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ABSTRACT 

Background: Characterizing plant genetic resources and their response to the environment through accurate 

measurement of relevant traits is crucial to genetics and breeding. The spatial organization of the maize ear provides 

insights into the response of grain yield to environmental conditions. Current automated methods for phenotyping the 

maize ear do not capture these spatial features. 

Results: We developed EARBOX, a low-cost, open-source system for automated phenotyping of maize ears. EARBOX 

integrates open-source technologies for both software and hardware that facilitate its deployment and improvement for 

specific research questions. The imaging platform consists of a customized box in which ears are repeatedly imaged as 

they rotate via motorized rollers. With deep learning based on convolutional neural networks, the image analysis 

algorithm uses a two-step procedure: ear-specific grain masks are first created and subsequently used to extract a range 

of trait data per ear, including ear shape and dimensions, the number of grains and their spatial organisation, and the 

distribution of grain dimensions along the ear. The reliability of each trait was validated against ground-truth data from 

manual measurements. Moreover, EARBOX derives novel traits, inaccessible through conventional methods, especially 

the distribution of grain dimensions along grain cohorts, relevant for ear morphogenesis, and the distribution of abortion 

frequency along the ear, relevant for plant response to stress, especially soil water deficit. 

Conclusions: The proposed system provides robust and accurate measurements of maize ear traits including spatial 

features. Future developments include grain type and colour categorization. This method opens avenues for high-

throughput genetic or functional studies in the context of plant adaptation to a changing environment. 

Keywords: Zea mays, maize ear imaging, CNN-based deep learning, environmental response, grain set, grain abortion, 

maize ear spatial organization 

 
1 To whom correspondence must be addressed to: Sébastien Lacube, sebastien.lacube@phymea-systems.com 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473433
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

Characterizing genetic resources and their response to 

the environment through accurate measurement of 

relevant traits is crucial to dissect the genetic bases of 

crop yield (Liang et al., 2016), and to tailor genotypes 

adapted to specific climatic scenarios (Tardieu et al., 

2018). In maize, yield results from the number of grains 

and individual grain size, each of which has higher 

heritability than overall yield (Messmer et al., 2009; 

Peng et al., 2011), present different genetic architectures 

(Alvarez Prado et al., 2014; Amelong et al., 2015) and 

result from environmental conditions during different 

phases of the crop cycle, namely the vegetative and 

flowering period for grain number and the post-

flowering period for individual grain weight (Gambín & 

Borrás, 2010). Sensitivities of grain number to soil water 

deficit, temperature and light are key parameters in the 

prevision of grain yield in a wide range of environments 

(Millet et al., 2019), thus requiring accurate 

phenotyping.  

Examining the structure of the maize ear provides 

additional insights into deciphering the response of 

grain yield to environmental conditions. Indeed, the ear 

is composed of concentric rings of grains (cohorts) 

initiated simultaneously within each cohort but 

sequentially between cohorts (Messina et al., 2019) (Fig. 

1 A-B). While the number of grains per cohort is a 

genetic trait largely independent of environmental 

conditions, the number of cohorts results from the 

response to climatic scenarios, with genotype-specific 

responses. Prior to flowering, suboptimal conditions 

reduce the number of grains via a reduction in the 

number of cohorts due to a reduced number of initiated 

ovaries (Moser et al., 2006). Abiotic stresses occurring 

at flowering result in localized ovary and grain abortion 

involving cohorts with delayed development (Oury et 

al., 2016) located preferentially at the ear apex, with 

aborted zone increasing with stress intensity (Fig. 1 C-

D-E). Stress affecting pollination (pollen availability or 

viability) results in a wide variety of phenotypes 

characterised by incomplete cohorts and erratic cohort 

numbers (Fig. 1 F). Stress occurring beyond two weeks 

after flowering reduces grain size (Saini & Westgate, 

1999). Therefore, a fine characterization of the spatial 

distribution along and around the ear of grain 

set/abortion and of grain and ear dimensions appears to 

be a relevant tool to reveal the response of genotypes to 

environmental scenarios.  

Ear phenotyping is still largely manual, time-

consuming, costly, and subjective (Liang et al., 2016). 

Several methods have been developed to extract ear and 

grain characteristics from images (Chipindu et al., 2020; 

Makanza et al., 2018; Severini et al., 2011). They are 

usually based on manual or non-standardized 

acquisition involving either isolated grains after shelling  

(Liang et al., 2016; Makanza et al., 2018; Miller et al., 

2017; Ni et al., 2019; Severini et al., 2011) or one side 

of the ear (Chipindu et al., 2020; Khaki et al., 2020, 

2021; Kienbaum et al., 2021; Miller et al., 2017; Wu et 

al., 2020). Thus, the spatial distributions of grain 

presence/absence (grain set vs grain abortion) and grain 

traits along and around the ear is usually not, or only 

partly, considered.  

Fig. 1. Spatial organization of grains reflecting the morphogenesis 

of the ear. The grains are arranged in rings and rows. Each ring 

corresponds to a cohort of organs with synchronous development, 

while a developmental gradient exists between cohorts depending on 

their vertical position along the rows. Floret cohorts are initiated 

sequentially at the ear apex. The oldest cohorts are located at basal 

positions and the youngest at apical positions. (A, B) Under optimal 

conditions, pollination and fertilization follow the order of silk 

emergence which is illustrated by colors: zone 1 cohorts (blue) are 

fertilized first, followed by zone 2 (green), zone 3 (yellow) and zone 

4 (red). (C, D, E) Abiotic stresses occurring at flowering induce 

abortion that preferentially affects the youngest apical cohorts in zone 

4, followed by the basal cohorts. (E F) Severe constraints affecting 

pollination (pollen availability or viability) result in a wide variety of 

phenotypes characterized by incomplete cohorts and erratic cohort 

numbers. 
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Several techniques have been used for ear imaging, each 

providing different advantages and drawbacks. (i) 

Vertical positioning of the ear on a rotating axis allows 

imaging different sides of the ear at specific rotation 

angles (Grift et al., 2017; Warman et al., 2020). This 

method is efficient but only considers one ear at a time 

and requires time-consuming handling for ear 

positioning before imaging (1-2 min per ear). (ii) 

Portable imaging systems have been developed, directly 

threaded around the ear in intact field plants, imaging 

simultaneously all ear sides, allowing 3D 

reconstructions of the ear (Arvalis, 2018). This 

technique is affordable and avoids the need to harvest 

the ears, but involves limited throughput because of long 

ear handling time (husks removing, one ear at a time), 

while being subjected to various difficulties related to 

field conditions. Moreover, most of these techniques 

have been validated with ears from standard commercial 

hybrids with classical properties (ear and grain shape 

and colour, regular spatial organization), and therefore 

fail to provide reliable results for ears with non-regular 

patterns, a frequent characteristic under non-optimal 

environmental conditions (heterogeneity of abortion/set 

zones and grain dimensions, pest, and disease damage). 

The aim of this study was to develop a low-cost and 

open-source system capable of producing automated, 

standardized, robust and reliable measurements of 

phenotypic traits of the ear, including the spatial 

distribution of grain traits along and around the ear. We 

tested it for genotypes with contrasting ear and grain 

shape and grain texture (e.g., Dent, flint, pop, waxy, 

flour). The method of image acquisition consisted of a 

custom box in which ears are placed horizontally. 

Motorized rollers are used to rotate the ears. In addition 

to being easy to setup and implement, this method is 

easily scalable for multiple ears at once by multiplying 

the number of rollers and cameras (Fig. 2).  

We believe that this method will allow measurement of 

relevant traits in the context of plant adaptation to a 

changing environment and the enrichment of crop gene 

bank knowledge base (Law et al., 2011). 

  

Fig. 2. Pictures of the Earbox system. (A) The Earbox 

acquisition system, which allows the simultaneous acquisition of 

six maize ears on six sides via the rotation of the ear by motorized 

rollers. The identification of individual ears or ear lots is done by 

a keyboard or a barcode scanner. The system consists of 

aluminum profiles, compact laminates and assembly parts 

supplied by Elcom SAS or manufactured by Phymea Systems 

(CNC machining or 3D printing). The acquisition system is 

composed of two Raspberry Pi, each driving a Pi NoIR (V2.0) 

camera module, and a custom-made Arduino like board 

(ATMEGA 328P), to control the lighting and the two stepper 

motors (door and rollers) via two A4988 drivers. The master 

Rapsberry Pi (model 3 B+) hosts the main Python program, which 

centralizes all the functions of the system: the graphical user 

interface via the PyGame library, the control of the slave 

Rapsberry Pi (model B+) via SSH protocol, the communication 

with the Arduino like board for motor control, and the saving of 

the pictures to an external hard drive. (B) The Earbox system 

imaging cabin. Polarized lenses are added to the Pi Noir cameras. 

The lighting system consists of flexible LED strips in the visible 

(CRI 90) and infrared (940nm) wavelengths behind a frosted 

polycarbonate diffuser. Rubber strips are added to the rollers for 

optimal adhesion between the rollers and the ears. 
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METHODS 

A  WIDE PHENOTYPIC DIVERSITY TO TEST THE 

ROBUSTNESS OF THE METHOD 

The set of ears used in this study was composed of 796 

ears selected from two panels, a ‘biological diversity’ 

panel chosen to represent the diversity of phenotypes 

encountered in production contexts (Fig. 3 A), and an 

‘environmental diversity’ panel, chosen to represent the 

phenotypes encountered in response to abiotic 

constraints (soil water deficit) (Fig. 3 B).  

- The Biological Diversity panel represented 16% of 

the whole set, i.e., 126 ears. Selected ears were of 

various shapes (length between 3 and 24 cm and 

diameter between 2 and 5.5 cm). Grain colours were of 

all existing hues: white, yellow, orange, red, wine, pink, 

purple, blue, black, and brown, including heterogeneous 

ears with multiple colours and pearly, opaque, or 

translucent grains. Grain sizes ranged from 2 mm to 1 

cm with variable shapes depending on their position 

along the ear, from perfectly round to dented or flint 

grains. Finally, the panel explored a diversity of grain 

spatial organization, with a range of number of cohorts 

and number of grains per cohort, and either regular or 

irregular grain organization along the ear.  

- The Environmental Diversity panel represented 84% 

of the set, i.e., 670 ears. First, a set of 431 ears was 

sampled from a field experiment (INRAE UE-

DIASCOPE, France) under two water treatments: 321 

under well-watered conditions (WW) and 110 under 

water deficit (WD). The remaining 234 ears were 

sampled in another experiment under WD treatment. For 

both experiments, water deficit conditions were 

triggered by stopping irrigation around 10-leaf stage 

while continuous irrigation was applied for the WW 

treatment. The combined variability in plant phenology 

and water treatments resulted in a wide range of ear 

phenotypes with various sizes and spatial distribution of 

fertile and aborted zones. 

A  SIMPLE AND LOW-COST IMAGE ACQUISITION 

SYSTEM 

The ears were imaged with an automaton developed and 

assembled by Phymea Systems (www.phymea-

systems.com - Montpellier, France). Individual ears are 

manually positioned in the system (Fig. 2), which 

acquires images stored in a generic hard drive. Images 

Fig. 3. Representative ears from the biological and environmental diversity panels. (A) The biological diversity panel is mainly composed of 

lines and partially of non-commercial hybrids, with each ear often being a unique case. (B) The environmental diversity panel is composed of 

commercial hybrids obtained in an experimental context with biological treatments (well-watered and water deficits) and replications. These ears 

were selected to provide sufficient sampling to scan the full range of phenotypes encountered in a conservation context (A) and a production context 

(B) from optimal to near-zero (scattered ears). Dotted box, examples of scattered ears, which have incomplete cohorts all along the ear. White bar, 

2cm. 
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are uploaded to an independent analysis station where 

the associated software is installed for output retrieval. 

The automaton works in independent acquisition 

sessions to easily separate experiments, genotypes or 

varieties, and treatments. The ears or ear lots are 

individually identified by the keyboard or by a barcode 

scanner. The analysis software was developed to be 

flexible (retrieval of one or more phenotypic traits 

depending on user’s needs).  

To minimize complexity and cost, the acquisition 

system was developed to be as simple and robust as 

possible. It consists of aluminium profiles, compact 

laminates and assembly parts supplied by Elcom SAS 

(Bourgoin-Jallieu, France) or manufactured by Phymea 

Systems (CNC machining or 3D printed) (Fig. 2A). The 

focus was on developing a flexible system, to be 

complexified in a second step: adapted for specific use 

cases, for example, to harvesting machines.  

The system was designed to take multiple images of the 

ear via simultaneous rotations of all ears with motorized 

rollers. The acquisition system used in this study was set 

with 7 rollers for rotation and imaging of 6 ears (Fig. 

2B). Rubber bands were added to the top of the rollers 

to properly drive the ears without slipping. Because the 

rollers have fixed dimensions (5.2 cm diameter) and 

positioning (1cm spacing), the theoretical ear rotation 

angle was calculated from the ear diameter and roller 

rotation angle and measured in practice by measuring 

the rotation of ears placed manually on the rollers. The 

measured and calculated angles fit strongly for the 4 ears 

tested, representative of the diversity of diameters in the 

whole ear panel (R² = 0.98; Supp Fig. 1). We defined the 

number of images to be taken for each ear, thus the 

number of roller rotations, and a fixed roller rotation 

angle that ensured imaging of the whole ear 

circumference while minimizing acquisition time. The 

combination of 6 successive ear images with a roller 

rotation angle of 58° fulfilled these conditions for the 

range of 2 to 6 cm ear diameter (Supp Fig. 1) which 

exceeds the range encountered in both panels.  

Developing a normalized method for analysing images 

regardless of ear or grain colour or shape required the 

use of near-infrared imaging. For this purpose, the 

system used Pi NoIR Camera v2 (Raspberry.org) driven 

by a Raspberry Pi to produce two types of images at two 

wavelengths: visible (RGB) and near infrared (IR, 

940nm). Two sets of cameras and Raspberry Pi were 

necessary to ensure high resolution images of 6 ears at 6 

angles and two wavelengths, for a total of twelve 

images, in less than 30 seconds. A custom Arduino-like 

board was developed to control both the lightning and 

the two stepper motors (doors and rollers). A master 

raspberry Pi was set to centralize all custom functions: 

host the main python program of the user interface 

developed with the PyGame python library, control the 

slave raspberry Pi via SSH protocol, control the Arduino 

board, and save the images to an external hard drive. The 

entire system was designed to be affordable and open 

source, and costs a total of 2500 € in equipment and 

hardware, excluding labour and development costs.  

Ear peduncles at ear base were cut off prior to image 

acquisition, and husk-free ears were scrubbed and 

cleaned of silks and/or fungi with a brush so that all 

grains were accessible to the camera. A total set of 9492 

images were taken from both panels.  

A  COMBINATION OF EMPIRICAL 

SEGMENTATION AND DEEP LEARNING TO 

BUILD A ROBUST ROUTINE WORKFLOW FOR 

EAR AND GRAIN SEGMENTATION  

RGB and IR images acquired from both panels of ears 

were first pre-processed (Fig. 4 A – Ground for deep 

learning) using conventional image analysis tools 

(dilate, open, close, gaussian blur and watershed) and 

merged to normalize the data for all ear and grain 

colours (Fig 4., Step 1), resulting in a pre-processed 

image set (4746 images: 6 images per ear for 791 ears, 

hereafter referred to as the 'dataset'). The dataset images 

were then empirically segmented (Fig. 4, Step 2) and 

used to train a Deep Learning Neural Network (Fig 4, 

step 3). Finally, ear and grain phenotypic variables were 

retrieved for both ear panels (Fig. 4 B – Routine 
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workflow). The ear masks were retrieved from the RGB 

images to estimate the ear phenotypic data (Fig. 4, Step 

4). All images were then processed with the fitted neural 

network (Fig.4, step 5) and used to estimate grain 

phenotypic traits and characterize grain organization on 

the ear (Fig 4, Step 6).  

A ground-truth dataset was built prior to any 

analysis by manually segmenting grains from a set of 

images from 79 ears (10% of the dataset; not used to 

train the Neural Network). These ears were randomly 

selected from each category of grain colour and shape 

based on its frequency in the entire dataset. 

A preliminary step of empirical segmentation was 

performed and used as an automatic annotation to drive 

deep learning iterations. The architecture of the 

empirical segmentation was developed to detect grains 

for a large portion of the dataset, so that all features can 

be learned and improved in Deep Learning run. RGB 

and IR images were processed with an algorithm 

developed by Phymea-Systems (Fig. 4, step 2) using 

only trial and error (using morphological image 

processing toolkits) to produce a grain mask that was 

precise enough to characterise the grains from images 

with various colours of grains and cob. The images were 

pre-processed with conventional image analysis tools to 

enhance their quality and then merged to retrieve 

complementary contrast and shapes. The cross-checking 

of the two pieces of information allowed a precise 

selection of the grains to produce an initial grain 

segmentation, which was in turn corrected by image 

analysis to refine the grain shapes and recover the over-

segmented grains.  

After this step, the processed images were sorted to 

assess the quality of the output. The output masks were 

scored by two independent individuals to evaluate the 

quality of segmentation with a score from 0 (bad 

segmentation) to 3 (good segmentation). Ears with 

uniform grain colour, strong colour contrast between 

cob and grain colour and non-scattered grains were 

mostly correctly segmented, with only minor problems. 

Most low scores were encountered for scattered grains 

(overly segmented), and for ears with similar grain and 

cob colour, which made it more difficult for the 

algorithm to distinguish. 

The Mask-RCNN neural network was used for the 

Deep Learning training. It is commonly used as a 

Fig. 4. Workflows for training the 

neural network and generating 

phenotypic data. (A) Image 

processing workflow used to train the 

learning procedure (Groundwork for 

deep learning). (B), Image processing 

workflow used to produce phenotypic 

data (Routine workflow). Orange box, 

image acquisition. White box, image, 

or data processing. Green box 

processed images or data. Numbers in 

black boxes, steps of development, 

from first image acquisition to 

phenotypic data. 
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framework for instance segmentation (He et al., 2018). 

It is a highly flexible, trainable framework that has been 

widely validated in many scientific domains, including 

plant science  (Chipindu et al., 2020; Davis et al., 2020; 

Ganesh et al., 2019; Machefer et al., 2020; Wang et al., 

2019; C. Zhang et al., 2020; J. Zhang et al., 2020). The 

entire deep learning (DL) framework was coded in 

Python 3 using TensorFlow for in-learning visualisation 

(Abadi et al., 2016). A set of data augmentation 

techniques were applied prior to learning. Each image 

was cropped into a set of 512 by 512 pixels elements on 

which a random number (between 0 and 2) of 

augmentation techniques were applied before being 

introduced into the model. The various augmentation 

transformations were retrieved from the ‘imgaug’ 

package (https://imgaug.readthedocs.io/en/latest/): flip 

up down, flip left right, 90 or 180- or 270-degree 

rotation, pixel value multiplication and gaussian blur. 

Deep Learning iterations involved 33 learning epochs 

with a cross-validation using 75 random images unused 

in the training dataset. 

The neural network training (Fig. 4, step 3) included the 

following steps (Supp. Fig. 2). First, empirical masks 

with a mean score equal or greater than 2.5 (2076 

images, 43.7% of the dataset, i.e., 346 ears) were used 

to train the neural network (Supp Fig. 2, step 3). The 

resulting DL1 masks outputs were corrected by ‘minor’ 

manual corrections (only ‘click on grains’ to add or 

remove mis detected grains) for 1926 images (92,8% of 

DL1 images, i.e. 321 ears) and ‘major’ corrections 

(adding grains and reshaping grains for ears with a large 

number of missing or mis-segmented grains and/or 

wrong shapes) for the remaining 150 images (7,2% of 

DL1, i.e. 25 ears – Supp Fig. 2, step 4). Second, a set of 

72 images (12 ears, i.e., 1.5% of the dataset) from ears 

incorrectly segmented in the initial empirical 

segmentation, were manually corrected in the same way 

as the ‘major’ corrections seen above. Corrected images 

from DL1 and initial empirical segmentation were used 

in a second Deep Learning iteration (DL2 Supp Fig. 2, 

step 5) with 2148 images, i.e., 358 ears (45.3% of the 

dataset). 

The ‘mean Average Precision’ (mAP) was used to 

estimate the quality of the Deep Learning output 

(Henderson & Ferrari, 2017) and calculated as defined 

by the latest evaluation’s techniques of the COCO 

dataset (Lin et al., 2015). The literature usually 

considers an algorithm to be highly efficient for mAP 

values of 0.4. 

After several steps of learning, small input image 

correction, re-calibration of the neural network 

parameters, the resulting network with fitted weights 

(DL2) was used to extract segmented grains from all 

acquired images, i.e., the dataset (Fig.4., step 5).  

A  ROUTINE WORKFLOW TO ACCESS AND 

VALIDATE PHENOTYPIC TRAITS AND THEIR 

SPATIAL DISTRIBUTION  

Image analysis methods were applied on the segmented 

grains to extract phenotypic data for each trait of 

interest. To validate this methodology, the set of ears 

from both panels (791 ears) was also described, for each 

trait, by a unique observer to generate a set of manual 

measurements, to be compared to automatic 

measurements generated by the Earbox system (Supp 

Fig. 3). Most of the manual measurements were repeated 

4 times around the ear circumference, averaged, and 

compared to the corresponding automatic 

measurements. The automatic measurements were 

repeated on each of the 6 images taken for each ear, and 

then averaged to produce phenotypic data at the ear 

scale.  

The ear dimensions and form were automatically 

acquired with the Earbox from the segmented ear in 

each RGB image (Fig. 5A, B and C). All measurements 

were referenced to their spatial position according to the 

two axes of the image: the principal axis parallel to the 

ear length (vertical axis, starting from the bottom to the 

top of the ear) and the perpendicular axis (horizontal 

axis).  
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The ear mask was reduced to its centre pixel along the 

principal axis of the image (Supp Fig. 4A) to define the 

central axis of the ear. The ear length was calculated as 

the number of pixels of this central axis running from 

the bottom to the top of the ear. This method corrected 

for the twisting effect of irregular ear shapes. Ear 

diameter was measured at each pixel along the principal 

axis as the distance between the pixels of the ear contour 

(Fig. 5D, E and F). 

Automatic measurements were tested by comparison 

with manual measurements. Ear length and maximum 

diameter were measured with a ruler and a sliding 

caliper (gauge), respectively. The measured length 

ranged from 3.4 cm to 23.8 cm and the maximum 

diameter from 1.9 cm to 5.5 cm, exploring similar 

variability for both panels. 

Grains were automatically counted with the Earbox 

from the segmented grains in each image (Fig. 5A, B 

and C). Grain objects identified by segmentation were 

‘shrunk’ either to a vertical line (one-pixel width) along 

the principal axis (Supp Fig. 4B) or to a horizontal line 

(one pixel height) along the perpendicular axis (Supp 

Fig. 4C). Horizontal distances between objects were 

corrected by considering each ear section i (one pixel 

height) along the ear axis as a circle of diameter 

Diameteri (Supp Fig. 5). The mean distance Disti 

between two consecutive vertical lines was calculated at 

each position i along the ear axis. 

The number of grains per cohort at position i was 

estimated by the Earbox as the ratio of the ear perimeter 

(π * Diameteri) to the distance Disti between contiguous 

grains (Fig. 5 G, H and I). The number of cohorts was 

estimated by the Earbox at each horizontal position 

perpendicular to the ear axis by counting the number of 

horizontal lines crossed from the bottom to the top of the 

ear (Supp Fig. 4C; Supp Fig. 6). The cohorts were 

incomplete on ear sides, and we considered the 

maximum observed value as the number of cohorts in 

Fig. 5. Raw phenotypic data measured 

with the Earbox analysis system. (A,B,C) 

Images from the grain segmentation process 

(output from the last deep learning 

iteration). (D,E,F) Measurements of ear 

diameter (x) for each pixel along ear length 

(y). (G,H,I) Results of the algorithm 

counting the number of grains per cohort (x) 

for each pixel along ear length (y). (J,K,L) 

Measurement of grain set ratio, the ratio of 

the number of pixels assigned to grains to 

the total number of pixels assigned to the ear 

(x) for every pixel along ear length (y), i.e. 

a measure of the percentage of the ear filled 

with grains. (M,N,O) Measurement of grain 

height (dimension along ear length) for each 

cohort of grain classified by the algorithm 

(one point = one cohort) according to its 

position along ear length (y). (P,Q,R) 

Measurements of the grain width (x) for 

each cohort classified by the algorithm (one 

point = one cohort) according to its position 

along ear length (y).  
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the image (Supp Fig.6). The number of grains per ear 

was calculated by the Earbox from the number of 

cohorts and the number of grains per cohort measured in 

the 6 ear images and in the basal, median, and apical ear 

zones. It is derived from a composite calculation 

performed for each image by averaging: i) an over-

estimator considering the number of grains per cohort in 

the median zone of the ear and the maximum number of 

cohorts, and ii) an under-estimator using information 

from both the number of grains per cohort and the mean 

number of cohorts in each third of the ear. The average 

of these two indicators was identified as the most 

relevant estimator. 

Manual measurements related to grain organisation 

were performed manually to be tested against automatic 

measurements. The number of grains per cohort was 

counted at 3 positions along the ear by visually 

distinguishing a basal zone, a median zone, and an apical 

zone (Supp Fig. 3). It was compared to the mean number 

of grains per cohort averaged over the whole 

corresponding zone defined automatically i.e., basal 

third, median third, and apical third of the ear. The 

number of cohorts was counted on 4 sides of the ear and 

compared to the number of cohorts automatically 

calculated as an average over the 6 images (Supp Fig. 

6). The number of grains per ear was counted with an 

automatic counting machine (Contador: Seed counter – 

Pfeuffer GmbH (Quality control of grain and seeds), 

s. d.)) after removing them from ear cob. Because this 

measurement is destructive, it was only performed on a 

subset of the Environmental Diversity panel (257 ears), 

to keep enough ears intact to test and validate future 

updates and developments of the image analysis 

algorithm. 

Grain dimensions were automatically measured with 

the Earbox. Grain height and grain width were 

calculated by fitting each segmented grain to a 

rectangle: grain height was defined as the fitted 

dimension along the axis of the ear and grain width as 

the fitted perpendicular dimension (Fig. 5 M to R). As 

mentioned above, the horizontal distance (grain width) 

was corrected to consider the circular shape of the ear 

sections (Supp Fig. 5).  

Automatically measured grain dimensions were 

confronted to manual measurement. For this purpose, 

the height and width of 809 grains from the images of 9 

reference ears from both panels were manually 

measured on the images generated by Earbox. We only 

considered grains located in the centre of the image to 

avoid distortion of grain widths, and performed a grain-

by-grain comparison of dimensions by identifying each 

grain with its barycentre coordinates on the image. 

The spatial arrangement of grains in cohorts was 

measured with the Earbox system by assigning each 

segmented grain to a cohort (Supp Fig. 7). To achieve 

this, the grains were scanned from the bottom to the top 

of the ear and classified according to their relative 

proximity, which depends on the mean size of objects 

(grains) in the image. More precisely, the algorithm 

starts with the lowest grain in the ear, checks the 

centroids of the grains at half the mean ear grain width 

and assigns the selected grains to the first cohort. 

Previously classified grains are removed for the 

remainder of the analysis and subsequent cohorts of 

grains are iteratively classified in the same way until no 

grains remain. This allowed grain dimensions to be 

plotted against cohort ranking (Fig. 5M to R) which is 

relevant to account for the developmental gradient along 

the ear due to morphogenesis (Fig. 1). 

Automatic measurements of grains spatial arrangement 

were confronted to manual measurements. Each grain 

was manually assigned to a cohort by determining its 

rank along a row, from 1 at the ear bottom to n at the ear 

apex, at 3 positions around the ear.   

Finally, an automatic method for abortion zones 

characterization was developed. Grain masks allowed 

discriminating grain pixels from pixels outside the 

grains but within the ear contours. The latter were 

considered as corresponding to aborted zones. The grain 

set ratio was calculated for each ear section i (one pixel 

height) along the ear axis as the ratio of the number of 

grain pixels to the number of pixels of ear diameter at 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.473433doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.20.473433
http://creativecommons.org/licenses/by-nc-nd/4.0/


that section. It was smoothed by a running average over 

2% of the total vertical pixels to make it less sensitive to 

high variations (Fig. 5J, K and L). At the ear level, we 

considered the zones with grain set ratio greater than 50 

% as fertile zones and the others as aborted zones. When 

no fertile zone was detected, its length was set to 0 and 

the apical and basal aborted zones were each set to half 

of the total ear length.  

The automatic method of abortion characterization was 

tested against manual measurements. The dimensions of 

the aborted and fertile zones were visually positioned 

and measured manually with a ruler to represent the 

approximate positions at which the cohort abortion rate 

was greater (aborted zone) or lower (fertile zone) than 

50%. 

RESULTS  

A  HIGH-QUALITY SEGMENTATION ALLOWED 

FOR RELIABLE TRAIT MEASUREMENTS   

The masks computed with the trained neural network 

provided a standardized and reliable method for ear and 

grain segmentation on the whole set of acquired images. 

The mean average precision metric (mAP) used to 

assess the quality of segmentation with manually 

segmented images was 0.4 for Empirical Segmentation 

(ES) masks and 0.52 and 0.55 for Deep Learning DL1 

and DL2 results, respectively. The ES masks had an 

acceptable value above the standard threshold, while 

both DL1 and DL2 iterations improved the indicator. In 

addition to validating the quality of the segmentation, 

these results also show an overall improvement at each 

step, highlighting their importance in the method. The 

high-quality segmentation obtained for a wide diversity 

of ear and grain phenotypes allows the production of 

comparable, standardized, and automatic data for both 

studied panels, composed of ears as different as small 

horny strawberry-shaped, and dented commercial 

hybrids.  

The use of Neural Networks for Deep Learning is a 

powerful tool for image analysis, commonly used for 

plant phenotyping, both for morphological 

measurements and feature classification. The downside 

of our method is its requirement for annotated images 

that are difficult to acquire and analyse: they involve 

time-consuming annotation work, often performed 

manually. To overcome this, we chose an empirical 

approach using simple image analysis tools to produce 

a set of automatically annotated ear images with little 

time-input (avoiding manual annotation of the whole set 

of pre-processed images) to be used for deep learning 

iterations. The resulting empirical masks were used to 

train a Neural Network. Indeed, this is a direct and 

efficient mean to synthesize the best information while 

potentially improving the outputs. Furthermore, it 

provides a straightforward and efficient way to improve 

the analysis system if needed, by adding information 

through new segmented masks from previously 

unaccounted-for diversity. 

EAR DIMENSIONS AND SHAPE,  FERTILE AND 

ABORTED ZONES  

The automatic measurements of ear length and ear 

diameter were accurate. The linear regressions with the 

manual measurements closely fit to the bisector for both 

variables: respectively R² = 0.99, RMSE = 0.44cm for 

ear length; and R² = 0.97, RMSE = 0.15cm for ear 

diameter (Fig. 6A and 6B). The small differences may 

be due to differences in methodology: the automatic 

algorithm measured the ear length with the joined line 

of the central pixels of the ear (usually not a straight line) 

while the manual measurement was a straight-line 

measurement. Since most ears are curvilinear, the 

automatic measurement appears to be more accurate in 

describing the diversity of ear shapes. For the same 

reasons, the algorithm might also be more accurate in 

determining the maximum ear diameter, which was 

inferred via an algorithm, rather than visually. 

Moreover, the accurate measurements of the algorithm 

at each pixel along the image (Fig. 5D, E and F) provide 

access to new variables describing ear shape, such as ear 

diameter along the ear and centreline curvature, to be 
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investigated and explored for new avenues of 

comparison between phenotypes and varieties.  

Promising results were obtained towards a standardized 

way of characterising maize ear abortion. Comparison 

of automatic and manual data for fertile and aborted 

zones (fertile zone: Fig. 6C; apical and basal abortion 

zones: Supp Fig. 8C and 8D) indicates good agreement 

between them, especially for the fertile zone length 

(R²=0.93, RMSE = 1.47cm; Fig. 6C). A discrepancy 

appears in the case of scattered ears (empty dots; Supp 

Fig. 8C and 8D) for which a precise visual positioning 

of the zones is difficult because the grains are randomly 

scattered along length and circumference of the ear 

(Supp Fig. 6). In these cases, the automatic method is 

probably more relevant, as it uses a common and 

accurate rule for all ear types. Moreover, 

characterization at each vertical pixel provides 

information on the spatial distribution of abortion and 

grain set along the ear (Fig. 5J, K and L), inaccessible 

by conventional methods.  

 

GRAIN COUNTING  

The spatial organisation of grains along the ear 

measured with the automatic method was both accurate 

and trustworthy, even for scattered ears. First, for the 

number of grains per cohort, the manual and automatic 

estimators were highly correlated in the median 

(R²=0.88, RMSE = 1.69 grains; Fig. 6D) and basal zone 

(R²=0.87, RMSE = 2.07 grains; Supp Fig. 8A), and less 

correlated in the apical zone (R²=0.68, RMSE = 3.43 

grains; Supp Fig. 8B). Most of the discrepancies are due 

to scattered ears (empty dots in Fig. 6 and Supp Fig. 8) 

i.e., ears with incomplete cohorts, making the cohort 

identification uncertain and, as a result, counting their 

grain number difficult (Fig. 3B; Supp Fig. 3, scattered 

ear). Earbox data tend to be more objective and closer to 

the true average number, as they incorporate 

information from the entire apical zone, whereas manual 

estimates can be considered more subjective where 

abortion was high (empty dots in Fig. 6D and Supp Fig. 

8A and B). In addition, the Earbox data provide access 

to the vertical distribution of this variable (Fig. 5G, H 

and I). 

Fig. 6. Comparison of Earbox (y) and 

reference (x) data. (A) Ear length in 

centimeters. (B)  Maximum ear diameter in 

centimeters. (C) Length of the fertile zone in 

centimeters. (D) Number of grains per cohort 

in the median third of the ear. (E) Average 

number of cohorts per ear, the mean of 4 

observations around the ear (x), the average 

of the maximum number of cohorts per ear of 

6 images of the ear (y). Graphs A-E include 

all 791 ears from both panels. (F) Number of 

grains per ear measured automatically by the 

Earbox (y) and manually with an automatic 

grains counter (x) for 257 ears selected from 

the environmental diversity panel. (G) Grain 

width in centimeters, measured along the axis 

perpendicular to the ear. (H) Grain height in 

centimeters, measured along the main axis of 

the ear. (I) Assignment of a cohort number to 

each grain. Data presented in G-I correspond 

to a set of 809 grains measured and classified 

automatically by the Earbox (y) and 

measured manually on the acquisition images 

(x) for comparison. Green dots: ears from the 

biological diversity panel; red dots: ears from 

the environmental diversity panel. Empty red 

dots: scattered ears of the environmental 

diversity panel (Fig. 3 B). Grey dots: grain 

dimensions (one dot = one grain). Grey line: 

bisector line. Black line: linear regression of 

the data. R²: correlation coefficient between 

x and y values, RMSE: root mean square 

error, n: number of observations in each 

graph. 
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Manual and automatic measurements were also highly 

correlated for the number of cohorts (Fig. 6E, R² = 0.97, 

RMSE = 2.6 cohorts), even for scattered ears. 

The number of grains per ear was highly variable, 

ranging from almost 0 to about 700 grains per ear (Fig. 

6F). The Earbox estimator of the number of grains per 

ear, which considers the number of cohorts and the 

number of grains per cohort, was highly correlated with 

the Contador measurement (Fig. 6F; R² = 0.99, RMSE 

= 19.95 grains). These results validate the potential of 

the whole system to be used under both optimal and 

constraining conditions and for the study of the 

determinism of grain number in maize and its response 

to the environment. 

GRAIN DIMENSIONS AND SPATIAL POSITIONS :  

A POTENTIAL FRAMEWORK FOR STUDYING 

DEVELOPMENTAL GRADIENTS  

The method adequately estimates grain dimensions (Fig. 

6G and H), ranging from 0.3 to 1.3cm wide (Fig. 6G) 

and 0.1 to 0.9cm high (Fig. 6H) in both panels. The 

correlation between manual and automatic 

measurements was indeed high for grain width 

(R²=0.88, RMSE = 0.08cm; Fig 6G), and slightly lower 

for grain height (R²=0.67, RMSE = 0.07cm; Fig 6H). 

The slight differences may be due to the narrower range 

of variation observed for grain height versus grain width 

in the training dataset, which can be easily addressed 

with further Deep Learning iterations with suitable 

datasets. Most of the noise comes from isolated grains 

on scattered ears that tend to have a more circular shape 

when space is available around them (examples Fig. 

3B), which could be easily resolved with an increase in 

the proportion of data or an individual training for 

scattered ears. Nevertheless, the results indicate that the 

method correctly positions the grain barycentre and 

properly captures shape variations between and within 

ears.  

Automatic and manual measurements were consistent in 

assigning a cohort number to each grain, i.e., its vertical 

positioning along ear rows (Fig. 6I). Manual and 

automatic grain cohort numbers were highly correlated 

in the 809-grains sample set (R²=0.98, RMSE = 2.58 

grains), indicating that the grains were properly located 

in the spatial organisation of the ear.  

Thus, the system was able to characterize and 

discriminate a large variability in grain dimensions 

(width and height) and shapes (width/height ratio) 

among the studied ears (Supp Fig. 9), potentially 

allowing a reliable characterisation of genotypes based 

on these traits. In addition, by gathering grains into 

cohorts with synchronous development, the method 

gives access to the distribution of grain dimensions 

along developmental gradients. These distributions 

differ among ears: they are almost flat, decrease at 

different rates, or display a maximum at different 

vertical positions (Supp Fig. 9). Since developmental 

gradients are relevant to ear morphogenesis, they 

provide a framework for study and analysing the 

determinism of grain dimensions and, consequently, 

grain filling and weight.  

THE SPATIAL DISTRIBUTION OF ABORTION 

REVEALS PLANT RESPONSE TO STRESS   

The grain set ratio (GSR) emerged as a synthetic trait 

characterizing the response to environmental scenarios 

(Fig. 7).  GSR profiles, i.e., grain set ratio as a function 

of vertical position along the ear axis, were established 

for the environmental diversity panel grown under 

contrasting soil water availability during flowering (665 

ears). We performed an a priori-free analysis of all these 

profiles, using a clustering algorithm (k-means). 

Vertical positions were normalized by ear length to be 

independent of absolute ear length, and averaged for all 

sides of each ear. All curves were processed using 

Euclidean distance matrix and ward method to generate 

a cluster tree synthetizing the similarities between ears 

and finally discriminating ears into 5 clusters with 

increasing intensity of abortion from cluster 1 to cluster 

5 (Fig. 7A, D). Cluster 1 coincided with ears with no or 

limited abortion. Abortion was limited to the apical zone 

of ears in cluster 2 and extended to the basal zone in 
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cluster 3. The apical and basal aborted zones were wider 

in cluster 4, whereas they extended to the entire vertical 

profile of the ears from cluster 5. The progress of 

abortion from cluster 1 to cluster 5 followed the reverse 

order of silk emergence, which is reported in the 

literature as the main predictor of ovary/grain abortion 

frequency in response to constraints during flowering 

(Fig. 1 and Oury et al., 2016). The distribution of well-

watered and water-stressed plants among clusters also 

indicated an increasing impact of stress from cluster 1 to 

cluster 5. Well-watered plants mainly belonged to 

cluster 1, and barely to clusters 2 and 3, whereas water-

stressed plants mainly belong to clusters 3 to 5 (Fig. 7B). 

Moreover, the average ear length decreased from cluster 

1 to cluster 5 whereas it was not considered as a factor 

to sort clusters (Fig. 7C).  

 

DISCUSSION 

A  ROBUST PHENOTYPING PIPELINE TO 

EVALUATE BIOLOGICAL RESOURCES , 

COMPLEMENTARY TO EXISTING PROCEDURES  

The phenotyping pipeline developed and presented in 

this study (hardware and software) was able to 

accurately characterize, independently of the colour, 

shape, or transparency of grains and ears: the shape and 

dimensions of the ear, the number of grains and their 

spatial organisation, and the dimensions of the grains 

along the ear. The data were very similar to conventional 

manual data, with a much lower acquisition time. In 

addition, the system provides new traits, inaccessible by 

conventional methods, especially grain dimensions as a 

function of the grain cohort number, relevant to ear 

morphogenesis, and the distribution of abortion 

Fig. 7. Clustering of grain set ratio reflecting silk emergence dynamics. (A) Grain set ratio (%) as a function of relative position along the ear (%). Ear 

positions are divided by ear length for easier comparison between ears. Grey lines: one line for each ear in the cluster. Red line: smoothed mean value of 

each cluster. Black lines: standard deviations from the mean line of each cluster. (B) Proportions of ears from each treatment (WW = well-watered, WD = 

water deficit) in the respective clusters (1 to 5). (C) Bar plot representing mean values of ear length in centimeters for each cluster, error bar = standard 

deviation. (D) Phenotypes of ears representing each cluster.  
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frequency along the ear, relevant to plant response to 

stress. Analysis of the genetic bases of these traits could 

enlighten the role and regulation of crucial genes 

determining ear phenotype and grain organisation, as 

well as their response to the environment. This could 

lead to new breeding traits responding to climatic 

challenges, which could be used in marker-assisted 

selection.  

Adding to our system an automated and standardized 

calculation of standard qualitative descriptors of maize 

cultivars, such as the conicity of the ear or, for the 

grains, their shape, type, colour, or organization on the 

ear (GEVES or UPOV technical documentation) would 

only require simple general statistical classification 

methods based on machine learning or deep learning.  

Our methodology is also complementary to other 

methods used for varietal description, such as cross-

sections or ear deseeding, to characterize the cob, or the 

morphology of the grains and their physiological 

characteristics (Baye et al., 2006; Spielbauer et al., 

2009), involving robotics for ear and grain handling 

(« Seed Analysis Automation », s. d.). Its relative 

simplicity and flexibility allow easy adaptation of the 

ear processing line to integrate the Earbox phenotyping 

solution before ear deseeding and grain phenotyping. 

CONTRIBUTION TO THE ANALYSIS OF 

ADAPTATION/TOLERANCE TO ENVIRONMENTAL 

SCENARIOS IN COMBINATION WITH CROP 

MODELS 

The new features obtained by the phenotyping pipeline 

open new avenues in the characterisation of maize grain 

yield formation in response to genetic and/or 

environmental factors. In particular, the spatial 

distribution of the grain set ratio appears to be a marker 

of the dynamics of silk emergence and ovary/grain 

abortion, a major component of the plant’s response to 

environmental scenarios(Oury et al., 2016; Tardieu et 

al., 2018). Consistent with the literature (DeBruin et al., 

2018; Liu et al., 2020; Oury et al., 2016; Shen et al., 

2018) our results (Fig. 7) suggest that the measurement 

of this variable potentially provides a high-throughput 

proxy for the complex processes involved in ear 

morphogenesis (rate and number of ovary initiations, 

growth rates of silks and pollen tube, development of the 

husks). This would greatly facilitate ecophysiological 

studies of the mechanisms determining yield 

components and their response to the environment. 

Yield losses in maize are most pronounced when stress 

occurs around flowering (Campos et al., 2006; Claassen 

& Shaw, 1970) affecting grain number determination. 

Reproductive failure has different faces and can 

manifest as ear barrenness, incomplete ear pollination 

due to lack of pollen, and grain abortion (Cárcova et al., 

2003; Cárcova & Otegui, 2001; Moss & Downey, 1971; 

Oury et al., 2016). The effects of the timing of stressful 

conditions and the pattern of zygote development along 

the ear row (successive cohorts) determine the nature of 

the ear phenotype associated with reproductive failure 

(Messina et al., 2019). In this sense, the ear phenotype 

can tell whether the crop experienced a stressful 

scenario and give some clues about the timing of the 

stressful condition. However, its implementation in 

plant genetics is difficult or impossible due to the size of 

studied panels of genotypes and/or to the number of 

traits resulting from stress x phenology combinations. 

The Earbox system presented in this study answers this 

bottleneck by providing standardized and high-

throughput traits measurement.  Furthermore, such a 

development paves the way towards new analyses to 

understand the interaction between genotype and 

environment in the context of water deficit for maize. 

While many efforts have been made to study the 

dynamics of water deficit related to phenology, (Chenu 

et al., 2013; Harrison et al., 2014), less progress has been 

made to study its genotypic variability under drought 

scenarios (Messina et al., 2019). As such, additional 

investigations provide insights to link the observed 

phenotype at harvest with events occurring at flowering, 

thus helping in the identification of varieties best 

adapted to a specific water deficit scenario.  
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CONCLUSION 

The system developed and presented in this study is a 

scalable system providing an accurate, robust, and 

reliable way to extract precise measurements from 

maize ear images, including spatial features of grain 

organization. This work illustrates, like many others 

(Bagley et al., 2020; Czedik‐Eysenberg et al., 2018; 

Gaggion et al., 2020; Pearce, 2020; Salter et al., 2020), 

the possibilities and the efficiency that open-source 

technologies and low-cost electronics now offer to plant 

science. They make accurate phenotyping accessible to 

everyone. In the case of the Earbox, even research 

structures with limited resources, farmer cooperatives, 

or multi-site research projects (limited by multiple 

observers and non-standardized methodologies), can 

claim reliable and reproducible ear phenotyping data 

with a system that can be easily modified to be 

integrated into complete ear and grain processing 

chains. For example, cameras can be replaced for higher 

resolutions or multispectral acquisition for 

characterization of grain physiology (Caporaso et al., 

2018; Chu et al., 2020; Pang et al., 2020; Türker-Kaya 

& Huck, 2017; C. Zhang et al., 2020; J. Zhang et al., 

2020; Zhou et al., s. d.). Additional steps of deep 

learning would probably be sufficient to develop a 

method for the recognizing and classifying of maize 

diseases(Hobbs et al., 2021; J. Zhang et al., 2020), or for 

characterising early grain development, by processing 

immature ears and grains a few days after flowering.  

Finally, the results of this work pave the way for future 

development of tools for inflorescence phenotyping of 

other crops, such as wheat and sunflower, for which the 

present system will be adapted. 
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