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Abstract8

Single-cell RNA sequencing (scRNA-seq) technologies enable a better understand-9

ing of previously unexplored biological diversity. Oftentimes, researchers are specifi-10

cally interested in modeling the latent structures and variations enriched in one target11

scRNA-seq dataset as compared to another background dataset generated from sources12

of variation irrelevant to the task at hand. For example, we may wish to isolate fac-13

tors of variation only present in measurements from patients with a given disease as14

opposed to those shared with data from healthy control subjects. Here we introduce15

Contrastive Variational Inference (contrastiveVI; https://github.com/suinleelab/16

contrastiveVI), a framework for end-to-end analysis of target scRNA-seq datasets17

that decomposes the variations into shared and target-specific factors of variation. On18

three target-background dataset pairs we demonstrate that contrastiveVI learns latent19

representations that recover known subgroups of target data points better than pre-20

vious methods and finds differentially expressed genes that agree with known ground21

truths.22

Main23

Single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful tools for24

understanding previously unexplored biological diversity. Such technologies have enabled25

advances in our understanding of biological processes such as those underlying cancer [38],26
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Alzheimer’s disease [13, 28], and COVID-19 [36]. In many settings, scRNA-seq data ana-27

lysts are specifically interested in patterns that are enriched in one dataset, referred to as the28

target, as compared to a second related dataset, referred to as the background. Such target29

and background dataset pairs arise naturally in many biological research contexts. For ex-30

ample, data from healthy controls versus a diseased population or from pre-intervention and31

post-intervention groups form intuitive background and target pairs. Moreover, with the de-32

velopment of new technologies for measuring the effects of large numbers of perturbations in33

parallel, such as Perturb-Seq [9] and MIX-Seq [29], tools for better understanding variations34

unique to such perturbed cell lines compared to control populations will be critical.35

Isolating salient variations present only in a target dataset is the subject of contrastive36

analysis (CA) [40, 3, 17, 22, 32, 2]. While many recent studies have modeled scRNA-seq data37

by fitting probabilistic models and representing the data in a lower dimension [23, 30, 16, 26,38

24, 25], few were designed for CA. Such methods are thus unlikely to capture the enriched39

variations in a target dataset, which are often subtle compared to the overall variations in40

the data [3]. One recent study [17] designed a probabilistic model for analyzing scRNA-seq41

data in the CA setting. However, this method assumes that a generalized linear model is42

sufficiently expressive to model the variations in scRNA-seq data, even though previous work43

has demonstrated substantial improvements by using more expressive nonlinear methods [23].44

To address these limitations, we developed contrastiveVI, a deep generative model that45

enables analysis of scRNA-seq data in the CA setting. contrastiveVI learns a probabilistic46

representation of the data that accounts for the specific technical biases and noise characteris-47

tics of scRNA-seq data as well as batch effects. Moreover, to handle CA tasks, contrastiveVI48

models the variations underlying scRNA-seq data using two sets of latent variables: the49

first, called the background variables, are shared across background and target cells while50

the second, called the salient variables, are used to model variations specific to target data.51

contrastiveVI can be used for a number of analysis tasks, including dimensionality reduction,52

target dataset subgroup discovery, and differential gene expression testing. To highlight this53

functionality, we applied contrastiveVI to three publicly available background and target54

scRNA-seq dataset pairs, and demonstrated strong performance on all of them.55

Results56

The contrastiveVI Model57

contrastiveVI is a probabilistic latent variable model that represents the uncertainty in ob-58

served RNA counts as a combination of biological and technical factors. The input to59
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the contrastiveVI model consists of an RNA unique molecular identifier (UMI) count matrix60

along with labels denoting each cell as belonging to the background or target dataset (Figure61

1a). Additional categorical covariates such as anonymized donor ID or experimental batch62

are optional inputs to the model that can be used to integrate datasets.63

Figure 1: Overview of contrastiveVI. Given a reference background dataset and a
second target dataset of interest, contrastiveVI separates the variations shared between the
two datasets and the variations enriched in the target dataset. a, Example background and
target data pairs. Samples from both conditions produce an RNA count matrix with each
cell labeled as background or target. b, Schematic of the contrastiveVI model. A shared
encoder network qϕz transforms a cell into the parameters of the posterior distribution for z,
a low-dimensional set of latent factors shared across target and background data. For target
data points only, a second encoder qϕt encodes target data points into the parameters of the
posterior distribution for t, a second set of latent factors encoding variations enriched in the
target dataset and not present in the background.

contrastiveVI encodes each cell as the parameters of a distribution in a low-dimensional64

latent space. This latent space is divided into two parts, each with its own encoding function.65

The first set of latent variables, called the background variables, capture factors of variation66

that are shared among background and target data. The second set of variables, denoted67

as the salient variables, capture variations unique to the target dataset. Only target data68

points are given salient latent variable values; background data points are instead assigned69

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.21.473757doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.21.473757
http://creativecommons.org/licenses/by-nc-nd/4.0/


a zero vector for these variables to represent their absence. As with scVI [23], contrastiveVI70

also provides a way to estimate the parameters of the distributions underlying the observed71

RNA measurements given a cell’s latent representation. Such distributions explicitly account72

for technical factors in the observed data such as sequencing depth and batch effects. All73

distributions are parameterized by neural networks.74

The contrastiveVI model is based on the variational autoencoder (VAE) framework [21].75

As such, its parameters can be learned using efficient stochastic optimization techniques,76

easily scaling to large scRNA-seq datasets consisting of measurements from tens or hundreds77

of thousands of cells. Following optimization, we can make use of the different components78

of the contrastiveVI model for downstream analyses. For example, the salient latent repre-79

sentations of target data can be used as inputs to clustering or visualization algorithms to80

discover subgroups of target points. Moreover, the distributional parameters can be used for81

additional tasks such as imputation or differential gene expression analysis. A more detailed82

description of the contrastiveVI model can be found in Methods.83

contrastiveVI isolates subtle variations in target cells84

To evaluate the performance of contrastiveVI and other methods, we rely on datasets with85

known biological variations in the target condition that are not present in the background86

condition. One such dataset consists of expression data from bone marrow mononuclear87

cells (BMMCs) from two patients with acute myeloid leukemia (AML) and two healthy88

controls. The two patients underwent allogenic stem-cell transplants, and BMMC samples89

were collected before and after the transplant. It is known that gene expression profiles of90

BMMCs differ pre- and post-transplant [39]. Therefore, the known biological variations in91

this target dataset (AML patient BMMCs) correspond to pre- vs. post-transplant cellular92

states. A performant model should learn a salient latent space separating pre- vs. post-93

transplant status, while the latent space from a non-performant model does not make this94

distinction.95

Qualitatively, pre- and post-transplant cells are well separated in the salient latent space96

learned by contrastiveVI (Figure 2a). We also quantified how well contrastiveVI’s salient97

latent space separates the two groups of target cells using three metrics—the average silhou-98

ette width, adjusted Rand Index (ARI), and adjusted mutual information (AMI; Methods).99

We find that contrastiveVI performs well on all of these metrics (Figure 2b), indicating that100

it successfully recovers the variations enriched in the target dataset. Furthermore, we exper-101

imented with a workflow for using contrastiveVI for end-to-end biological discovery. After102

embedding the AML patient samples into the contrastiveVI salient latent space, we used103
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k-means clustering to divide the samples into two groups. Highly differentially expressed104

genes across the two clusters were then obtained by Monte Carlo sampling of denoised,105

library size-normalized expressions from the contrastiveVI decoder (Methods). Finally,106

pathway enrichment analysis (Methods) was performed with these differentially expressed107

genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2016 pathway database108

[18]. Based on our quantitative results, our two clusters exhibited strong agreement with109

the two ground-truth groups (ARI: 0.77 ± 0.01). Moreover, the pathways enriched by the110

differentially expressed genes between the two clusters are related to immune response and111

graft rejection (Figure 2c). We provide a full list of enriched pathways in Supplementary112

Table 1. These results align with known cellular state transitions of BMMCs before and113

after a transplant.114

contrastiveVI outperforms other modeling approaches115

To illustrate the advantages of contrastiveVI, we benchmarked its performance against that116

of three previously proposed methods for analyzing raw scRNA-seq count data. First, to117

demonstrate that our contrastive approach is necessary for capturing enriched variations in118

target datasets, we compared against scVI [23]. scVI has achieved state-of-the-art results119

on many tasks; however, it was not specifically designed for the CA setting and thus may120

struggle to isolate salient variations of interest. We also compared against two contrastive121

methods designed for analyzing scRNA-seq count data: contrastive Poisson latent variable122

model (CPLVM) and contrastive generalized latent variable model (CGLVM) [17]. While123

these methods are designed for the contrastive setting, they both make the strong assumption124

that linear models can accurately capture the complex variations in scRNA-seq data. To our125

knowledge, the CPLVM and CGLVM methods are the only existing contrastive methods for126

analyzing scRNA-seq count data.127

Qualitatively (Figure 2a), we find that none of these baseline models are able to sep-128

arate pre- and post-transplant cells as well as contrastiveVI can. This finding is further129

confirmed by quantitative results (Figure 2b). Across all of our metrics we find that con-130

trastiveVI significantly outperforms baseline models, with especially large gains in the ARI131

and AMI. These results indicate that contrastiveVI recovered the variations enriched in the132

AML patient data far better than baseline models.133

contrastiveVI separates intestinal epithelial cells by infection type134

We next applied contrastiveVI to data collected in Haber et al. [15]. This data consists of135

gene expression measurements of intestinal epithelial cells from mice infected with either136
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Figure 2: contrastiveVI successfully captures enriched variations in scRNA-seq
data. a, Principal component (PC) plots of contrastiveVI and baseline models’ latent rep-
resentations. For scVI, the first two PCs of the model’s single latent representations are
plotted, while for contrastive methods the PCs from their salient latent representations are
plotted. b, Quantitative measures of separation between pre- and post-transplant cells. Sil-
houette is the average silhouette width of pre-annotated subpopulations, ARI is the adjusted
Rand index, and AMI is the adjusted mutual information. Higher values indicate better per-
formance for all metrics. For each method, the mean and standard error across five random
trials are plotted. c, contrastiveVI’s salient latent representations of the target dataset were
clustered into two groups. Pathway enrichment analysis was then performed on the differ-
entially expressed genes between the two clusters.
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Salmonella or Heligmosomoides polygyrus (H. poly). As a background dataset we used137

measurements collected from healthy cells released by the same authors. Here our goal138

is to separate cells by infection type in the salient latent space. On the other hand, any139

separations in the background latent space should reflect variations shared between healthy140

and infected cells, such as those due to cell type differences. We present our results in Figure141

3.142

Figure 3: contrastiveVI isolates responses to different infections in intestinal
epithelial cells. a,b, UMAP plots of contrastiveVI’s salient and background representations
colored by infection type. Cells are correctly separated by infection type in the salient space,
while they mix across infection types in the background space. c, Clustering metrics quantify
how well cells separate by infection type for scVI’s single latent space and contrastive models’
salient latent spaces, with means and standard errors across five random trials plotted. d,e,
UMAP plots of contrastiveVI’s salient and background representations colored by cell type.
Cells separate well by cell type in the background space, while they mix across cell types in
the salient space. f, Quantifying how well cells separate by cell type in scVI’s single latent
space and contrastive models’ background latent spaces, with means and standard errors
across five random trials for each method.

We find that contrastiveVI successfully separates the cells by infection type in its salient143
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latent space (Figure 3a). Moreover we find that cells mix across infection types in our144

background latent space as expected (Figure 3b). These results indicate that enriched145

variations due to infection response are correctly being relegated to the salient latent space.146

Once again we find that previously proposed methods fail to stratify the two classes of147

target samples in their salient latent spaces as demonstrated by a set of quantitative metrics148

(Figure 3c). For this dataset we were able to further validate contrastiveVI’s separation149

of target and background variations using ground truth cell type labels provided by the150

authors (Supplementary Table 2). In particular, we found strong mixing across cell types151

in contrastiveVI’s salient latent space (Figure 3d), while cell types separated clearly in the152

background latent space (Figure 3e). Our quantitative metrics indicate that contrastiveVI’s153

background latent space is competitive with if not outright superior to other methods’ at154

capturing variations between cell types (Figure 3f). Taken together, these results further155

indicate that contrastiveVI successfully disentangles variations enriched in target data from156

those shared across the target and background, even when other methods struggle.157

contrastiveVI stratifies cells by response to molecular perturbations158

In addition to studying transplant outcome and infection response, contrastiveVI can be159

applied to examine drug treatment response. We demonstrate this capability using cancer160

cell lines treated with vehicle control dimethyl sulfoxide (DMSO) or idasanutlin collected by161

McFarland et al. [29]. The small molecule idasanutlin is an antagonist of MDM2, a negative162

regulator of the tumor suppresor protein p53, hence offering cancer therapeutic opportunity163

[35]. In the CA context, DMSO-treated samples are considered the background dataset,164

and idasanutlin-treated samples the target dataset. Based on the mechanism of action of165

idasanutlin, activation of the p53 pathway is observed in cell lines with wildtype TP53 (gene166

of p53) and not in transcriptionally inactive mutant TP53 cell lines [35]. Therefore, unique167

variations in the target dataset should be related to TP53 mutation status. This stratifica-168

tion of cell response based on TP53 mutation is readily identified by the salient latent space169

of all methods (Figure 4a and Figure 4b). Notably, contrastiveVI outperforms other meth-170

ods based on ARI and AMI, providing better separated clusters for downstream analyses.171

(Figure 4b). Particularly, the two clusters identified using the contrastiveVI salient latent172

space have differentially expressed genes enriched for the p53 signaling pathway (Figure173

4c). It is worth noting that the p53 signaling pathway is the only statistically significant174

(under 0.05 false discovery rate) pathway identified by contrastiveVI. All these results show175

that contrastiveVI finds salient variations in the target samples treated with idasanutlin that176

specifically relate to the biological ground truth effect of idasanutlin perturbation.177
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Figure 4: contrastiveVI stratifies cancer cell lines by response to idasanutlin. a,
PC plots of target data latent representations from contrastiveVI and baseline models. The
first two PCs of scVI’s single latent space are plotted. For contrastive methods, the first two
PCs of their salient latent space are plotted. b, The average silhouette (silhouette), adjusted
Rand Index (ARI) and adjusted mutual information (AMI), with mean and standard error
across five random trials plotted for each method. c, Two clusters identified by k-means
clustering with contrastiveVI’s salient latent representations of the target dataset. Highly
differentially expressed genes were identified from the two clusters, and these genes were
used to perform pathway enrichment analysis.
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Discussion178

In this work we introduced contrastiveVI, a scalable probabilistic framework for isolating en-179

riched variations in a target scRNA-seq dataset as compared to a related background dataset.180

contrastiveVI is the first method designed to analyze scRNA-seq data in the contrastive anal-181

ysis setting that both explicitly models the technical factors of variation in scRNA-seq data182

and takes advantage of the expressive power of deep generative modeling techniques. More-183

over, contrastiveVI includes a number of other capabilities relevant to scRNA-seq analysis184

out of the box, such as batch effect correction and differential expression testing.185

In three different contexts—response to cancer treatment, infection by different pathogens,186

and exposure to small-molecule drug perturbations—we demonstrated that contrastiveVI iso-187

lated enriched variations in target cells while other methods struggled. With the recent de-188

velopment of new sequencing technologies for efficiently measuring transcriptomic responses189

to various perturbations, such as Perturb-Seq and MIX-Seq, we expect contrastiveVI to be190

of immediate interest to the scRNA-seq research community. Moreover, contrastiveVI was191

implemented using the scvi-tools [11] Python library, thereby enabling interoperability with192

Scanpy [37] and Seurat [33] analysis pipelines.193

The ideas behind contrastiveVI admit multiple potential directions for future work. Sim-194

ilar contrastive disentanglement techniques could be used to extend models that make use195

of multimodal data, such as totalVI [12], to better understand how variations enriched in196

target datasets are expressed across different modalities of single-cell data. Moreover, recent197

work [10, 14, 31, 27, 34] in learning biologically meaningful representations of gene expression198

data could be incorporated to better understand the different sources of variation learned199

by the model. For example, using a constrained architecture such that latent variables cor-200

respond to gene pathways could shed more light on the biological phenomena captured in201

the different latent spaces.202

Methods203

The contrastiveVI model204

Here we present the contrastiveVI model in more detail. We begin by describing the model’s205

generative process and then the model’s inference procedure.206
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The contrastiveVI generative process207

For a target data point xn we assume that each expression value xng for sample n and gene208

g is generated through the following process:209

zn ∼ Normal(0, I)210

tn ∼ Normal(0, I)211

ℓn ∼ log normal(ℓµ, ℓ
2
σ)212

ρn = fw(zn, tn, sn)213

wng ∼ Gamma(ρng, θg)214

yng ∼ Poisson(ℓnwng)215

hng ∼ Bernoulli
(
f g
h(zn, tn, sn)

)
216

xng =

yng if hng = 0

0 otherwise
217

In this process zn and tn both refer to sets of latent variables underlying variations in218

scRNA-seq expression data. Here zn represents variables that are shared across background219

and target cells, while tn represents variations unique to the target cells. We place a stan-220

dard multivariate Gaussian prior on both sets of latent factors, as such a specification is221

computationally convenient for inference in the VAE framework [21]. To encourage the222

disentanglement of latent factors, for background data points bn we assume the same gener-223

ative process but instead set tn = 0 to represent the absence of salient latent factors in the224

generative process. Categorical covariates such as experimental batches are represented by225

sn.226

ℓµ and ℓσ ∈ RB
+, where B denotes the cardinality of the categorical covariate, parameterize227

the prior for latent RNA library size scaling factor on a log scale . For each category228

(e.g. experimental batch), ℓµ and ℓ2σ are set to the empirical mean and variance of the229

log library size. The gamma distribution is parameterized by the mean ρng ∈ R+ and230

shape θg ∈ R+. Furthermore, following the generative process, θg is equivalent to a gene-231

specific inverse dispersion parameter for a negative binomial distribution, and θ ∈ RG
+ is232

estimated via variational Bayesian inference. fw and fg in the generative process are neural233

networks that transform the latent space and batch annotations to the original gene space,234

i.e.: Rd × {0, 1}B → RG, where d is the latent dimension. The network fw is constrained235

during inference to encode the mean proportion of transcripts expressed across all genes by236
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using a softmax activation function in the last layer. That is, letting f g
w(zn, tn, sn) denote237

the entry in the output of fw corresponding to gene g, we have
∑

g f
g
w(zn, tn, sn) = 1. The238

neural network fh encodes whether a particular gene’s expression has dropped out in a cell239

due to technical factors.240

Our generative process closely follows that of scVI [23], with the addition of the salient241

latent factors tn. While scVI’s modeling approach has been shown to excel at many scRNA-242

seq analysis tasks, our empirical results demonstrate that it is not suited for contrastive243

analysis (CA). By dividing the RNA latent factors into shared factors zn and target-specific244

factors tn, contrastiveVI successfully isolates variations enriched in target datasets missed by245

previous methods. We depict the full contrastiveVI generative process as a graphical model246

in Supplementary Figure 1.247

Inference with contrastiveVI248

We cannot compute the contrastiveVI posterior distribution using Bayes’ rule as the integrals249

required to compute the model evidence p(xn|sn) are analytically intractable. As such, we250

instead approximate our posterior distribution using variational inference [5]. For target251

data points we approximate our posterior with a distribution factorized as follows:252

qϕx(zn, tn, ℓn|xn, sn) = qϕz(zn|xn, sn)qϕt(tn|xn, sn)qϕℓ
(ℓn|xn, sn). (1)253

Here ϕx denotes a set of learned weights used to infer the parameters of our approximate254

posterior. Based on our factorization, we can divide ϕx into three disjoint sets ϕz, ϕt and ϕℓ255

for inferring the parameters of the distributions of z, t and ℓ respectively. Following the VAE256

framework [21], we then approximate the posterior for each factor as a deep neural network257

that takes in expression levels as input and outputs the parameters of its corresponding258

approximate posterior distribution (e.g. mean and variance). Moreover, we note that each259

factor in the posterior approximation shares the same family as its respective prior distri-260

bution (e.g. q(zn|xn, sn) follows a normal distribution). We can simplify our likelihood by261

integrating out wng, hng, and yng, yielding pν(xng|zn, tn, sn, ℓn), which follows a zero-inflated262

negative binomial (ZINB) distribution (Supplementary Note 1) and where ν denotes the263

parameters of our generative model. As with our approximate posteriors, we realize our264

generative model as a deep neural network. For Equation 1 we can derive (Supplementary265

Note 2) a corresponding variational lower bound:266
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p(x|s) ≥Eq(z,t,ℓ|x,s) log p(x|z, t, ℓ, s)−DKL(q(z|x, s)||p(z))

−DKL(q(t|x, s)||p(t))−DKL(q(ℓ|x, s)||p(ℓ|s)).
(2)267

Next, for background data points we approximate the posterior using the factorization:268

qϕb
(zn, ℓn|bn, sn) = qϕz(zn|bn, sn)qϕℓ

(ℓn|bn, sn), (3)269

where ϕb denotes a set of learned parameters use to infer the values of zn and ℓn for270

background samples. Following our factorization, we divide ϕb into the disjoint sets ϕz and271

ϕℓ. We note that ϕz and ϕℓ are shared across target and background samples; this encourages272

the posterior distributions qϕz and qϕℓ
to capture variations shared across the datasets, while273

qϕt captures variations unique to the target data. Once again we can simplify our likelihood274

by integrating out wng, hng, and yng to obtain pν(xng|zn,0, sn, ℓn), which follows a ZINB275

distribution. We similarly note that the parameters of our generative model ν are shared276

across target and background points to encourag z to capture shared variations across target277

and background points while t captures target-specific variations. We then have the following278

variational lower bound for our background data points:279

p(b|s) ≥Eq(z,ℓ|x,s) log p(b|z, ℓ, s)−DKL(q(z|b, s)||p(z))−DKL(q(ℓ|b, s)||p(ℓ|s)). (4)280

We then jointly optimize the parameters of our generative model and inference networks281

using stochastic gradient descent to maximize the sum of these two bounds over our back-282

ground and target data points. All neural networks used to implement the variational and283

generative distributions were feedforward and used standard activation functions. We used284

the same network architecture and hyperparameter values for all experiments, and we refer285

the reader to Supplementary Note 3 for more details.286

Differential gene expression analysis with contrastiveVI287

For two cell groups A = (a1, a2, ..., an) and B = (b1, b2, ..., bm) in the target dataset, the pos-288

terior probability of gene g being differentially expressed in the two groups can be obtained289

as proposed by Boyeau et al. [6]. For any arbitrary cell pair ai, bj, we have two mutually290

exclusive models291

Mg
1 : |r

g
ai,bj

| > δ and Mg
0 : |r

g
ai,bj

| ≤ δ292
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where rgai,bj := log2(ρ
g
ai
) − log2(ρ

g
bj
) is the log fold change of the denoised, library size-293

normalized expression of gene g, and δ is a pre-defined threshold for log fold change mag-294

nitude to be considered biologically meaningful. The posterior probability of differential295

expression is therefore expressed as p(Mg
1|xai , xbj), which can be obtained via marginaliza-296

tion of the latent variables and categorical covariates:297

p(Mg
1|xai , xbj) =

∑
s

∫
zai ,tai ,zbj ,tbj

p(Mg
1|zai , tai , zbj , tbj)p(s)dp(zai , tai|xai , s)dp(zbj , tbj |xbj , s),298

where p(s) is the relative abundance of target cells in category s, and the integral can be299

computed via Monte Carlo sampling using the variational posteriors qϕz , qϕt . Finally, the300

group-level posterior probability of differential expression is301 ∫
a,b

p(Mg
1|xa, xb)dp(a)dp(b),302

where, assuming that the cells are independent, a ∼ U(a1, ..., am) and b ∼ U(b1, ..., bm).303

Computationally, this quantity can be estimated by a large random samples of pairs from304

the cell group A and B. In our experiments, 10,000 cell pairs were sampled, 100 Monte Carlo305

samples were obtained from the variational posteriors for each cell, and the δ threshold was306

set to 0.25, which is the default value recommended by the scvi-tools Python library [11].307

Genes with group-level posterior probability of differential expression greater than 0.95 were308

considered for downstream pathway enrichment analysis.309

Pathway enrichment analysis310

Pathway enrichment analysis refers to a computational procedure for determining whether311

a predefined set of genes (i.e., a gene pathway) have statistically significant differences in312

expression between two biological states. Many tools exist for performing pathway enrich-313

ment analysis (see [19] for a review). In our analyses we use Enrichr [8], a pathway analysis314

tool for non-ranked gene lists based on Fisher’s exact test, to find enriched pathways from315

the KEGG 2016 pathways database [18]. Specifically, the Enrichr wrapper implemented in316

the open-source GSEAPy1 Python library was used for our analyses. Pathways enriched at317

false discovery rate smaller than 0.05 (adjusted by the Benjamini-Hochberg procedure [4])318

are reported in this study.319

1https://gseapy.readthedocs.io/en/latest/
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Baseline models320

Because the choice of library size normalization method tends to drastically impact dimen-321

sion reduction and subsequent clustering results of methods not designed for modeling library322

sizes [30], we consider CA methods specifically tailored for scRNA-seq count data as base-323

lines in this study. To our knowledge, CPLVM (contrastive Poisson latent variable model)324

and CGLVM (contrastive generalized latent variable model) are the only CA methods that325

explicitly model count-based scRNA-seq normalization [17]. We present a summary of pre-326

vious work in CA in Supplementary Table 4. We also consider scVI, a deep generative327

model for UMI count data that takes batch effect, technical dropout, and varying library328

size into modeling considerations [23], to illustrate the need for models specifically designed329

for CA. Below we describe the CA methods CPLVM and CGLVM in more detail.330

In CPLVM, variations shared between background and target condition are assumed to331

be captured by two sets of latent variables {zbi}ni=1 and {ztj}mj=1, and target condition-specific332

variations are described by latent variables {tj}mj=1, where n,m are the number of background333

and target cells, respectively. Library size differences between the two conditions are modeled334

by {αb
i}ni=1 and {αt

j}mj=1, whereas gene-specific library sizes are parameterized by δ ∈ RG
+,335

where G is the number of genes. Each data point is considered Poisson distributed, with rate336

parameter determined by αb
iδ⊙(S⊤zbi ) for a background cell i and by αt

jδ⊙(S⊤ztj+W⊤tj) for337

a target cell j, where S,W are model weights that linearly combine the latent variables, and338

⊙ represents an element-wise product. The model weights and latent variables are assumed339

to have Gamma priors, δ has a standard log-normal prior, and αb
i , α

t
j have log-normal priors340

with parameters given by the empirical mean and variance of log total counts in each dataset.341

Posterior distributions are fitted using variational inference with mean-field approximation342

and log-normal variational distributions.343

The CA modeling approaches of CGLVM and CPLVM are similar. In CGLVM, however,344

the relationships of latent factors are considered additive and relate to the Poisson rate345

parameter via an exponential link function (similar to a generalized linear modeling scheme).346

All the priors and variational distributions are Gaussian in CGLVM.347

Model optimization details348

For all datasets, contrastiveVI models were trained with 80% of the background and target349

data, and with 20% of the data reserved as a validation set for early stopping to determine350

the number of training epochs needed. Training was early stopped when the validation351

variational lower bound showed no improvement for 45 epochs, typically resulting in 127 to352

500 epochs of training. All contrastiveVI models were trained with the Adam optimizer [20]353
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with ε = 0.01, learning rate at 0.001, and weight decay at 10−6. The same hyperparameters354

and training scheme were used to optimize the scVI models using only target data, usually355

with 274 to 500 epochs of training based on the early stopping criterion. As in Jones et al.,356

the CPLVMs were trained via variational inference using all background and target data for357

2,000 epochs with the Adam optimizer with ε = 10−8 and learning rate at 0.05, and the358

CGLVMs were similarly trained for 1,000 epochs and learning rate at 0.01 [17]. All models359

were trained with 10 salient and 10 background latent variables for five times with different360

random weight initializations. We also trained models with varying salient latent dimension361

sizes and obtained overall consistent results (Supplementary Figure 2).362

Datasets and preprocessing363

Here we briefly describe all datasets used in this work along with any corresponding pre-364

processing steps. All preprocessing steps were performed using the Scanpy Python package365

[37]. All our code for downloading and preprocessing these datasets is publicly available366

at https://github.com/suinleelab/contrastiveVI. For all experiments we retained the367

top 2,000 most highly variable genes returned from the Scanpy highly variable genes368

function with the flavor parameter set to seurat v3. For all datasets, the number of cells369

in the background vs. target can be found in Supplementary Table 3.370

Zheng et al., 2017371

This dataset consists of single-cell RNA expression levels of a mixture of bone marrow372

mononuclear cells (BMMCs) from 10x Genomics [1]. For our target dataset, we use samples373

taken from patients with acute myeloid leukemia (AML) before and after a stem cell trans-374

plant. For our background dataset, we use measurements taken from two healthy control375

patients released as part of the same study. All data is publicly available: files containing376

measurements from first patient pre- and post-transplant can be found here and here, re-377

spectively; from the second patient pre- and post-transplant here and here, respectively; and378

from the two healthy control patients here and here.379

Haber et al., 2017380

This dataset (Gene Expression Omnibus accession number GSE92332) used scRNA-seq381

measurements to investigate the responses of intestinal epithelial cells in mice to differ-382

ent pathogens. In particular, in this dataset responses to Salmonella and the parasite H.383

polygyrus were investigated. Here our target dataset consisted measurements of cells in-384

fected with Salmonella and from cells 10 days after being infected with H. polygyrus, while385
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our background consisted of measurements from healthy control cells released as part of the386

same study.387

McFarland et al., 2020388

This dataset measured cancer cell lines’ transcriptional responses after being treated with389

various small-molecule therapies. For our target dataset, we used data from cells that were390

exposed to idasanutlin, and for our background we used data from cells that were exposed to391

a control solution of dimethyl sulfoxide (DMSO). TP53 mutation status was determined by392

cross-referencing with a list of cell lines with mutations provided by the authors in the code393

repository accompanying the paper. The data was downloaded from the authors’ Figshare394

repository.395

Evaluation metrics396

Here we describe the quantitative metrics used in this study. All metrics were computed397

using their corresponding implementations in the scikit-learn Python package [7].398

Silhouette width399

We calculate silhouette width using the latent representations returned by each method. For400

a given sample i, the sillhouete width s(i) is defined as follows. Let a(i) be the average401

distance between i and the other samples with the same ground truth label, and let b(i) be402

the smallest average distance between i and all other samples with a different label. The403

silhouette score s(i) is then404

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) .405

A silhouette width close to one indicates that i is tightly clustered with cells with the406

same ground truth label, while a score close to -1 indicates that a cell has been grouped with407

cells with a different label.408

Adjusted Rand index409

The adjusted Rand index (ARI) measures agreement between reference clustering labels and410

labels assigned by a clustering algorithm. Given a set of n samples and two sets of clustering411

labels describing those cells, the overlap between clustering labels can be described using a412

contingency table, where each entry indicates the number of cells in common between the413

two sets of labels. Mathematically, the ARI is calculated as414
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ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) ,415

where nij is the number of cells assigned to cluster i based on the reference labels and416

cluster j based on a clustering algorithm, ai is the number of cells assigned to cluster i in the417

reference set, and bj is the number of cells assigned to cluster j by the clustering algorithm.418

ARI values close to 1 indicate agreement between the reference labels and labels assigned by419

a clustering algorithm.420

Adjusted mutual information421

The adjusted mutual information (AMI) is a corrected-for-chance version of the normalized422

mutual information, and it is another measure of the agreement between reference clustering423

labels and labels assigned by a clustering algorithm. For two clusterings U and V , we have424

AMI(U, V ) =
I(U ;V )− E[I(U ;V )]

(H(U) +H(V ))/2− E[I(U ;V )]
425

where I represents mutual information, and H represents entropy. AMI values closer to 1426

indicate greater agreement between U and V .427
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