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Abstract 47 

Pathogenic infection is an important driver of many ecological processes. Furthermore, 48 

variability in immune function is an important driver of differential infection outcomes. New 49 

evidence would suggest that immune variation extends to broad cellular structure of immune 50 

systems. However, variability at such broad levels is traditionally difficult to detect in non-model 51 

systems. Here we leverage single cell transcriptomic approaches to document signatures of 52 

microevolution of immune system structure in a natural system, the three-spined stickleback 53 

(Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in 54 

resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive 55 

immune cell atlas for G. aculeatus. Eight major immune cell types, corresponding to major 56 

vertebrate immune cells, were identified. We were also able to document significant variation in 57 

both abundance and expression profiles of the individual immune cell types, among the three 58 

populations of fish. This variability may contribute to observed variability in parasite 59 

susceptibility. Finally, we demonstrate that identified cell type markers can be used to reinterpret 60 

traditional transcriptomic data. Combined our study demonstrates the power of single cell 61 

sequencing to not only document evolutionary phenomena (i.e. microevolution of immune cells), 62 

but also increase the power of traditional transcriptomic datasets. 63 

 64 

  65 
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Introduction 66 

Pathogenic infection is a major ecological interaction that drives physiological and immune 67 

response in hosts, natural selection (4, 5), and population dynamics (6, 7). Immense natural inter- 68 

and intra-specific variation exists in organismal response to pathogens (8-10), contributing 69 

significantly disparate infection outcomes (8, 9, 12). While the consequences of variability in 70 

immunity are well documented, the underlying mechanisms which produce this variability are 71 

poorly understood. Historically, inter- and intraspecific variation in pathogenic response has 72 

been most often studied in the context of single components of the immune system (cells, genes, 73 

etc; (10, 13-16). For example, MHC II allele repertoire is significantly correlated to amphibian 74 

susceptibility to fungal pathogens; MHC heterozygosity across and within populations 75 

significantly affects pathogen resistance (17). However, recent studies have suggested that 76 

intraspecific immune variation extends beyond single components to the broad cellular structure 77 

of immune systems. Studies have documented lineage specific loss of immune cell types, as well 78 

as evolution of novel cell types in some species (18, 19). This suggests that broad scale variation 79 

in immune cell function and/or relative abundance might contribute to variation in immune 80 

responses. Still, the majority of data to this affect comes at the species level; it is unknown to 81 

what extent microevolution of immune cell identity and activity occurs within species. 82 

Understanding the extent of these processes is a necessary first step in deciphering how 83 

microevolution of immune cell types may contribute to divergence in immune response and 84 

pathogen resistance at a population level. 85 

The immunological mechanisms underlying variable pathogen response and resistance 86 

remain particularity enigmatic in natural, non-model systems where most conclusions regarding 87 

differentiation in immunity are drawn from transcriptomic data generated from whole tissue 88 

samples (20, 21). While a powerful tool, traditional RNAseq studies condense any cell type 89 

heterogeneity within a sample to one data point. Thus, it is difficult to distinguish whether 90 

changes observed are reflective of regulatory changes in gene expression or shifting cell type 91 

abundance within the broader tissue. This is especially problematic when considering non-model 92 

species for which genetic markers of prominent cell types are lacking.  93 

Here we leverage novel technologies in single cell RNAseq to test whether significant 94 

variation in immune cell abundance and/or function exists at the population level, potentially 95 

contributing to differentiation of immune responses. We focus our efforts on the emerging 96 

natural immunological model system, the three-spined stickleback (Gasterosteus aculeatus). 97 

This small fish is a tractable natural system for considering questions related to evolutionary and 98 

ecological immunology, largely due to their unique natural history. During the Pleistocene 99 

deglaciation, ancestrally anadromous populations of stickleback became trapped in newly 100 

created freshwater lakes (22). Thousands of independent lake populations have since been 101 

evolving in response to novel biotic and abiotic stimuli associated with freshwater environments 102 

for thousands of generations. This transition to freshwater exposed stickleback to many new 103 

parasites, including freshwater exclusive, cestode parasite, Schistocephalus solidus (23). 104 

Populations have subsequently evolved different immune traits to resist or tolerate this parasite 105 

(24). Immense variation exists between independent lake populations in susceptibility to S. 106 

solidus (25). Consequently, the G. aculeatus-S.solidus system provides a great opportunity for 107 

addressing diverse questions related to evolutionary and ecological immunity. Despite this 108 

opportunity, understanding of the broader structure of the stickleback immune system (i.e. 109 

immune cell types and functions) is limited. We conducted single cell RNA sequencing analysis 110 

to advance our understanding of immune cell repertoires and function in this important natural 111 
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model system. Additionally, we leveraged the unique natural history of this species to assess 112 

questions regarding the response of immune systems to selective pressure (i.e. a novel parasite). 113 

By comparing immune cell repertoires among populations of fish which are naïve, 114 

susceptible/tolerant, or resistant to the parasite we are able to demonstrate that selection can 115 

create rapid evolutionary change in not only relative immune cell abundance, but also function 116 

(i.e. gene expression) of these immune cell types. These findings add further evidence that 117 

variation in broad immune system structure contributes to functional diversity of immunity and 118 

divergence in immune responses on a micro-scale. 119 

 120 

Results & Discussion 121 

 122 

The stickleback head kidney is comprised of eight cell types 123 

To create a description of the immune cell repertoire of the three-spined stickleback, G. 124 

aculeatus, we conducted single cell RNA sequencing and associated analysis of nine laboratory-125 

raised adult fish. Individuals were lab-raised descendants bred from wild-caught ancestors from 126 

three different populations on Vancouver Island with variable resistance to S. solidus (3 fish per 127 

population). These populations include one anadromous population from Sayward Estuary, 128 

which are highly susceptible to S.solidus which they rarely encounter in nature. In Gosling Lake, 129 

fish are frequently infected and tolerate rapid tapeworm growth. In nearby Roberts Lake the 130 

parasite is extremely rare, because the fish are able to mount a strong fibrosis immune response 131 

that suppresses tapeworm growth and can even lead to parasite elimination. Importantly, the fish 132 

sampled here were not infected with this cestode parasite, but instead represent constitutive 133 

population-level variability. We specifically targeted the pronephros, an important hematopoietic 134 

organ that is believed to have essential roles in the production and development of immune cells 135 

(26). Resulting libraries ranged in size from 8,119 to 19,578 cells with mean reads per cell 136 

ranging from 15,580 to 55,204 and median genes per cell ranging from 307 to 707. Following 137 

filtering (see Methods for details) our final data set consisting of samples ranging between 1,780 138 

and 9,160 per library. 139 

Analysis of resulting data revealed 24 unique clusters of cells, that could be condensed into 8 140 

major cell types based on patterns of expression (Figure 1; Supplementary Figure 1; 141 

Supplementary Table 1; Supplementary File 1). These eight cell types were representative of 142 

most major vertebrate immune cell types (27): hematopoietic cells (HCs), neutrophils, antigen 143 

presenting cells (APCs), B-cells, erythrocytes (RBCs), platelets, fibroblasts, and natural killer 144 

cells (NKCs; Supplementary Figures 2-9; Supplementary File 2). Most of these cell types 145 

were easily identifiable based on comparison to existing data regarding vertebrate and teleost 146 

immune cell expression. For example, highly abundant neutrophils bear strong similarity to 147 

previously described teleost neutrophils, including high expression of zebrafish neutrophil 148 

marker nephrosin ((28); Supplementary Figure 3). APCs were marked by high expression of 149 

group-specific genes involved in the presentation of antigens via the MHC II system (29, 30), 150 

and low expression of B-cell marker genes such as cd79a ((31); Supplementary Figure 5). Also 151 

present in low abundance were a number of important minor immune cell types: platelets, 152 

fibroblasts, and NKCs; all of which were easily identifiable based on high expression of 153 

characteristic genes  (Supplementary Figures 7-9). Interestingly NKCs were divided into two 154 

subgroups which were not easily distinguished due to low representation. One of these subgroups 155 

displayed constitutive expression of the human innate lymphoid cell (ILC) marker gene, rorc 156 

(32), as well as high expression of runx3, which modulates development of ILCs (33), providing 157 
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some support that this subgroup was comprised of putative fish ILCs. Conspicuously absent were 158 

putative T-cells. This can likely be explained due to the nature of the pronephros, which is 159 

believed to operate similarly to mammalian bone marrow (34-36). Consequently, T-cells are 160 

likely only transiently found in this organ, perhaps only early in life.  161 

 162 

Stickleback erythrocytes express a variety of immune genes 163 

In teleosts, unlike mammals, red blood cells are nucleated and genetically active (37). A large, 164 

heterogenous group of cells with high expression of hemoglobin-associated genes were 165 

identified as putative erythrocytes. Interestingly these cells also had high expression of a number 166 

of immune genes characteristic of both neutrophils and B-cells (Figure 2). Previous findings 167 

have indicated that teleost RBCs have diverse roles in the regulation of host immunity (38, 39). 168 

For example, it is well documented that teleost RBCs contribute to antiviral immunity (38, 40, 169 

41). Preliminary evidence suggests they also can phagocytose and kill bacterial pathogens (42) 170 

and even yeast (43).  However, our results suggest further refinement of these functions. 171 

Clustering analysis shows two distinct subgroups of RBCs, dividing based on similarity to either 172 

myeloid (neutrophil) or lymphoid (B-cells) type cells (Figure 2). Thus, while previous studies 173 

have both characterized myeloid type functions (38, 41, 42) and document interactions with 174 

lymphoid cells (44), this is the first evidence for diversification of RBCs into distinct subgroups, 175 

each serving a particular immunological role. Further study is needed to improve understanding 176 

of the distinct roles of these two subtypes and their broad roles in fish immunity. 177 

 178 

Two groups of B-cells are identifiable: resting and plasma B-cells 179 

A large group of cells uniquely expressing cd79a, swap70a, and a number of putative 180 

immunoglobulin genes, was identified as putative B-cells (Figure 1). This group was comprised 181 

of three sub-clusters (original clusters 11, 12, 13; Supplementary Figure 1), two of which 182 

(cluster 12 and cluster 13) were readily distinguished by expression patterns (Supplementary 183 

Figure 10). The smaller of the two sub-clusters (cluster 13) had considerably higher expression 184 

of immunoglobulin genes as well as X-box binding protein 1 (xbp1) and associated proteins, key 185 

markers of plasma cells in mammals (45). Thus, we concluded that these two groups likely 186 

comprised of resting B cells (cluster 12) and activated/plasma B cells (cluster 13). Previous work 187 

has documented the diversification of fish B cells into antibody secreting cells upon immune 188 

stimulation (46). Furthermore, studies have indicated that antibody-secreting cells (including 189 

plasma cells and plasmablasts) constitute a stable subpopulation of cells in the head kidney of 190 

other fish species. Interestingly though, low levels of resting B-cells in the head kidney have 191 

been documented in salmonids, which is contrary to our preliminary findings here (47). High 192 

levels of resting B-cells are characteristic of tissues involved in inducible responses to immune 193 

challenge; typically the blood and spleen in teleost fish (47). However, it is possible that some 194 

fish lineages may have evolved more plasticity in head kidney function as part of an inducible 195 

immune response. Further characterization of B-cell subpopulation in other tissue types from G. 196 

aculeatus will provide insight regarding the lineage-specific roles of various lymphoid tissues in 197 

immunity. 198 

 199 

Isolated populations of stickleback vary significantly in cell type abundance 200 
The nine fish sampled for our scRNAseq analysis were representative of three isolated and 201 

genetically divergent populations. These three populations, Roberts Lake, Gosling Lake, and 202 

Sayward (anadromous) have been well documented to vary considerably in their immune 203 
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responses to a common freshwater parasite, Schistocephalus solidus (25). The marine population 204 

is evolutionarily naïve to the parasite, which does not survive brackish water, and consequently 205 

is readily infected and permits rapid cestode growth.  Both Gosling and Roberts Lakes are more 206 

resistant to laboratory infection than their marine ancestors, but the more resistant Roberts lake 207 

population significantly suppresses cestode growth and is more likely to encapsulate and kill the 208 

cestode in a fibrotic granuloma (25, 48). Consequently, we divided our samples based on 209 

population and compared both immune cell relative abundance and within-cell-type expression 210 

across these three populations. Comparing the three populations, we find significant variation in 211 

abundance in every cell type except fibroblasts (Supplementary Table 2; Figure 3). Roberts 212 

Lake fish, which are most resistant to the parasite, had considerably more neutrophils and 213 

platelets, but significantly less NKCs, RBCs, and B-cells than the other two populations. 214 

Sayward fish, which are anadromous and naïve to the parasite, had the highest abundance of 215 

APCs, B-cells, and RBCs. 216 

Much of this observed variation in immune cell type abundance may be related to natural 217 

variation in parasite resistance. For example, Roberts lake fish had higher abundance of both 218 

neutrophils and platelets, which may contribute to enhanced resistance to helminth parasites. 219 

Neutrophils and other granulocyte cells such as eosinophils are important components of the 220 

initial innate immune response to helminths and other parasites (49, 50). Platelets, specifically 221 

thrombocyte-derived compounds, are important mediators of fibrotic responses (51, 52), and 222 

fibrosis is a major part of Roberts Lake sticklebacks’ response to S. solidus infection (48). 223 

Consequently, enhanced abundance of both neutrophils and platelets in ROB fish likely allows 224 

for quick induction of resistance phenotypes (i.e. fibrosis; (53) and other immune responses 225 

which result in the efficient elimination of the parasite. It should be noted that the lack of 226 

variation in fibroblast abundance among populations is not unexpected; while platelets are 227 

normally originate in hematopoietic tissues, like the head kidneys (54), fibroblasts are usually 228 

stimulated at sites of damage (55), which is in the peritoneal (body) cavity for the S. solidus 229 

parasite.  230 

Combined, the differences in relative abundance of immune cell types observed among our 231 

three populations of fish are indicative of micro-evolution in response to parasites. Because the 232 

fish used in this study were lab-raised in a shared environment, these between-population 233 

differences likely reflect heritable differences that evolved since the populations were founded. 234 

Roberts Lake fish, which evolved resistance to the helminth parasite S. solidus, is characterized 235 

by marked increases in immune cell subtypes which (in mice) are known to contribute to 236 

helminth responses. Thus, our results suggest that evolution of resistance to a parasite may not 237 

only occur on the gene level, but that resistance may also be the result of selection for broad-238 

scale shifts in baseline immune cell type abundance.  239 

 240 

Expression of each cell type varies among populations 241 

In contrast to the significant variation in relative abundance of immune cell types between the 242 

three sampled populations, we found modest signatures of among-population variation in 243 

expression profiles within cell types (Supplementary File 3). Most notable was variation in 244 

expression of immunoglobulin-like genes in B-cells (Figure 3). Despite having significantly 245 

fewer B-cells in Roberts Lake fish, their B-cells exhibited higher average expression of 246 

immunoglobulin-type genes per cell. This may be a compensatory method as B cell production 247 

of immunoglobulin is an essential component of response to helminth infection (47). Indeed, 248 

higher expression of immunoglobulin genes by ROB B cells is likely the result of a significantly 249 
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higher relative abundance of putative plasma B cells in ROB fish (compared to resting B-cells). 250 

ROB fish had higher proportions of plasma cells generally, and as a subset of B cell population 251 

than both GOS and SAY fish (Chi-squared test; padj < 0.001).  Helminth-protective TH2-type 252 

immune responses induce expansion of plasma cells producing IgE (56). Thus, a higher 253 

constitutive abundance of plasma-type B-cells in ROB fish may contribute to enhanced 254 

resistance to S. solidus parasites. Again, here our results indicate that micro-evolution of immune 255 

cell subtype abundance may significantly contribute to evolution of parasite resistance. 256 

Finally, patterns of expression of neutrophil-associated markers also varied significantly 257 

across populations. Both HCs and RBCs in Roberts had significantly higher expression of 258 

neutrophil marker genes (Figure 3). This is likely the result of enhanced overall investment in 259 

neutrophil-like cells in Roberts fish, which may support a quick initial response to invading 260 

parasites (49, 50). Perhaps most interestingly, we observed population-specific, preferential 261 

expression of what is presumably duplicated copies of the important zebrafish neutrophil marker 262 

gene, nephrosin (npsn). We identified two highly similar genes annotated as npsn, both of which 263 

were significant markers of neutrophils, however one gene was preferentially expressed by 264 

Roberts fish, while the other was expressed higher in Gosling and Sayward neutrophils (Figure 265 

3). Sequence comparison of these two gene copies revealed that while highly similar to zebrafish 266 

npsn, there are several species-specific, and copy-specific amino acid substitutions in the 267 

sequences, suggesting potential neofunctionalization (Supplementary Figure 11). 268 

Neofunctionalization of one copy of this gene may be the result of co-evolutionary selective 269 

pressure. While neofunctionalization of parasite virulence genes has been recorded in the past 270 

(57, 58), this is to our knowledge the first evidence of neofunctionalization potentially 271 

contributing to host resistance.  272 

 273 

Insights from scRNAseq analyses improve interpretation of past traditional RNAseq 274 

studies 275 
The scRNAseq data allowed us to confidently identify a suite of genes which are markers of each 276 

of these putative 8 cell types (Supplementary File 2). Using these new candidate marker genes, 277 

we can re-evaluate findings of past RNAseq studies to understand the relative contributions of 278 

changes in gene expression versus changes in cell abundance. Specifically we leveraged these 279 

markers to re-interpret results from two previous studies for which we had both traditional 280 

RNAseq expression data and flow cytometry data coarsely estimating granulocyte to lymphocyte 281 

relative abundance using forward and side-scatter gating (2, 59). The first, and larger, of the two 282 

studies investigated variation in constitutive and induced immune response to parasite infections 283 

in laboratory reared F2 fish (59). Within this data set, granulocyte and lymphocyte frequencies 284 

are, respectively, correlated to expression of both putative granulocyte markers (nephrosin B, 285 

transcript 1; pearson correlation, p < 0.001, r = 0.3904) and lymphocyte markers (cd79a; pearson 286 

correlation, p < 0.001, r= 0.4569). The second, smaller, study conducted a similar experimental 287 

parasite infection of laboratory reared F1 fish  (2). Within this study, these correlations are less 288 

significant for lymphocytes (Pearson correlation, p = 0.016, r =0.25), and both non-significant 289 

and trending in the opposite direction for granulocytes (pearson correlation, p = -0.17, r =0.12; 290 

Figure 4). These inconsistencies are likely due to the nature of our correlative data. Flow 291 

cytometry grouped cells into two large bins: granulocytes and lymphocytes. Thus, finding two 292 

markers that accurately correlate to these broad groups across experiments is difficult, 293 

particularly for diverse granulocytes. Still, these findings suggest that variation in expression of 294 

cell markers identified here may be reflective of changes in abundance of immune cell types. We 295 
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believe that further validation will demonstrate that this data provides a powerful new resource 296 

that will increase the interpretive power of traditional RNAseq analyses. 297 

Assuming that changes in expression of these markers is at least in part due to changes in 298 

their respective cell type, we can now glean more insight regarding the cellular changes in 299 

response to infection of G. aculeatus by S. solidus by re-examining previous datasets. 300 

Consequently, we applied the markers generated here to reinterpret results from the two studies 301 

of response experimental parasite infection in laboratory reared F1 and F2 fish (2, 59). In each 302 

case we conducted Chi-squared tests to detect over-representation of cell markers (generally or 303 

specific cell type) among significantly differentially expressed genes. In the case of groups 304 

where significant over-representation was detected, we conducted a proportion test to detect 305 

statically significant skew in the directionality of differential expression. In the smaller study of 306 

response of laboratory reared F1 fish, we observed few significant patterns of biological interest 307 

(2); Supplementary Table 3). However, in our larger dataset (F2 fish) we noticed significant 308 

over-representation of APCs and B-cell marker genes among the genes differentially expressed 309 

as a result of infection or between populations respectively (59); Figure 4, Supplementary 310 

Table 3). Markers of APCs were not only significantly over-represented, but also exclusively 311 

increased in response to infection. Alternatively activated macrophages are known to play key 312 

roles in response to helminth infection, including mediating inflammatory responses (60, 61). B-313 

cell markers were expressed a higher levels in susceptible back-crossed fish compared to 314 

resistant back-crosses, consistent with analysis of scRNA data presented here.  315 

Finally, we also considered results from correlative analyses of associations between gene 316 

expression in F2 fish, and gut microbiome composition (11). Here we observed significant over-317 

representation of markers of neutrophil, B-cell, and fibroblast cells among lists of genes 318 

significantly correlated to abundance of specific microbial taxa in the gut (Supplementary 319 

Table 3). Neutrophils demonstrated the most consistent patterns of association with microbial 320 

taxa abundance, with some microbial taxa demonstrating strongly significant positive or negative 321 

associations with many neutrophil markers (Figure 4). Neutrophils and gut microbiota are 322 

believed to be functionally linked, with gut microbiota regulating components of neutrophil 323 

activity and vice versa (62). Our findings suggest that specific microbiota have systemic effects 324 

on the proliferation of (or lack thereof) neutrophils in hematopoietic organs. In sum, the markers 325 

discovered here provide new power to interpret traditional RNAseq data and begin to disentangle 326 

relative contributes of changes in gene expression versus changes in cell type abundance. These 327 

results point to the value of small-sample scRNAseq in guiding reinterpretation of new or 328 

existing large-sample bulk-tissue transcriptomic data. 329 

 330 

Conclusions 331 

Here we present a robust analysis of the contributions of variation in immune system structure 332 

(relative cell type abundance and function) to observed variation in immune response between 333 

populations of fish. While numerous previous studies have suggested that shifts at the genetic 334 

level contribute to variation in immune response (10, 12, 48, 63), our study is the first to look at 335 

this variation among natural populations at the cellular scale. Using single-cell RNAseq analyses, 336 

we demonstrate that independent populations vary significantly in both abundance and 337 

expression patterns of immune cell types. Furthermore, our data suggest that this variation may 338 

be the result of micro-evolution of immune cell repertoires in response to biotic stimuli (i.e. a 339 

novel parasite). This is, to our knowledge, the first evidence that rapid evolution of immune cell 340 

repertoires among populations both occurs, and potentially contributes to variation in immune 341 
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response and infection outcome. Our results add to the growing body of evidence that suggests 342 

that the immune system may be much more malleable than once thought. Furthermore, these 343 

findings provide compelling rationale for further studies investigating adaptability of immune 344 

system structure within and between species in response to eco-evo feedbacks. Also notably, our 345 

findings present the first description of prominent immune cell types in an important ecological 346 

and evolutionary model species. This provides new cell marker resources that can be used to 347 

streamline further immunological studies and provide new insight into traditional RNAseq 348 

studies. In sum, or work not only adds strong evidence suggesting that micro-evolution of 349 

immune cell repertoires contributes to variation in immune response, but also provides a robust 350 

new tool for researchers utilizing the stickleback system as a model of evolutionary and 351 

ecological immunology. 352 

 353 

Methods 354 

Sample Collection & Processing 355 
Single cell libraries were generated from head kidneys of laboratory reared F1 stickleback 356 

from three populations on Vancouver Island in Brittish Columbia (Sayward Estuary, Roberts 357 

Lake, Gosling Lake). Reproductively mature fish were collected at each location using 358 

minnow traps. Gravid females were stripped of their eggs, which were then fertilized using 359 

sperm obtained from macerated testes of males from the same lake. Fish were collected with 360 

permission from the Ministry of Forests, Lands, and Natural Resource Operations of British 361 

Columbia (Scientific Fish Collection permit NA12-77018 and NA12-84188). The resulting 362 

eggs were shipped back to Austin, Texas, hatched, and reared to maturity in controlled 363 

laboratory conditions. At approximately 2-3 years of age, fish were transferred to aquarium 364 

facilities at the University of Connecticut. At the time of sampling, fish ranged from 3 365 

(Sayward and Gosling) to 4 (Roberts) years of age. 366 

We generated single cell suspensions from the pronephros (head kidney) three fish from 367 

each population (Sayward, Roberts, Gosling). Fish were humanely euthanized one at a time, 368 

and their head kidneys immediately extracted. Dissected head kidneys were placed in 2mL of 369 

R-90 media (90% RPMI 1640 with L-Glutamine, without Phenol red; Gibco) in a sterile 24-370 

well plate on ice. Tissue was then physical dissociated using a sterile pipette tip. The 371 

resulting slurry was then strained through a 40μm nylon filter. An additional 2mL R-90 was 372 

added to the resulting suspension. Cells were then spun at 440g for 10 minutes at 4oC. The 373 

supernatant was removed, and cells were resuspended in 2mL R-90. Cells were spun once 374 

more time, and the resulting supernatant replaced with 1 mL R-90. Cell suspensions were 375 

then transported on ice to the Jackson Lab facility in Hartford, Connecticut where samples 376 

were prepared for sequencing and sequenced within 6 hours of initial sample collection.  377 

 378 

Single Cell Library Preparation and Sequencing 379 

Cells were washed and suspended in PBS containing 0.04% BSA and immediately processed 380 

as follows. Cell viability was assessed on a Countess II automated cell counter 381 

(ThermoFisher), and an estimated 12,000 cells were loaded onto one lane of a 10x Genomics 382 

Chromium Controller. Single cell capture, barcoding, and single-indexed library preparation 383 

were performed using the 10x Genomics 3’ Gene Expression platform version 3 chemistry 384 

and according to the manufacturer’s protocol (#CG00052, (64). cDNA and libraries were 385 

checked for quality on Agilent 4200 Tapestation, quantified by KAPA qPCR, and sequenced 386 

on an Illumina sequencer targeted 6,000 barcoded cells with an average sequencing depth of 387 
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50,000 read pairs per cell.  Three initial libraries (1 per population) were sequenced on 388 

individual lanes of a HiSeq 4000 flow cell; all other libraries were sequenced on a NovaSeq 389 

6000 S2 flow cell, each pooled at 16.67% of the flow cell lane. 390 

Illumina base call files for all libraries were converted to FASTQs using bcl2fastq 391 

v2.20.0.422 (Illumina) and FASTQ files were aligned to reference genome constructed from 392 

the v5 G. aculeatus assembly and annotation files available at 393 

https://stickleback.genetics.uga.edu/ (65).  Briefly, annotations from Ensembl (release 95) 394 

were combined with repeat, Y chromosome, and revised annotations from Nath et al. using 395 

AGAT (0.4.0) (66), and a STAR-compatible reference genome was generated Cell Ranger 396 

(v3.1.0, 10x Genomics) using these annotations and the v5 assembly from Nath et al.  The 397 

Cell Ranger count (v3.1.0) pipeline was used to construct cell-by-gene counts matrix for each 398 

library, subsequently analyzed using Scanpy 1.3.7 (67) and the Loupe Cell Browser (10x 399 

Genomics). 400 

Each counts matrix was individually subjected to quality control filtering, such that cells 401 

with more than 35,000 UMIs, fewer than 400 genes, more than 30% mtRNA content, and 402 

more than 1,000 hemoglobin transcripts were discarded from downstream analysis.  The nine 403 

filtered counts matrices were concatenated, normalized by per-cell library size, and log 404 

transformed.  The expression profiles of each cell at the 4,000 most highly variable genes (as 405 

measured by dispersion (64, 68) were used for principal component (PC) analysis and 406 

subsequently batch corrected using Harmony (69). The batch corrected PCs were utilized for 407 

neighborhood graph generation (using 25 nearest-neighbors) and dimensionality reduction 408 

with UMAP (70). Clustering was performed on this neighborhood graph using the Leiden 409 

community detection algorithm (71). Subclustering was performed on a per-cluster ad hoc 410 

basis to separate visually distinct subpopulations of cells.  This UMAP embedding and 411 

clustering metadata were then imported into the Loupe Cell Browser (generated using Cell 412 

Ranger aggr (v3.1.0)) for interactive analysis. 413 

 414 

Cluster Identification 415 
Once data (UMAP embedding and clustering metadata) was loaded into the Loupe Cell 416 

Browser, we then generated lists of marker genes for each of the identified clusters using the 417 

“Globally Distinguishing” feature. Marker genes were classified as those genes up-regulated 418 

in each cluster (compared to all other cells) with an adjusted p-value less than 0.1. Next we 419 

assigned tentative identities to each of these initial clusters by comparison of marker genes to 420 

available literature regarding markers of immune cells in teleost fish and other vertebrates. 421 

During this initial identification process, we identified multiple groups of cells with 422 

homology to the same major immune cell type (e.x. three clusters demonstrated patterns of 423 

expression indicative of neutrophils). Consequently, we condensed the initial 19 identified 424 

clusters into 8 major groups based on homology to known vertebrate immune cell types. We 425 

examined differential expression between sub-clusters within these major groups using the 426 

“Locally Distinguishing” feature in Loupe Cell Browser. Cluster identification and sub-427 

cluster distinctions were confirmed by visual analysis of expression of major immune cell 428 

type markers in Loupe Cell Browser. Violin plots and heatmaps displaying patterns of 429 

expression across major group and sub-clusters within groups were generated in R using read 430 

count matrixes and cluster identity information (exported from Loupe Cell Browser). 431 

Relevant code can be found at: https://github.com/lfuess/scRNAseq. 432 

 433 
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Comparative Analyses Across Populations 434 

When comparing across populations, we assessed two hypotheses: 1) relative abundance of 435 

immune cell types is variable across populations and 2) expression patterns within each 436 

identified immune cell type are variable across populations. First, to identify differences in 437 

relative abundance of each of our 8 major immune cell types we performed independent, 438 

binomial general linear models for each cell type. Tukey’s post-hoc tests were used for pair-439 

wise comparisons if significant differences were identified between populations (code can be 440 

found at: https://github.com/lfuess/scRNAseq). Second, to identify differences in gene 441 

expression patterns within each of our identified immune cell types, we again used the 442 

“Locally Distinguishing” feature in Loupe Cell Browser. Cells within each major group were 443 

subdivided by population, and then all possible pairwise comparisons of gene expression 444 

were conducted. Genes with adjusted p-values < 0.10 were identified as significantly 445 

differentially expressed. Relevant violin plots and heatmaps were generated in R using read 446 

count matrixes and cluster identity information (exported from Loupe Cell Browser). 447 

Relevant code can be found at: https://github.com/lfuess/scRNAseq. 448 

 449 

Sequence Alignment 450 
In order to examine sequence divergence in the two identified copies of neutrophil marker 451 

gene, nephrosin (npsn), we conducted a multiple sequence alignment of both npsn transcripts 452 

from stickleback and the zebrafish npsn transcript sequence using the R package msa (72). 453 

 454 

Comparison to Past Analyses 455 

We leveraged past transcriptomic analysis of stickleback head kidney to assess whether 456 

whole tissue-measured expression of putative markers identified here could be used as a 457 

reliable metric of relative cell type abundance. We specifically analyzed two past 458 

transcriptomic data sets: 1) an analysis of laboratory-reared F1 fish from Roberts and Gosling 459 

Lake experimentally exposed to parasites (2), and 2) an analysis of laboratory-reared F2 and 460 

backcrossed fish, the offspring of fish from experiment 1, experimentally exposed to 461 

parasites (59). For both of these datasets we had access to transcriptomic data detailing whole 462 

tissue expression of our putative cell markers, and flow cytometry data coarsely estimating 463 

granulocyte to lymphocyte relative abundance using forward and side-scatter gating. For 464 

each data set we examined correlation between normalized gene expression of putative 465 

markers and square root transformed frequency data for granulocytes or lymphocytes as 466 

appropriate. 467 

Once we established that whole-tissue expression of putative cell markers was at least 468 

partially indicative of relative abundance of immune cell types, we then leveraged our newly 469 

identified cell markers to re-interpret three past transcriptomic studies of stickleback 470 

immunity: the two previously mentioned transcriptomic studies of F1 & F2/backcross fish to 471 

immune challenge (2, 59), and an additional study examining correlations between head 472 

kidney gene expression and gut microbiome composition (11). Specifically, we used chi 473 

squared tests to identify significant over-representation of markers of any given cell type 474 

within lists of genes significant differentially expressed as a result of traits of interest, or 475 

genes significantly correlated to microbial diversity/taxa of interest. Chi-squared tests were 476 

used to test for over-representation of each immune cell type within each list of genes 477 

independently. 478 

 479 
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Figure 1: a) UMAP projection of head kidney cells generated from combining all 9 samples. Each point represents a single cell. Cells are color-coded by their cluster

annotated cell type. Cells are shown grouped into major cell type clusters based on distinguishing genes. For original cluster assignments see Supplementary Figur

Supplemenatry Table 1. b) heatmap of the top five annotated distinguishing genes per cluster. Scaled expression, generated using the Seurat R package is displaye

gene. Cells are grouped by type, genes are listed in order of significance. Only 3 annotated genes were significant for the NKC cluster.  
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Figure 2: Differential expression of immune genes among the two identified RBC subgroups (neutrophil like an

A) heatmap of log normailzedexpression of annotated B-cell and Neutrophil marker genes which were significa

differentially expressed between the two RBC subgroups (mitochondrial and ribosomal genes excluded). Heatm

generated using the pheatmap package in R. B) Violin plot of log normalized expression of significantly differen

expressed neutrophil marker genes among the two subgroups of cells. C) Violin plot of log normalized expressi

significantly differentially expressed B-cell marker genes among the two subgroups of cells. 
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Figure 3: Summary of variation in immune cell subtype abundance and expression across three sampled populations of G. aculeatus. a) bar graph representing relative

each of the eight major cell types within each of the three sampled populations. b) comparison across populations of expression of B-cell specific expression of putativ

immunoglobulin genes. All three genes were significantly differentially expressed between two or more populations. * indicates significantly different values. c) heatm

expression of neutrophil marker genes in both the hematopoietic cells and erythrocytes. Columns are clustered by cell type and then population. Genes are clustered b

expression profile using base algorithms from the pheatmap package in R, d) comparison of neutrophil-specific expression of the two copies of nephrosin across the th

populations * indicates significantly different values
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Figure 4: Evaluation of applicability of identified markers to past traditional RNAseq datasets a-d) pearson correlations between expression of identified lymphocyte (cd79a

granulocyte markers (npsn.b) and normalized lymphocyte or granulocyte frequency (detected by flow cytometry) in our two previous transcriptomic studies sets (a-b; (1), 

For all correlation plots regression line is shown in black and shading indicates 95% confidence intervals. e) patterns of differences in gene expression of identified APC in u

vs. infected fish (f) patterns of differences in gene expression of identified B-cell markers in parasite susceptible (GBC) vs. parasite resistance (RBC) fish; all data shown in e

corresponds to genes which were significantly differentially expressed in a previous traditional RNAseq study (REF). g) heatmap of significant correlations (tau) between ge

expression of identified neutrophil markers and abundance of specific microbial taxa. Non-significant correlations are displayed in grey. Data taken from a previous correla

analysis of traditional RNAseq data (11). 
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