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Abstract

Motivation

Human ancient DNA (aDNA) studies have surged in recent years, revolutionizing the study of
the human past. Typically, aDNA is preserved poorly, making such data prone to contamina-
tion from other human DNA. Therefore, it is important to rule out substantial contamination
before proceeding to downstream analysis. As most aDNA samples can only be sequenced to
low coverages (<1x average depth), computational methods that can robustly estimate contam-
ination in the low coverage regime are needed. However, the ultra low-coverage regime (0.1x
and below) remains a challenging task for existing approaches.

Results

We present a new method to estimate contamination in aDNA for male individuals. It uti-
lizes a Li&Stephen’s haplotype copying model for haploid X chromosomes, with mismatches
modelled as genotyping error or contamination. We assessed an implementation of this new ap-
proach, hapCon, on simulated and down-sampled empirical aDNA data. Our results demon-
strate that hapCon outperforms a commonly used tool for estimating male X contamination
(ANGSD), with substantially lower variance and narrower confidence intervals, especially in
the low coverage regime. We found that hapCon provides useful contamination estimates for
coverages as low as 0.1x for SNP capture data (1240k) and 0.02x for whole genome sequencing
data (WGS), substantially extending the coverage limit of previous male X chromosome based
contamination estimation methods.

Availability and Implementation

A implementation of our software (hapCON) using Python and C has been deposited at ht tps :
//github.com/hyl1317/hapROH. We make hapCon available as part of a python package
(hapROH), which is available at the Python Package Index (https://pypi.org/project/
hapROH) and can be installed via pip. The documentation provides example use cases as
blueprints for custom applications (https://haproh.readthedocs.io).

Introduction

In recent years, ancient DNA (aDNA) has become a new powerful scientific instrument for
studying the human past. However, aDNA is often highly fragmented and degraded, and the
amount of endogenous DNA is typically low. Therefore aDNA is particularly prone to contam-
ination from other human DNA, in particular during sample excavation, handling and aDNA
extraction. It is an important quality control step to rule out substantial contamination before
proceeding to downstream analysis. This task requires reliable tools to estimate contamination
rates for low coverage aDNA.

One widely used approach to estimate contamination for aDNA utilizes heterozygosity in
mitochondrial genomes (mtDNA) as an uncontaminated individual’s mtDNA should be hap-
loid; therefore, apparent heterozygous sites on mtDNA contain evidence about contamination.
[Renaud et al., 2015, e.g. Schmutzi]. For most ancient samples, mtDNA can be sequenced to rel-
atively high coverage, facilitating such analysis. However, the ratio of preserved endogenous
mtDNA to nuclear DNA varies greatly across samples, creating a complex relationship between
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mtDNA and nuclear DNA contamination. A sample can be highly contaminated for its nuclear
DNA but minimally contaminated for its mtDNA, and vice versa [Furtwéngler et al., 2018].

A direct way to estimate nuclear contamination similarly exploits the naturally haploid male
X chromosome. Several methods have been developed to utilize this signal [Rasmussen et al.,
2011, Moreno-Mayar et al., 2020, e.g.]. All of them require sites covered by at least two reads
to measure heterozygosity. However, for low-coverage data most covered sites are covered by
one read only. Assuming that read depth follows Poisson distribution per site, for 0.1x average
genome-wide coverage about 0.47% sites are expected to be covered by at least 2 reads, for 0.05x
dropping to 0.12% and for 0.01x to only 0.005%. As a result, only a small fraction of sequence
data can be used for estimating contamination, causing the estimates for ultra-low coverage
samples to be highly variable with wide confidence intervals.

Here we present a new approach to estimate contamination rates based on haplotype copy-
ing on male X chromosome that also utilizes sites covered by only one read. We model the
target X chromosome as a mosaic copy from a modern reference panel, and model sporadic
mismatches of observed reads from the copied haplotypes as either sequencing error or con-
tamination. An implementation of the new method is available as Python package (hapCON,
https://github.com/hyl1317/hapROH). Using the Hidden Markov Model (HMM), the
software estimates contamination by maximum likelihood. Extensive simulations and down-
sampling experiments demonstrate that hapCon produces estimates with smaller variance and
narrower confidence intervals than previous methods using the male X chromosome. It sub-
stantially extends the application range of such analysis, yielding reliable contamination esti-
mates for as low as 0.1x coverage on a widely used aDNA data type (1240k capture) and for as
low as 0.02x whole genome sequencing (WGS) data (all coverages refer to average sequencing
depth on the X chromosome).

Methods

The core of our method is a haplotype copying approach widely used in genomics [Li and
Stephens, 2003, Li&Stephen] that models a target genome as a mosaic of haplotypes from a
reference panel. Since X chromosomes of males are haploid, they can be naturally modeled as
such a haplotype mosaic[Biddanda et al., 2021]. Any reads discordant from the copied haplo-
type can be due to a number of causes (including mutation, gene conversion, sequencing error,
aDNA postmortem damage, or contamination), but only contamination mismatches correlate
with population allele frequencies. To utilize this signal within the HMM, we incorporated a
previous contamination model for single sites [from ANGSD [Rasmussen et al., 2011]] which
incorporates both mismatch rates due to contamination and due to other types of error.

The Hidden Markov Model

Throughout, we model biallelic markers on haploid X chromosomes. Given n haplotypes from
a reference haplotype panel, the Li&Stephens Hidden Markov model (HMM) has n hidden
states for each marker, and a marker being in state i(1 < i < n) denotes its genotype being
copied from the reference haplotype indexed by i (Fig.1). This general Li&Stephen HMM is then
fully specified by setting transition probabilities between markers and emission probabilities
for the genotype data. Here we use a standard transition probability with jump probabilities
depending on the genetic map distance between markers as measured in Morgan. For the
emission probabilities of read counts for both alleles, we incorporate the previously published
ANGSD model [Rasmussen et al., 2011].
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Transition Probabilities

We define the transition probability between hidden states for each pair of adjacent markers
[,1+ 1 asin Ringbauer et al. [2021]. Given an infinitesimal rate matrix ) of dimension n x n, the
full transition probability matrix between marker [ and [ + 1 is obtained by exponentiation of
the rate matrix: T;_,;41 = exp(Q-r;), where r; denotes the genetic map distance between marker
land ! + 1 (measured in Morgan). We assume that each reference haplotype has an equal prior
probability to be copied from, therefore a single rate ¢ fully specifies off-diagonal elements of
Q, and Q;; = —(n — 1)g. We set ¢ = 300, see Supplementary Note 1.3.3 for further details.

Emission Probabilities

Assume we have known genotype data iy, - - - , iy, at L biallelic markers along the ith haplotype,
with possible values 0 and 1 encoding reference and alternative alleles, respectively. At each
marker [, we denote the number of aligned reads from the target sample supporting reference
and alternative alleles by ¢;,, ¢;,, respectively. This observed read count data is the data we link
to our HMM with our emission model.

To model mismatches between the observed genotype data and the copied haplotype, we
now introduce three error parameters ¢4, ¢,,, and c. First, ¢, is the genotyping error rate per read
which can be estimated from monomorphic sites adjacent to polymorphic sites (see Supplemen-
tary Note 1.3.1 for details). Second, the overall error rate €, is an aggregate error term to model
mismatches between the endogenous genotype and the copied haplotype due to various causes
(including mutations, gene conversion, errors in the reference panel, etc.). This so called mis-
copying rate is widely used in phasing and imputation algorithms based on the Li&Stephen’s
model [Loh et al., 2016, Delaneau et al., 2019, Rubinacci et al., 2021, Browning et al., 2021, e.g.].
We fix ¢, = le™3, as preliminary tests indicated that this value provides good performance on
simulated and empirical aDNA data while also providing some flexibility so that the copying
path is not truncated by errors (see Supplementary Note 1.3.2 for details). Third, the contam-
ination rate ¢ models the fraction of the reads originating from contamination, which is the
parameter we wish to estimate.

We then use a two-layer approach to model the observed read counts of the target at each
marker. The first layer models the endogenous genotype given the copying state, and the sec-
ond layer describes how sequencing reads are drawn given the endogenous genotype.

The first layer specifies the genotype probability of the target haplotype for each marker /,
t;, given the underlying copying state, s;. Haplotype copying with error rate €, gives:

pti=0[s; =14) = (1 — €)1, + & 14,21, 1)

and the probability for the derived allele p(¢; = 1|s; = 7) is obtained analogously.

The second layer then models the probability of a read being derived given the latent geno-
type. We first calculate the probability of a single sampled read being derived. Let c denote the
genome-wide contamination rate, and p; denote the derived allele frequency in the contaminat-
ing population at marker /, then the probability of observing a derived read is

p(derived|t; = 0) = (1 — ¢)eg + cpi(1 —€g), )
p(derived|t; = 1) = (1 —¢)(1 — ¢g) + cpi(1 — €g). @

We have omitted terms that are proportional to €,c, which are the products of two small
values.
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Figure 1: Graphical illustration of the model to estimate contamination rates via copying haplotypes from a haplotype reference
panel. The target male X chromosome is modeled as a mosaic copy from a haplotype reference panel. In this specific case, the haplotype
is copied from reference haplotype 4,2,1 (from left to right). The observed read counts at each biallelic marker are modelled as a mix of
reads from the endogenous haplotype (shades of yellow), reads from the contaminant (blue) and sequencing errors (red).

The probability for a single read being derived given the hidden state s; is obtained by
combining the two layers. Summing over the two possible latent genotypes gives:

p(derived|s;) = p(derived|t; = 0)p(t; = 0|s;) + p(derived|t; = 1)p(t; = 1]s;). 3)

Finally, we model the observed read counts by a binomial distribution fully determined by
the probability of a single read being derived. Denoting the total read depth at marker [ as
n = ¢, + ¢;, and abbreviating py(s;) = p(derived|s;) gives:

plcy,ayls) = (n) (1 —pa(s)" " pals))r. 4)

Cl1

This probability of the observed read counts for each HMM state fully specifies the emission
probabilities of the HMM.

Maximum Likelihood Estimation

For a given contamination rate ¢ and with all other parameters set, we then use a standard
scaled forward algorithm to calculate the overall likelihood of the HMM model [Bishop, 2006].
To obtain a maximum likelihood estimate ¢ of ¢, we then use the iterative method L-BFGS-
B[Byrd et al., 1995, Zhu et al., 1997] provided in SciPy [Virtanen et al., 2020] searching within
the interval [0,0.5]. We estimated the standard error of the MLE estimate ¢ by numerically
calculating Fisher Information of the likelihood function around ¢ using the Python package
numdifftools, and then approximated the 95% confidence interval by +1.96 xstandard errors.
Since our model is undefined for ¢ < 0, for ¢ = 0 the first derivative may not be zero at ¢ =
0 and thus confidence intervals cannot be approximated with the Fisher Information matrix
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alone. Instead, we use quadratic interpolation based on first and second derivatives with ¢
to approximate the likelihood function around ¢ = 0 and use the set of parameters whose
likelihood is at least 14.7% of the maximum likelihood to obtain 95% confidence intervals (the
so-called “14.7% likelihood region”, see details in Rossi [2018], Definition 5.11).

Relations to previous methods

Several methods that utilize discordant reads in haploid regions to estimate contamination rates
inaDNA data have been developed. ANGSD, a widely used method, assumes that true endoge-
nous allele is supported by the majority of the mapped reads at a site [Rasmussen et al., 2011].
More recently, a similar approach has been developed which assigns equal priors to both the
reference and alternative alleles [Moreno-Mayar et al., 2020, two-consensus method]. Our new
approach can be considered as a many-consensus model where the true endogenous allele orig-
inates from a set of reference haplotypes and each of them being weighted by the Li&Stephens
haplotype copying framework that utilizes linkage disequilibrium information. We note that in
the limit of widely spaced markers with no haplotype information left, our model converges to
the two-consensus approach, but with priors according to the allele frequency in the reference
panel.

We hypothesized that our method’s performance gain is driven by its ability to utilize sites
covered by only one read. Such data can be used by neither ANGSD nor the two-consensus
approach as both need at least two reads per site to establish evidence of contamination. In
contrast, by using haplotype copying model, our method can detect potential contamination via
comparing single reads to the copied reference haplotypes. As a proof of concept, we simulated
read counts and down-sampled every covered site to exactly one read (see Supplementary Note
1.2 for details). Our results demonstrate that our method can still produce valid contamination
estimates, even when fully relying on this so-called pseudohaploid data (Fig. 51).

Results

We assessed the performance of our new approach on both simulated and empirical aDNA data.
Throughout, we set the following default settings. We used a reference panel consisting of all
non-African haplotypes from the 1000Genome Project[Consortium et al., 2015] (see section ”Ge-
netic distance between the endogenous and contaminant ancestry” for the detailed rationale).
We set allele frequencies of the CEU individuals (CEU: Northern Europeans from Utah in 1000
Genome panel) as the proxy for the contamination source allele frequency. For comparison, we
used ANGSD’s Method 1(new_llh) with default settings. We filtered mapped reads to mapping
quality greater than 30 and to base quality greater than 20. For each simulated scenario, we
generated 100 independent replicates. For every replicate, we report the maximum likelihood
point estimate of the contamination rate and a 95% confidence interval.

We prepared two reference panels tailored towards two common aDNA data types. The
first panel contains all sites in the widely used enrichment capture strategy consisting of ca. 1.2
million SNPs, henceforth referred to as “1240k” panel [Fu et al., 2015, Haak et al., 2015, Math-
ieson et al., 2015]. The second panel contains all biallelic sites in the WGS 1000Genome dataset
[Consortium et al., 2015] with minor allele frequency greater than 5%, henceforth referred to as
“1000G panel”. We chose this 5% MAF filter because initial exploratory analysis showed that
this cutoff provides a robust trade-off between accuracy and run time (Fig. S5). We explored
MAF ranging from 0.2% to 20% and found that the width of confidence interval increases only
slightly when increasing MAF cutoff, suggesting that most signal comes from common variants.
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Performance
Simulated whole genome sequencing data

We first assessed our new method on simulated samples with artificial contamination cre-
ated by mixing BAM files of two samples. We chose WGS data with high average coverage
and little contamination from the Allen Ancient Genome Diversity Project (https://reich.
hms.harvard.edu/ancient-genome-diversity-project). Specifically, we used 11496
(5211-4958 calBCE, Hungary, contamination estimated by ANGSD: 0.756%(95% CI: 0.702%-
0.810%))[Gamba et al., 2014] as the ancient source and 15319 (1050-1400 calCE, Alaska, USA,
contamination estimated by ANGSD: 0.720%(95% CI: 0.665%-0.774%))[Flegontov et al., 2019] as
the contaminant source. We randomly subsampled the original high-coverage BAM files and
mixed them together to create synthetic BAM files with desired coverage and contamination
rate. We then estimated contamination rates with both ANGSD and hapCon on those synthetic

files.
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Figure 2: Performance on 1240k Panel for Simulated Contaminated BAM Files We simulated contaminated BAM files by mixing
two minimally contaminated BAM files (11496, contamination: 0.756%(95% CI: 0.702%-0.810%); 15319, contamination: 0.720%(95% CI:
0.665%-0.774%)). 100 replicates were created for each simulation scenario and analyzed with hapCon and ANGSD. Estimates from both
methods are visualized in groups of replicates next to each other. Each - represents the estimate for one replicate, and they are ordered
from low to high within each replicate group. Baseline contamination from 11496 was added to the simulated contamination rate (red
line). Results for contamination rate other than 0% and 10% are displayed in Fig. S6. a Comparing ANGSD with our method using 1240k
panel on simulated non-contaminated BAM files. b Same as (a) but with 10% simulated contamination.

We explored our method’s ability to distinguish between minimally and highly contami-
nated samples, a typical application in aDNA studies and present estimation results for 0%
and 10% simulated contamination; results for other contamination rates (from 0% to 20% are
visualized in Fig. 56 and Fig. 57). Comparing with ANGSD shows that our method produces
estimates with smaller variance and narrower confidence intervals, particularly at lower cov-
erages (Fig. 2). Overall, hapCON achieves a similar level of uncertainty as ANGSD at ca. 10x
lower coverage when using the 1000G reference panel and at ca. 2x lower coverage when using
the 1240k reference panel. In addition, we observe a marked boost in power when using the
1000G panel compared to the 1240k panel. With this panel, our method can robustly distin-
guish 10% contaminated samples from no contamination for as low as ~0.02x X chromosome
coverage (Fig. 3). We also observe a modest upward bias of our method at coverages higher
than 0.5x when using 1000G panel. Further exploration shows that this bias remains mild at
high coverages. (Fig. 59).
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Figure 3: Performance on 1000G Panel for Simulated Contaminated BAM Files We compare our method’s performance when using
the 1240k and 1000G reference panel. Simulation settings are as described in Fig. 2. For coverages lower than 0.05x the estimates from
the 1240k panel have very high variance, therefore we omitted them from the visualization. Results for contamination rates other than
0% and 10% are shown in Fig. 57. Baseline contamination from 11496 was added to the simulated contamination rate. a Comparing our
method on two different reference panels for BAM files with no added contamination. b With 10% added contamination.

Down-sampling empirical aDNA data

We then tested the new method on published BAM files from previous aDNA studies when
down-sampling genomic coverage. For 1240k data, we explored two male individuals from Sar-
dinia, SUA001 (1411-1228 calBCE, 1.02x chrX coverage on 1240k target sites) and SUA002 (2274-
2032 calBCE, 0.64x chrX coverage on those sites) [Marcus et al., 2020]. We chose those two
samples because ANGSD estimates SUA001 to be substantially contaminated (10.45%, 95%ClI:
9.56%-11.34%) and SUA002 to be only slightly contaminated (0.38%, 95%CI: 0.072%-0.69%).

For each target coverage, we independently down-sampled 100 replicates (Fig. 4). For
the highly contaminated sample (SUA001) at coverage 0.05x, our method identifies 98 repli-
cates as having substantial contamination (here defined as >5%), while ANGSD falsely identi-
fies 20 replicates as being lowly contaminated (<5%). For the minimally contaminated sam-
ple (SUA002) at coverage ~0.05x, our method can confidently identify all 100 replicates as
minimally contaminated (<5%), while ANGSD’s estimate ranges from 0% to greater than 5%,
falsely identifying two replicates as having substantial contamination. For 0.1x coverage, our
new method can robustly distinguish minimally and substantially contaminated samples - all
the down-sampled SUAQ01 replicates have contamination estimates greater than 5%, and all
SUAOQ02 replicates have contamination estimates less than 5%. Based on this down-sampling
experiments, we recommend our method for 1240k data with 0.1x coverage or higher.

Further, we applied the two-consensus method [Moreno-Mayar et al., 2020] to these two Sar-
dinian samples. We found that it performs overall similarly to ANGSD, but on some replicates
much worse at 0.05x coverage (Fig. S8). Therefore, we focus our overall analysis on comparison
between our new method and ANGSD, a currently very widely used method.

For down-sampling experiments of WGS data, we used a XiongNu sample DA43(Mongolia,
400BCE-100CE, 0.83x chrX coverage)[de Barros Damgaard et al., 2018], which is estimated to be
2.83% (95% CI: 2.35%-3.31%) contaminated by ANGSD. Since this is WGS data, we used the
1000G reference panel. We tested our method’s performance on coverage 0.01x, 0.02x, 0.05x,
0.1x, 0.5x and compared our method to ANGSD (Fig. 5). Our results show that our method
yields reliable estimates for WGS data down to about 0.02x on X chromosome, outperforming
ANGSD and achieving similar confidence intervals at 10x lower coverage, a performance gain
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Figure 4: Down-sampling Experiment on 1240k Data of Two Sardinian Individuals. The original BAM files [Marcus et al., 2020] were
down-sampled to various coverages, with 100 independent replicates for each target coverage. a Comparison between our method
and ANGSD on SUAQ01, estimated to be 10.45%(95%CI: 9.56%-11.34%) contaminated by ANGSD (using the full data). b Comparison
between our method and ANGSD on SUA002, estimated to be 0.38%(95%ClI: 0.072%-0.69%) contaminated by ANGSD (on full data).

similar to that observed on the simulated contamination BAM files.
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Figure 5: Down-sampling Experiment on WGS Data of DA43, XiongNu, Mongolia The original BAM file for DA43 was down-sampled
to various coverages 0.01-0.5x, with 100 independent replicates for each target coverage. We only visualized ANGSD'’s results on 0.05x,
0.1x, 0.5x as it produced highly variable estimates at coverage lower than 0.05x. We depict the ANGSD contamination estimate (2.83%,
95% CI: 2.35%-3.31%) when using the full data (red line).
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Empirical comparison on 1240k data

Next, we applied our method to empirical 1240k aDNA data covering a wide range of coverages
and contamination rates. We selected all 89 ancient males that have X chromosome coverage
greater than 0.05x from [Olalde et al., 2019], all of which are from the Iberian Peninsula and
date to within the past 8,000 years. We also applied our method to 60 male Eurasian hunter-
gatherer samples to test our method on older samples which are genetically more distant from
the modern reference panel. We found that estimates from hapCON and ANGSD are highly
concordant on the full sample set (r*> = 0.855), and for 139 out of 149 samples our method has
smaller confidence intervals (Fig. 6). For the 119 samples with contamination rate estimated
to be < 5% by both methods, our the estimate of hapCon is higher than that of ANGSD on
38, and lower on the remaining 81, indicating that both methods give overall similar estimates
when the contamination rate is low. For all samples with contamination rate greater than 20%,
our method estimates higher contamination than ANGSD; however, in practice samples with
contamination rate substantially greater than 10% are avoided in downstream analysis in any
case.

0.7 —T >2.0x

0.6 - F2=0.855

0.5 A 92 - 1.5x

0.4 1 i *

0.3 1 1.0x

hapCON

0.2 A

0.11 1 0.5x

average coverage on chrX 1240k

0.0 A

0.1 , . 0.000 0.025 0.050
0.0 0.2 0.4 0.6
ANGSD Method 1

Figure 6: Comparison between the new method and ANGSD on 1240k aDNA data of 89 Iberians and of 60 Eurasian hunter-gatherers.
The true contamination rate is unknown. No down-sampling is performed and all individuals (dots) are color coded by the average
coverage on chrX 1240k target sites. The inlet shows a zoom-in into [0, 0.05] x [0, 0.05].

Implementation and runtime

We implemented hapCon as a Python package, expanding upon code from the software hapROH
which uses a similar copying HMM [Ringbauer et al., 2021]. We measured our method’s run-
time (including preprocessing time to parse BAM file with samtools [Li et al., 2009, Li, 2011]) on
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Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz on WGS data with coverages ranging from 0.02x to
5x. As expected, the run time grows approximately linearly with the number of sites covered by
at least one read. The run time of our method with 1000G panel remains within three minutes
for a typical aDNA sample with coverage less than 1x, making our new method viable for any
large-scale ancient DNA studies. Our benchmarking experiment also shows that our method is
four times slower with 1000G panel than with 1240k panel (Fig. 7), as expected since the 1000G
panel contains about four times more SNPs than the 1240k panel. For comparison, we used the
C++ version of ANGSD. The results indicate that our method is faster than ANGSD at coverage
higher than 1x.

Running time comparison between ANGSD and hapCON

] —e— ANGSD on wGs

hapCON on WGS with 1000Genome Panel
hapCON on WGS with 1240k Panel

103

102

Runtime in seconds

10!

0.02x  0.05x 0.1x 0.2x 0.5x 1x 2X 5x
Coverage on chrX

Figure 7: Comparing runtime of hapCON and ANGSD. We measured runtime of hapCON and ANGSD on BAM files of individual
11496, down-sampled to 8 target coverages. For hapCON, we used two different reference panels (1240k and 1000G panel). Each point
represents the runtime averaged over 10 independent runs.

Model Mis-specification
Mis-specified contaminant allele frequency

In practice it is often not possible to specify the ancestry of the contamination. One may not have
an accurate proxy for the contamination source, or a sample may be contaminated by more than
one sources of contamination. Therefore, a contamination estimation method is ideally robust
to mis-specifying allele frequency of the contamination source.

To assess the effect of mis-specified contaminant allele frequency, we utilized synthetic BAM
files simulated as described above. We then estimated contamination rate using allele frequen-
cies from CEU (Utah residents with Northern and Western European ancestry), FIN (Finnish
in Finland), GBR (British from England and Scotland), IBS (Iberian Populations in Spain), TSI
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(Toscani in Italia), YRI (Yoruba in Ibadan, Nigeria), CHB (Han Chinese in Beijing, China), PEL
(Peruvian in Lima, Peru). We observe that the estimates obtained from CEU, FIN, GBR, IBS,
TSI allele frequency behave very similar and all have little bias, while estimates using YRI al-
lele frequency show significant downward bias (Fig. 511 and Fig. S512). We note that a sim-
ilar downward bias for mis-specified contaminant ancestry was previously described for the
two-consensus method [Moreno-Mayar et al., 2020]. These observations indicate that contam-
ination estimates with our method remain robust with respect to modest allele frequency mis-
specification; however, mis-specification at the level of intercontinental allele frequency differ-
ences can introduce substantial biases. Our method provides a command line argument to
specify the source of contamination; therefore, users can specify a contaminant ancestry that is
different from the default.

Genetic distance between the endogenous and contaminant ancestry

We observed that, when the ancestry of contaminant sequences (e.g, CEU) is genetically close
to that of endogenous sequences (e.g, TSI), our model tends to overestimate contamination
rate at low coverage (0.05x, see Fig. S10a,d). We hypothesized that this bias is caused by the
contaminant allele frequency being a better fit for the endogenous sequence than the reference
panel overall. At such low coverage, almost every site is covered by only one read and cov-
ered sites are often far apart. Without haplotype structure, the main information for estimating
contamination then comes from allele frequencies. When the allele frequency of the specified
contamination source is closer to the endogenous haplotype than the allele frequency of the
overall reference panel, there is a bias toward the contamination source. Indeed, when haplo-
types of African ancestry are removed, the upward bias substantially decreases (Fig. S10b,e).
When using the allele frequency calculated from the full reference panel, so that there is no
allele frequency difference between the reference panel and the specified contaminant ances-
try, the upward bias is completely removed (Fig. S10c,f). However, we observed that using
global allele frequency creates downward bias at low coverages in empirical aDNA data (data
not shown), plausibly because of overall allele frequency mis-specification of the contaminant.
Therefore, we recommend using allele frequency as closely matching the true contamination
source as possible and removing highly divergent haplotypes from the reference panel.

Discussion

We have presented a new approach to estimate aDNA contamination in males based on a
Li&Stephen’s haplotype copying model and implemented it in a software package (hapCon).
The Li&Stephen model is widely used in population genomics as it makes use of haplotype
structure and linkage disequilibrium information, and constitutes a central part of many mod-
ern phasing and imputation algorithms [Loh et al., 2016, Delaneau et al., 2019, Rubinacci et al.,
2021, Browning et al., 2021, e.g.]. Similarly, our method implicitly imputes the endogenous
genotype using reference haplotypes, and thus can utilize sites covered by only a single read,
which, to our knowledge, cannot be utilized by any other male X chromosome based method.
Testing on simulated and down-sampled empirical aDNA data showed that the new approach
substantially improves power to estimate contamination, particularly in the low coverage regime.
Across coverage levels, hapCON consistently yields estimates with lower variance and nar-
rower confidence intervals than ANGSD and the two-consensus approach described in [Moreno-
Mayar et al., 2020]. The most substantial gains are achieved for low-coverage WGS data. We
found that hapCON provides robust contamination estimates for 1240k capture data with as
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low as 0.1x coverage and for WGS data with as low as 0.02x coverage on the male X chro-
mosome, substantially extending the limits of ANGSD or the two-consensus approach. We
explored various sources of model mis-specifications, including genotyping error, haplotype
copying jump rate and contaminant allele frequencies. These experiments showed that hap-
CON is robust with respect to reasonable mis-specifications.

There are several methods to estimate contamination that do not rely on haploid regions,
but they have limited applicability. ContamLD utilizes breakdown of linkage disequilibrium
introduced by contaminant sequences to estimate contamination rate since the contaminant
haplotype is uncorrelated with the endogenous haplotype[Nakatsuka et al., 2020]. As a key
advantage it allows estimating autosomal contamination for female samples, but it requires
comparably high coverage (~0.5x for 1240k data and ~0.1x for WGS data - which is about
5x higher than hapCon). Another recently introduced method, AuthentiCT, uses postmortem
damage pattern to estimate contamination rate [Peyrégne and Peter, 2020]. It can work with
very low coverage samples, but it is limited to single-stranded libraries without UDG treatment,
limiting its usage to only a small fraction of aDNA data. Moreover, AuthentiCT cannot detect
contamination originating from ancient sources. DICE performs joint estimate of demography,
sequencing error and contamination rate but it requires comparably high coverage (~3x), which
is not obtained for the vast majority of ancient DNA samples[Racimo et al., 2016].

There are several limitations of our new approach. Haplotype copying substantially im-
proves the power; however, it requires that the true endogenous haplotype can be modeled
well as a mosaic of modern haplotypes. Deeply diverged human lineages such as Neanderthals
and Denisovans are likely outside the range of this copying model. In such cases, one should
consider using ANGSD or other more specialized methods not relying on a haplotype reference
panel [Peter, 2020]. Having that said, we have tested our method on Paleolithic and Mesolithic
hunter-gatherers and found good correlations between estimates from our method and that
from ANGSD; therefore, this haplotype copying approach in principle work for most modern
human aDNA. We also found moderate upward bias at low coverage when the endogenous
and contaminant allele frequencies are genetically close. Our results indicate that this bias is
caused by attraction to allele frequencies of the contamination source. Using a Out-of-Africa
haplotype reference panel partially alleviates this bias. Finally, although our results showed
that our method is in general robust to moderately mis-specified ancestry of contamination, to
obtain unbiased results the allele frequency should be within continental genetic variation of
the true contamination source. Therefore, if there is no prior information about the contamina-
tion source or the sample has been contaminated by several sources from different continental
ancestries, our method may yield substantially biased results.

Beyond application to the naturally haploid male X chromosome, we envision our haplo-
type copying approach to be useful for estimating contamination for female samples with long
runs of homozygosity (ROH), as such regions are effectively haploid. Previous studies have
identified extensive ROH in almost all paleolithic hunter-gatherers[Ringbauer et al., 2021] or
in populations with small effective size, such as the pre-contact Caribbean [Fernandes et al.,
2021]. However, we note that contamination interferes with identifying ROH, particularly in
the low coverage regime. Future work could establish robust approaches to identify ROH for
substantially contaminated data, and the software presented here can then be straightforwardly
extended for estimating contamination on ROH.
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Data Availability

No new DNA data was generated for this study. The two Sardinian samples SUA001 and
SUAQ02 are publicly available through the European Nucleotide Archive (ENA) under ac-
cession PRJEB35094. The Iberian samples are publicly available through ENA under acces-
sion PRJEB30874. The Mongolia XiongNu sample DA43 is available through ENA under ac-
cession PRJEB20658. The two high-coverage ancient genomes 11496 and 15319 are publicly
available at Allen Ancient Genome Diversity Project https://reich.hms.harvard.edu.
The collection of 60 hunter-gatherers is unpublished data and will become publicly available
with the publication of this data (Yu et al,, in preparation). The raw reference panel data
that we used (phased haplotypes from the 1000 Genomes dataset, Phase 3, release 2013050)
is available athttp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/.
The reference panel needed to run our method is available at https://www.dropbox.com/
sh/mxsf2c7srlx2ghm/AADVES-gk5hplOnZjJw9f jMPa?d1l=0.

Code Availability

A implementation of our software (hapCON) using Python and C has been deposited at https:
//github.com/hy1317/hapROH. We make hapCon available as part of a python package
(hapROH), which is available at the Python Package Index (https://pypi.org/project/
hapROH/) and can be installed via pip. The documentation provides example use cases as
blueprints for custom applications (https://haproh.readthedocs.io/en/latest/). A
list of software and Python packages used in this work can be seen at Supplementary Section 2.
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