datasets indicated 186 

a higher than median abundances detected in datasets PXD004612 (tendon) and PXD003164 187 

(testis) (Fig. 2D). A linear relationship was observed between the number of canonical 188 

proteins detected in datasets and organs, when compared to the relative amount of their 189 

spectral data (Fig. 2E). We found a significant number of proteins uniquely detected in one 190 

organ (Fig. 2F). However, the list of concrete canonical proteins that were detected in just 191 

one organ should be taken with caution since the list is subjected to inflated False Discovery 192 

Rate (FDR), due to the accumulation of false positives when analysing the datasets 193 

separately. 194 

Some of the organs (liver, heart and brain) were represented across multiple mouse studies in 195 

the aggregated dataset. A pairwise comparison of protein abundances in these organs 196 

generally showed a good correlation in expression (heart: R2 values ranged from 0.54 to 0.83; 197 

brain: R2 from 0.28 to 0.72; and liver: R2 from 0.59 to 0.74) (Figure S1 in Supplementary File 198 

4). 199 

 200 

 201 
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 202 

Figure 2. (A) Number of canonical proteins identified across different mouse organs. The 203 

number within the parenthesis indicates the number of samples. (B) Range of normalised 204 

iBAQ protein abundances across different organs. The number within the parenthesis 205 

indicates the number of samples. (C) Canonical proteins identified across different datasets. 206 

The number within the parenthesis indicate the number of unique tissues in the dataset. (D) 207 

Range of normalised iBAQ protein abundances across different datasets. The number within 208 

parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total 209 

spectral data with the number of canonical proteins identified in each dataset and organ. (F) 210 

Distribution of canonical proteins identified across organs. 211 
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 212 

2.2.2. Rat proteome 213 

A total of 7,769 protein groups were identified across 8 different rat organs among which 214 

3,649 (46.9%) protein groups were unique to one specific organ while 13 (0.16%) protein 215 

groups were present among all organs (see full list in Supplementary File 2). The protein 216 

groups were mapped to 7,116 genes (canonical proteins) (Supplementary File 3). The highest 217 

number of canonical proteins (6,106, 85.1%) was found in rat kidney samples. The lowest 218 

number of canonical proteins (101, 1.4%) was found in samples from tendon, as shown in 219 

Fig. 3A. The largest number of canonical proteins identified in kidney is likely because of the 220 

relatively large number of samples (32 samples), when compared to other organs. However, it 221 

is interesting to note that large numbers of canonical proteins were detected in liver samples, 222 

which relatively had fewer number of samples, when compared to the total number of 223 

samples in heart and spinal cord. 224 

 225 

Datasets PXD016958 and PXD016793 consisted entirely of kidney (where fractionation was 226 

performed) and liver (no fractionation) samples, respectively, and as mentioned above had 227 

the largest number of canonical proteins identified (Fig. 3C). The normalised protein 228 

abundances were similar among the various organs and datasets (Fig. 3B, D). We also 229 

observed a linear relation between the number of canonical proteins identified and the MS 230 

spectra identified (Fig. 3E). As seen in the mouse datasets, we also observed a large number 231 

of proteins uniquely detected in one organ (Fig. 3F). As highlighted above, the list of 232 

concrete canonical proteins that were detected in just one organ should be taken with caution 233 

since the list is subjected to inflated False Discovery Rate (FDR). 234 

 In the case of rat datasets, left ventricle heart samples were the only ones represented in more 235 

than one study (PXD001839 and PXD013543) in the aggregated dataset. A pairwise 236 
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comparison of protein abundances of heart between these two datasets was performed, 237 

showing a strong correlation in protein expression (R2 = 0.9) (Figure S1D in Supplementary 238 

File 4). 239 

 240 

 241 

Figure 3. (A) Number of canonical proteins identified across different rat organs. The 242 

number within the parenthesis indicates the number of samples. (B) Range of normalised 243 

iBAQ protein abundances across different organs. The number within the parenthesis 244 

indicates the number of samples. (C) Canonical proteins identified across different datasets. 245 

The number within the parenthesis indicate the number of unique tissues in the dataset. (D) 246 
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Range of normalised iBAQ protein abundances across different datasets. The number within 247 

parenthesis indicate the number of unique tissues in the dataset. (E) Comparison of total 248 

spectral data with the number of canonical proteins identified in each dataset and organ. (F) 249 

Distribution of canonical proteins identified across organs. 250 

 251 

2.3. Protein abundance comparison across organs 252 

Next, we studied how protein abundances compared across different datasets and organs. The 253 

presence of batch effects between datasets makes this type of comparisons challenging. To 254 

aid comparison of protein abundances between datasets we transformed the normalised iBAQ 255 

intensities into ranked bins as explained in ‘Methods’, i.e., proteins included in bin 5 are 256 

highly abundant whereas proteins in bin 1 are expressed in the lowest abundances (among the 257 

detected proteins). 258 

 259 

2.3.1. Mouse proteome 260 

We found that 1,086 (8.6%) proteins were found with their highest level of expression in at 261 

least 3 organs, with a median bin value greater than 4 (Supplementary File 3). On the other 262 

end of the scale, 138 (1.1%) canonical proteins were found with their lowest expression in at 263 

least 3 organs, with a median bin value of less than 2. The bin transformed abundances in all 264 

organs are provided in Supplementary File 3. 265 

 266 

To compare protein expression across all organs, we calculated pairwise Pearson correlation 267 

coefficients across 117 samples (Fig. 4A). We observed some correlation in protein 268 

expression within brain (median R2 = 0.31) and a higher one in heart (median R2 = 0.67) 269 

samples. We performed Principal Component Analysis (PCA) on all samples from mouse 270 

datasets for testing the effectiveness of the bin transformation method in reducing batch 271 
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effects. Fig. 4B shows the clustering of samples from various organs of mouse. We observed 272 

samples from the same organ generally clustered together. For example, we observed that 273 

brain samples all clustered together in one group, even though they come from different 274 

datasets, indicating decent removal of batch effects (Fig. 4C). However, we also observed 275 

that samples from other organs such as liver did not cluster according to their organ types but 276 

clustered together within the dataset they were part of, indicating some residual batch effects, 277 

which are hard to remove completely. 278 

 279 
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Figure 4. (A) Heatmap of pairwise Pearson correlation coefficients across all mouse samples. 281 

The colour represents the correlation coefficient and was calculated using the bin transformed 282 

iBAQ values. The samples were hierarchically clustered on columns and rows using 283 

Euclidean distances. (B) PCA of all samples, using the binned protein abundances as input, 284 

coloured by the organ types. (C) PCA of all samples coloured by their respective dataset 285 

identifiers. The numbers in parenthesis indicate the number of datasets for each organ. 286 

Binned values of canonical proteins quantified in at least 50% of the samples were used to 287 

perform the PCA. 288 

 289 

In addition, we compared the protein abundances generated in this study with the data 290 

available in the resource PaxDB generated using spectral counting across different mouse 291 

organs. We observed generally a strong correlation of protein abundances calculated using 292 

iBAQ from this study (fraction of total (FOT) normalised ppb) and spectral counting methods 293 

(Figure S2 in Supplementary File 4). However, the expression of low abundant proteins 294 

seemed to be underestimated in PaxDB when compared with our results, as shown by a S-295 

shaped curve in the scatterplot in organs such as brain, heart, liver and lung. The ‘dynamic 296 

exclusion’ [41] setting used by modern mass spectrometers prevents the instrument from 297 

fragmenting abundant peptides multiple times when they are repeatedly observed in scans 298 

nearby in time. This has the effect that spectral counting approaches will limit the dynamic 299 

range observed, as high abundant proteins will be under sampled. This is a limitation when 300 

using spectral counting methods, and these days spectral counting is not commonly used as a 301 

truly quantitative data type in proteomics. 302 

 303 

2.3.2. Rat proteome 304 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 3, 2022. ; https://doi.org/10.1101/2021.12.20.473413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473413
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

20 

Next, we studied the distribution of protein abundances across organs in rat. On one hand, 305 

311 (4.3%) proteins were found with their highest expression in at least 3 organs with a 306 

median bin value greater than 4. On the other hand, 27 (0.37%) canonical proteins were 307 

found with their lowest expression in at least 3 organs, with a median bin value of less than 2. 308 

The bin transformed abundances in all organs are provided in Supplementary File 3. 309 

Overall, the samples from rat datasets showed a better correlation in protein expression (Fig. 310 

5A) than in the case of mouse. We observed generally a strong correlation of protein 311 

expression within samples from liver (median Pearson’s correlation R2 = 0.85), lung (median 312 

R2 = 0.71), spinal cord (median R2 = 0.65), heart (median R2 = 0.71) and brain (median R2 = 313 

0.86). We also observed the clustering in the PCA of samples coming from the same organ 314 

(Fig. 5B). Kidney, lung, spinal cord and heart samples all clustered together according to 315 

their organ type. Fig. 5C shows the samples based on the dataset they were part of. However, 316 

most organ samples were part of individual datasets except in the case of samples from heart, 317 

which came from two datasets (PXD001839 and PXD013543). Fig. 5C shows that the heart 318 

samples clustered into two nearby groups (bottom left two clusters on Fig. 5B and 5C), 319 

wherein each cluster included samples from a different dataset, indicating the presence of 320 

small batch effects. 321 
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 322 

Figure 5. (A) Heatmap of pairwise Pearson correlation coefficients across all rat samples. 323 

The colour represents the correlation coefficient and was calculated using the bin transformed 324 

iBAQ values. The samples were hierarchically clustered on columns and rows using 325 

Euclidean distances. (B) PCA of all samples coloured by the organ types. (C) PCA of all 326 

samples coloured by their respective dataset identifiers. The numbers in parenthesis indicate 327 

the number of datasets for each organ. Binned values of canonical proteins quantified in at 328 

least 50% of the samples were used to perform the PCA. 329 

 330 

2.4. The organ elevated proteome and the over-representative biological processes 331 
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Based on their expression, canonical proteins were classified into three different groups based 332 

on their organ specificity: “mixed”, “group-enriched” and “organ-enriched” (see 333 

Supplementary File 5). We considered over-expressed canonical proteins in each organ as 334 

those which were in “group-enriched” and “organ-enriched”. The analysis showed that on 335 

average, 20.8% and 26.0% of the total elevated canonical proteins were organ group-specific 336 

in mouse and rat, respectively (Fig. 6). In addition, 4.3% and 14.2% were unique organ-337 

enriched in mouse and rat, respectively. The highest ratio of organ-enriched in mouse was 338 

found in liver (13.6%), whereas in rat, it was found in kidney (39.8%). 339 

We then performed a gene ontology (GO) enrichment analysis of those proteins that were 340 

'organ-enriched' and group-enriched' using GO terms associated with biological processes. 341 

We found 1,036 GO terms to be statistically significant in all organs, as seen in 342 

Supplementary File 6. The most significant GO terms for each organ are shown in Table 2. 343 

 344 

 345 

Figure 6. Organ specificity of canonical proteins in (A) mouse and (B) rat. 346 

 347 

Organ Species GO ID Description adjusted p-
value 

Articular 
cartilage Mus musculus 

GO:0030198 
GO:0043062 
GO:0045229 

Extracellular matrix organization 
Extracellular structure organization 
External encapsulating structure organization 

8.94*10-38 
8.94*10-38 
8.94*10-38 

Brain Mus musculus 
GO:0050804 
GO:0099177 
GO:0050808 

Modulation of chemical synaptic 

transmission 

Regulation of trans-synaptic signalling 

Synapse organization 

7.03*10-65 
7.03*10-65 
1.41*10-48 
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Heart Mus musculus 
GO:0060047 
GO:0008016 
GO:0060537 

Heart contraction 

Regulation of heart contraction 

Muscle tissue development 

7.10*10-11 
4.43*10-10 
6.16*10-10 

Kidney Mus musculus 
GO:0015711 
GO:0044282 
GO:0016054 

Organic anion transport 

Small molecule catabolic process 
Organic acid catabolic process 

4.59*10-19 
4.91*10-15 
6.25*10-15 
 

Eye Mus musculus 
GO:0007601 
GO:0001654 
GO:0099504 

Visual perception 

Eye development 

Synaptic vesicle cycle 

7.54*10-50 
5.31*10-31 
8.36*10-18 

Liver Mus musculus 
GO:0016569 
GO:0016570 
GO:0019369 

Covalent chromatin modification 

Histone modification 
Arachidonic acid metabolic process 

6.26*10-10 
1.71*10-08 
1.71*10-08 

Lung Mus musculus 
GO:0120031 
GO:0030031 
GO:0044782 

Plasma membrane bounded cell projection 

assembly 

Cell projection assembly 

Cilium organization 

3.61*10-14 
3.61*10-14 
9.83*10-14 

Pancreas Mus musculus GO:0007586 
GO:0032328 

Digestion 

Alanine transport 
0.005 
0.018 

Spleen Mus musculus 
GO:0046649 
GO:0050776 
GO:0045087 

Lymphocyte activation 

Regulation of immune response 

Innate immune response 

4.12*10-22 
2.00*10-20 
2.23*10-20 

Tendon Mus musculus 
GO:0003012 
GO:0050879 
GO:0050881 

Muscle system process 

Multicellular organismal movement 

Musculoskeletal movement 

1.46*10-25 
3.14*10-19 
1.46*10-25 

Testis Mus musculus 
GO:0048232 
GO:0003341 
GO:0044782 

Male gamete generation 

Cilium movement 

Cilium organization 

8.75*10-49 
3.04*10-38 
6.78*10-37 

Triceps muscles Mus musculus 
GO:0061061 
GO:0055002 
GO:0003009 

Muscle structure development 

Striated muscle cell development 

Skeletal muscle contraction 

1.56*10-14 
2.41*10-14 
3.53*10-14 

Brain Rattus 
norvegicus 

GO:0099537 
GO:0007268 
GO:0098916 

Trans-synaptic signalling 

Chemical synaptic transmission 

Anterograde trans-synaptic signalling 

1.79*10-60 

1.79*10-60 

1.79*10-60 

Heart Rattus 
norvegicus 

GO:0061061 
GO:0003012 
GO:0055001 

Muscle structure development 

Muscle system process 

Muscle cell development 

2.94*10-17 
6.30*10-16 
4.00*10-15 

Kidney Rattus 
norvegicus 

GO:0006396 
GO:0045944 
GO:0006260 

RNA processing 

positive regulation of transcription by RNA 

polymerase II 

DNA replication 

6.19*10-13 
7.29*10-06 
1.74*10-05 
 

Liver Rattus 
norvegicus 

GO:0008202 
GO:0016054 
GO:0032787 

Steroid metabolic process 

Organic acid catabolic process 

Monocarboxylic acid metabolic process 

2.74*10-10 

1.61*10-09 

1.64*10-09 

Lung Rattus 
norvegicus 

GO:0031589 
GO:0009617 
GO:0030036 

Cell-substrate adhesion 

Response to bacterium 

Actin cytoskeleton organization 

7.62*10-08 

7.62*10-08 

1.40*10-07 

Spinal cord Rattus 
norvegicus 

GO:0061564 
GO:0099537 
GO:0007268 

Axon development 

Trans-synaptic signalling 

Chemical synaptic transmission 

4.26*10-18 

5.93*10-16 

5.93*10-16 

Tendon Rattus 
norvegicus 

GO:0030199 
GO:0061448 
GO:0001501 

Collagen fibril organization 

Connective tissue development 

Skeletal system development 

1.23*10-13 

2.31*10-09 

3.39*10-09 
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Testis Rattus 
norvegicus 

GO:0019953 
GO:0051704 
GO:0007018 

Sexual reproduction 

Multi-organism process 
Microtubule-based movement 

3.98*10-24 

1.61*10-18 

4.00*10-12 

 348 

Table 2. Analysis of the top three GO terms for each organ in mouse and rat using the 349 

elevated organ-specific and group-specific canonical proteins as described in the ‘Methods’ 350 

section. 351 

 352 

2.5. Protein abundances across orthologs in three species 353 

In a previous study, we analysed 25 label-free proteomics datasets from healthy human 354 

samples to assess baseline protein abundances in 14 organs following the same analytical 355 

methodology [14]. We compared the expression of canonical proteins identified in all three 356 

species (rat, mouse and human). Overall, 13,248 detected human genes (corresponding to the 357 

canonical proteins) were compared with 12,570 genes detected in mouse and 7,116 genes 358 

detected in rat. The number of orthologous mappings (i.e., “one-to-one” mappings, see 359 

‘Methods’) between rat, mouse and human genes are listed in table 3. We only considered 360 

one-to-one mapped orthologues for the comparison of protein abundances. 361 

 362 

Species 
Identified 

genes 

Orthologs 
of human 

genes 
identified 

in [14] 

Percentage of genes with different mapping against identified 
human genes  

one-to-one  
one-to-
many 

many-to-
many  

many-to-
one not mapped 

Mus 
musculus 12,570 10,601 80.4% 1.9% 0.56% 1.46% 15.7% 
Rattus 
norvegicus 7,116 6,058 82.0% 2.2% 0.70% 0.25% 14.9% 

 363 

Table 3. Homologs identified in mouse and rat datasets when compared with the background 364 

list of genes (corresponding to canonical proteins) identified in human datasets 365 

(Supplementary File 2 in [14]).  366 
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 367 

Among human and mouse orthologues we observed relatively high levels of correlation of 368 

protein abundances in brain (R2 = 0.61), heart (R2 = 0.65) and liver (R2 = 0.56) (Fig. 7A). 369 

Human and rat orthologs showed also relatively high levels of correlation in brain (R2 = 370 

0.62), kidney (R2 = 0.53) and liver (R2 = 0.56), but almost no correlation in lung (R2 = 0.12) 371 

and testis (R2 = 0.18) (Fig. 7B). Between mouse and rat orthologs, the correlation of protein 372 

abundances was higher in liver (R2 = 0.65), kidney (R2 = 0.54) and brain (R2 = 0.57) samples, 373 

when compared to the samples coming from the rest of the organs (Fig. 7C). Fig. 7D shows 374 

an illustration of some example comparisons of individual orthologs using binned protein 375 

abundances.  376 

 377 

For the same corresponding subsets, we also investigated the correlation of protein 378 

expression between various organs within each organism. We observed that in general the 379 

correlation of protein expression was slightly lower between organs within the same species, 380 

when compared to a higher correlation, which was observed among orthologs (Figure S3 in 381 

Supplementary File 4). The found lower correlation of protein expression between different 382 

organs was more apparent in mouse and rat.  383 

 384 

Among the orthologs expressed in all organs in all three species, 747 (12.3%) orthologs were 385 

detected with a median bin expression value of more than 4, i.e., proteins that appear to have 386 

conserved high expression in all organs and all tissues. Additionally, 13 (0.2%) orthologs 387 

were found with a median bin expression value less than 2 in all organs, although, it is harder 388 

to detect consistently proteins with low abundances across all organs. A full list of the binned 389 

protein abundances of orthologs is available in Supplementary File 7. The illustration of all 390 

binned protein abundances across the three species is shown in Supplementary File 8. 391 
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 392 

 393 

Figure 7. Comparison of protein abundances (in ppb) between one-to-one mapped orthologs 394 

of mouse, rat and human in various organs. (A) Pairwise correlation using normalised protein 395 

abundances of human and mouse orthologues. (B) Human and rat orthologs. (C) Mouse and 396 

rat orthologs. (D) As an example, the comparisons of binned protein expression of ten 397 

randomly sampled orthologs are shown. Data corresponding to all cases (as reported in panel 398 

D) are available in Supplementary File 7 and the corresponding illustration of binned values 399 

is available in Supplementary File 8. Orthologs in (D) are shown using their human gene 400 

symbol. 401 

Since each sample contains potentially thousands of protein values this creates a high level of 402 

dimensionality within the data. To reduce this, we used the non-linear dimension reduction 403 
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algorithm, Uniform Manifold Approximation and Projection (UMAP) (see Section 4.7 in the 404 

‘Methods’ section). The UMAP algorithm enables the reduction of multidimensional data to 405 

a two-dimensional space upon which the relationship between each sample can be visualised. 406 

Specifically, it enables the visualisation of the relationships of proteins across individual 407 

samples and organs. Should multiple samples be positioned near to each other, it allows for 408 

us to predict that these samples shared similar properties (in this case, similar protein 409 

abundance values). Consequently, by overlaying samples from various species UMAP 410 

representations can be used to visualise the relationship of various orthologs across similar 411 

organs. 412 

Using the UMAP algorithm, we were able to visualise the relationships between individual 413 

organs regardless of the involved species (human, mouse, rat) and to identify similar genes 414 

(corresponding to canonical proteins) within those organs. The overall view of all samples 415 

labelled by their respective organ is shown as Figure 8A. We chose to use the biological 416 

system as the basis for the colouring scheme for each sample to reduce the overall complexity 417 

of the visualisation, due the high number of organs included. By using this labelling scheme, 418 

we could see that the clustering of each sample was deterministic. Each sample was 419 

positioned within a clear region for the corresponding organs, despite the original layout 420 

being unaware of this information. This indicates that not only do the samples within those 421 

organs share common protein abundance values, but furthermore, that samples that come 422 

from the same organs share similar protein expression (as three species are present). 423 

Furthermore, in Figure 8B we show the representation of binned protein abundance values for 424 

three example genes (SH3GL2, MYOZ2 and PYROXD2), providing information on the 425 

abundance of them across different biological systems. These visualisations use the same 426 

layout than within Figure 8A. In the example of SH3GL2, it can be seen that Figure 8B 427 
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shows multiple values that have been scored as bin 5.  By referring to Figure 8A, we can see 428 

that those points corresponding to highly abundant proteins, come from samples from the 429 

nervous system (in all three species). Furthermore, using the same method, it can be seen that 430 

MYOZ2 is highly abundant in the circulatory system, and that PYROXD2 is highly abundant 431 

in the urinary system. The UMAP coordinates and our binned protein abundance data that is 432 

used in these plots to allow for the generation of similar visualisations are provided in 433 

Supplementary File 9. 434 

 435 

Figure 8: Visualisations generated using the UMAP algorithm to show the relationships 436 

between human, mouse, and rat samples. (A) Shows the relationship of all samples, 437 

particularly showing strong relationship between biological systems. (B) Shows the protein 438 

abundancy of 3 example gene orthologs (SH3GL2, MYOZ2 and PYROXD2), within each 439 

sample. Human baseline protein expression data was generated in [14]. 440 

 441 
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2.6. Pathway enrichment analysis 442 

Based on the ortholog protein expression analysis described above, we mapped canonical 443 

proteins from mouse and rat to the corresponding ortholog human proteins, which were 444 

subsequently subjected to pathway-enrichment analysis using Reactome (Fig. 9). After 445 

filtering out the disease and statistically insignificant pathways, there were 2,990 pathways 446 

found in all the organs of mouse and 2,162 pathways in all the organs of rat. In mouse 447 

samples, the largest number of pathways (367) were found in articular cartilage, and the 448 

lowest number of pathways was found in liver (44). We also observed that Neuronal System-449 

related pathways were predominantly present in the brain and eye, which is consistent with 450 

expectations. In rat samples, brain included the largest number of pathways (387), while the 451 

lowest number of pathways was found in tendon, with 117.  452 

 453 

 454 
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Figure 9. Pathway analysis performed using the canonical proteins, showing the statistically 455 

significant representative pathways (p-value < 0.05) in (A) mouse and (B) rat organs.  456 
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3. Discussion 457 

We have previously reported two meta-analysis studies involving the reanalysis and 458 

integration in Expression Atlas of public quantitative datasets coming from cell lines and 459 

human tumour samples [13], and from human baseline tissues [14], respectively. In this 460 

study, we reanalysed mouse and rat baseline proteomics datasets representing protein 461 

expression across 34 healthy tissues and 14 organs. We have used the same methodology as 462 

in the study involving baseline human tissues, which enabled a comparison of protein 463 

expression levels across the three species. Our main overall aim was to provide a system-464 

wide baseline protein expression catalogue across various tissues and organs of mouse and rat 465 

and to offer a reference for future related studies.  466 

 467 

We analysed each dataset separately using the same software (MaxQuant) and the same 468 

search protein sequence database. The disadvantage of this approach is that the FDR 469 

statistical thresholds are applied at a dataset level and not to all datasets together as a whole. 470 

However, as reported before [14], using a dataset per dataset analysis approach is in our view 471 

the only sustainable manner to reanalyse and integrate quantitative proteomics datasets, at 472 

least at present.  The disadvantage of this approach is that the FDR statistical threshold are 473 

applied at a dataset level and not to all datasets together as a whole, with the potential 474 

accumulation of false positives across datasets. However, it is important to highlight that the 475 

number of commonly detected false positives is reduced in parallel with the increase in the 476 

number of common datasets where a given protein is detected. As also reported in previous 477 

studies, one of the major bottlenecks was the curation of dataset metadata, consisting of 478 

mapping files to samples and biological conditions. Very recently, the MAGE-TAB-479 

Proteomics format has been developed and formalised to enable the reporting of the 480 

experimental design in proteomics experience, including the relationship between samples 481 
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and raw files, which is recorded in the SDRF-Proteomics section of the file [42]. Submission 482 

of the SDRF-Proteomics files to PRIDE is now supported. The more well-annotated datasets 483 

in the public domain, the easier these data reuse activities will become.  484 

 485 

The generated baseline protein expression data can be used with different purposes such as 486 

the generation of protein co-expression networks and/or the inference of protein complexes. 487 

For the latter application, expression data can be alone or for potentially refining predictions 488 

obtained using different methods such as the recently developed AlphaFold-based protein 489 

complexes predictions [43]. Mouse and rat are widely used species in the context of drug 490 

discovery, the latter especially, to undertake regulatory pre-clinical safety studies. Therefore, 491 

it is important to know quantitative protein expression distribution in these species in 492 

different tissues [44] to assist in the selection of species for such studies and also for the 493 

interpretation of the final results.  494 

 495 

In addition to the analyses reported, it would have also been possible to perform correlation 496 

studies between gene and protein expression information. However, we did not find any 497 

relevant public datasets in the context of this manuscript where the same samples were 498 

analysed by both techniques, which is the optimal way to perform these studies. Future 499 

directions in analogous studies will involve: (i) additional baseline protein expression studies 500 

of other species, including other model organisms or other species of economic importance; 501 

(ii) the inclusion of differential proteomics datasets (e.g. using TMT and/or iTRAQ); and (iii) 502 

include relevant proteomics expression data coming from the reanalysis of Data Independent 503 

Acquisition (DIA) datasets [45]. 504 

 505 
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As mentioned above, we performed a comparative analysis of baseline protein expression 506 

across human, mouse and rat. It was possible to perform this analysis for six common organs 507 

(brain, heart, kidney, liver, lung and testis). Ortholog expression across species is useful to 508 

infer protein function across experimentally studied proteins. This is particularly useful as 509 

evolutionarily closely related species are likely to conserve protein function. We could not 510 

find in the literature an analogous comparative study performed at the protein level. 511 

However, expression from closely related orthologs across tissues or organs has been 512 

compared at the transcriptomics level, providing a complete picture of gene expression. In 513 

this context, many studies have compared gene-expression in mouse, rat and human 514 

orthologues and found that orthologues had generally a highly correlated expression tissue 515 

distribution profile in baseline conditions [46-50]. Gene expression levels among orthologs 516 

were found to be highly similar in muscle and heart tissues, liver and nervous system and less 517 

similar in epithelial cells, reproductive systems, bone and endocrine organs [48]. Studies have 518 

also shown that variability of gene expression between homologous tissues/organs in closely 519 

related species can be lower than the variability between unrelated tissues within the same 520 

organism [46, 47], in agreement with the results reported here at the protein level. 521 

Additionally, we showed an initial analysis of protein expression of orthologs across the three 522 

species using UMAP. 523 

 524 

In conclusion we here present a meta-analysis study of public mouse and rat baseline 525 

proteomics datasets from PRIDE. We demonstrate its feasibility, perform a comparative 526 

analysis across the three species and show the main current challenges. Finally, the data is 527 

made available via Expression Atlas. Whereas there are several analogous studies performed 528 

at the gene expression level for mouse and rat tissues, to the best of our knowledge this is the 529 

first of this kind at protein expression level.  530 
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4. Materials and Methods 531 

 532 

4.1. Datasets 533 

As of May 2021, there were 2,060 mouse (Mus musculus) and 339 rat (Rattus norvegicus) 534 

MS proteomics datasets publicly available in the PRIDE database 535 

(https://www.ebi.ac.uk/pride/). Datasets were manually selected based on the selection 536 

criteria described previously [14]. Briefly, we selected datasets where baseline expression 537 

experiments were performed on (i) label-free samples from tissues not enriched for post-538 

translational modifications; (ii) Thermo Fisher Scientific instruments such as LTQ Orbitrap, 539 

LTQ Orbitrap Elite, LTQ Orbitrap Velos, LTQ Orbitrap XL ETD, LTQ-Orbitrap XL ETD, 540 

Orbitrap Fusion and Q-Exactive, since they represent a large proportion of datasets in PRIDE 541 

and to avoid heterogeneity introduced by data from other vendor instruments; (iii) had 542 

suitable sample metadata available in the original publication or it was possible to obtain it by 543 

contacting the authors; and (iv) our previous experience in the team of some datasets 544 

deposited in PRIDE, which were discarded because they were not considered to be useful. 545 

Overall, 14 mouse and 9 rat datasets were selected from all mouse and rat datasets for further 546 

analysis. Table 1 lists the selected datasets. The 23 datasets contained a total of 211 samples 547 

from 34 different tissues across 14 organs (meaning groups of related tissues, more details 548 

below), comprising 9 different mouse and 3 rat strains, respectively. 549 

The sample and experimental metadata were manually curated using the information 550 

provided in the respective publications or by contacting the original authors/submitters. 551 

Annotare [51] was used for annotating the metadata and stored using the Investigation 552 

Description Format (IDF) and Sample-Data Relationship Format (SDRF) file formats [42], 553 

which are required for integration in Expression Atlas. An overview of the experimental 554 

design including experimental factors, protocols, publication information and contact 555 
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information are present in the IDF file, and the SDRF includes sample metadata describing 556 

the relationship between the various sample characteristics and the data files contained in the 557 

dataset. 558 

 559 

4.2. Proteomics raw data processing 560 

All datasets were analysed with MaxQuant (version 1.6.3.4) [52, 53] on a Linux high-561 

performance computing cluster for peptide/protein identification and protein quantification. 562 

Input parameters for each dataset, such as MS1 and MS2 tolerances, digesting enzymes, fixed 563 

and variable modifications, were set as described in their respective publications, with two 564 

missed cleavage sites. The FDR at the PSM (peptide spectrum match) and protein levels were 565 

set to 1%. The MaxQuant parameters were otherwise set to default values: the maximum 566 

number of modifications per peptide was 5, the minimum peptide length was 7, the maximum 567 

peptide mass was set to 4,600 Da, and for the matches between runs the minimum match time 568 

window was set to 0.7 seconds and the minimum retention time alignment window was set to 569 

20 seconds. The MaxQuant parameter files are available for downloading from Expression 570 

Atlas. The Mus musculus UniProt Reference proteome release-2021_04 (including isoforms, 571 

63,656 sequences) and Rattus norvegicus UniProt Reference proteome release-2021_04 572 

(including isoforms, 31,562 sequences) were used as the target sequence databases for mouse 573 

and rat datasets, respectively. The built-in contaminant database within MaxQuant was used 574 

and a decoy database was generated by MaxQuant by reversing the input database sequences 575 

after the respective enzymatic digestion. The datasets were run separately in multi-threaded 576 

mode. 577 

 578 

4.3. Post-processing 579 
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The post-processing of results from MaxQuant is explained in detail in [14]. In brief, the 580 

protein groups labelled as potential contaminants, decoys and those with fewer than 2 PSMs 581 

were removed. Protein intensities in each sample were normalised by scaling the iBAQ 582 

intensity values to the total amount of signal in each MS run and converted to parts per 583 

billion (ppb). 584 

!!"_$%&'!	 = )	$%&'! ∑ $%&'!#
!$%

, -.	1,000,000,000 585 

The ‘majority protein identifiers’ within each protein group were mapped to their Ensembl 586 

gene identifiers/annotations using the Bioconductor package ‘mygene’. For downstream 587 

analysis only protein groups whose isoforms mapped to a single unique Ensembl gene ID 588 

were considered. Protein groups that mapped to more than one Ensembl gene ID are provided 589 

in Supplementary File 1. The protein intensity values from different protein groups with the 590 

same Ensembl gene ID were aggregated as median values. The parent genes to which the 591 

different protein groups were mapped to are equivalent to ‘canonical proteins’ in UniProt 592 

(https://www.uniprot.org/help/canonical_and_isoforms) and therefore the term protein 593 

abundance is used to describe the protein abundance of the canonical protein throughout the 594 

manuscript. 595 

 596 

4.4. Integration into Expression Atlas  597 

The calculated canonical protein abundances (mapped to genes), together with the validated 598 

SDRF files, summary files detailing the quality of post-processing and the input MaxQuant 599 

parameter files (mqpar.xml) were integrated into Expression Atlas 600 

(https://www.ebi.ac.uk/gxa/home) as proteomics baseline experiments (E-PROT identifiers 601 

are available in Table 1). 602 

 603 

4.5. Protein abundance comparison across datasets 604 
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To compare protein abundances, the normalised protein abundances (in ppb) from each group 605 

of tissues in a dataset were converted into ranked bins. In this study, ‘tissue’ is defined as a 606 

distinct functional or structural region within an ‘organ’. For example, hippocampus, 607 

cerebellum and cortex are defined as ‘tissues’ that are part of the brain (organ) and similarly 608 

sinus node, left atria, left ventricle, right atria, right ventricle are defined as ‘tissues’ in heart 609 

(organ). Protein abundances were transformed into bins by first grouping MS runs from each 610 

tissue within a dataset as a batch. The normalised protein abundances (ppb) for each MS run 611 

within a batch were sorted from lowest to highest abundance and ranked into 5 bins. Proteins 612 

whose ppb abundances are ranked in the lowest bin (bin 1) represent lowest abundance and 613 

correspondingly proteins within bin 5 are of highest abundance in their respective tissue. 614 

When merging tissues into organs, median bin values were used. 615 

Proteins that were detected in at least 50% of the samples were selected for PCA (Principal 616 

Component Analysis) and was performed using R (The R Stats package) [54] using binned 617 

abundance values. For generating heatmaps, a Pearson correlation coefficient for all samples 618 

was calculated on pairwise complete observations of bin transformed values. Missing values 619 

were marked as NA (not available). For each organ a median R2 was calculated from all 620 

pairwise R2 values of their respective samples. Samples were hierarchically clustered on 621 

columns and rows using Euclidean distances. To compare the correlation in protein 622 

expression of shared organs between datasets, the FOT normalised protein abundances (ppb) 623 

were aggregated by calculating the median over samples. The regression line was computed 624 

using the ‘linear model’ (lm) method in R. 625 

4.6 Comparison of protein abundances using iBAQ and spectral counting data available 626 

in PaxDB 627 
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To compare protein abundances generated from iBAQ in this study and spectral counting 628 

methods, protein abundance data from different mouse organs was obtained from PaxDB 629 

(https://www.pax-db.org/) [16]. FOT normalised iBAQ abundances, as described above, were 630 

compared with the spectral counting abundances for the matching mouse organs. Organs 631 

from mouse labelled as ‘integrated’ in PaxDB were selected. It was not possible to perform 632 

this comparison for rat organs since data in PaxDB for rat are available for either the ‘whole 633 

organism’ or for “cell types” only. Abundances were compared across mouse adipose tissue, 634 

brain, heart, kidney, liver, lung, pancreas and spleen. The Ensembl ENSG gene ids were 635 

mapped to ENSP protein ids in PaxDB using the ‘mygene’ bioconductor package in R. 636 

4.7. UMAP analysis 637 

To generate the UMAP visualisations we used the binned protein abundance values generated 638 

in this study from rat and mouse, as well as the binned human protein abundance values from 639 

[14]. First, we reduced this data to only contain the orthologs found in all three species. For 640 

the purpose of only the initial visualisation layout, we filtered the data to include those 641 

proteins present in 90% of samples. Once the initial layout was generated, we then used the 642 

full protein abundance values to generate protein-specific visualisations. We use R v4.1.0 643 

with the package ‘umap’ (Uniform Manifold Approximation and Projection in R) [55] 644 

v0.2.7.0 to generate the UMAP visualisations. 645 

4.8. Organ-specific expression profile analysis  646 

For comparison across organs, the tissues were aggregated into organs and their median bin 647 

values were considered. As described previously [14] the classification scheme done by 648 

Uhlén et al. [17] was modified to classify the proteins into one of the three categories: (1) 649 

“Organ-enriched”: present in one unique organ with bin values 2-fold higher than the mean 650 
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bin value across all organs; (2) “Group enriched”: present in at least 7 organs in mouse or in 651 

at least 4 organs in rat, with bin values 2-fold higher than the mean bin value across all 652 

organs; and (3) “Mixed”: the remaining canonical proteins that are not part of the above two 653 

categories.  654 

 655 

Enriched gene ontology (GO) terms analysis was carried out through over-representation test 656 

described previously [14], it was combined with “Organ-enriched” and “Group enriched” 657 

mapped gene lists for each organ. In addition, Reactome [56] pathway analysis was 658 

performed using mapped gene lists and running pathway-topology and over-representation 659 

analysis, as reported previously [14]. 660 

4.9. Comparison of protein expression across species 661 

The g:Orth Orthology search function in the g:Profiler suite of programs [57] was used for 662 

translating gene identifiers between organisms. Since a custom list of gene identifiers could 663 

not be used as the background search set, the mouse and rat genes were first mapped against 664 

the background Ensembl database. The resulting list of mouse and rat genes mapped to 665 

human orthologs were then filtered so that they only included parent gene identifiers of the 666 

protein groups from mouse and rat organs identified in this study and the parent genes of 667 

human organs described in our previous study (Supplementary File 2 in [14]), respectively. 668 

 669 

The orthologs were grouped into various categories denoting the resulting mapping between 670 

identifiers: “one-to-one”, “one-to-many”, “many-to-one”, “many-to-many”, and “no 671 

mappings” between gene identifiers. Only “one-to-one” mapped ortholog identifiers were 672 

used to compare protein intensities between mouse, rat and human organs. The normalised 673 

ppb protein abundances of the one-to-one mapped orthologues in 6 organs (brain, heart, 674 
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kidney, liver, lung and testis), that were studied across all three organisms were used to assess 675 

the pairwise correlation of protein abundances. The linear regression was calculated using the 676 

linear fit ‘lm’ method in R. 677 

 678 

Data availability 679 

Expression Atlas E-PROT identifiers and PRIDE original dataset identifiers are included in 680 

Table 1. 681 
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 721 

Abbreviations 722 

DDA: Data Dependent Acquisition 723 

DIA: Data Independent Acquisition 724 

FOT: Fraction of Total 725 

GO: Gene Ontology 726 

iBAQ: intensity-based absolute quantification 727 

iTRAQ: Isobaric tag for relative and absolute quantitation 728 

IDF: Investigation Description Format 729 

MS: Mass Spectrometry 730 

ppb: Parts per billion 731 

PCA: Principal Component Analysis 732 

SDRF: Sample and Data Relationship Format 733 

TMT: Tandem Mass Tagging 734 

UMAP: Uniform Manifold Approximation and Projection  735 
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