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Abstract—Psychotic drugs such as ketamine induce symptoms
close to schizophrenia, and stimulates the production of gamma
oscillations, as also seen in patients, but the underlying mecha-
nisms are still unclear. Here, we have used computational models
of cortical networks generating gamma oscillations, and have
integrated the action of drugs such as ketamine to partially
block n-methyl-d-Aspartate (NMDA) receptors. The model can
reproduce the modulation of gamma oscillations by NMDA-
receptor antagonists, assuming that antagonists affect NMDA
receptors predominantly on inhibitory interneurons. We next
used the model to compare the responsiveness of the network
to external stimuli, and found that when NMDA channnels are
blocked an increase of Gamma power is observed altogether
with an increase of network responsiveness. However, this re-
sponsiveness increase applies not only to gamma states, but also
to asynchronous states with no apparent gamma. We conclude
that NMDA antagonists induce increased excitability state, which
may or may not produce gamma oscillations, but the response
to external inputs is exacerbated, which may explain phenomena
such as altered perception or hallucinations.

Index Terms—Schizophrenia, NMDAR hypofunction, Gamma
oscillations, Network Model, Psychosis

I. INTRODUCTION

SCHIZOPHRENIA is a mental disorder characterized by
three classes of symptoms: positive symptoms (such

as delusions, hallucinations and disordered thoughts or
speech), negative symptoms (comprehending poverty of
speech and deficits of normal emotional response), and cogni-
tive deficits [1–3]. Several abnormalities have been identified
in schizophrenic patients, including important differences in
neurotransmitters systems, anatomical deficits and abnormal
neural rhythms [4, 5].

Gamma oscillations (30-90 Hz) in early-course schizophre-
nia patients are commonly reported to present increased power
and/or phase synchronization [6–8]. In parallel, positive cor-
relation between psychotic symptoms and the Gamma power
have been identified in schizophrenic patients, in which higher
Gamma-band activity corresponded to increased symptom
load [9–12]. These findings indicate that hallucinations and
delusions could be related to an excess of oscillatory synchro-
nization in the Gamma band.

NMDA receptor (NMDAR) antagonists, commonly used in
sub-anesthetic doses as animal and human models to study
Schizophrenia [13], induce a psychotic state that resembles all
three classes of symptoms of the disease [14–16]. Furthermore,
NMDAR antagonists also increase Gamma power amplitude,
both in human and in animal models [17–24].

In this study we investigate by means of computational
models how NMDAR antagonists, such as ketamine, affect the
dynamics of neural networks and how the generated boosting
of Gamma activity affects the network response, providing
an interpretation for the observed correlation between Gamma
Power and psychotic episodes.

II. RESULTS

Computational model reproduces experimental features

Several preparations with sub-anesthetics doses of NMDAR
antagonists have reported to produce neural excitation [25–30].
Since NMDAR mediate excitatory synaptic transmission, this
behavior is intriguing. Several hypothesis have been proposed
to explain this apparent paradox [3]. One of the possible
explanations is that NMDAR antagonists in sub-anesthetics
doses act preferentially on inhibitory neurons, increasing
network activity indirectly by means of desinhibition. Even
though some contrasting results have been observed [31], this
interpretation has been supported experimentally by several
works [32–35]. Network excitability have also been reported
to increase in schizophrenic patients [36, 37], and its increase
in sensory and association cortex have been correlated with
hallucinations [38, 39].

Another important effect of NMDAR antagonists in sub-
anesthetics doses is the increase of Gamma-band activity.
These observations were reported in human [17–19], monkey
[24] and rats [20–23], both during cognitive tasks or free
movement.

The network model developed in the present work (see
Methods) is able to reproduce both of these features (increase
of network excitability and increase of Gamma power). Fig-
ure 1 depicts the network behavior with respect to the to
different NMDA synaptic strengths, QNMDA, in excitatory
Regular Spiking (RS) and in inhibitory Fast Spiking (FS)
cells. We mimic the block of NMDA channels due to the
action of NMDAR antagonists by decreasing QNMDA in
RS and FS cells according to Figure 1A (see Methods).
Points of higher synaptic strengths are associated with healthy
conditions, while points with lower synaptic strengths are
associated to pathological conditions supposedly similar to the
schizophrenic brain. The network dynamics for two sets of
NMDA synaptic strengths are shown in Figure 1B and Figure
1C by means of a Raster Plot. As the synaptic strengths of
NMDA channels decreased (higher concentration of NMDAR
antagonists), the firing rate of excitatory RS cells increased
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while the firing rate of inhibitory FS cells decreased (Figure
1D). In addition, the Gamma power of the population activity
(see Methods) presented an increase (Figure 1E and F).

Network Responsiveness during Gamma rhythms in different
levels of NMDAR block

We investigated how the decrease of NMDA synaptic
strength changed the network dynamics and its capacity to
respond to external stimulus.

While network excitability is related to an overall increase of
spiking activity, network responsiveness relates to the network
capacity to react to a certain stimulus, producing additional
spikes then the ones generated by spontaneous activity. These
two dynamical measurements (excitability and responsiveness)
are not always congruent, meaning that it is possible to observe
an increase in excitability but a concomitant decrease in
responsiveness [40].

Network responsiveness was defined as the difference be-
tween the total number of spikes generated by the whole
network in the presence and in the absence of the stimulus (see
Eq 6). We measured network responsiveness at different levels
of NMDAR block for different stimulus amplitudes (Figure 2).
The stimulus consisted of a variation in time of the external
Poissonian drive, in a Gaussian manner (see Methods).

Network responsiveness in RS cells increased with the
increased level of NMDAR block, while the responsiveness of
FS neurons decreased. In this case, both, network excitability
and network responsiveness, behave in the same direction.

The increase of network responsiveness can be understood
from Figure 3. The NMDA receptors block depolarizes RS
cells, while FS neurons are overall hyperpolarized. For weak
levels of NMDA receptors block, no or weak depolarization is
observed in FS cells, while for strong levels of NMDA block
a significant hyperpolarization is observed.

Gamma states vs. AI states

Gamma oscillations (30-90 Hz) are believed to be involved
in information processing [41–46], and have been associated to
different high-level cognitive functions, such as memory [47–
49], perception [50–53], attention [54–57], focused arousal
[58] and prediction [59]. In parallel, studies with schizophrenic
patients have reported a positive correlation between psychotic
symptoms and the power of Gamma oscillations [9–12].

In contrast, Asynchronous-and-Irregular (AI) states [60] are
usually associated to conscious states [61], being observed
during awake and aroused states [62]. This regime are char-
acterized by irregular and sustained firing with very weak
correlations [63–67].

In a previous study [40] we reported that AI states, in
comparison to oscillatory states in Gamma band, provide
the highest responsiveness to external stimuli, indicating that
Gamma oscillations tend to overall diminish responsiveness.
This observation could indicate that Gamma rhythms present
a masking effect, conveying information in its cycles on spike
timing at the expense of decreasing the strength of the network
response.

In the present study, we compare AI and Gamma states at
different levels of NMDAR block. Figure 4 depicts the respon-
siveness of RS neurons, with respect to different stimulus am-
plitudes (same protocol as Figure 2), for different ensembles
of NMDA synaptic strengths. In agreement with Figure 2, pa-
rameter sets in which NMDA synaptic strengths are decreased
(mimicking the action NMDAR antagonists) correspond to
regions of the parameter space with higher responsiveness. For
example, QNMDA

FS = 0.4 nS and QNMDA
FS =0.36 nS displayed

higher responsiveness then the networks in which the NMDA
synaptic strengths wrere QNMDA

FS = 1 nS and QNMDA
FS =0.8 nS.

Interestingly, in both conditions, responsiveness in AI states
were always superior to the one in Gamma. This result was
also observed in a similar model in the obscene of NMDA
channels [40]. This example illustrates a general tendency,
which was also observed with other parameter sets.

III. DISCUSSION

In this work, we used computational models to investigate
the effect of psychotic drugs such as ketamine in cerebral
cortex, and how gamma oscillations relate to these effects.
Our findings are (1) NMDA receptors antagonists modulate
the rhythms produced by a simple network model consisting
of two distinct cell types, RS and FS cells, which generate
Gamma oscillations by means of the PING mechanism [68].
This modulation is obtained assuming that the NMDAR block
predominantly affects interneurons. (2) The boosted gamma
oscillations following partial block of NMDA receptors, was
accompanied by an increased responsiveness to external in-
puts. (3) This increase of responsiveness could also be seen
for asynchronous states, with no apparent gamma. We discuss
below the implications of these findings.

A first prediction of the model is that it was necessary
that the antagonism affects predominantly NMDAR receptors
on interneurons. This feature is supported by a number of
observations. Intuitively, if the NMDAR block would occur
predominantly on excitatory cells, then it is difficult to see
how diminishing excitation could augment the activity and
excitability of the network. This long-standing question was
resolved recently by finding that indeed, NMDAR antagonists
primarily affects NMDA receptors on interneurons. It was
observed that the application of Ketamine or MK-801 in sub-
anesthetic doses leads to an increased activity of glutamatergic
neurons both in cortex [25, 35] and in hippocampus [33], and
that this increase of glutamatergic activity is a consequence of
the disinhibition of GABAergic neurons [32, 34]. In addition,
it has also been reported in hippocampus that inhibitory
neurons are more sensitive to NMDAR antagonists than glu-
tamatergic neurons [69, 70]. Thus, our model completely
supports these findings, and could reproduce the increase of
Gamma power induced by NMDA receptor antagonists. On
the other hand, contrasting results also exist. For example,
[31] argue that NMDAR have less impact on the activity of
inhibitory neurons than on the one of excitatory neurons, since
they and other authors observed that NMDAR block depressed
large EPSP–spike coupling more strongly in excitatory than in
inhibitory neurons [31, 71, 72].
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Fig. 1. Network dynamics with respect to different levels of NMDA channels block in the network. A) Possible trajectory in the parameter space of
QNMDA

RS vs. QNMDA
FS , mimicking the action of NMDA receptor (NMDAR) antagonists (the higher the intensity of the NMDAR antagonists, the smaller the

NMDA synaptic strengths). The thin line indicates the identity for reference. The arrow indicates the sens of action of NMDAR antagonists. Points of higher
synaptic strengths are associated with healthy conditions, while points with lower synaptic strengths are associated to pathological conditions supposedly
similar to the schizophrenic brain. B) and C) Raster plots indicating the activity of only 1000 cells of each type (FS in red and RS in green), for two parameter
sets. B: QNMDA

RS = 0.8 nS and QNMDA
FS = 1 nS, and C: QNMDA

RS = 0.213 nS and QNMDA
FS = 0.2 nS. D) Average firing rate of RS (green) and FS cells

(red) with respect to the trajectory in parameter space depicted in A. Only the values of QNMDA
FS are indicated in the x axis. Standard errors of the mean

(SEM) are indicated as error bars. E) Average normalized Power Spectrum of the network LFP for different NMDA synaptic strength. Like in D, the synaptic
strengths follow the curve indicated in A, but only the values of QNMDA

FS are indicated in the color scheme. Notice the shift of the Power Spectrum pick
toward smaller frequencies with the increase of NMDA channel block. F) Power Spectrum peak amplitude with respect to the levels of NMDA channels block
(following the synaptic strengths indicated in A). The color scheme (presented for better visualization) are the same as in E. Standard errors of the mean
(SEM) are indicated as error bars. Results expressed in D, E and F are the outcome of 50 simulations average. The arrows indicate the sense of the behavior
according to amount of block of NMDA channels.

The second finding, which is probably the main finding
of our study, is that the network has a marked increased
responsiveness under the boosted Gamma condition. This
increased responsiveness could be tested experimentally either
in vitro, by testing the response of cortical slices with and
without application of NMDAR antagonists, or in vivo, by
monitoring their response following administration of NMDA
antagonists.

The third finding is that the increase of responsiveness is not
specific to gamma oscillations, because it was also present for
asynchronous states with no apparent gamma. The underlying
mechanism is that the antagonism of NMDA receptors produce
an overall depolarization of RS cells, and hyperpolarization of

FS cells. Consequently, there is an increase of responsiveness
of RS cells, with a corresponding decrease for FS cells, as
we observed. In this model, the increase of responsiveness is
due to the depolarizing effect on RS cells, and are not due
to gamma oscillations. Indeed, the highest responsiveness was
seen for asynchronous states, also in agreement with a previous
modeling study [40].

Possible implications to understand brain pathologies

Our model exhibits several interesting properties that can
be related to pathologies. First, the model provides a possible
explanation for the symptoms associated to ketamine and
others NMDA receptor antagonists, such as hallucinations. The
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Fig. 2. Network responsiveness to broad Gaussian inputs in different levels of NMDA channel blocked during Gamma rhythms. A) Responsiveness
protocol scheme. The total number of spikes generated by the network were measured during an external stimulus and in its absence in a time window of 500
ms. The stimulus consisted of a Gaussian fluctuation in the firing rate of the external noise input. Responsiveness was calculated according to Equation 6. B)
Gaussian input amplitude variation. The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz (step of 0.05 Hz), always keeping the same standard deviation of
50 ms. C and D depict respectively the responsiveness of RS (C) and FS (D) neurons for different Gaussian amplitudes in different levels of NMDAR block,
when the network was displaying Gamma activity. The color-scheme indicates the synaptic weights of NMDA synapses (QNMDA) in RS and FS cells. The
arrow indicates the sense of the simulated action of NMDA antagonist (decreasing synaptic strength). Every point corresponds to the average responsiveness
measured in 15 simulations. Standard error of the mean are indicated by the shaded region around each curve.

Fig. 3. Membrane potential polarization as a function of NMDA receptor
block. The average membrane potential of RS (green, left y-axis) and FS (red,
right y-axis) is expressed as function of NMDA synaptic weights of RS and
FS cells. The values of QNMDA

RS and QNMDA
FS follow the trajectory in the

parameter space indicated in Figure 1A. Only the values of QNMDA
FS are

indicated in the x axis. The average was performed first in between neurons
(〈〉N ), obtaining an average curve as a function of time, and subsequently with
respect time (〈〉t). The values plotted correspond to the average of 〈〈V 〉N 〉t
in between 10 simulations. The error bars indicate the standard error of the
mean between these simulations.

enhanced responsiveness produced by antagonizing NMDA re-
ceptors may explain exacerbated responses to sensory stimuli,
which may be related to phenomena such as altered perception
or hallucinations. Indeed, it is well documented that ketamine
produces hallucinations together with a marked increase of
gamma oscillations [73–75].

Besides hallucinations, the model seems also a priori con-

Fig. 4. Network responsiveness to broad Gaussian inputs of different
amplitudes during Gamma and AI states. The responsiveness of RS
neurons, due to different Gaussian amplitudes stimuli (same as in the protocol
of Figure 2), was measured in different states AI and Gamma for NMDA
synaptic parameter sets: QNMDA

RS = 0.8 nS and QNMDA
FS = 1 nS (Gamma:

black, AI: gray), and QNMDA
RS = 0.36 nS and QNMDA

FS = 0.4 nS (Gamma:
blue, AI: light blue). The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz
(step of 0.05 Hz), always keeping the same standard deviation of 50 ms.

sistent with the previously reported role for FS neurons in
schizophrenia. Post-mortem analysis of schizophrenic patient
brains have shown a reduced expression of parvalbumin (PV)
and GAD67 [1, 76–80]. In parallel, genetic ablation of NMDA
receptors in PV-positive interneurons in rodents mimics impor-
tant behavioral [81] and phenotypical features of of the disease
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(reduction of GAD67 [82], increase of neuronal excitability
[82] and increase of spontaneous Gamma power [83–85]).
These observations support the idea that the hypofunction
of NMDA receptors in PV-positive interneurons are specially
important in this illness.

However, NMDA receptors are expressed in both GABAer-
gic and glutamatergic neurons [32], and it still remains unclear
in which types of cells the NMDA receptor hypofunction
causes schizophrenia [3, 86]. Some works reported conflicting
results and have questioned the hypothesis that PV-positive
Fast Spiking neurons play a role in Schizophrenia [31, 86].

In our model, the effect of NMDAR antagonists is to
increase excitability due to desinhibition, consistent with a
number of experimental observations [25–30]. This increased
excitability is accompanied by a Gamma power increase,
as also found in experiments with ketamine [17–19] or in
schizophrenic patients [6–12]. The model could reproduce
all these experimental observations only assuming a larger
decrease of the NMDA synaptic strengths in FS cells than
in RS cells (see Figure 1A). These results support the idea
sustained by some authors [87], that PV-positive Fast Spiking
inhibitory neurons play a key role in schizophrenia. Another
modeling study also stressed the importance of NMDA chan-
nels into FS neurons [88]. Thus, models support the view
that the hypofunction of NMDA receptors on FS cells could
explain a number of features typical of schizophrenia, such as
anomalous responses and boosted gamma oscillations.

IV. METHODS

Neuronal Model

Neural units are described by the Adaptive Exponential
Integrate-And-Fire Model (Adex) [89]. In this model, each
neuron i is described by its membrane potential Vi, which
evolves according to the following equations:

C
dVi(t)

dt
= − gL(Vi − EL) + gL∆exp

[
(Vi(t) − Vth)

∆

]
− wi(t) − ISyn

i (t)

τwi

dwi(t)

dt
= a(Vi(t) − EL) − wi(t) + b

∑
j

δ(t− tj)

(1)
where C is the membrane capacitance, gL is the leakage
conductance, EL is the leaky membrane potential, Vth is the
effective threshold, ∆ is the threshold slope factor and ISyn

i (t)
is postsynaptic current received by the neuron i (see next
section). The adaptation current, described by the variable wi,
increases by an amount b every time the neuron i emits a spike
at times tj and decays exponentially with time scale τw. The
subthreshold adaptation is governed by the parameter a.

During the simulations, the equation characterizing the
membrane potential Vi is numerically integrated until a spike
is generated. Formally this happens when Vi grows rapidly
toward infinity. In practice, the spiking time is defined as the
moment in which Vi reaches a certain threshold (Vth). When

Vi = Vth the membrane potential is reset to Vrest, which is
kept constant until the end of the refractory period Tref . After
the refractory period the equations start being integrated again.

In the developed network two types of cells were used:
Regular Spiking (RS) excitatory cells and Fast Spiking (FS)
inhibitory cells. The cell specific parameters are indicated in
Table I.

TABLE I
Specific Neuron Model Parameters

Parameter RS FS
Vth -40 mV -47.5 mV
∆ 2 mV 0.5 mV
Tref 5 ms 5 ms
τw 500 ms 500 ms
a 4 nS 0 nS
b 20 pA 0 pA
C 150 pF 150 pF
gL 10 nS 10 nS
EL -65 mV -65 mV
EE 0 mV 0 mV
EI 80 mV 80 mV
Vrest -65 mV -65 mV

Synaptic Models
The post-synaptic current received by each neuron i is

composed by three components: two excitatory, referent to
AMPA and NMDA synaptic channels, and one inhibitory,
referent to GABAA channels.

ISyn
i (t) = IAMPA

i (t) + IGABAA
i (t) + INMDA

i (t)

in which

IAMPA
i (t) = GAMPA

i (t)(Vi(t) − EAMPA)

IGABAA
i (t) = GGABAA

i (t)(Vi(t) − EGABAA)

INMDA
i (t) = GNMDA

i (t)(Vi(t) − ENMDA)B(Vi(t))

(2)

EAMPA= 0 mV, EGABAA= -80 mV and ENMDA= 0 mV
are the reversal potentials of AMPA, GABAA and NMDA
channels. While the AMPA and GABAA-mediated currents
are fast, the NMDA-mediated are considerably slower and
present a complex relation with respect to the membrane
potential [90–93]. This complex relation , due to magnesium
block, is accurately modeled by the phenomenological expres-
sion B(V) [94] :

B(V ) =
1

1 + exp(−0.062V ).([Mg2+]o/3.57)
(3)

where [Mg2+]o= 1 mM is the external magnesium
concentration (1 to 2 mM in physiological conditions).
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Because of the fast dynamicas of AMPA and GABAA

channels, their synaptic conductances (GX with X=AMPA
, GABAA) are usually modeled to increase discontinuously
by a discrete amount QX , every time a presynaptic neuron
spikes at time tk, and to subsequently decay exponentially
with a decay time constant τXdecay according to the following
equation:

τXdecay
dGX

i(t)

dt
= −GX

i(t) +QX
∑
k

δ(t− tk) (4)

In which,
∑

k runs over all the presynaptic spike times. The
synaptic time constantes used for AMPA and GABAA

synapses are τAMPA
decay = 1.5 ms and τGABAA

decay = 7.5 ms.

NMDA channels synaptic conductances, GNMDA, be-
cause of their slow dynamics, are usually modeled as a bi-
exponential function characterized by a rise time constant,
τNMDA
rise = 2 ms, and a decay time constant τNMDA

decay = 200 ms,
according to the following equation:

GNMDA
i = QNMDA

i si(t)
NMDA

dsi(t)
NMDA

dt
= −si(t)

NMDA

τNMDA
decay

+ αxi(t)(1 − si(t)
NMDA)

dxi(t)

dt
= − xi(t)

τNMDA
rise

+
∑
k

δ(t− tk)

(5)

In which, QNMDA
i is the synaptic strength of the NMDA

synapse towards the neuron i, α= 0.5/ms and x(t) is an
auxiliary variable. The

∑
k runs over all the presynaptic spike

times. Both, s(t)NMDA and x(t), are adimensional.

Synaptic strenghs of NMDA synapses (towards RS and
FS neurons) were chosen according to the parameter search
expressed in Figure 5, while the synaptic parameters of
AMPA and GABAA synapses were chosen according to
previous works [40, 95] (QAMPA= 5 nS and QGABAA= 3.34
nS). All synapses (AMPA, GABAA and NMDA) were
delayed by time of 1.5 ms. With these choice of parameters
the NMDA/AMPA charge ratio in the network is on average
higher in RS cells then in FS cells (see Figure IV), in agree-
ment with experimental measurements in prefrontal cortex of
adult mice [31] and rat [96].

Network Structure

The network developed in this work is composed of 5000
neurons (4000 RS and 1000 FS). Each neuron (RS or FS)
was connected randomly to every other neurons in the network
with a probability of 10%, receiving on average 500 excitatory
synapses (mediated by both AMPA and NMDA channels)
and 100 inhibitory synapses (mediated by GABAA channels).

LFP

A

B

C

D

Fig. 5. Parameter space of NMDA synaptic weights in RS and FS cells.
A) Average spiking rate in RS cells. B) Average spiking rate in FS cells. C)
LFP Power Spectrum pick. D) LFP Power Spectrum amplitude. The parameter
space of NMDA synaptic weights (QNMDA) was explored for RS and FS
cells in the developed network model. QNMDA

RS and QNMDA
FS varied from 0

nS to 1 nS in steps of 0.05 nS. Each point in the color maps corresponds to the
average of 10 simulations of 5 seconds. Points in which QNMDA

RS =QNMDA
FS

are highlighted. Small squares indicate a possible trajectory in the parameter
space (in the direction of the arrow) generated by the action of NMDAR
antagonists. This is the same trajectory indicated in Figure 1A.
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External Input

In addition to recurrent connections, each neuron received
an external drive to keep the network active. This external
drive consisted of Next = 5000 independent and identically
distributed excitatory Poissonian spike trains with a spiking
frequency µext. These spike trains were sent to the network
with a 10% probability of connection and were computed
inside of the synaptic current term IAMPA, with a synaptic
strength of QAMPA

Ext = 0.8 nS. For Gamma activity, the network
was stimulated with a drive with µext= 3 Hz. For Asyn-
chronous and Irregular activity, the network was stimulated
with a drive with µext= 2 Hz. The external drive mimicked
cortical input, like if the network was embedded in a much
bigger one.

To test network responsiveness, an additional external input
was included in the simulations. This external input, similar
to the external drive, also consisted of Next = 5000 inde-
pendent and identically distributed excitatory Poissonian spike
trains, connected to the network with a 10% probability. The
difference of this input was its firing rate time dependence
(µext(t)). The spiking frequency of the spike trains varied in
a Gaussian manner, with a standard deviation of 50 ms and
variable amplitude. These spike trains were computed inside
of both synaptic current terms IAMPA and INMDA, with
a synaptic strengths of QAMPA

Ext = 0.8 nS, and QNMDA
ExtRS and

QNMDA
ExtFS as indicated in each case.

Block of NMDA channels: effect of NMDAR antagonists
In this work, we mimic the effect of NMDAR antagonists by

changing the value of the NMDA synaptic weights QNMDA.
In Figure 5 a possible trajectory in the parameter space
generated by the action of NMDAR antagonists is depicted.
This is the same trajectory indicated in Figure 1A.

Simulations
All neural networks were constructed using Brian2 simula-

tor [97]. All equations were numerically integrated using Euler
Methods and dt=0.1 ms as integration time step. The codes
for each one of the three developed networks are available at
ModelDB platform.

Population activity: LFP model

To measure the global behavior of the neuronal population,
we used a simulated Local Field Potential (LFP). This LFP
was generated by the network, by means of a recent method
developed by [98]. This approach calculates the LFP by
convolving the spike trains of the network with a Kernel that
have been previously estimated from unitary LFPs (the LFP
generated by a single axon, uLFP) measured experimentally.
Since this method assumes a spatial neuronal displacement,
to be able to apply it to our simulations, we randomly
displaced part of the network (50 neurons) in 2-D grid,
assuming that the electrode was displaced on its center and was
measuring the LFP in the same layer as neuronal soma. The
program code of the kernel method is available in ModelDB
(http://modeldb.yale.edu/266508), using python 3 or the hoc
language of NEURON.

A

B

C

Fig. 6. Excitatory synaptic currents. A) Average AMPA current of one
randomly picked RS (green) and one randomly picked FS (red) neuron.
B) Average NMDA current of one randomly picked RS (green) and one
randomly picked FS (red) neuron. C) Ratio of NMDA and AMPA charges
for RS and FS cells. The synaptic charge ratio of each neuron was calculated
separately. The Bars indicate the mean and the standard deviation among the
RS and FS population. The NMDA synaptic strengths in RS and FS cells are
QNMDA

RS =0.8 nS and QNMDA
FS = 1 nS (which, in our model, describes a

healthy condition).

Power Spectrum

The Power spectrum of the simulated LFP was calculated
by means of the Welch’s method, using a Hamming window
of length 0.25 seconds and 125 overlapping points. We used
the Python-based ecosystem Scipy function signal.welch to do
our calculations.

Synaptic Charge

The synaptic charge (AMPA or NMDA) of each neuron is
defined as the area under the curve of the average synaptic
current (shaded areas of Figure A or B), which was calculated
from the presynaptic input time until 10 ms after it.

Responsiveness

The level of responsiveness (R) of a network, due to an
stimulus (S) in a time window of duration T , is defined as
the difference between the total number of spikes generated by
the whole network due to an stimulus (NS

spikes) and the total
number of spikes generated in the absence of the stimulus
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(Nspikes), normalized by the network size (total number of
neurons Nn) and the duration of the time window T .

R =
NS

spikes −Nspikes

TNn
(6)

ACKNOWLEDGMENTS

This research was supported by the Centre National de la
Recherche Scientifique (CNRS) and the European Community
(Human Brain Project, H2020-785907). E.S. acknowledges a
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gre, M. Pérez-Alcázar, J. Iriarte, and J. Artieda,
“Ketamine-induced oscillations in the motor circuit of
the rat basal ganglia,” PloS one, vol. 6, no. 7, p. e21814,
2011.

[24] M. Slovik, B. Rosin, S. Moshel, R. Mitelman, E. Schecht-
man, R. Eitan, A. Raz, and H. Bergman, “Ketamine in-
duced converged synchronous gamma oscillations in the
cortico-basal ganglia network of nonhuman primates,”
Journal of neurophysiology, vol. 118, no. 2, pp. 917–
931, 2017.

[25] B. Moghaddam, B. Adams, A. Verma, and D. Daly, “Ac-
tivation of glutamatergic neurotransmission by ketamine:
a novel step in the pathway from nmda receptor blockade
to dopaminergic and cognitive disruptions associated
with the prefrontal cortex,” Journal of Neuroscience,
vol. 17, no. 8, pp. 2921–2927, 1997.

[26] A. C. Lahti, H. H. Holcomb, D. R. Medoff, and C. A.
Tamminga, “Ketamine activates psychosis and alters lim-
bic blood flow in schizophrenia.” Neuroreport, vol. 6,
no. 6, pp. 869–872, 1995.

[27] A. Breier, A. K. Malhotra, D. A. Pinals, N. I. Weisen-
feld, and D. Pickar, “Association of ketamine-induced
psychosis with focal activation of the prefrontal cortex in
healthy volunteers.” The American journal of psychiatry,
1997.

[28] F. Vollenweider, K. Leenders, I. Øye, D. Hell,
and J. Angst, “Differential psychopathology and
patterns of cerebral glucose utilisation produced
by (s)-and (r)-ketamine in healthy volunteers using
positron emission tomography (pet),” European
Neuropsychopharmacology, vol. 7, no. 1, pp. 25–
38, 1997.

[29] Y. Suzuki, E. Jodo, S. Takeuchi, S. Niwa, and Y. Kayama,
“Acute administration of phencyclidine induces tonic
activation of medial prefrontal cortex neurons in freely
moving rats,” Neuroscience, vol. 114, no. 3, pp. 769–779,
2002.

[30] M. E. Jackson, H. Homayoun, and B. Moghaddam,
“Nmda receptor hypofunction produces concomitant fir-
ing rate potentiation and burst activity reduction in the
prefrontal cortex,” Proceedings of the National Academy
of Sciences, vol. 101, no. 22, pp. 8467–8472, 2004.

[31] D. C. Rotaru, H. Yoshino, D. A. Lewis, G. B. Er-
mentrout, and G. Gonzalez-Burgos, “Glutamate recep-
tor subtypes mediating synaptic activation of prefrontal
cortex neurons: relevance for schizophrenia,” Journal of
Neuroscience, vol. 31, no. 1, pp. 142–156, 2011.

[32] H. Homayoun and B. Moghaddam, “Nmda receptor
hypofunction produces opposite effects on prefrontal
cortex interneurons and pyramidal neurons,” Journal of
Neuroscience, vol. 27, no. 43, pp. 11 496–11 500, 2007.

[33] A. J. Widman and L. L. McMahon, “Disinhibition of ca1
pyramidal cells by low-dose ketamine and other antago-
nists with rapid antidepressant efficacy,” Proceedings of
the National Academy of Sciences, vol. 115, no. 13, pp.
E3007–E3016, 2018.

[34] Y. Zhang, M. M. Behrens, and J. E. Lisman, “Prolonged
exposure to nmdar antagonist suppresses inhibitory
synaptic transmission in prefrontal cortex,” Journal of
neurophysiology, vol. 100, no. 2, pp. 959–965, 2008.

[35] V. D. Lazzaro, A. Oliviero, P. Profice, M. Pennisi,
F. Pilato, G. Zito, M. Dileone, R. Nicoletti, P. Pasqualetti,
and P. Tonali, “Ketamine increases human motor cortex
excitability to transcranial magnetic stimulation,” The
Journal of physiology, vol. 547, no. 2, pp. 485–496,
2003.

[36] R. E. Hoffman and I. Cavus, “Slow transcranial magnetic
stimulation, long-term depotentiation, and brain hyperex-
citability disorders,” American Journal of Psychiatry, vol.
159, no. 7, pp. 1093–1102, 2002.

[37] Z. J. Daskalakis, P. B. Fitzgerald, and B. K. Christensen,
“The role of cortical inhibition in the pathophysiology
and treatment of schizophrenia,” Brain research reviews,
vol. 56, no. 2, pp. 427–442, 2007.

[38] R. E. Hoffman, K. A. Hawkins, R. Gueorguieva, N. N.
Boutros, F. Rachid, K. Carroll, and J. H. Krystal, “Tran-
scranial magnetic stimulation of left temporoparietal
cortex and medication-resistant auditory hallucinations,”
Archives of general psychiatry, vol. 60, no. 1, pp. 49–56,
2003.

[39] L. B. Merabet, M. Kobayashi, J. Barton, and A. Pascual-
Leone, “Suppression of complex visual hallucinatory ex-
periences by occipital transcranial magnetic stimulation:
a case report,” Neurocase, vol. 9, no. 5, pp. 436–440,
2003.

[40] E. Susin and A. Destexhe, “Integration, coincidence
detection and resonance in networks of spiking neurons
expressing gamma oscillations and asynchronous states,”
bioRxiv, 2021.

[41] W. Singer and C. M. Gray, “Visual feature integration
and the temporal correlation hypothesis,” Annual review
of neuroscience, vol. 18, no. 1, pp. 555–586, 1995.

[42] W. Singer, “Neuronal synchrony: a versatile code for the
definition of relations?” Neuron, vol. 24, no. 1, pp. 49–
65, 1999.

[43] J. O’Keefe and M. L. Recce, “Phase relationship between
hippocampal place units and the eeg theta rhythm,”
Hippocampus, vol. 3, no. 3, pp. 317–330, 1993.
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