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Abstract 
Despite the rapidly increasing number of organisms with sequenced genomes, there is no 
existing resource that simultaneously contains information about genome sequences and 
the optimal growth conditions for a given species. In the absence of such a resource, we 
cannot immediately sort genomic sequences by growth conditions, making it difficult to 
study how organisms and biological molecules adapt to distinct environments. To address 
this problem, we have created a database called GSHC (Genome Sequences: Hot, Cold, 
and everything in between). This database, available at http://melnikovlab.com/gshc, 
brings together information about the genomic sequences and optimal growth 
temperatures for 25,324 species, including ~89% of the bacterial species with known 
genome sequences. Using this database, it is now possible to readily compare genomic 
sequences from thousands of species and correlate variations in genes and genomes with 
optimal growth temperatures, at the scale of the entire tree of life. The database interface 
allows users to retrieve protein sequences sorted by optimal growth temperature for their 
corresponding species, providing a tool to explore how organisms, genomes, and 
individual proteins and nucleic acids adapt to certain temperatures. We hope that this 
database will contribute to medicine and biotechnology by helping to create a better 
understanding of molecular adaptations to heat and cold, leading to new ways to preserve 
biological samples, engineer useful enzymes, and develop new biological materials and 
organisms with the desired tolerance to heat and cold.  
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Introduction 

Despite significant research efforts to understand how biological molecules adapt to 
temperature change1-36, we are still not able to accurately answer two fundamental 
questions: What are the most common strategies by which cellular proteins adapt to 
environmental conditions, such as heat and cold? And can we find a simple and robust 
approach to alter the thermal tolerance of natural proteins by introducing a minimal 
number of mutations to the protein sequence? 
 
One challenge in answering these questions stems from the lack of a resource that stores 
easy-to-use information about the optimal growth conditions of living organisms, 
together with their genomic data. Currently, there are more than 14,400 genome 
sequences from representative bacterial species publicly available. In principle, we could 
use these sequences to study thousands of variants of a given protein, observing how its 
sequence and structure undergo changes upon transition from cold-adapted 
bacteria5,8,13,14,20,24,27,37-48 to heat-adapted bacteria12,18,28-31,33,49-69.  In practice, however, it is not 
immediately possible to organise thousands of organisms (and their genomic sequences) 
by their optimal growth temperatures, because the corresponding genomic sequences 
deposited in public repositories (such as NCBI Genomes) lack information about these 
organisms’ optimal growth conditions. Hence, although we have at our disposal genome 
sequences for thousands of distinct bacteria, eukaryotes, and archaea, we lack a simple 
tool to sort these organisms (and their genomic sequences) by optimal growth 
conditions, thereby hindering large-scale studies of molecular and organismal 
adaptations to temperature. Here, we develop such a resource for scientists and 
engineers interested in exploring and exploiting molecular adaptations to heat and cold. 
Using the NCBI database of sequenced genomes as a scaffold, we have created a 
database in which species with known genome sequences are annotated with 
information about these species’ optimal growth temperature. This database describes 
the optimal growth temperature of more than 25,000 microorganisms, including 89% of 
the representative bacteria whose genome sequences are deposited in the NCBI 
database. 
 
This new resource makes it possible to retrieve up to 12,354 sequences of a given 
bacterial protein of interest, sort these sequences by the optimal growth temperature of 
its corresponding species, and explore how each residue in this protein varies in 
sequence and conservation upon transition from cold-adapted to heat-adapted 
organisms. Thus, we provide a tool for large-scale studies of the molecular and 
organismal adaptations to a specific temperature.   
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Database features 

Downloadable lists of species with known genome sequence and together with their 
optimal growth temperature. Currently, the GSHC database contains information about 
the optimal growth temperature for 25,324 species. This information is continuously 
retrieved by web-scraping 23 public repositories of microorganisms (Table 1) and then 
added to the list of organisms deposited in the NCBI repository of organisms with 
sequenced genomes. The GSHC site contains the optimal growth temperatures for an 
organism; however, it does not yet include information about other growth conditions, 
such as oxygen requirement, pH, pressure, and salt concentration. 
 
Lists of organisms with experimentally defined optimal growth temperatures and a 
reference to the corresponding genome data can be downloaded from the database. This 
includes the optimal growth temperature values for 12,265 representative bacteria, 
414 representative archaea, and 973 representative eukaryotes. The datasets are updated 
monthly and are available in .csv format, enabling the species to be sorted by an 
organism’s name, phylogenetic group, genome size, genomic GC-content, number of 
protein coding genes, and optimal growth temperature. As shown in the example 
provided for bacterial species (Fig. 1), organisms contained in the datasets include 
thermophiles and psychrophiles from all major lineages of species, providing an 
opportunity to study molecular adaptation to heat and cold at the scale of the entire tree 
of life.  
 
Optimal growth-temperature checker. In addition to the downloadable data, the 
database user interface allows searching for the optimal growth temperature for a given 
species. The user can enter a species name in a search window and retrieve the optimal 
growth temperature for the species of interest if it is present in the database.  
 
Retrieval of protein sequences sorted by optimal growth temperature. In addition to 
the temperature checker, the database interface allows users to retrieve sequences of 
their protein of interest arranged by the optimal growth temperature of its 
corresponding species. The optimal growth temperature is automatically added to the 
sequence name which allows sequences to be easily aligned, enabling the exploration of 
how each residue in a protein of interest changes its identity and conservation upon 
transition from cold-adapted to heat-adapted organisms. 
 
Error and request tracking. To document the rapidly expanding data, most entries in 
the database are automated, without inspection against published literature. We 
acknowledge that the optimal growth temperature values for some organisms may 
contain discrepancies or inaccuracies and therefore encourage users to provide feedback 
on any unaddressed discrepancies by submitting reports through our feedback tracking 
system. The submission form allows users to request changes in the database and 
monitor the progress of each inquiry.  
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Applications   

How will this database help researchers to explore molecular mechanisms of thermal 
adaptation? Below, we propose some example applications: 

● First, we can now sort genomes or homologous gene sequences by their optimal 
growth temperature (and not just by phylogenetic origin), making it possible to 
explore universal strategies of adaptations to heat and cold, as opposed to 
idiosyncratic adaptations within each lineage of species. Such studies would have far-
reaching implications in biotechnology as they can simplify the rational design of 
biological molecules and organisms with a desired thermal stability 33,61,68,70-75. 

● Second, this database simplifies studies of molecular adaptations to temperature 
within any given range of temperatures. This is important, because to date most 
studies have focused on extremophiles49,50, leaving mostly unexplored how 
mesophilic organisms adapt to relatively subtle changes in the environment (e.g. 
temperature increases of a few degrees Celsius as a consequence of climate 
change13,17,23,76.   

● Third, we can monitor how the identity and conservation of each residue in a protein 
of interest gradually changes across a range of optimal growth temperatures from 2°C 
to more than 103°C, simplifying studies of structural constraints23,46,63,75,77-80, and 
finding new ways to engineer useful proteins with a desired optimal thermal 
tolerance25,70,72,74,75,80,81. 

● Fourth, this database can help identify model organisms to observe “extremophiles 
in the making”. Currently, the database contains organisms from the same genus that 
have almost identical sequences for most of their cellular proteins but exhibit 
dramatically different optimal growth temperatures. For example, the genus 
Clostridium  includes species with an optimal growth temperature ranging from just 
5°C (Clostridium frigoris)82, to 55°C (Clostridium thermobutyricum)83. Comparing species 
in these genera can provide us with a rare opportunity to observe the natural 
transformation of mesophiles into extremophiles and gain an understanding of how 
organisms evolve the ability to tolerate heat and cold through minimal changes in 
their genomes10,14,33,55,57,69,84. These studies are important, as they may help to simplify 
the design of economically useful microorganisms with the desired thermal tolerance.   

 
Future directions 

We are currently working to expand the database by including additional environmental 
parameters, such as optimal salt concentration, pH, pressure, and oxygen requirement. 
We are also testing a new data scraping algorithm to retrieve data not only from 
repositories of commercially available microorganisms but also from original research 
papers, to maximise the completeness of our datasets. Finally, we are testing scripts to 
allow the mapping of temperature-dependent variations in protein sequences to 
corresponding three-dimensional protein structures that are available in the Protein 
Data Bank. We hope that in the future our database or similar annotations will be 
integrated into centralised repositories of genome sequences, such as NCBI, making it 
possible to explore organismal adaptations to changing environments using the rapidly 
expanding collection of genomic sequences for both living and extinct species on our 
planet.  
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Figures 
 

 

 

Fig 1 | Bacterial tree of life colour-coded by optimal growth temperatures. a The bacterial tree 
of life shows representative members of X bacterial genera, with each organism coloured by the 
optimal growth temperature. b Lineages of bacterial species in the database and their 
corresponding optimal growth temperature.   
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Tables 
 
Table 1 | Websites used for web scraping to collect information about the optimal 
growth temperatures of microbial organisms.  
 

Database  Database Full Name URL 

ARS 
(NRRL) 

Agricultural Research Service Culture Collection, National Center for Agricultural 
Utilization Research, USA 

https://nrrl.ncaur.usda.gov/ 

ATCC 
 

American Type Culture Collection, USA https://www.atcc.org/ 

BCCM Belgian Coordinated Collections of Microorganisms, Belgium https://bccm.belspo.be/  

BCRC Bioresources Collection and Research Center, Taiwan https://catalog.bcrc.firdi.org.tw 

CABRI Common Access to Biological Resources and Information http://www.cabri.org/  

CCARM Culture Collection of Antibiotics Resistant Microbes, UK https://www.phe-culturecollections.org.uk 

CCM Czech Collection of Microorganisms, the Czech Republic https://www.sci.muni.cz/ccm/ 

CCUG Culture Collection, University of Goteborg, Sweden https://www.ccug.se/ 

CECT Spanish Type Culture Collection, Spain https://www.uv.es/cect/  

CICC China Center of Industrial Culture Collection http://english.china-cicc.org 

CIP  Center for Biological Resources of the Institute Pasteur, France https://catalogue-crbip.pasteur.fr 

DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Germany https://www.dsmz.de 

GRIN Agricultural Genetic Resources Information Center, USA https://www.ars-grin.gov 

HAMBI Culture Collection of Department of Applied Chemistry and Microbiology, 
University of Helsinki, Finland 

https://kotka.luomus.fi/culture/bac  

JCM Japan Collection of Microorganisms (RIKEN Bioresource Center), Japan https://jcm.brc.riken.jp/en/ordering_e 

KEMB Korea Environmental Microorganisms Bank, South Korea https://kemb.or.kr 

NBIMCC National Bank for Industrial Microorganisms and Cell Cultures, Bulgaria https://www.nbimcc.org/en/about.htm 

NBRC NITE Biological Resource Center, Japan https://www.nite.go.jp 

NCIMB National Collections of Industrial, Food and Marine Bacteria, UK https://www.ncimb.com/ 

NCMA National Center for Marine Algae and Microbiota (NCMA), USA https://ncma.bigelow.org/ 

NCTC  National Collection of Type Cultures, UK 
 

https://www.phe-
culturecollections.org.uk/  

NIES National Institute for Environmental Studies, Japan 
 

https://mcc.nies.go.jp/ 

VKM  All-Russian Collection of Microorganisms, Russia 
 

http://www.vkm.ru 
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