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Abstract

1. Mosquito species belonging to the genus Aedes have attracted the interest of1

scientists and public health officers for their invasive species traits and efficient2

capacity of transmitting viruses affecting humans. Some of these species were3

brought outside their native range by human activities such as trade and tourism,4

and colonised new regions thanks to a unique combination of eco-physiological5

traits.6

2. Considering mosquito physiological and behavioural traits to understand and7

predict the spatial and temporal population dynamics is thus a crucial step to8

develop strategies to mitigate the local densities of invasive Aedes populations.9

3. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti,10

Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochas-11

tic modelling framework which we coded in the R package dynamAedes. We12

designed a stage-based and time-discrete stochastic model driven by tempera-13

ture, photo-period and inter-specific larval competition that can be applied to14

three different spatial scales: punctual, local and regional. These spatial scales15

consider different degrees of spatial complexity and data availability, by ac-16

counting for both active and passive dispersal of mosquito species as well as17

for the heterogeneity of the input temperature data.18

4. Our overarching aim was to provide a flexible, open-source and user-friendly19

tool rooted in the most updated knowledge on species biology which could be20

applied to the management of invasive Aedes populations as well as for more21

theoretical ecological inquiries.22

23

Keywords: Biological invasions; Invasion ecology; Process-based models; Spa-24

tial epidemiology; Dispersal; Vector-borne pathogens25
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1 Introduction26

Some mosquito species within the Aedes taxon have a unique combination of biological27

traits such as: 1) efficient transmission of viruses debilitating for humans and animals28

(Gratz, 2004; Hurk et al., 2011; Souza-Neto et al., 2019), 2) eco-physiological plasticity29

that allows for rapid adaptation (Kramer et al., 2021) and exploitation of novel environ-30

ments created by humans (McBride et al., 2014a), 3) egg stage with high resistance to dry31

and cold conditions which facilitate displacements over long ecological and geographi-32

cal distances (Thomas et al., 2012; Versteirt et al., 2012; Kaufman and Fonseca, 2014).33

Some of these species were accidentally brought outside their native areas by human ac-34

tivities and colonised new regions thanks to a unique combination of eco-physiological35

traits. These mosquitoes, often referred as "Aedes invasive mosquitoes" (AIM), have at-36

tracted the interest of scientists and public health officers and much effort has been done to37

unravel their physiological and behavioural traits. Among these species, Ae. aegypti, Ae.38

albopictus, Ae. japonicus and Ae. koreicus showed a rapid expansion of their geographical39

range, with the first two species often causing an important burden on public health. As40

a consequence, large experimental and observational datasets on the relationship between41

water or air temperature and physiological parameters have been collected and used to42

develop mechanistic models that reproduce the basic life cycle of these four species (e.g.,43

for Ae. aegypti Focks et al., 1993a,b; Otero et al., 2006; Da Re et al., 2021; Caldwell et al.,44

2021; for Ae. albopictus Tran et al., 2013; Erguler et al., 2016; Metelmann et al., 2019;45

Pasquali et al., 2020; Tran et al., 2020; for Ae. japonicus Wieser et al., 2019; for Ae. kor-46

eicus Marini et al., 2019b). The inclusion of such functions, which describe physiological47

and developmental rates, into modelling frameworks allow for more reliable model extrap-48

olations, as the chances of biological unrealistic outcome may be lower compared to pure49

correlative model approaches (Kearney, 2006; Kearney and Porter, 2009). Comparisons50

between modelled and observed population trends showed that such mechanistic models51

can be used, for example, to understand population dynamics in space and time, and thus52

can enhance the pest control strategies against AIM (Baldacchino et al., 2015).53

Models targeting AIM developed so far aimed to simulate the population dynamics54

of only one species at the time and for a single qualitative (i.e. "individual", "container"55

or "household") or quantitative (cell in a lattice grid) spatial scale. Moreover, only a few56

of these models have been made readily operational, for example by organising them in57

open-access, user-friendly software or libraries with sufficient documentation for practi-58

cal applications (Stallman, 1985). SkeeterBuster, a container-level population dynamical59

model for Ae. aegypti, has been the first agent-based model for mosquitoes made available60

as a free (but not open-source) software (Magori et al., 2009). Concerning Ae. albopictus,61

Erguler et al. (2016) made available a model developed as a Python library that was after-62
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wards wrapped into the R package albopictus. More recently, the European Centre63

for Disease Control (ECDC) has provided a free and open-source adaptation of a model64

initially developed by Tran et al. (2013), making it accessible via the R Shiny application65

AedesRisk1. Similarly, two generic age and stage-structured discrete-time population66

dynamics models, also applicable to mosquitoes, were proposed in the last few years:67

stagePop (Kettle and Nutter 2015; applied to Ae. japonicus in Wieser et al. 2019 ) and68

sPop (Erguler, 2018). Despite the current availability of models applicable to invasive69

Aedes, none of them can be directly generalised while retaining biological credibility, e.g.70

species-specific models work only for a single species whereas generic models may over-71

simplify the life cycle structure or are not equipped with species-specific physiological72

parameters. Hence, if users decide to use generic models, they need to screen the scien-73

tific literature, filter and manipulate experimental data (often scarce and non-standardised)74

to inform models on the species of interest. Moreover, often models do not consider75

mosquito dispersal or even completely lack spatial structure.76

Here, we synthesised the life cycle of four AIM species: Ae. aegypti, Ae. albopictus,77

Ae. japonicus and Ae. koreicus in a single modelling framework, which we coded in78

the R package dynamAedes. We designed a stage-based and time discrete stochastic79

model informed by temperature and photoperiod that can be applied to three different80

spatial scales: punctual, local and regional. These spatial scales were thought to meet81

different degrees of spatial complexity and data availability, by accounting for both active82

and human-mediated passive dispersal of the modelled mosquito species as well as for83

the heterogeneity of temperature data. Our overarching aim was to provide a flexible and84

open-source tool which could be used for applications related to the management of AIM85

populations but also for more theoretical ecological inquiries. We described and assessed86

the model using observational mosquito data and then showed how to use the R package87

with coding examples and relevant case studies.88

2 Materials and methods89

2.1 A summary of invasive Aedes species ecology90

2.1.1 Aedes aegypti91

Aedes (Stegomyia) aegypti (Linnaeus, 1762), commonly referred to as the "yellow fever92

mosquito", was progressively brought outside sub-Saharan Africa by human trade. It was93

first introduced in the Americas during the 16th century and afterwards to tropical and tem-94

perate regions of Asia and Oceania (Powell et al., 2013). Its invasion was likely favoured95

1AedesRisk v1.0: https://shinyapps.ecdc.europa.eu/shiny/AedesRisk/
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by a series of functional traits, such as egg desiccation-resistance, that allows them to96

withstand dry conditions for months, and egg moderate resistance to cold temperatures97

(Juliano et al., 2002; Thomas et al., 2012; Kramer et al., 2020). Aedes aegypti efficiently98

transmit several viruses to humans, including yellow fever, dengue, chikungunya, Zika,99

Rift Valley, Mayaro and eastern equine encephalitis viruses (Leta et al., 2018; Näslund100

et al., 2021; da Silva Neves et al., 2021). This is the result of several eco-evolutionary101

traits that are specific to the species: i) high preference for human hosts (anthropophily),102

which is channelled by genetic traits linked to behavioural and physiological evolution-103

ary advantages (Harrington et al., 2001; McBride et al., 2014b), ii) exploitation of human104

dwellings and architectures as shelter, hide and resting indoor sites (endophily) to avoid105

unfavourable environmental conditions (Dzul-Manzanilla et al., 2017; Gloria-Soria et al.,106

2018), and iii) selection of artificial containers for oviposition and subsequent larval de-107

velopment (eusynantrophy; Christophers, 1960).108

2.1.2 Aedes albopictus109

Aedes (Stegomyia) albopictus (Skuse, 1895), commonly referred as the "Asian tiger mosquito",110

is native of tropical and subtropical regions of Southern-East Asia and Indonesia (Wat-111

son, 1967; Hawley, 1988). It is a competent vector of several viruses, including dengue,112

chikungunya, Zika, West Nile, eastern equine encephalitis and La Crosse viruses (Koch113

et al., 2016; McKenzie et al., 2019; Takken and van den Berg, 2019) and it was implicated114

as the vector species causing local transmission of dengue, chikungunya or Zika virus,115

even at temperate latitudes outside its native distributional range (Effler et al., 2005; Rezza116

et al., 2007; Delatte et al., 2008; Venturi et al., 2017; Brady and Hay, 2019; Giron et al.,117

2019; Barzon et al., 2021). This species is a more opportunistic feeder compared to Ae.118

aegypti (Cebrián-Camisón et al., 2020). It prefers sub-urban habitats with the presence119

of vegetation, dispersing bites among several species, a behaviour that might decrease the120

probability of pathogen transmission to humans (Turell et al., 1994; Lounibos and Kramer,121

2016). Populations of this species located at temperate latitudes show: i) an adaptation to122

temperate climatic conditions (Marini et al., 2020) and ii) a stronger tendency to laying123

diapausing eggs at the end of summer (Hawley et al., 1989; Lacour et al., 2015). Dia-124

pausing eggs have been found to be resistant to below-freezing temperatures and probably125

allowed Ae. albopictus populations to overwinter and spread towards higher latitudes than126

Ae. aegypti (Hawley et al., 1989; Thomas et al., 2012).127

2.1.3 Aedes japonicus japonicus128

Aedes (Hulecoeteomyia) japonicus japonicus (Theobald, 1901) [Hulecoeteomyia japon-129

ica], the "Asian bush mosquito", originated in an area comprised between East China,130
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East Russia and Japan (Tanaka et al., 1979a). This species may be competent for the trans-131

mission of pathogens of medical importance for humans, such as dengue, West Nile, Zika132

and Usutu viruses, but only experimental evidences of its role as vector exist (Takashima133

and Rosen, 1989; Scott, 2003; Schaffner et al., 2011; Westby et al., 2015; Veronesi et al.,134

2018; Jansen et al., 2018; Martinet et al., 2019; De Carlo et al., 2020; Abbo et al., 2020;135

Hopkins et al., 2020; but see Kilpatrick et al., 2005 for an estimated risk of transmitting136

WNV by this species). Its likely lesser role as a vector for human pathogens may also be137

assumed from the tendency to feed on other species than humans as well as the preference138

for more natural over urbanised areas. Established populations of Ae. japonicus were de-139

tected in North America from 1998 and more recently in European countries (Scott, 2003;140

Versteirt et al., 2009; Seidel et al., 2016; Eritja et al., 2019; Müller et al., 2020; ECDC,141

2021). This species is well adapted to cold climates, overwintering either as larvae in the142

warmer areas, or as diapausing eggs (Krupa et al., 2021) in areas where larval habitats143

freeze completely (Scott, 2003; Reuss et al., 2018; Day et al., 2020).144

2.1.4 Aedes koreicus145

Aedes (Hulecoeteomyia) koreicus (Edwards, 1917) [Hulecoeteomyia koreica] commonly146

referred to as the "Korean bush mosquito" is native to temperate areas of Northeast Asia147

comprising Russia, the Korean peninsula, Japan and north-east China (Tanaka et al., 1979b).148

This species is a suspected vector of Dirofilaria immitis, Japanese encephalitis and chikun-149

gunya viruses, but it has not yet been directly implicated in transmission events of zoonotic150

pathogens (Tanaka et al., 1979b; Montarsi et al., 2015a; Ciocchetta et al., 2018). Aedes151

koreicus is adapted to temperate climates (Versteirt et al., 2012) and has recently colonised152

areas of Central Europe while continuing its range expansion (Capelli et al., 2011; Versteirt153

et al., 2012; Montarsi et al., 2015a; Marcantonio et al., 2016; Werner et al., 2016; Negri154

et al., 2021; Horváth et al., 2021; Andreeva et al., 2021; Gradoni et al., 2021; ECDC, 2021).155

Aedes koreicus seems to prefer rural over highly urbanised habitats and has been found to156

feed on other species than humans (Montarsi et al., 2013, 2014; Cebrián-Camisón et al.,157

2020). In areas where Ae. koreicus lives in sympatry with other invasive Aedes species,158

the Korean bush mosquito is able to colonise higher altitudes and its development can start159

earlier in the season with respect to other AIM (Montarsi et al., 2015a; Marcantonio et al.,160

2016). This trait may give them a competitive advantage over other container-breeding161

mosquitoes whose adults emerge later in the season.162
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2.2 The theoretical structure of the model163

The basic structure of dynamAedes has been described in Da Re et al. (2021). We164

amended some components of the model to generalise its structure. Thus, we provide here165

a short recap of model structure while describing the new model features.166

dynamAedes is composed of three main compartments (life stages) that represent a167

simplified version of Aedes the mosquito life cycle: egg, juvenile and adult stages (Fig. 1).168

Larval and pupal stages, which can be assumed to have somewhat similar physiological169

requirements, are fused in a unique "juvenile" compartment. Each compartment is divided170

into sub-compartments to account for the different physiological states for individuals in171

the three main compartments (e.g. 1-day old adult females that are not sexually mature).172

The number of sub-compartments into each compartment is dictated by the known min-173

imum number of days needed by each species to pass to the next stage or complete the174

gonotrophic cycle (for adults). Thus, the minimum duration of development in each com-175

partment varies among developmental stages as well as among species. As an example,176

the whole duration of the developmental cycle (i.e. from egg-laying to adult emergence)177

has a minimum duration of 11 days for Ae. aegypti and Ae. albopictus, whereas 21 days178

for Ae. koreicus and Ae. japonicus (see Tab S3 in SM for generic model assumptions).179

In the model, time is treated as a discrete quantity and "day" is the fundamental tempo-180

ral unit. Therefore, each event in the simulated life cycle occurs once per day and always181

in the same order. The model can be run with or without a spatial structure. If the model182

is spatially explicit, space is treated as a discrete quantity. In this case, the fundamental183

spatial unit is a (user defined) cell of a lattice grid into which the species life cycle takes184

place and, if relevant (see below), among which adult mosquitoes disperse.185

Adult female mosquitoes lay non-diapausing eggs, E, in the summer months or dia-186

pausing eggs, Ed, at the end of the season. The embryonic development and hatching of187

diapausing eggs are activated by increasing daily temperature and photoperiod (typically188

at the end of winter or early spring). All the developmental and reproductive events con-189

sidered in the model were treated as stochastic processes with probabilities derived from190

temperature(or photoperiod)-dependent functions by following the generic formulation:191

Xevent
s,t ∼ Binomial(Xs,t−1, πX) (1)

where Xs,t−1 may represent eggs, juveniles or adults that undergo one of the following192

events in the life cycle: lay eggs, hatch, emerge or survive in cell s, at the end of the day193

t − 1. πX is the temperature-dependent (or photoperiod dependent for the hatching of194

diapausing eggs) daily probability of any of the life cycle events X . All the temperature-195

dependent functions were calibrated using data from the scientific literature (see Tab S4 in196

SM) fitted using exponential, polynomial equations, and non-linear Beta density functions,197
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Figure 1: Graphical representation of dynamAedes model structure, adapted from Da Re
et al. (2021): a) the life cycle of a generic simulated mosquito species, while in b) a rep-
resentation of active and passive dispersal processes happening within the Adult (A) com-
partment at local scale. E: egg compartment; Ed: diapause egg compartment (available for
all species except Ae. aegypti); J: juvenile compartment; A: adult compartment; Aad: adult
active dispersal; Apdd: adult passive dispersal; Apd: adult probability of being caught in
a car.

using a combination of drc (non-linear models) and aomisc (Beta function self-starters)198

R packages (Ritz et al., 2015; Onofri, 2020). The beta function derives from the beta199

density function and it has been adapted to describe phenomena taking place only within a200

minimum and a maximum threshold value (threshold model), such as physiological rates201

with respect to temperatures in the mosquito life cycle (Onofri, 2020). In a similar fashion,202

adult active dispersal was modelled as species-specific log-normal decaying functions of203

distances derived from dispersal estimates from field observations for Ae. aegypti and Ae.204

albopictus (Roche et al. 2015; Marcantonio et al. 2019; Marini et al. 2019a; Müller et al.205

2020; see Tab S5 in SM for dispersal parameters). In addition to active dispersal, the model206

also considers dispersal aided by cars along the main road network (a matrix containing207

the coordinates of the grid cells of the landscape intersecting the road network must be208

provided, see the "Spatial scales of the model and temperature data sources" section),209

defined as the "hitchhiking" probability of a female to enter in a car and to be driven210

and released further away. This probability has been defined for all species by estimates211

measured for Ae. albopictus (Eritja et al., 2017), while the average distance covered by a212

single car trip was taken from Pasaoglu et al. (2012). This type of dispersal is thought to213

be amongst the main drivers of medium-range geographical expansion for invasive Aedes214

mosquitoes, especially for Ae. aegypti and Ae. albopictus (Marcantonio et al., 2016; Eritja215

et al., 2017; Müller et al., 2020).216
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Density-dependent survival is an important regulatory factor of mosquito population217

dynamics (Gilpin and McClelland, 1979). Its regulatory effect for juvenile stages appears218

to be more common in mosquitoes breeding in container or highly ephemeral habitats219

(Juliano, 2007), such as invasive Aedes. In dynamAedes we parameterised a density-220

dependent function by extracting observations on Ae. aegypti from Figures 2a and 2b in221

Hancock et al. (2016) using the Webplot Digitizer (Rohatgi, 2020). We considered the pro-222

portion of juveniles that survived through the juvenile stage (in a 2 L container) reported223

by these authors as an estimate of juvenile survival probability at different densities. Mor-224

tality probabilities (1 − proportion surviving) were converted into rates, which were225

scaled to a daily time step dividing by the corresponding immature development time (in226

days) at different densities. Finally, we regressed the natural logarithms of these daily227

mortality rates on the corresponding densities. The fitted daily survival rate at different228

densities was then summed to the temperature-dependent juvenile mortality. The resulting229

probability was then used to inform a binomial random draw (see equation 1) describing230

overall juvenile daily survival.231

Some invasive Aedes can lay eggs resistant to low temperature commonly referred232

to as "diapausing eggs" (Thomas et al., 2012; Lacour et al., 2015; Krupa et al., 2021).233

Diapause describes the evolutionary adaptation exploited by insect species to overcome234

unfavourable environmental conditions by passing through an alternative and dormant235

physiological stage. In Ae. albopictus, maternal photoperiod is the environmental stim-236

ulus implied to induce oviposition of "diapausing eggs" (Pumpuni et al., 1992; Lacour237

et al., 2015). In dynamAedes, the oviposition of diapausing/non-diapausing eggs was238

integrated as a species-specific exponential function on the incidence of diapausing eggs239

given photoperiod length (and thus geographically-dependent; Urbanski et al. 2012; Petrić240

et al. 2021). The function is based on data from Lacour et al. (2015) for Ae. albopictus and241

Krupa et al. (2021) for Ae. japonicus. We applied the same diapausing function developed242

for Ae. japoncus to Ae. koreicus due to the close phylogeny of these species and the lack243

of data for Ae. koreicus (see Tab. S6). The daily survival of diapausing eggs was set to244

be constant (0.99) only for Ae. japonicus and Ae. koreicus, while for Ae. albopictus we245

used the exponential function described in Metelmann et al. (2019). The hatching rate246

of diapause eggs was triggered by an increasing photoperiod regime (spring) from 11.44247

hours of light for Ae. albopictus (95th percentile estimated from Petrić et al. 2021) and248

10.71 hours for Ae. japonicus or Ae. koreicus (Krupa et al., 2021).249

2.3 Overview of the R package250

The function dynamAedes.m calls the model and allows to customise the simulated sce-251

nario through a suite of options. As for the simplest application of the model (no explicit252
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spatial dimension, scale="ws", see next paragraph for further details), the user has to253

define what species to model through the argument species (default "aegypti"), the254

"type" and number of introduced propagules through intro.eggs, intro.juvenile255

or intro.adults (default intro.eggs=100, intro.juvenile=0, intro.adults=0),256

and the volume (L) of water habitats wanted in each spatial unit with the argument lhwv257

(larval-habitat water volume, parameterised from Hancock et al. 2016; default lhwv=2;258

see Fig S13 for a sensitivity analysis of this parameter). Moreover, the argument temps.matrix259

takes the matrix of daily average temperature (in Celsius degree) used to fit the life cycle260

rates. This matrix must be organised with the daily temperature observations as columns261

and the geographic position of the i-grid cell as rows (it follows that the matrix will have262

only one row when scale="ws"). The day of start, end and number of iterations are263

defined by startd, endd and iter, respectively. The model has been optimised for264

parallel computing and the number of parallel processes can be specified through the op-265

tion n.clusters. If the modelled species is Ae. albopictus, Ae. japonicus or Ae.266

koreicus (e.g., species="albopictus") then the arguments defining latitude (lat),267

longitude (long) and year of introduction (intro.year) should be adequately defined268

to allow a correct switch to and from the egg diapausing stage.269

The default output of dynamAedes consists of a list of numerical matrices containing,270

for each iteration, the number of individuals in each life stage per day (and for each grid271

cell of the study area if scale="lc" or "rg"). If the argument compressed.output=FALSE272

(default TRUE), the model returns the daily number of individuals in each life stage sub-273

compartment. The model, coded in the R statistical language (R Core Team, 2021),274

and adapted for parallel computation, is available on the the following link https:275

//github.com/mattmar/dynamAedes (it has meanwhile been submitted to the276

CRAN).277
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1#model parameters
cl=47 #number of cluster

3it=100 #number of iterations
ie=500 #number of introduced eggs

5str=1 #day intro
endr=ncol(ww1) #day end simulations

7

aeg.cal <- dynamAedes(species="aegypti",
9scale="rg",

temps.matrix=ww1,
11startd=str, endd=endr,

n.clusters=cl,
13iter=it,

intro.eggs=ie,
15ihwv=100,

verbose=FALSE)
17

albo.cal <- dynamAedes(species="albopictus",
19lat=37, long=-120,

intro.year=2015,
21scale="rg",

temps.matrix=ww1,
23startd=str, endd=endr,

n.clusters=cl,
25iter=it,

intro.eggs=ie,
27ihwv=100,

verbose=FALSE)

278

2.3.1 Spatial scales of the model and input temperature data279

The selection of the geographical scale for population dynamics is a crucial aspect of280

the whole package and the temperature dataset provided to dynamAedes function must281

reflect this decision. Along with the photoperiod, temperature is the other only environ-282

mental driver of our model, which is dictated by its central role in mosquito develop-283

ment and activity. The measurement of temperature is inevitably scale-dependent, thus we284

structured the model to allow for temperature datasets relevant for different measurement285

spatial scales (Fig. 2) and to match the different hypotheses that users may want to test.286

The punctual or "weather station" scale (scale="ws") is the smallest geographic287

scale (i.g., no spatial dimension) available in dynamAedes and the environment mod-288
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Figure 2: dynamAedes allows to simulate Aedes mosquitoes population dynamics at
three different spatial scales: a) regional, b) local, and c) punctual (weather station). Pas-
sive and active dispersal is enabled only at local spatial scale.

elled is assumed to be what represented by the chosen weather station (or any other data-289

loggers). In this case, the model has no spatial structure, thus dispersal is not considered:290

the model will return the temporal trend of population dynamics given the chosen temper-291

ature, larval-habitat water volume and photoperiod conditions.292

The "local" scale (scale= "lc") represents those scenarios and spatial resolutions293

at which species dispersal and local microclimate variability are relevant for users. We294

suggest to keep the resolution of the matrix of temperatures equal or smaller than the295

maximum daily dispersal range of the mosquito species (i.e., usually under 1 km for296

Aedes species; Guerra et al., 2014). The optional arguments cellsize, dispbins297

and maxadisp are available to fine tune the dispersal kernel which drives the spatial298

behaviour of the simulated mosquito populations. The argument cellsize (default299

"cellsize=250" meters) sets the minimal distance of the dispersal kernel and should300
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match the size of the cell to avoid inconsistencies (i.e., mosquitoes dispersing at a finer301

or bigger grain than the arena), maxadisp sets the maximum daily dispersal (default302

maxadisp=600 meters), and dispbins the resolution of the dispersal kernel (de-303

fault dispbins=10). Passive dispersal is also implemented and it requires i) a matrix304

containing the coordinates of the grid cells of the landscape intersecting the road network305

(argument road.dist.matrix), and ii) to specify the average car trip distance through306

the argument country, which can be defined by the user or considering estimates for307

the following countries: France, Germany, Italy, Poland, Spain and the United Kingdom308

Pasaoglu et al. (2012). An extensive example of model application at local spatial scales309

is described in Da Re et al. (2021).310

The rationale behind the third spatial scale considered in the model, the "regional"311

scale (scale= "rg") was to return an overview of invasive Aedes population dynamics312

over large extents (i.e., larger than 1 km). The model in regional scale does not account313

for species dispersal, introductions happen separately (but at the same time) in each grid314

cell which hence are closed systems. The output of the model at "regional" scale can be315

compared to those produced by correlative species distribution models (SDMs), with the316

advantage of mechanistic rather than purely correlative model foundations.317

The amount of water available for larval development in each spatial unit(s) (at any318

model spatial scale) was set as 2 L that is the water volume considered in the experiments319

we used to parametrise model functions Hancock et al. (2016). It is likely that for many320

real-world model applications, the relative availability of breeding habitats is much higher,321

and we encourage users to set a value based on their scenarios and hypotheses (i.e. through322

the model option lhwv; Hartemink et al. 2015).323

2.3.2 Auxiliary functions324

Several auxiliary functions are available to analyse model outputs. The function psi re-325

turns the proportion of model iterations that resulted in a viable population for the given326

date. It works for all spatial scales and the output can reflect either the overall grid or327

each single cell. Likewise, summaries of mosquito abundance at each life stage for each328

day can be obtained through adci, which by default returns the inter-quartile range abun-329

dance of each life stage. Similarly, icci returns a summary of the number of invaded cells330

over model iterations. Estimates of dispersal spread (in km2) of the simulated mosquito331

populations is provided by the function dici, which is available only for model results332

computed at the local scale (the only scale which integrates dispersal). Finally, the function333

get_rates_spatial, returns the output of the temperature-dependent physiological334

functions used by dynamAedes to derive the daily rates. It can be used to better under-335

stand the outcome of model simulations, by highlighting those areas where the predicted336
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values of the temperature-dependent functions are maximised or minimised, or to derive337

causal-based physiological estimations that, for example, could be used as inputs for cor-338

relative SDMs (e.g., Kearney and Porter, 2009; Mathewson et al., 2017).339

3 Case studies and model validation340

We applied the model to three case studies representing different geographical scales and341

areas, species and invasion trajectories. The case studies were chosen considering the342

availability of optimal mosquito data-sets to show model strength and weakness. We did343

not report any example for the "local scale" as it had already been provided in Da Re et al.344

(2021), who applied a previous version of dynamAedes.345

3.1 Regional scale models346

3.1.1 Likelihood of successful introductions of Ae. albopictus and Ae. aegypti across347

California, USA348

We used dynamAedes at "regional" scale to assess the likelihood of successful intro-349

ductions for two invasive Aedes across California: Ae. aegypti and Ae. albopictus which350

are considered established from 2011 and 2013, respectively (Fujioka, 2012; Gloria-Soria351

et al., 2014). California is among the few areas where established populations of these two352

species were detected during the last decade and their progressive spread was documented353

in great detail2. We downloaded daily minimum and maximum temperature data from the354

NASA Daily Surface Weather Data on a 1-km Grid for North America (DAYMET), Ver-355

sion 4 (Thornton et al., 2020) from 1 January 2011 to the 31 December 2018. These two356

sets of data (in netCDF raster format) were clipped to the boundary of California and ag-357

gregated at a spatial resolution of 2.5 km by using a combination of GDAL (GDAL/OGR358

contributors, 2021) and Climate Data Operators (CDO; Schulzweida, 2019) software. The359

two sets of raster layers were then imported in R 4.0.4 (R Core Team, 2021), transformed360

in matrices, averaged and converted to integers to obtain a single average daily temper-361

ature integer matrix with cell id as observations (rows) and days as variables (columns).362

This dataset was used as the input temperature matrix for the model. We run 80 model363

iterations for five years, introducing 500 eggs in each cell of the gridded landscape on 15364

May 2011 and 2013 for Ae. aegypti and Ae. albopictus respectively. By using the auxil-365

iary function psi, we then derived a map showing the proportion of iterations with viable366

population of both Ae. aegypti and Ae. albopictus at the end of the simulated period (15367

2See https://maps.vectorsurv.org/

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473628doi: bioRxiv preprint 

https://maps.vectorsurv.org/
https://doi.org/10.1101/2021.12.21.473628
http://creativecommons.org/licenses/by-nc-nd/4.0/


May 2016 and 2018). The photoperiod was set to match conditions in the geographical368

center of California (Lat 37◦ N, Lo -120◦ W) and the amount of breeding habitat was set369

to 100 L (per cell), which we assumed to be representative of the potential water larval370

habitats available given cell size and overall regional climate.371

We validated model prediction using maps of cities in California with known species372

presence updated to 2021 by the California Department of Public Health (CDPH3). We373

derived the average predicted probability of successful introduction for each city and com-374

puted the Area Under the ROC Curve (AUC) score which defines the probability that a375

randomly chosen positive city will be ranked higher than a randomly chosen negative city.376

An AUC score > 0.5 indicates that the model is performing better than random, while a377

score of 1 indicates perfect prediction. In addition, we calculated the percentage of posi-378

tive cities that fell into a grid cell that had a probability of establishment higher or equal to379

1% (e.g., at least 1 out of the nth iterations reported a viable mosquito population in that380

cell).381

The predicted spatial pattern of areas with a high likelihood of Ae. aegypti and Ae.382

albopictus successful introduction is in general consistent with updated information on383

the presence of this species (Fig. 3). Predictions show moderate-to-high probabilities of a384

successful introduction in all counties with known presence of these species, except for the385

extreme South-East coastal part of the state, where Ae. aegypti was predicted to have a low386

probability of successful introduction whereas being well established (Fig. 3). This may387

be due to the high micro-climatic variability that characterises coastal areas of California388

which may not be resolved by the temperature datasets that we have considered in this case389

study. On the contrary, areas predicted to be suitable for Ae. albopictus exceeded by far the390

known current distribution of this species. Factors other than temperature and photoperiod,391

more nuanced aspects of species invasion history and the extremely low humidity during392

the dry season in the Central Valley of California or the Inland Empire, may hinder species393

establishment in these areas. Nevertheless, recently Ae. albopictus was found as north as394

Redding, Shasta County, thus it is not unlikely that this species is also present (perhaps at395

low densities), but not yet detected, at southern latitudes in California.396

Both models had over 75% of successful introduction scores (calculated as the pro-397

portion of pixels with species observations and simulated proportion of invasion > 1%)398

when validated at city levels (Tab. 1). Still, only the prediction for Ae. aegypti validated at399

city levels reported an AUC score bigger than 0.5 (Tab. 1), whereas validating the model400

by averaging the predictions at county level resulted in an AUC bigger than 0.5 for both401

species (0.892 and 0.717 for Ae. aegypti and Ae. albopictus respectively; Fig. S14).402

3California Department of Public Health, "Map and City List of Aedes aegypti and Aedes albopic-
tus Mosquitoes in CA, 2011-2021" (accessed on 28th October 2021): https://www.cdph.ca.gov/
Programs/CID/DCDC/Pages/VBDS.aspx
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Figure 3: Predicted percentage of established introductions of Ae. aegypti Ae. albopictus
in California (USA) for the years 2011-2016 and 2013-2018, respectively. The red dots
represent the centroids of the Californian municipalities with established populations as
reported by the Californian Department of Public Health (CDPH).

3.1.2 Likelihood of successful Aedes albopictus introductions in France403

Aedes albopictus was first detected in metropolitan France in 1999 (Schaffner et al., 2000)404

and since 2004 it has established populations in the southern part of the country while405

still expanding its distribution range (ECDC, 2021). We used dynamAedes model at406

"regional" scale to assess the success of introductions of Ae. albopictus for the whole407

metropolitan France. We processed ERA5-Land (Muñoz-Sabater et al., 2021) hourly air408

temperature measured at 2 m above surface from January 1st 2015 to December 31st 2020409

in the Climate Data Store (CDS) Toolbox4 to get the daily mean temperature of the period410

considered for the whole metropolitan France, at the spatial resolution of ∼ 9 km. The411

netCDF file obtained was imported in R 4.0.4 (R Core Team, 2021), where was clipped412

to the extent of metropolitan France, converted from degrees Kelvin to Celsius and con-413

verted to integer to obtain a single average daily temperature integer matrix with cell id414

4CDS Toolbox: https://cds.climate.copernicus.eu/toolbox/doc/index.html

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473628doi: bioRxiv preprint 

https://cds.climate.copernicus.eu/toolbox/doc/index.html
https://doi.org/10.1101/2021.12.21.473628
http://creativecommons.org/licenses/by-nc-nd/4.0/


as observations (rows) and days as variables (columns). This dataset was then used as the415

input temperature matrix for the model. We run 100 simulations for five years, introducing416

100 eggs in each cell of the gridded landscape on 15 May 2015. By using the auxiliary417

function psi, we derived a probability map of the areas showing the proportions of iter-418

ations that produced a viable population of Ae. albopictus five years after the simulated419

introductions.420

We validate the model predictions using the list of the 3419 French municipality re-421

porting established Ae. albopictus until 2020 provided by the French Health Ministry (data422

collected thanks to active monitoring from French mosquito operators and passive surveil-423

lance5). Similarly to the previous case study, we computed both the AUC as well as the424

proportion of positive location falling into a grid cell that had a percentage of established425

introductions higher than or equal to 1%. The spatial pattern of the areas predicted to have426

a high likelihood of successful Ae. albopictus introduction (Fig. 4) is consistent with up-427

dated observational data (Ae. albopictus map; ECDC, 2020) as well as with the results of428

other mechanistic models (see for instance Metelmann et al., 2019; Pasquali et al., 2020).429

The Mediterranean French coast and the Rhone valley are the areas where our model pre-430

dicted the highest percentage of successful introduction. Similarly, the Aquitaine region on431

the Atlantic coast and the Alsace region in the North-East part of France showed relatively432

high predicted percentage of successful introduction. The northern and the central part of433

France, as well as the Pyrenees areas, show low percentage of successful introduction un-434

der the current climatic conditions. However, the resolution of the pixel, approximately 10435

km, may have played a role influencing the model outcomes especially in topographically436

complex areas such as the Pyrenees or the French Alps, where the microclimate of the437

valleys may be underestimated. Similarly, the model was not able to predict the successful438

introduction of the species in areas such as Paris, where Ae. albopictus is established and439

probably favoured by i) local climatic factors such as the urban heat island effect, and ii)440

the continuous inflow of Ae. albopictus propagules to Paris from areas where the species441

is already established. Indeed, most railways, flights and highways have a connection with442

Paris, and the Paris-Lyon-Mediterranée axis is the main artery of France, with an average443

of >60,000 cars/day on the highway6 and 240 trains per day7, thus the quantity of imported444

mosquitoes can compensates for the less favorable climatic conditions of Paris compared445

to the Mediterranean region (recent phylogeographic findings support this hypothesis, see446

Sherpa et al., 2019). All the model performances metrics assessed support the capacity of447

the model to discriminate between areas where the species can or cannot be established448

5https://signalement-moustique.anses.fr/signalement_albopictus/
6https://www.data.gouv.fr/fr/datasets/trafic-moyen-journalier-annuel-sur-le-reseau-routier-national/
7https://www.leparisien.fr/economie/l-europe-fait-passer-la-lgv-paris-lyon-a-l-heure-2-0-26-04-2018-7685634.

php
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(Tab. 1).449

Figure 4: Percentage of successful introduction for Ae. albopictus in France for the years
2015-2020: a) Model prediction, b) Model prediction and in red the centroids of the French
Municipalities with established population of Ae. albopictus reported by the French Health
Ministry (SI-LAV).
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3.2 Punctual population dynamics temporal trends450

3.2.1 Aedes albopictus population dynamics in Nice, South-East France451

Aedes albopictus is established mainly in the southern part of metropolitan France where452

more than 40% of municipalities are colonized8 and it is still expanding in other areas. We453

computed the population dynamics of the species informing dynamAedesmodel at punc-454

tual spatial scale using temperature observations downloaded from the National Oceanic455

and Atmospheric Administration (NOAA) network via the R package rnooa. The obser-456

vations of the NOAA weather station located in Nice area (usaf code = 076900, Lat 43◦
457

42’ 00” N, Lon 7◦ 13’ 12” E, 3.7 m a.s.l.), spanning from January 1st 2013 to December458

31st 2018, were linearly interpolated to fill missing values at hourly and daily level. Af-459

terwards, the daily average for all observations was computed. We run 100 simulations460

for five years, introducing 500 eggs on 15 May 2013. By using the auxiliary function461

adci, we then derived the daily abundance inter-quantile range for each life stage and the462

abundance of newly-laid eggs per day.463

The model was validated comparing the simulated newly laid eggs per day to egg464

counts from mosquito ovitrap data, following the validation approach presented in Tran465

et al. (2013). During the years 2014-2018, fifty ovitraps were installed in the Nice area and466

inspected fortnightly from April-May to November-December (data collected and kindly467

provided by EID Méditerranée). We computed the Spearman’s rho correlation coefficient468

between the weekly-aggregated simulated newly-laid eggs and the mean observed eggs469

per day.470

Results showed that the model was able to correctly reproduce the seasonal dynamics471

of the new-laid eggs over five years (Spearman’s rho = 0.753, p.value < 0.001). The first472

simulated eggs were laid during the late spring each year, confirming the fact that the first473

overwintering eggs hatch at the end of the winter season or at the beginning of spring.474

The ovipositing season seem to last until the late autumn accordingly to the observations,475

while our model seems to predict a shorter length of the ovipositing period. Nevertheless476

the model is able to correctly infer the peak of the ovipositing season during the summer477

months (Fig. 5).478

3.2.2 Aedes koreicus population dynamics in Trento, North-East Italy479

Aedes koreicus was first detected in Trento Autonomous Province (NE Italy) in 2013, soon480

after the first Italian detection in the neighboring Belluno province (Capelli et al., 2011).481

8https://solidarites-sante.gouv.fr/sante-et-environnement/
risques-microbiologiques-physiques-et-chimiques/especes-nuisibles-et-parasites/
article/cartes-de-presence-du-moustique-tigre-aedes-albopictus-en-france-metropolitaine
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Figure 5: Temporal trend reporting the simulated and observed new-laid eggs of Ae. al-
bopictus years 2014-2018 in Nice, SE France. The light blue bands represent the winter
seasons, while the orange bands the summer seasons. The simulated data were rescaled
for graphical purpose using as rescaling factor the ratio between the maximum observed
value and the maximum median simulated values.

We computed the population dynamics of the species informing dynamAedes model482

at punctual spatial scale using temperature observations downloaded from the local net-483

work of weather stations9. The daily average temperature observations from the "Trento484

Laste" weather station (Lat 46◦ 04’ 18.5” N, Lon 11◦ 08’ 08.5” E, 312 m a.s.l.) spanning485

from 1 January 2015 to 31 December 2018 were linearly interpolated to fill missing val-486

ues. We run 100 simulations for five years, introducing 500 eggs on 15 May 2015. Using487

the auxiliary function adci, we then derived the daily inter-quartile range abundance for488

each life stage and for the daily host-seeking female sub-compartment.489

The model was validated computing Spearman’s rho correlation coefficient between490

the monthly-aggregated simulated host-seeking females and the observations gathered491

9www.meteotrentino.it
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from four BG-Sentinel traps installed in Trento municipality from April to November dur-492

ing the years 2016, 2017, and 2018 (data obtained from Marini et al. 2019b). In order493

to compare observed and simulated data, the whole simulated host-seeking females abun-494

dance was multiplied by a BG-sentinel catching rate equal to 0.157, as estimated by Marini495

et al. (2019b) and similar to what already reported for Ae. albopictus in previous studies496

(Guzzetta et al., 2017).497

The simulated population dynamics showed that Ae. koreicus could be successfully498

introduced in the study area. The model correctly predicted the start of the seasonal ac-499

tivity in early spring, while the higher abundance of female host-seeking mosquitoes was500

predicted to be in late summer. Considering the three years together, our model was able501

to reproduce the observed seasonal population dynamics, where the 76.2% (47.6%) of the502

observed captures lie within the 95% (50%) credible intervals of model predictions (Tab503

S7). Similarly, the Spearman’s rho for the three yeas was 0.735 (p.value < 0.001) (Tab. 1)504
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Figure 6: Temporal trend reporting the boxplot of simulated and observed host-seeking
Ae. koreicus females for the years 2016-2018 in Trento, NE Italy.
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Species Geographic
location Scale AUC Specificity Sensitivity Sensitivity 1% Spearman’s ρ

Ae. aegypti California Regional 0.658 (0.401-0.914) 0.8 0.642 0.795 -
Ae. albopictus California Regional 0.435 (0.367-0.502) 0.241 0.641 1 -
Ae. albopictus France Regional 0.874 (0.867-0.880) 0.788 0.802 0.848 -
Ae. albopictus S-E France Punctual - - - - 0.753***
Ae. koreicus N-E Italy Punctual - - - - 0.735***

Table 1: Model validation. The column "Sensitivity 1%" reports the proportion of cities
predicted to have at least one successful introduction over the total number of iterations
(predicted introduction success equal or over 1%. *** p.value < 0.001).

4 Discussion505

From an ecological perspective, our modelling approach focuses on the species funda-506

mental thermal niche (sensu Hutchinson, 1957), since we considered temperature as the507

main driver of population growth and dynamics. In light of this, our model was able to in-508

fer spatial and temporal population dynamics of different species, at different geographic509

scales and locations. The model showed overall good validation performance, and the ar-510

eas predicted to likely support Aedes mosquito populations largely matched what reported511

by observational studies and other existing models (Kraemer et al., 2015, 2019; Oliveira512

et al., 2021).513

Nevertheless, we raise the attention on two aspects that should be considered when514

applying dynamAedes and interpreting model results. First, good quality information on515

survival and developmental rates is largely available for Ae. aegypti and Ae. albopictus,516

whereas much less for the other two species. Similarly, mosquito observational datasets517

with sufficient longitudinal depth for model validation are scarce for Ae. koreicus and518

presently absent, to the best of our knowledge, for Ae. japonicus. Thus, whilst we have519

built the foundations for an open-source modelling framework that can be progressively520

expanded, life cycle functions and thus outputs for Ae. japonicus and Ae. koreicus should521

be interpreted more carefully.522

Secondly, we recognise that pixel size may influence model outcome because of the523

aggregating effect of the Modifiable Unit Areal Problem (Jelinski and Wu, 1996; Da Re524

et al., 2020). While the consequences of this artifact are well known in SDMs applications,525

they are rarely mentioned or addressed (but see Peterson, 2014). Thus, the correct choice526

of temperature datasets is crucial to investigate species population dynamics and interpret527

model results (Bütikofer et al., 2020). Climatic reanalysis and Global/Regional Circula-528

tion Models are reliable data sources with high temporal resolution for present climatic529

conditions and robust future projections, though they have a coarse spatial resolution that530

may underestimate the effect of microclimate on species biology (Metelmann et al., 2019;531
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Liu-Helmersson et al., 2019). Coarse resolution of input temperature data is rather com-532

mon since temperature is often estimated over large extents, and can become an issue in533

topographically complex regions where the effect of microclimatic variation on population534

dynamics may pass undetected. The results showed in Fig. 3–4 may be better interpreted535

considering the coarse resolution of temperature data which may have caused lower pro-536

portion of established populations in topographically complex areas such as the Pyrenees537

or the Peninsular Ranges. Interpolated local micro-climatic conditions, for example esti-538

mated with the microclima R package (Maclean et al., 2019), have the advantage of539

providing fine spatial and temporal resolution datasets. But, they need to be first properly540

validated with field data which are typically difficult to gather also over small geograph-541

ical extents. Temperature measured with classical weather stations may be considered as542

the most accurate available observations of local climatic conditions. Though it is not al-543

ways easy to deal with such data due to the limited number of weather stations and gaps544

in the time series, they are suited for statistical downscaling or bias adjustment for climate545

change projections (Bedia et al., 2020).546

4.1 Model assumptions547

Model structure has been designed to be as ecologically relevant as possible considering548

available data, however, when data were limited, we relied on a set of "expert-based"549

assumptions that must be clearly stated.550

The interplay of multiple environmental factors drives the population dynamics of551

Aedes mosquitoes but we chose to mold our model framework just on established infor-552

mation available for temperature and photo-period (Pumpuni et al., 1992; Waldock et al.,553

2013; Eisen et al., 2014). This choice was suggested by a generalised lack of clear relation-554

ships between other environmental factors and Aedes population dynamics. For example,555

concerning the role of precipitations, different studies report contrasting results (Koen-556

raadt and Harrington, 2008; Tran et al., 2013; Caldwell et al., 2021). Moreover, invasive557

Aedes mosquitoes mostly thrive in urban or suburban landscapes where the presence of558

standing water is often independent from precipitations (except for extreme rainfall events559

(Roiz et al., 2015). We suggest that, at the present stage, dynamAedes it is better suited560

for applications in temperate climates, where temperature seasonality is a more important561

limiting factor than in tropical climates, where other factors may limit mosquito life cycle562

Lega et al. (2017).563

On the one hand, we did not consider in the model biotic interactions such as prey-564

predator or food and space competition with other mosquito taxa during the larval stages,565

despite this is another factor that influences the trajectory of introduced populations (Armis-566

tead et al., 2008; Tripet et al., 2011; Reiskind and Lounibos, 2013; Montarsi et al., 2013,567
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2015b; Müller et al., 2018). On the other hand, we considered the effect of intra-specific568

competition on larval survival (but not development). We generalised the information569

available for Ae. aegypti to the other Aedes species due to the lack of species-specific ex-570

periments (Hancock et al., 2016). We recognise that this is not optimal under many facets,571

but intra-specific larval interactions were a key driver of mosquito-population dynamics572

that could not be excluded by model structure.573

Finally, we did not consider evolutionary processes in our model which may affect574

invasion success over medium-long time spans. Given the reproductive strategy of Aedes575

mosquitoes, rapid evolutionary processes may take place over relatively short temporal576

periods (e.g. decades), making introduced populations able to extend their original niche577

(McBride et al., 2014b).578

4.2 Proposed research directions579

dynamAedes is an open-source tool for testing ecological hypothesis and/or to support580

management plans concerning AIMs. Selecting areas at risk of AIM establishment or pe-581

riods when abundances are more likely to peak should be considered as facets of AIM582

surveillance. The importance of such early information becomes fundamental for protect-583

ing human health when treating AIM involved in pathogen transmission, as early informa-584

tion on new trajectories of AIM populations becomes critical in the current climate change585

era. Mosquitoes are affected by temperature changes in, often, predictable ways, though586

changes in population dynamics can be extremely rapid. Modelling population dynamics587

under climate change scenarios may thus provide information for anticipating both AIM588

population changes in space and time and human health risks.589

The conceptualisation and design of dynamAedes required the review of up-to-date590

ecological and physiological literature available on four Aedes species, which was in-591

tegrated with feedback from expert ecologists and medical entomologists. It emerged592

that knowledge on some ecological aspects of these species is highly fragmented or poor593

(e.g., Cebrián-Camisón et al. 2020), and often dependant on experimental settings and594

lab strain (e.g., Kramer et al. 2020). Thus, the exploitation of such sets of information595

for process-based models and, hence, for AIM management would greatly benefit from a596

standardised review effort and possibly centralised repositories, as already done in other597

scientific fields such as plant functional traits (Kattge et al., 2020) or systems biology598

(Tsigkinopoulou et al., 2018). Moreover, experiments on Ae. japonicus and Ae. koreicus599

life cycles are just starting to unravel these species eco-physiological rates (Ae. koreicus:600

(Ciocchetta et al., 2017; Marini et al., 2019b); Ae. japonicus: (Scott, 2003; Reuss et al.,601

2018; Wieser et al., 2019) and much work remain to be done on this species. On the con-602

trary, there is large information concerning Ae. aegypti and Ae. albopictus physiological603
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rates which anyhow have been shown to be highly heterogeneous (Eisen et al., 2014) likely604

due to non-standardised experimental designs and ecological plasticity of Aedes popula-605

tions (sensu Kramer et al. 2021). Information regarding mosquito dispersal is even scarcer606

and available only for Ae. aegypti and Ae. albopictus, while passive dispersal through607

auto-vehicles has been estimated only for Ae. albopictus (Eritja et al., 2017) despite the608

worldwide spread of Aedes species was most likely caused by means of passive dispersal.609

From a biological perspective, future developments of dynamAedes may consider610

also the addition of a strain argument, where the physiological temperature-dependent611

function can be fitted on geographically different mosquito strains, such as tropical, mediter-612

ranean or temperate (Marini et al., 2020; Kramer et al., 2021). Moreover, if observational613

data are available, calibration of some parameters values, such as the juvenile density-614

dependent mortality rate, might be implemented following for instance a Bayesian ap-615

proach (Marini et al., 2019b).616

We believe that a closer interaction between modelers and experimenters will mo-617

tivate the collection of standardised data on unknown eco-physiological AIM rates that618

would lead to more accurate model predictions. This project was inspired by such inter-619

actions and, in this spirit, dynamAedes was meant to be modified or extended to relax620

its assumptions and limitations with new available information by anyone having basic R621

programming skills.622

5 Conclusion623

In this study, we presented dynamAedes, a mechanistic process-based model to infer624

invasive Aedes mosquito spatio-temporal population dynamics. This first version of the625

model showed to be often reliable in terms of both biological realism and statistical ac-626

curacy. The open-source nature and programming language accessibility and flexibility627

of the project offers great potential to further develop the model, allowing to better tune628

the temperature-dependent functions when new physiological observations and findings629

become available. Abundance estimations derived from dynamAedes could be used to630

inform epidemiological models (e.g., SIR or SEIR) and thus obtain estimations on the risk631

of pathogens transmission. Finally, it does not seem unrealistic to extend the model appli-632

cation to other species of the genus Aedes such as Ae. notoscriptus or to species belonging633

to other genus of medical interest belonging to the Culicidae family, such as Anopheles,634

or even to other blood-sucking insects belonging to different taxa such as Culicoides.635
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A Aedes sp. response curve1117

Figure 7: Overview of the temperature-dependent functions used in the model for the four
Aedes species

50

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473628doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473628
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Overview of the temperature-dependent functions used in the model for Ae.
aegypti
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Figure 9: Overview of the temperature-dependent functions used in the model for Ae.
albopictus
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Figure 10: Overview of the temperature-dependent functions used in the model for Ae.
japonicus
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Figure 11: Overview of the temperature-dependent functions used in the model for Ae.
koreicus

54

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2021. ; https://doi.org/10.1101/2021.12.21.473628doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473628
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 12: Overview of the photoperiod-dependent diapause incidence function used to in
the model for Ae. albopictus and Ae. japonicus. The Ae. japonicus function was used for
Ae. koreicus as well.
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B Larval habitat water volume parameter sensitivity1118

Figure 13: Sensitivity analysis on the effect of the lhwv parameter on the estimated num-
ber of individuals. In this example, we used the temperature observations of the Nice
weather station used in the case study and varied the amount of water volume. The sea-
sonal trend remained the same but, as expected, the simulated number of individuals in-
crease as the lhwv parameter increase.
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C Aedes aegypti and Ae. albopictus regional scale case1119

study1120
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Figure 14: Predicted percentage of establishment of Ae. aegypti Ae. albopictus in Cali-
fornia (USA) for the years 2011-2016 and 2013-2018, respectively. Only pixels having a
probability of successful introduction >0 are shown. The red dots represent the counties
where the species have been found.
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D Aedes koreicus population dynamics punctual scale case1121

study1122

Year Month CI 2.5% CI 25% CI 50% CI 75% CI 97.5% Observed Ae. Koreicus

2016 May 0.00 1.45 5.26 13.74 31.22 2
2016 June 0.00 1.37 6.36 14.40 40.64 5
2016 July 0.00 2.32 11.85 32.62 101.76 3
2016 August 0.70 24.57 66.65 128.03 266.00 9
2016 September 0.18 14.52 37.37 88.27 175.66 37
2016 October 0.00 0.24 1.18 3.14 10.17 0
2017 May 0.02 0.51 2.67 7.85 18.44 9
2017 June 0.29 2.75 10.60 28.57 55.28 8
2017 July 3.67 10.91 30.62 85.53 186.93 10
2017 August 7.24 32.50 74.18 159.67 283.74 24
2017 September 0.61 8.79 31.48 88.08 156.47 2
2017 October 0.08 0.82 2.20 4.98 11.06 2
2017 November 0.00 0.00 0.00 0.00 0.14 0
2018 April 1.66 5.26 11.54 22.25 34.30 0
2018 May 1.73 3.22 5.73 9.18 13.21 1
2018 June 1.57 5.81 10.52 22.29 32.89 6
2018 July 13.74 29.99 48.04 74.34 98.01 7
2018 August 37.83 71.67 109.27 157.55 201.00 29
2018 September 54.55 82.03 112.57 147.58 179.09 24
2018 October 2.13 2.90 3.77 5.89 7.80 6
2018 November 0.00 0.00 0.00 0.08 0.15 0

Table 7: Model validation for Aedes koreicus model in Trento (NE Italy)
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