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 2 

ABSTRACT 33 

 34 

1. Natural history collections (NHCs) are invaluable resources for understanding biotic 35 

response to global change. Museums around the world are currently imaging 36 

specimens, capturing specimen data, and making them freely available online. In 37 

parallel to the digitisation effort, there have been great advancements in computer 38 

vision (CV): the computer trained automated recognition/detection, and 39 

measurement of features in digital images. Applying CV to digitised NHCs has the 40 

potential to greatly accelerate the use of NHCs for biotic response to global change 41 

research. In this paper, we apply CV to a very large, digitised collection to test 42 

hypotheses in an established area of biotic response to climate change research: 43 

temperature-size responses. 44 

2. We develop a CV pipeline (Mothra) and apply it to the NHM iCollections of British 45 

butterflies (>180,000 specimens). Mothra automatically detects the specimen in the 46 

image, sets the scale, measures wing features (e.g., forewing length), determines the 47 

orientation of the specimen (pinned ventrally or dorsally), and identifies the sex. We 48 

pair these measurements and meta-data with temperature records to test how adult 49 

size varies with temperature during the immature stages of species and to assess 50 

patterns of sexual-size dimorphism across species and families. 51 

3. Mothra accurately measures the forewing lengths of butterfly specimens and 52 

compared to manual baseline measurements, Mothra accurately determines sex and 53 

forewing lengths of butterfly specimens. Females are the larger sex in most species 54 

and an increase in adult body size with warm monthly temperatures during the late 55 

larval stages is the most common temperature size response. These results confirm 56 
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 3 

suspected patterns and support hypotheses based on recent studies using a smaller 57 

dataset of manually measured specimens.  58 

4. We show that CV can be a powerful tool to efficiently and accurately extract 59 

phenotypic data from a very large collection of digital NHCs. In the future, CV will 60 

become widely applied to digital NHC collections to advance ecological and 61 

evolutionary research and to accelerate the use of NHCs for biotic response to global 62 

change research.        63 

 64 

 65 

KEYWORDS Butterfly, Computer vision, Climate Change, Deep Learning, digitisation, 66 

Lepidoptera, Mothra, Natural History Collections 67 
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 4 

1 INTRODUCTION 69 

 70 

The world’s natural history collections contain at least two billion specimens (Ariño 2010). 71 

Tens of millions of these specimens (and counting) are making their way out of the halls and 72 

cabinets of natural history museums and into the virtual world as digital images and 73 

specimen data, either through data portals (https://data.nhm.ac.uk/) or aggregators (e.g., 74 

https://www.gbif.org/) (Nelson & Ellis 2019). The purpose of this vast effort is two-fold: to 75 

provide a digital copy of these priceless collections and to advance the core research of 76 

museums for understanding the history and biodiversity of the living world. But as the 77 

Anthropocene progresses, digitised natural history collections (NHCs) can also be leveraged 78 

for understanding the biological impacts of global change (Johnson et al. 2011; Meineke et 79 

al. 2019). Not only will the widespread availability of specimen images and data increase the 80 

rate at which scientists can perform this essential research, but the sheer taxonomic, spatial 81 

and temporal scope of digitised NHCs will help provide a more holistic understanding of how 82 

the biosphere has and will respond to global change.    83 

 84 

Digitised NHCs have been used to investigate multiple aspects of biotic response to global 85 

change, including documenting changes in geographic range and biodiversity (Kharouba et 86 

al. 2019; Ewers-Saucedo et al. 2021), phenology (Brooks et al. 2017), and body size of 87 

species (Wilson et al. 2019; Wonglersak et al. 2020). While such studies are incredibly 88 

important, the number of specimens used are often limited due to the time required to 89 

physically measure and record each specimen. For example, until recently, studies 90 

examining change in body size using images must first open images in software, set the 91 

scale, and manually measure body size or its proxies (Fenberg et al. 2016). Thus, despite 92 
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their availability, specimen images still require time-consuming manipulation and manual 93 

measurement - limiting the amount of data available for individual research projects. 94 

 95 

In parallel to mass digitisation efforts by museums, major advancements have been made in 96 

computer vision (CV) technologies. CV is a rapidly developing field in which computers are 97 

trained to recognise, extract and measure information from digital images or video. While 98 

practical applications of CV have been made in several fields, such as object 99 

recognition/detection for medical purposes (e.g., tumor detection; Svoboda 2020) and 100 

ecologists are starting to use CV for biodiversity analyses in the field (Bjerge et al. 2021), CV 101 

is only starting to be used for ecology and evolution research. 102 

 103 

Given the rapid advancements in CV technology and its many applications, it is thought that 104 

CV will become an essential tool for ecology and evolutionary biologists (Lürig et al. 2021). 105 

For example, CV can be used along with molecular data to help identify cryptic species and 106 

other eco-evolutionary questions (Høye et al. 2021). Currently however, there are very few 107 

studies showcasing the powerful utility of paring CV with NHCs for the purposes of climate 108 

change research (Hsiang et al. 2019; McAllister et al. 2019). In this paper, we apply CV to a 109 

very large, digitised collection to test hypotheses in an established area of biotic response to 110 

climate change research: temperature-size responses (Sheridan & Bickford 2011). 111 

 112 

1.1 Temperature-size responses 113 

 114 

Body size is one of the most important traits of an organism due to its correlation with many 115 

aspects of the life history, ecology, and evolution of species. However, climate warming is 116 
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thought to be causing widespread reduction in body size and is even suggested to be a 117 

“universal” response to warming (Sheridan & Bickford 2011). However, recent studies show 118 

that species can have varying responses (Horne et al. 2015; Tseng et al. 2018; Wonglersak et 119 

al. 2020). This is especially true for insects, which, due to their complex and diverse life 120 

cycles, can lead to a variety of temperature-size responses. Each life stage of 121 

holometabolous insects can experience different environmental conditions, which may 122 

cause each stage to respond in a different way to temperature (Kingsolver et al. 2011; 123 

Wilson et al. 2019). In addition, each sex may have different temperature-size responses, 124 

which may affect the magnitude of sexual size dimorphism (Fenberg et al. 2016). Thus, it is 125 

important that life stages, sex, and the environmental conditions experienced by them, are 126 

considered when investigating temperature-size responses.   127 

 128 

Lepidoptera are useful study taxa for examining temperature-size responses as their life 129 

stages are clearly defined, the sexes of many species can be easily identified, and they have 130 

relatively short generation times. If adult body size measurements are paired with 131 

temperature records across multiple generations, years, per sex, and for each immature life 132 

stage (e.g., early to late larval and pupal stages), then it is possible to determine the 133 

direction and strength of adult body size responses to temperature and which factors are 134 

most predictive of observed responses (Bowden et al. 2015; Davies 2019).  135 

 136 

NHCs paired with temperature records can provide a useful resource for studying 137 

temperature-size responses because NHCs often span many decades, over which a large 138 

range of inter- and intra-annual (i.e., seasonal) temperature records may be available. In 139 

recent years, the use of NHCs to study temperature-size responses in insects has become 140 
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common, but responses often vary among taxa (Baar et al. 2018; Tseng et al. 2018). For 141 

example, the body sizes of Zygoptera (damselflies) are more sensitive to temperature than 142 

Anisoptera (dragonflies) (Wonglersak et al. 2020). This suggests that, at least in some insect 143 

groups, phylogenetic relationships are also an important predictor of the direction and 144 

magnitude of temperature-size responses. Butterflies often increase in adult size with 145 

increasing temperature (MacLean et al. 2016) and analysis of four UK butterfly species 146 

found that the strongest prediction of adult size was temperature during the late larval 147 

stage (Fenberg et al. 2016; Wilson et al. 2019). But in order to determine if these are 148 

general responses, more species and specimens need to be analysed. 149 

 150 

Here, we use a newly developed CV pipeline to automatically measure body size attributes 151 

(e.g., wing lengths), orientation (pinned ventrally or dorsally), and identify the sex of 152 

specimens of British butterfly specimens housed at the NHM (n=184,533). We test the 153 

accuracy of the pipeline by comparing the automated results to manual measurements of 154 

30 butterfly species. We also test if there are patterns of sexual size dimorphism (SSD) 155 

across 32 species, testing the hypothesis that females are larger than males (Teder 2014).   156 

 157 

For temperature-size responses, we pair wing-length measurements with monthly 158 

temperature records experienced by the immature stages of 24 species across four families 159 

to determine the direction and strength of responses per species and to look for general 160 

patterns across species. We hypothesise that the adult sizes of univoltine species (and first 161 

generations of bivoltine species) will increase with increasing temperatures during the late 162 

larval stages, and that males and females will respond differently, based on previous work 163 

(Fenberg et al. 2016; Wilson et al. 2019). These same studies, however, also show that 164 
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increasing temperatures during the early larval stage causes some species to become 165 

smaller as adults and that response to temperature during the pupal stages varies. We 166 

therefore hypothesise that (i) warmer temperatures during the late larval stages will be 167 

correlated with larger adults, (ii) warmer temperatures during early and pupal stages will 168 

result in variable responses across species, and (iii), sex and family will be important factors 169 

given recent studies (Wilson et al. 2019; Wonglersak et al. 2020). 170 

 171 

1.2 Study system     172 

 173 

The British butterfly specimens housed at the Natural History Museum (London) were 174 

among the first very large scientific collections to be mass digitised. 184,533 specimens 175 

comprising 94 species of butterflies (collected from 1803-2006) have been digitised during 176 

the iCollections project (Paterson et al. 2016). Each pinned specimen is imaged with a scale 177 

bar (mm) and associated labels. All specimen data have been extracted and databased for 178 

specimens with sufficient information, which include the geo-referenced location, date of 179 

collection, and collector. We use these data and life history information paired with 180 

historical temperature records in order to test our temperature-size hypotheses. 181 

 182 

2 METHODS 183 

 184 

2.1 Mothra development 185 

 186 

Mothra is a Python package for analysing images of Lepidoptera specimens, inferring sex 187 

and measuring body size attributes using a combination of deep learning and image 188 
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processing techniques. It is built on NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020), 189 

matplotlib (Hunter 2007), scikit-image (Van der Walt et al. 2014), PyTorch (Paszke et al. 190 

2019), and fastai (Howard & Gugger 2020). Mothra processes images that include: the 191 

pinned specimen, a scale bar, and several printed or hand-written labels (Fig. 1A). Mothra 192 

identifies these image elements, finds key points on the specimen, makes measurements, 193 

and translates pixel distances to millimetres after interpreting the scale bar. Mothra can be 194 

applied to any images of pinned Lepidoptera specimens if a millimetre scale bar is present 195 

(Fig. 1A) and can be trained to identify other scale bars as needed. While Mothra also works 196 

on many moth species, we focus on butterflies for this paper as they were used to train the 197 

segmentation algorithm.  198 

 199 

To recognize image elements (specimen, scale, and labels), we use a U-Net convolutional 200 

neural network (Ronneberger et al. 2015) with ResNet-34 (He et al. 2016) in the analysis 201 

path (Zhang et al. 2018; Paszke et al. 2019; Howard & Gugger 2020). The ResNet-34 202 

implementation from PyTorch is pre-trained on the ImageNet image database (Deng et al. 203 

2009). The U-Net is trained using 150 manually segmented images of different Lepidoptera 204 

species. Labels correspond to the three elements (specimen, scale, labels) as well as the 205 

background. Each iteration of training uses a batch of four images, and training completes 206 

after 26 epochs (i.e., after all data has been seen 26 times). 207 

 208 

The network is trained using the 1cycle policy (Smith 2018), whereby learning rates start 209 

low, increase, then drop back to below the initial value. The first epoch only trains the last 210 

U-Net layer (bottom of the "U") with a learning rate of 2 x 10^-3 while the rest of the 211 

network is frozen. In subsequent epochs, the entire network is unfrozen. We use a 212 
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discriminative learning rate (i.e., a different learning rate for each layer; Smith 2018) of 10^-213 

5 for the first layer, 10^-3 for the last layer, and logarithmically interpolated values for the 214 

middle layers. Training continues for a further 25 epochs. 215 

  216 

The input dataset is augmented by changes in orientation, scale, exposure, and warp. Input 217 

and labelled images were resized from their original size, 5184 x 3456 pixels, to 448 x 448 218 

pixels. After classification, Mothra returns an image with labels corresponding to four 219 

classes: specimen, scale bar (scale), labels, and background (Figure 1B). The central axis of 220 

the specimen is taken as the horizontal centre of gravity. The image is then split into left and 221 

right sides. Wing tips and shoulders are located (Figure 1C) for each side: the wing tip is 222 

defined as the most distant pixel from the centre of the specimen, while the shoulder is 223 

where the upper-central part of the body dips lowest in the vertical direction. 224 
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  225 

FIGURE 1. A.) Example input image (female Hesperia comma) containing the pinned 226 

specimen, a scale bar, and data labels. B.) Image returned by Mothra, containing predictions 227 

to the specimen (yellow), scale bar (green), labels (blue), and background (purple). C.) Wing 228 

tips, shoulders, and centre (red dots) of the specimen (yellow). These points are used for the 229 

measurements of forewing lengths (shoulders to wingtips), wingspan (wingtip to wingtip), 230 

centre to wingtips, and shoulder width (shoulder to shoulder). Axis values in B and C are 231 

pixel numbers. 232 

 233 

To convert between pixel distances and millimetres, the scale bar is analysed. Its image 234 

coordinates are returned by the classification step, after which the scale bar image is 235 

A

B

C

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473511


 12 

extracted and turned into a binary image using an automated Otsu threshold (Otsu 1979). 236 

Numbers are removed by filtering objects on their area and eccentricity, and the image is 237 

then summed vertically to produce a one-dimensional vector of values. Summing across the 238 

scale bar increases robustness against noise. That summation is, in turn, thresholded, since 239 

we are only interested in transition periods, not in amplitudes. A Fast Fourier Transform is 240 

then performed to determine the most dominant frequency. This frequency is given in 241 

pixels per cycle and corresponds to the minor ticks on the scale bar: using it, we can convert 242 

the measurements from pixels to millimetres. 243 

 244 

Next, we want to predict sex and orientation: either the specimen is pinned dorsally (with 245 

the upper surface of the wings shown), or ventrally (with the underside of the wings 246 

shown). For that purpose, we trained a ResNet-50 network using 2986 images separated 247 

into three classes: 1549 pinned ventrally (where we did not classify sex), 722 male, and 715 248 

female (both latter classes being pinned dorsally). Training images were resampled to 256 x 249 

256 pixels, and data augmentation was performed using the Albumentations library 250 

(Buslaev et al. 2020) which adds random changes of hue, saturation, and value in the 251 

interval (-0.2, 0.2), as well as coarse dropout of rectangular regions in the image (DeVries & 252 

Taylor 2017). Each augmentation was applied with a probability of 0.5 per generated 253 

augmented sample.  254 

 255 

Mothra, the collection of algorithms and functions implemented for this study, is 256 

permissively licensed under the BSD-3 clause license and available on GitHub (Mothra Team, 257 

2021). Mothra automatically downloads the latest pre-trained version of the neural 258 

network. The data accompanying this study, including networks trained and images used in 259 
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training, are available on GitLab (Mothra Team, 2020). The images we used are part of the 260 

iCollections project, released under the CC-BY license (Wilson et al., 2020). 261 

 262 

For each analysis Mothra takes an input folder of images or a text file listing the location of 263 

the input images, and then outputs the following data as a CSV file: length (mm) of each 264 

forewing, distance from each wing tip to the centre of the specimen (mm), wingspan from 265 

wing tip to wing tip (mm), shoulder width between shoulders (mm), pinned orientation, and 266 

sex. For each image an output image can be provided with the measurements overlaid (Fig. 267 

2). 268 

 269 

FIGURE 2. Example Mothra output image (male Plebejus argus) with the final output 270 

showing the measurements overlaid on the image, the binarized specimen, and the points 271 

of interest.272 
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 273 

2.2 Mothra testing: manual versus automated measurements and sex ID 274 

 275 

We manually measured the forewing lengths of 3,145 specimens of 30 species across four 276 

families using ImageJ software. Measurements of four species are from previously published 277 

research by the co-authors (Fenberg et al. 2016; Wilson et al. 2019). We then measured the 278 

same specimens using Mothra. For each specimen, we calculated the average between the 279 

left and right forewing lengths for both the manual and Mothra measurements. We then 280 

compared the correlation between measurements across all specimens; testing if the slope 281 

is equal to 1 (i.e., a one-to-one correlation). We also performed t-tests of measurements 282 

grouped per family to test if the manual versus automated measurements are statistically 283 

different. We categorised specimens by sex for species in which the sexes are reliably 284 

detectable by eye from images (n=20 species; 2,807 specimens). A further 5,127 specimens 285 

were identified to sex by Wilson (2021). We then compared the sex IDs for all specimens 286 

combined (n=8,272 specimens from 20 species) to the Mothra outputs to determine the 287 

accuracy of the automated sex identifications.      288 

 289 

2.3 Mothra measurements of the iCollections 290 

 291 

Once we determined the accuracy of the automated wing-length measurements and sex 292 

identification (see below), we ran Mothra on all butterfly specimens within the iCollections 293 

dataset (Paterson et al. 2016) using the NHM HPC cluster. This dataset constitutes 184,533 294 

specimens. For analysis purposes, we only focus on the four main families that constitute 295 

99% of the collections (Hesperiidae, Lycaenidae, Nymphalidae, Pieridae) and removed 296 
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species (n=32) which have either very few specimens (<100) or are not native to Britain 297 

(e.g., rare occurrences). Ventrally pinned specimens (n=51,646) were removed to keep 298 

forewing length measurements and sex identification consistent. Measurements of forewing 299 

length for 130,173 specimens across 60 species and four families were analysed. For each 300 

species, we removed any specimens in which the absolute value difference between the 301 

right and left forewing lengths were larger than 2mm in order to remove any specimens 302 

with wing damage. We also removed specimens for which the Mothra measurements were 303 

clearly incorrect (e.g., measurements that were too large or small given the size of the 304 

species) by examining the output images for the biggest outliers. We also checked the 305 

remaining output images for the largest and smallest individuals per species to determine if 306 

they were incorrect measurements. In total, only 1.8% of specimens were removed as clear 307 

outliers/incorrect measurements (n=2,360), leaving 127,813 specimens for analysis (SI Table 308 

2). For species which we trained Mothra for sex identification, we tested the hypothesis that 309 

females are, on average, larger than males and looked for patterns across families.       310 

 311 

2.4 Temperature-size responses: individual species analysis  312 

 313 

We analysed a subset of the Mothra measurements for temperature-size responses (24 314 

species). These species were chosen as they have good meta-data, are representative of 315 

each family, and have varying life histories and habitat requirements. We only included 316 

specimens if there was a known year, location, and month of collection, and collected on 317 

the island of Great Britain. Where applicable, we separated specimens into generations (see 318 

Wilson et al. 2019). If a species had a partial second generation, or a variable number of 319 

generations from year to year, specimens were removed to keep the number of generations 320 
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per year consistent. For example, Aglais urticae has one generation in Scotland and two 321 

generations a year in other parts of the UK, so Scottish specimens were removed. 322 

Additionally, we removed specimens with collection dates outside the expected range of 323 

adult flight season for that species, based on Thomas & Lewington (2014). We did not 324 

include specimens of a species if there were fewer than three specimens available per year 325 

(and sex where applicable). We used information about the life cycles of each species given 326 

in Thomas & Lewington (2014) to determine which monthly temperatures were appropriate 327 

for analyses. We used temperatures from months when species were in the early larval, late 328 

larval and pupal stages; winter months were not used as growth would be limited. We used 329 

mean monthly temperature data from the Central England Temperature Record for all 330 

analyses (https://www.metoffice.gov.uk/hadobs/hadcet/).  331 

 332 

Following Fenberg et al. (2016) and Wilson et al. (2019), we compared average forewing 333 

length to average monthly temperatures using multiple linear regression analyses to 334 

determine if temperatures experienced during the immature stages affect adult size. We 335 

used R statistical packages MASS and MuMIn to run stepwise regression in both directions 336 

to select variables for the final model and information theoretic (IT) model selection with 337 

model averaging based on Akaike Information Criterion (AIC). Where applicable, we ran 338 

separate models for each sex and generation.  339 

 340 

A total of 17,727 specimens and 24 species are in the final analysis. In 15 species, males and 341 

females could be identified, and three species had two generations that could be analysed 342 

separately, giving a total of 44 models. For each species with a significant model, we 343 

calculated the percentage change in adult size per ºC for the most significant month in early 344 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473511doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473511


 17 

larval, late larval and pupal stages. Where there was not a significant variable for a 345 

particular life stage, the most important non-significant variable was used. We calculated 346 

percentage changes from slopes of the natural log of average forewing length versus 347 

temperature: ((exp(slope)-1) x 100).  348 

 349 

2.5 Temperature-size responses: multi-species analysis 350 

 351 

We compiled data to look for general patterns of temperature-size responses across 352 

species. Firstly, we compiled the percentage change in adult size per ºC of the three 353 

immature stages for each species and, where applicable, each sex and generation. Secondly, 354 

we compiled the natural log of average forewing lengths for all specimens used in the 355 

individual species analyses. Natural logs were used to allow for species of different sizes to 356 

be compared without the effects of scaling. We used temperature data from the most 357 

important month for predicting adult size during each immature stage for the multi-species 358 

analyses. We also included four other variables (family, habitat, size category, overwintering 359 

stage) in the form of multi-level factors (SI Table 1) to determine which may affect the 360 

strength and direction of temperature-size responses. We selected these four factor 361 

variables a priori as likely having an influence on temperature-size response based on 362 

previous research (Fenberg et al. 2016; Tseng et al. 2018; Davies 2019; Wilson et al. 2019).  363 

 364 

We compared percentage change in adult size per °C increase in temperature during each 365 

immature stage between the four factor variables (SI Table 1). We performed linear mixed 366 

effects models using the natural log of average forewing lengths of specimens from all 24 367 

species, with temperature during the early larval, late larval and pupal stages as fixed effects 368 
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and the random effects of family, overwintering stage, habitat and size category in each 369 

model. ANOVAs and AIC values were used to determine which model gave the best fit. We 370 

repeated analyses for species where sex could be determined, with sex included as a 371 

random factor. 372 

 373 

3 RESULTS 374 

 375 

3.1 Automated versus manual measurements and sex ID 376 

 377 

The Mothra measurements are nearly identical to the manual measurements (Fig. 3). The 378 

correlation between average forewing length of the Mothra versus manual measurements is 379 

0.98 and the slope is 1.0. After 6 clear outliers were removed, the correlation is 0.99 with a 380 

slope of 1.03. These results indicate that there is a nearly perfect one-to-one relationship 381 

between the Mothra and manual measurements. For all specimens combined, there is no 382 

difference between measurements (t test, P=0.33). When grouped by family, manual versus 383 

Mothra measurements are not statistically different except for Hesperiidae, where there is a 384 

slight difference (P<0.001) in mean forewing length between manual (13.34 mm) and 385 

Mothra measurements (13.12 mm). These differences are driven by Hesperia comma, due 386 

to a consistent difference in where the wingtip was manually located by (Fenberg et al. 387 

2016).  388 
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 389 

FIGURE 3. A.) Correlation between Mothra versus manual measurements for 3,145 390 

specimens across 30 species from four families. Pearson’s correlation R = 0.99 and the slope 391 

= 1.03, revealing a nearly one to one relationship between manual and automated 392 

measurements. B.) Boxplots comparing the manual versus automated measurements 393 

grouped by family. Except for Heperiidae (see main text), there are no significant differences 394 

between the two measurements. Six outliers were removed from these figures due to 395 

incorrect Mothra measurements (see main text). 396 
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The sex identifications for species in which the sexes are reliably detectable by eye (n=20) 397 

were highly accurate. Out of 5,127 specimens, only 2.9% (n=149 specimens) were different 398 

between the manual versus Mothra identifications. After inspection of a subset specimens 399 

that have a discrepancy in sex ID (n=41 specimens), it was noted that 17 specimens were 400 

mis-identified by eye and 9 were misidentified by Mothra, the remaining 24 specimens were 401 

discoloured or gynandromorphs where sex ID is not possible.      402 

 403 

3.2 Size distribution and patterns of sexual size dimorphism 404 

 405 

Given the accuracy of the wing length measurements and the sex identifications, we felt 406 

confident to run Mothra on all specimens in the iCollections dataset (all results available 407 

here: https://doi.org/10.5281/zenodo.5759759 [embargoed until publication]; Price and 408 

Fenberg 2021). The number of inaccurate measurements (either damaged specimens or 409 

incorrect Mothra measurements) removed from the dataset was very small (1.8% of 410 

specimens, see above), with the resulting size distributions per species seen in Figure 4. As 411 

an initial test of the utility of this massive dataset, we tested the hypothesis that females are 412 

larger than males per species (as is the case for many insect species, largely due to their 413 

longer developmental times (Teder 2014). Our results show that this is broadly true for 414 

British butterflies (Fig. 5). Out of 32 species, 30 have significant SSD, but males are the larger 415 

sex in only seven species (five are in Lycaenidae and two in Pieridae; SI Table 2). Four of the 416 

Lycenidae are in the subfamily Polyommatinae (i.e., the blues). For the remaining species 417 

(n=23), the females are the larger sex, including all species in Hesperiidae and Nymphalidae.        418 
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 419 

FIGURE 4.  Size-distributions of the Mothra measurements of the dorsally pinned specimens 420 

for each species in the iCollections native to the island of Great Britain from the four main 421 

families (60 species). This figure represents measurements from a total of 127,813 422 

specimens, excluding faulty measurements and damaged specimens (n=2,360 specimens). 423 
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 425 

FIGURE 5. Size distributions of the Mothra measurements for each species trained for sex 426 

identification (n=32 species). Most species (n=23) have female biased sexual size 427 

dimorphism (including all species in Hesperiidae and Nymphalidae). Seven species have 428 

male biased sexual size dimorphism (five species in Lycaenidae and two species in Pieridae) 429 

and two species do not have sexual size-dimorphism.430 
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 431 

3.3 Temperature-size responses: individual species analysis 432 

 433 

When average forewing lengths were compared to monthly temperatures using multiple 434 

linear regression models, 20 of the 44 models were significant. This accounted for 17 of the 435 

24 species analysed. In all but four of the significant models, an increase in adult size with 436 

increasing temperature during the late larval stage was significant. The responses of adult 437 

size to temperatures experienced during the early larval and pupal stages were less 438 

consistent. Only eight of the 20 models had a significant change in adult size in relation to 439 

changes in temperature during the early larval stage and eight models had significant 440 

changes in adult size in the pupal stage, with both having a mix of increases and decreases 441 

in size with increasing temperatures. The percentage changes in adult size per increase in °C 442 

during each immature stage are given in SI Table 5, and detailed individual model results are 443 

in the supplementary information (SI tables 3 and 4). 444 

 445 

3.4 Temperature-size responses: multi-species analysis 446 

 447 

The influence of temperature during the immature stages on adult size for each species 448 

were compared in two ways: using percentage change in size from all species and using only 449 

those with significant individual models (SI Table 5). There was little difference in the results 450 

between the two methods and, therefore, the results presented here are for species with 451 

significant models only. There was no significant difference in the mean percentage change 452 

in adult size between species in different size categories or between species that 453 

overwintered in different life history stages (p>0.05). There were no significant differences 454 
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in mean percentage change in adult size between species occurring in different habitat 455 

types for the early and late larval stages, but there was for the pupal stage (F=3.649, df=3 456 

and 14, p=0.0392), with a difference between those in a woodland habitat and those in 457 

grassland habitats (p=0.0477). 458 

 459 

There was a significant difference in percentage change in adult size according to the three 460 

developmental stages for species with significant individual models (F=12.21, df=2 and 55, 461 

p<0.001), with differences between percentage changes per °C in the late larval stage and 462 

both the early larval and pupal stages (p<0.01; Fig. 6). On average, forewing length 463 

increased by 0.69% per °C increase in temperature during the late larval stage (SE=0.13), 464 

decreased by 0.29% per °C in the early larval stage (SE=0.14), and decreased by 0.02% per °C 465 

in the pupal stage (SE=0.17). Additionally, there were significant differences in percentage 466 

change in adult size per °C temperature increase in the early larval stage between species 467 

from different families (F=15.74, df=3 and 16, p<0.001), with differences between the 468 

Hesperiidae and all other families, and the Lycaenidae and the Nymphalidae (p<0.05). On 469 

average, there was a 0.39% increase in average forewing length per °C temperature increase 470 

in the early larval stage for the Hesperiidae, a 0.99% decrease in size per °C for the 471 

Lycaenidae, and a 0.28% decrease in size per °C in the Nympalidae (Fig. 6). A two-way 472 

ANOVA to test for differences in percentage changes in adult size between stages and 473 

families also found a significant interaction between life stage and family (F=3.004, df=6 and 474 

46, p=0.0146). There is a large difference in responses to temperatures between larval 475 

stages for the Lycaenidae (Fig. 6); on average, there is a large increase in adult size per °C 476 

temperature increase in the late larval stage (0.99%), but a large decrease in adult size per 477 

°C in the early larval stage (-0.99%). 478 
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 479 

FIGURE 6.  Boxplots of percentage change in adult size per °C change during (i) the early 480 

larval, late larval and pupal stages and (ii) for species grouped by family within each stage. 481 

NB: There is only one species of Pieridae with a significant response (Pieris napi). 482 

 483 
 484 

For the linear mixed effects models, various models were tested using combinations of 485 

factors for the fixed effects, starting with a simple model and becoming more complicated. 486 

Family was given priority in selection of factors as the above analyses showed there were 487 

significant differences in responses between families. The model with the lowest AIC value 488 

was Average forewing length (Ln) ~ Early larval temperature + Late larval temperature + 489 

Pupal temperature + (1|Family) (AIC=-20579). For the species where sex could be 490 

determined, the model which was most significant was Average forewing length (Ln) ~ Early 491 

larval temperature + Late larval temperature + Pupal temperature + (1|Sex) + (1|Family) 492 

(AIC=-15324). In both models (for all species and those which can be sexed), family 493 

explained the highest proportion of variance in the results (SI Table 6). 494 
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 495 

4 DISCUSSION 496 

 497 

The huge effort currently underway to digitise natural history collections (NHCs) will make 498 

museum specimens and their associated collecting data accessible to scientists all over the 499 

globe. A major reason for this mass digitisation effort is to accelerate their usage for global 500 

change research (Hedrick et al. 2020). There is now an increasing need for ecologists and 501 

museum scientists to collaborate with computer vision (CV) scientists in order to help make 502 

sense of these massive datasets. Our study is among the first to show that CV can accurately 503 

measure phenotypic data from very large digitised NHC datasets in order to test biotic 504 

response to climate change hypotheses.  505 

 506 

We show that Mothra accurately measures multiple phenotypic aspects of butterfly 507 

specimens (Figs. 1-3). It can also tell whether a specimen is pinned ventrally or dorsally, and 508 

its sex (for species where sexes are detectable by eye). While each of these attributes can be 509 

measured manually from images, the time involved would be immense: manual 510 

measurements of all imaged butterfly specimens (n=184,533) by a single person would take 511 

>3,000 hours (or ~2 years, assuming regular working hours, and only forewing length 512 

measurements). Using Mothra, we were able to run all specimens in under one week by 513 

performing 10 analyses in parallel on a computer cluster, and could have reduced the time 514 

further by running more analyses in parallel (e.g., 50 analyses in parallel would have 515 

reduced the time to a mere 30 hours and remained within the capacity of the current NHM 516 

cluster: 96 CPUs, 2TB RAM, Centos 7 OS).  517 

 518 
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CV applied to digitised NHCs will become a common tool in ecology and evolution research 519 

(Lürig et al. 2021). CV will help scientists uncover unknown aspects of the biology and 520 

morphology of species, but also to confirm/test hypotheses or suspected patterns based on 521 

previous research using manual measurements. For example, we test hypotheses that were 522 

formulated based on recent studies on temperature-size responses using manual 523 

measurements (Fenberg et al. 2016; Wilson et al. 2019). For most species with a significant 524 

temperature-size response (14/17), adult size increases with increasing temperature during 525 

the late larval stage (Fig. 6), which is consistent with these studies. While some species did 526 

not show this response, there were no species, sexes or generations that showed the 527 

reverse response. This pattern, while suspected, is now clearer thanks to the application of 528 

CV to many more specimens and species. We suggest that this is because a higher volume 529 

and/or quality of food is available during years with warmer temperatures during the late 530 

larval stages. Therefore, late larval stage individuals can reach optimum growth rates when 531 

food quality and quantity are plentiful, resulting in larger adults (Suhling et al. 2015). 532 

However, the optimum temperature for growth and the highest rate of growth will vary 533 

between species, sexes, and generations. 534 

 535 

As expected, different generations did not respond in the same way to temperature (Wilson 536 

et al. 2019). For the three bivoltine species, each responded in the first generation but not 537 

in the second (P. bellargus, A. urticae, and P. napi). The different responses between 538 

generations were expected as the larvae of each generation experience different 539 

environmental conditions, which can affect adult body size (Horne et al. 2017). In addition, 540 

different temperature-size responses between the sexes can also occur (Fenberg et al. 2016; 541 

Wilson et al. 2019). Of the 15 species in which the sexes were analysed separately, males 542 
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had a significant temperature-size response in eight species and females responded in five 543 

species (three species had a significant response in both sexes), and there was no response 544 

from either sex for five species. In all but one of the species with significant results, the 545 

responses to temperature differed between males and females (i.e., the significance or 546 

direction of the temperature response was different in at least one developmental stage).  547 

 548 

In the multi-species analyses, family explained the highest proportion of variance. Although 549 

significant responses to temperature in the late larval stage were always positive, the 550 

magnitude was greatest for Lycaenidae (Fig. 6). The response to early larval stage 551 

temperatures shows the clearest differences between families: all Hesperiidae species with 552 

significant models showed an increase in adult size with increasing temperature and 553 

Lycaenidae species showing a decrease in adult size with increasing temperature. 554 

Meanwhile, the species analysed within the Pieridae showed very little response; the only 555 

significant response was a decrease in adult size of generation one male P. napi with 556 

increasing temperature in the early larval stage. Overall, the Lycaenidae show the largest 557 

variation in responses to temperature between the immature stages, with a large increase 558 

in adult size (0.99% per °C on average) with increasing temperatures in the late larval stage 559 

and a large decrease in adult size (-0.99% per °C on average) with increasing temperature in 560 

the early larval stage. In the pupal stage, there was a range of positive and negative 561 

responses within each family. There are also some differences in response between species 562 

from different habitat types, particularly to temperature during the pupal stage, which may 563 

be due to differences in the microclimates within the habitats experienced by each stage (SI 564 

Fig. 1).  565 

 566 
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We also can now confirm that females are the larger sex for most species of British 567 

butterflies. While this is not particularly surprising given that female biased sexual-size 568 

dimorphism (SSD) is commonly reported across insect species (Teder 2014), our study 569 

represents the largest test of this phenomenon in terms of sample sizes. All species of 570 

Hesperiidae and Nymphalidae have female biased SSD, but at least five species of 571 

Lycaenidae and two species of Pieridae have male biased SSD (Fig. 5). Interestingly, four of 572 

the Lycaenidae species with male biased SSD are in the subfamily Polyommatinae. In these 573 

species, there is also a strong colour dimorphism between the sexes. While the reason some 574 

species of this subfamily have male biased SSD requires more research, we can make some 575 

inferences based on their natural history. In most species of insects, the males emerge 576 

earlier than females, termed protandry (Teder et al. 2021). In Polyommatinae, males 577 

actively compete and swarm upon freshly emerged females to mate (e.g., in P. bellargus; 578 

Thomas & Lewington 2014). Larger males may therefore be at a competitive advantage and 579 

promote male biased SSD. While the causes of SSD in insects is an ongoing debate and are 580 

likely to vary among taxa, our research shows that the direction and strength of 581 

temperature-size responses often varies by sex. Thus, the magnitude of SSD may increase, 582 

decrease, or stay the same with increasing temperature.  583 

 584 

Clearly, temperature size responses in insects are a complex interaction between many 585 

different ecological, geographic, environmental, life history, evolutionary, and historical 586 

variables. While the use of natural history collections can give us valuable clues to how 587 

temperature affects size, and CV can greatly accelerate data collection and analysis, there 588 

will always be a need to conduct field, laboratory, and long-term monitoring studies to 589 

better understand the complexities of how insects will respond to climate change. 590 
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