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Abstract

Single-cell RNA sequencing (scRNA-seq) technologies enable a better understand-
ing of previously unexplored biological diversity. Oftentimes, researchers are specifi-
cally interested in modeling the latent structures and variations enriched in one target
scRNA-seq dataset as compared to another background dataset generated from sources
of variation irrelevant to the task at hand. For example, we may wish to isolate fac-
tors of variation only present in measurements from patients with a given disease as
opposed to those shared with data from healthy control subjects. Here we introduce
Contrastive Variational Inference (contrastiveVI; https://github.com/suinleelab/
contrastiveVI), a framework for end-to-end analysis of target scRNA-seq datasets
that decomposes the variations into shared and target-specific factors of variation. On
three target-background dataset pairs we demonstrate that contrastiveVI learns latent
representations that recover known subgroups of target data points better than pre-
vious methods and finds differentially expressed genes that agree with known ground
truths.

Main

Single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful tools for
understanding previously unexplored biological diversity. Such technologies have enabled

advances in our understanding of biological processes such as those underlying cancer [3§],
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2 Alzheimer’s disease [13, 28], and COVID-19 [36]. In many settings, scRNA-seq data ana-
s lysts are specifically interested in patterns that are enriched in one dataset, referred to as the
2 target, as compared to a second related dataset, referred to as the background. Such target
s and background dataset pairs arise naturally in many biological research contexts. For ex-
a1 ample, data from healthy controls versus a diseased population or from pre-intervention and
» post-intervention groups form intuitive background and target pairs. Moreover, with the de-
13 velopment of new technologies for measuring the effects of large numbers of perturbations in
s parallel, such as Perturb-Seq [9] and MIX-Seq [29], tools for better understanding variations
55 unique to such perturbed cell lines compared to control populations will be critical.

36 Isolating salient variations present only in a target dataset is the subject of contrastive
v analysis (CA) [40 3, 17,22, 32} 2]. While many recent studies have modeled scRNA-seq data
s by fitting probabilistic models and representing the data in a lower dimension [23], 30, 16, [26],
2 24, 25], few were designed for CA. Such methods are thus unlikely to capture the enriched
w0 variations in a target dataset, which are often subtle compared to the overall variations in
a the data [3]. One recent study [17] designed a probabilistic model for analyzing scRNA-seq
» data in the CA setting. However, this method assumes that a generalized linear model is
s sufficiently expressive to model the variations in scRNA-seq data, even though previous work
s+ has demonstrated substantial improvements by using more expressive nonlinear methods [23].
15 To address these limitations, we developed contrastiveVI, a deep generative model that
s enables analysis of scRNA-seq data in the CA setting. contrastiveVI learns a probabilistic
« representation of the data that accounts for the specific technical biases and noise characteris-
s tics of scRNA-seq data as well as batch effects. Moreover, to handle CA tasks, contrastiveVI
s models the variations underlying scRNA-seq data using two sets of latent variables: the
so first, called the background variables, are shared across background and target cells while
s1 the second, called the salient variables, are used to model variations specific to target data.
sz contrastiveVI can be used for a number of analysis tasks, including dimensionality reduction,
53 target dataset subgroup discovery, and differential gene expression testing. To highlight this
s« functionality, we applied contrastiveVI to three publicly available background and target

55 SCRNA-seq dataset pairs, and demonstrated strong performance on all of them.

» Results

s The contrastiveVI Model

ss contrastiveVI is a probabilistic latent variable model that represents the uncertainty in ob-

5o served RNA counts as a combination of biological and technical factors. The input to
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o the contrastiveVI model consists of an RNA unique molecular identifier (UMI) count matrix

s along with labels denoting each cell as belonging to the background or target dataset (Figure
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). Additional categorical covariates such as anonymized donor ID or experimental batch

are optional inputs to the model that can be used to integrate datasets.
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Figure 1: Overview of contrastiveVI. Given a reference background dataset and a
second target dataset of interest, contrastiveVI separates the variations shared between the
two datasets and the variations enriched in the target dataset. a, Example background and
target data pairs. Samples from both conditions produce an RNA count matrix with each
cell labeled as background or target. b, Schematic of the contrastiveVI model. A shared
encoder network gy, transforms a cell into the parameters of the posterior distribution for z,
a low-dimensional set of latent factors shared across target and background data. For target
data points only, a second encoder g4, encodes target data points into the parameters of the
posterior distribution for ¢, a second set of latent factors encoding variations enriched in the
target dataset and not present in the background.

contrastiveVI encodes each cell as the parameters of a distribution in a low-dimensional
latent space. This latent space is divided into two parts, each with its own encoding function.
The first set of latent variables, called the background variables, capture factors of variation
that are shared among background and target data. The second set of variables, denoted
as the salient variables, capture variations unique to the target dataset. Only target data

points are given salient latent variable values; background data points are instead assigned
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w0 a zero vector for these variables to represent their absence. As with scVI [23], contrastiveVI
7 also provides a way to estimate the parameters of the distributions underlying the observed
72 RNA measurements given a cell’s latent representation. Such distributions explicitly account
7z for technical factors in the observed data such as sequencing depth and batch effects. All
7 distributions are parameterized by neural networks.

75 The contrastiveVI model is based on the variational autoencoder (VAE) framework [21].
7 As such, its parameters can be learned using efficient stochastic optimization techniques,
77 easily scaling to large scRNA-seq datasets consisting of measurements from tens or hundreds
7 of thousands of cells. Following optimization, we can make use of the different components
70 of the contrastiveVI model for downstream analyses. For example, the salient latent repre-
g0 sentations of target data can be used as inputs to clustering or visualization algorithms to
a1 discover subgroups of target points. Moreover, the distributional parameters can be used for

&2 additional tasks such as imputation or differential gene expression analysis. A more detailed
s3 description of the contrastiveVI model can be found in [Methods|

« contrastiveVI isolates subtle variations in target cells

ss Lo evaluate the performance of contrastiveVI and other methods, we rely on datasets with
ss known biological variations in the target condition that are not present in the background
&7 condition. One such dataset consists of expression data from bone marrow mononuclear
s cells (BMMCs) from two patients with acute myeloid leukemia (AML) and two healthy
g0 controls. The two patients underwent allogenic stem-cell transplants, and BMMC samples
o were collected before and after the transplant. It is known that gene expression profiles of
o BMMCs differ pre- and post-transplant [39]. Therefore, the known biological variations in
o this target dataset (AML patient BMMCs) correspond to pre- vs. post-transplant cellular
o3 states. A performant model should learn a salient latent space separating pre- vs. post-
o transplant status, while the latent space from a non-performant model does not make this
os distinction.

% Qualitatively, pre- and post-transplant cells are well separated in the salient latent space
o learned by contrastiveVI (Figure ) We also quantified how well contrastiveVI’s salient
e latent space separates the two groups of target cells using three metrics—the average silhou-
o ette width, adjusted Rand Index (ARI), and adjusted mutual information (AMI;[Methods)).
1w We find that contrastiveVI performs well on all of these metrics (Figure [2b), indicating that
it successfully recovers the variations enriched in the target dataset. Furthermore, we exper-
102 imented with a workflow for using contrastiveVI for end-to-end biological discovery. After

03 embedding the AML patient samples into the contrastiveVI salient latent space, we used
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s k-means clustering to divide the samples into two groups. Highly differentially expressed
s genes across the two clusters were then obtained by Monte Carlo sampling of denoised,
ws library size-normalized expressions from the contrastiveVI decoder . Finally,
107 pathway enrichment analysis was performed with these differentially expressed
s genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2016 pathway database
o [I8]. Based on our quantitative results, our two clusters exhibited strong agreement with
o the two ground-truth groups (ARI: 0.77 + 0.01). Moreover, the pathways enriched by the
m  differentially expressed genes between the two clusters are related to immune response and
12 graft rejection (Figure ) We provide a full list of enriched pathways in Supplementary
us Table These results align with known cellular state transitions of BMMCs before and

s after a transplant.

s contrastiveVI outperforms other modeling approaches

us To illustrate the advantages of contrastiveVI, we benchmarked its performance against that
ur of three previously proposed methods for analyzing raw scRNA-seq count data. First, to
us demonstrate that our contrastive approach is necessary for capturing enriched variations in
o target datasets, we compared against scVI [23]. scVI has achieved state-of-the-art results
120 on many tasks; however, it was not specifically designed for the CA setting and thus may
2 struggle to isolate salient variations of interest. We also compared against two contrastive
12 methods designed for analyzing scRNA-seq count data: contrastive Poisson latent variable
123 model (CPLVM) and contrastive generalized latent variable model (CGLVM) [17]. While
124 these methods are designed for the contrastive setting, they both make the strong assumption
15 that linear models can accurately capture the complex variations in scRNA-seq data. To our
s knowledge, the CPLVM and CGLVM methods are the only existing contrastive methods for
127 analyzing scRNA-seq count data.

128 Qualitatively (Figure ), we find that none of these baseline models are able to sep-
120 arate pre- and post-transplant cells as well as contrastiveVI can. This finding is further
1w confirmed by quantitative results (Figure [2b). Across all of our metrics we find that con-
wm  trastiveVI significantly outperforms baseline models, with especially large gains in the ARI
12 and AMI. These results indicate that contrastiveVI recovered the variations enriched in the
133 AML patient data far better than baseline models.

e contrastiveVI separates intestinal epithelial cells by infection type

135 We next applied contrastiveVI to data collected in Haber et al. [I5]. This data consists of

136 gene expression measurements of intestinal epithelial cells from mice infected with either
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Figure 2: contrastiveVI successfully captures enriched variations in scRNA-seq
data. a, Principal component (PC) plots of contrastiveVI and baseline models’ latent rep-
resentations. For scVI, the first two PCs of the model’s single latent representations are
plotted, while for contrastive methods the PCs from their salient latent representations are
plotted. b, Quantitative measures of separation between pre- and post-transplant cells. Sil-
houette is the average silhouette width of pre-annotated subpopulations, ARI is the adjusted
Rand index, and AMI is the adjusted mutual information. Higher values indicate better per-
formance for all metrics. For each method, the mean and standard error across five random
trials are plotted. c, contrastiveVI’s salient latent representations of the target dataset were
clustered into two groups. Pathway enrichment analysis was then performed on the differ-
entially expressed genes between the two clusters.
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7 Salmonella or Heligmosomoides polygyrus (H. poly). As a background dataset we used
s measurements collected from healthy cells released by the same authors. Here our goal
130 is to separate cells by infection type in the salient latent space. On the other hand, any
o separations in the background latent space should reflect variations shared between healthy
w1 and infected cells, such as those due to cell type differences. We present our results in Figure
w Bl
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Figure 3: contrastiveVI isolates responses to different infections in intestinal
epithelial cells. a,b, UMAP plots of contrastiveVI’s salient and background representations
colored by infection type. Cells are correctly separated by infection type in the salient space,
while they mix across infection types in the background space. ¢, Clustering metrics quantify
how well cells separate by infection type for scVI’s single latent space and contrastive models’
salient latent spaces, with means and standard errors across five random trials plotted. d,e,
UMAP plots of contrastiveVI’s salient and background representations colored by cell type.
Cells separate well by cell type in the background space, while they mix across cell types in
the salient space. f, Quantifying how well cells separate by cell type in scVI’s single latent
space and contrastive models’ background latent spaces, with means and standard errors
across five random trials for each method.

143 We find that contrastiveVI successfully separates the cells by infection type in its salient
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e latent space (Figure ) Moreover we find that cells mix across infection types in our
s background latent space as expected (Figure [3b). These results indicate that enriched
us variations due to infection response are correctly being relegated to the salient latent space.
17 Once again we find that previously proposed methods fail to stratify the two classes of
us target samples in their salient latent spaces as demonstrated by a set of quantitative metrics
us  (Figure [3c). For this dataset we were able to further validate contrastiveVI's separation
1o of target and background variations using ground truth cell type labels provided by the
151 authors (Supplementary Table . In particular, we found strong mixing across cell types
152 in contrastiveVI’s salient latent space (Figure ), while cell types separated clearly in the
153 background latent space (Figure ) Our quantitative metrics indicate that contrastiveVI’s
15« background latent space is competitive with if not outright superior to other methods’ at
155 capturing variations between cell types (Figure |3f). Taken together, these results further
1ss indicate that contrastiveVI successfully disentangles variations enriched in target data from

157 those shared across the target and background, even when other methods struggle.

s contrastiveVI stratifies cells by response to molecular perturbations

150 In addition to studying transplant outcome and infection response, contrastiveVI can be
10 applied to examine drug treatment response. We demonstrate this capability using cancer
161 cell lines treated with vehicle control dimethyl sulfoxide (DMSO) or idasanutlin collected by
12 McFarland et al. [29]. The small molecule idasanutlin is an antagonist of MDM2, a negative
13 regulator of the tumor suppresor protein p53, hence offering cancer therapeutic opportunity
160 [35]. In the CA context, DMSO-treated samples are considered the background dataset,
s and idasanutlin-treated samples the target dataset. Based on the mechanism of action of
166 idasanutlin, activation of the p53 pathway is observed in cell lines with wildtype TP53 (gene
167 of ph3) and not in transcriptionally inactive mutant TP53 cell lines [35]. Therefore, unique
16 variations in the target dataset should be related to TP53 mutation status. This stratifica-
1o tion of cell response based on T'P53 mutation is readily identified by the salient latent space
o of all methods (Figure [da and Figure [db). Notably, contrastiveVI outperforms other meth-
1 ods based on ARI and AMI, providing better separated clusters for downstream analyses.
2 (Figure ) Particularly, the two clusters identified using the contrastiveVI salient latent
3 space have differentially expressed genes enriched for the p53 signaling pathway (Figure
174 ) It is worth noting that the pb3 signaling pathway is the only statistically significant
s (under 0.05 false discovery rate) pathway identified by contrastiveVI. All these results show
e that contrastiveVI finds salient variations in the target samples treated with idasanutlin that

w7 specifically relate to the biological ground truth effect of idasanutlin perturbation.
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Figure 4: contrastiveVI stratifies cancer cell lines by response to idasanutlin. a,
PC plots of target data latent representations from contrastiveVI and baseline models. The
first two PCs of scVI’s single latent space are plotted. For contrastive methods, the first two
PCs of their salient latent space are plotted. b, The average silhouette (silhouette), adjusted
Rand Index (ARI) and adjusted mutual information (AMI), with mean and standard error
across five random trials plotted for each method. ¢, Two clusters identified by k-means
clustering with contrastiveVI’s salient latent representations of the target dataset. Highly
differentially expressed genes were identified from the two clusters, and these genes were
used to perform pathway enrichment analysis.
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= Discussion

o In this work we introduced contrastiveVI, a scalable probabilistic framework for isolating en-
180 riched variations in a target scRNA-seq dataset as compared to a related background dataset.
11 contrastiveVI is the first method designed to analyze scRNA-seq data in the contrastive anal-
12 ysis setting that both explicitly models the technical factors of variation in scRNA-seq data
13 and takes advantage of the expressive power of deep generative modeling techniques. More-
184 over, contrastiveVI includes a number of other capabilities relevant to scRNA-seq analysis
185 out of the box, such as batch effect correction and differential expression testing.

186 In three different contexts—response to cancer treatment, infection by different pathogens,
1e7and exposure to small-molecule drug perturbations—we demonstrated that contrastiveVI iso-
188 lated enriched variations in target cells while other methods struggled. With the recent de-
189 velopment of new sequencing technologies for efficiently measuring transcriptomic responses
1o to various perturbations, such as Perturb-Seq and MIX-Seq, we expect contrastiveVI to be
11 of immediate interest to the scRNA-seq research community. Moreover, contrastiveVI was
102 implemented using the scvi-tools [I1] Python library, thereby enabling interoperability with
103 Scanpy [37] and Seurat [33] analysis pipelines.

104 The ideas behind contrastiveVI admit multiple potential directions for future work. Sim-
105 ilar contrastive disentanglement techniques could be used to extend models that make use
s of multimodal data, such as totalVI [12], to better understand how variations enriched in
17 target datasets are expressed across different modalities of single-cell data. Moreover, recent
s work [10} [14], 3], 27, [34] in learning biologically meaningful representations of gene expression
109 data could be incorporated to better understand the different sources of variation learned
20 by the model. For example, using a constrained architecture such that latent variables cor-
201 respond to gene pathways could shed more light on the biological phenomena captured in

22 the different latent spaces.

» Methods

2« The contrastiveVI model

205 Here we present the contrastiveVI model in more detail. We begin by describing the model’s

206 generative process and then the model’s inference procedure.

10
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27 The contrastiveVI generative process

208 For a target data point x, we assume that each expression value x,, for sample n and gene

200 ¢ is generated through the following process:

210 Z, ~ Normal(0, )

211 t, ~ Normal(0,I)

212 l, ~ log normal(¢,,, (%)

213 P = Juw(zn,tn, sn)

214 Wy ~ Gammal(p,g, 0,)

215 Yng ~ Poisson(l,w,,)

216 hpg ~ Bernoulli(ff(zn, tn, sn))
. Ty = Yng if hpg =0

0 otherwise

218 In this process z, and t, both refer to sets of latent variables underlying variations in
20 SCRNA-seq expression data. Here z, represents variables that are shared across background
20 and target cells, while ¢,, represents variations unique to the target cells. We place a stan-
21 dard multivariate Gaussian prior on both sets of latent factors, as such a specification is
22 computationally convenient for inference in the VAE framework [2I]. To encourage the
23 disentanglement of latent factors, for background data points b, we assume the same gener-
24 ative process but instead set ¢, = 0 to represent the absence of salient latent factors in the
»s  generative process. Categorical covariates such as experimental batches are represented by
26 Sp.

207 ¢, and {, € Rf , where B denotes the cardinality of the categorical covariate, parameterize
»s the prior for latent RNA library size scaling factor on a log scale . For each category
29 (e.g. experimental batch), ¢, and (2 are set to the empirical mean and variance of the
20 log library size. The gamma distribution is parameterized by the mean p,, € R; and
21 shape 6, € Ry. Furthermore, following the generative process, 6, is equivalent to a gene-
2 specific inverse dispersion parameter for a negative binomial distribution, and 6 € ]Rf is
23 estimated via variational Bayesian inference. f,, and f, in the generative process are neural
24 networks that transform the latent space and batch annotations to the original gene space,
s i.e.. RYx {0,1}F — RY where d is the latent dimension. The network f,, is constrained

236 during inference to encode the mean proportion of transcripts expressed across all genes by

11
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27 using a softmax activation function in the last layer. That is, letting f9(z,,t,, S,) denote
28 the entry in the output of f, corresponding to gene g, we have > f(z,tn,s,) = 1. The
29 neural network f; encodes whether a particular gene’s expression has dropped out in a cell
20 due to technical factors.

241 Our generative process closely follows that of scVI [23], with the addition of the salient
22 latent factors ¢,. While scVI’s modeling approach has been shown to excel at many scRNA-
a3 seq analysis tasks, our empirical results demonstrate that it is not suited for contrastive
24 analysis (CA). By dividing the RNA latent factors into shared factors z, and target-specific
25 factors ¢, contrastiveVI successfully isolates variations enriched in target datasets missed by
26 previous methods. We depict the full contrastiveVI generative process as a graphical model

27 in Supplementary Figure [1]

23 Inference with contrastiveVI1

20 We cannot compute the contrastiveVI posterior distribution using Bayes’ rule as the integrals
0 required to compute the model evidence p(z,|s,) are analytically intractable. As such, we
21 instead approximate our posterior distribution using variational inference [5]. For target

»2  data points we approximate our posterior with a distribution factorized as follows:

253 q¢x(zn7tn7€n|mnasn) =y, (Zn|xn)Sn)q¢t(tn|xnaSn)q¢g(£n|xna3n)~ (]-)

254 Here ¢, denotes a set of learned weights used to infer the parameters of our approximate
5 posterior. Based on our factorization, we can divide ¢, into three disjoint sets ¢., ¢; and ¢y
6 for inferring the parameters of the distributions of z, ¢ and ¢ respectively. Following the VAE
7 framework [21], we then approximate the posterior for each factor as a deep neural network
s that takes in expression levels as input and outputs the parameters of its corresponding
250 approximate posterior distribution (e.g. mean and variance). Moreover, we note that each
xw0 factor in the posterior approximation shares the same family as its respective prior distri-
261 bution (e.g. q(zy|Tn, s,) follows a normal distribution). We can simplify our likelihood by

22 integrating out wyg, hpg, and Yy, vielding p,(zng|2n, tn, sn, £n), which follows a zero-inflated

23 negative binomial (ZINB) distribution (Supplementary Note 1)) and where v denotes the

s parameters of our generative model. As with our approximate posteriors, we realize our

s generative model as a deep neural network. For Equation [1f we can derive (Supplementary]|
26 [INote 2)) a corresponding variational lower bound:
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p(x[s) ZBq(z i b12.5) log p(e|z, 1,4, 5) — Drcr(q(z], s)|[p(2)) @)
267

— Dir(q(tlz, s)l|p(t)) — Drcrq(f]z, s)[[p(£]s)).

268 Next, for background data points we approximate the posterior using the factorization:
269 Qe (Zm £n|bm Sn) = (¢, (Zn|bm 3n>qm (gn‘bm Sn>7 (3)
270 where ¢, denotes a set of learned parameters use to infer the values of z, and ¢, for

an background samples. Following our factorization, we divide ¢, into the disjoint sets ¢, and
a2 ¢p. We note that ¢, and ¢, are shared across target and background samples; this encourages
213 the posterior distributions g4, and g4, to capture variations shared across the datasets, while
2 (g, captures variations unique to the target data. Once again we can simplify our likelihood
zs by integrating out wyg, hng, and y,, to obtain p,(z,4|2,, 0, s,, £,), which follows a ZINB
s distribution. We similarly note that the parameters of our generative model v are shared
217 across target and background points to encourag z to capture shared variations across target
s and background points while ¢ captures target-specific variations. We then have the following

79 variational lower bound for our background data points:

250 P(bls) ZEq(z 10,0 log p(bl2, £, 5) = Dicr(q(21b, 5)lp(2)) — Dicr(q(€]p, s)llp(Lls)).  (4)

281 We then jointly optimize the parameters of our generative model and inference networks
22 using stochastic gradient descent to maximize the sum of these two bounds over our back-
23 ground and target data points. All neural networks used to implement the variational and
24 generative distributions were feedforward and used standard activation functions. We used

s the same network architecture and hyperparameter values for all experiments, and we refer

26 the reader to [Supplementary Note 3| for more details.

27 Differential gene expression analysis with contrastiveVI

23 For two cell groups A = (ay, as, ..., a,) and B = (by, bs, ..., by,) in the target dataset, the pos-
280 terior probability of gene g being differentially expressed in the two groups can be obtained
20 as proposed by Boyeau et al. [6]. For any arbitrary cell pair a;, b;, we have two mutually

201 exclusive models
9. 1,.9 g .1,.9
292 Ml . |7’a“bj| > 6 and MO . |,rd1,b]| S 5
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203 where Tgiybj = logy(pg,) — logQ(pgj) is the log fold change of the denoised, library size-
20 normalized expression of gene g, and ¢ is a pre-defined threshold for log fold change mag-
2s nitude to be considered biologically meaningful. The posterior probability of differential
26 expression is therefore expressed as p(M{|z,,, 25,), which can be obtained via marginaliza-

207 tion of the latent variables and categorical covariates:

Za,, S)dp(Zb]., tb]- |I'b]-7 8)7

208 p(M‘% ’I(li ) .Tb].) - Z / p(M‘ﬂZam tam Zbjs tbj )p(s)dp<zai7 tai
s Za;

stag 25t

200 where p(s) is the relative abundance of target cells in category s, and the integral can be
30 computed via Monte Carlo sampling using the variational posteriors g4, ,qs,. Finally, the

;00 group-level posterior probability of differential expression is

200 /bp(/\/lﬂ:ca,xb)dp(a)dp(b),

23 where, assuming that the cells are independent, a ~ U(ay,...,an) and b ~ U(by, ..., by).
sa - Computationally, this quantity can be estimated by a large random samples of pairs from
35 the cell group A and B. In our experiments, 10,000 cell pairs were sampled, 100 Monte Carlo
6 samples were obtained from the variational posteriors for each cell, and the § threshold was
w7 set to 0.25, which is the default value recommended by the scvi-tools Python library [I1].
s Genes with group-level posterior probability of differential expression greater than 0.95 were

300 considered for downstream pathway enrichment analysis.

2 Pathway enrichment analysis

sn  Pathway enrichment analysis refers to a computational procedure for determining whether
a2 a predefined set of genes (i.e., a gene pathway) have statistically significant differences in
a3 expression between two biological states. Many tools exist for performing pathway enrich-
se ment analysis (see [19] for a review). In our analyses we use Enrichr [§], a pathway analysis
a5 tool for non-ranked gene lists based on Fisher’s exact test, to find enriched pathways from
a6 the KEGG 2016 pathways database [18]. Specifically, the Enrichr wrapper implemented in
27 the open-source GSEAP{T| Python library was used for our analyses. Pathways enriched at
us false discovery rate smaller than 0.05 (adjusted by the Benjamini-Hochberg procedure [4])

a0 are reported in this study.

'https://gseapy.readthedocs.io/en/latest/
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2 Baseline models

;21 Because the choice of library size normalization method tends to drastically impact dimen-
s sion reduction and subsequent clustering results of methods not designed for modeling library
23 sizes [30], we consider CA methods specifically tailored for scRNA-seq count data as base-
24 lines in this study. To our knowledge, CPLVM (contrastive Poisson latent variable model)
»s and CGLVM (contrastive generalized latent variable model) are the only CA methods that
26 explicitly model count-based scRNA-seq normalization [I7]. We present a summary of pre-
27 vious work in CA in Supplementary Table 4. We also consider scVI, a deep generative
»s model for UMI count data that takes batch effect, technical dropout, and varying library
20 size into modeling considerations [23], to illustrate the need for models specifically designed
10 for CA. Below we describe the CA methods CPLVM and CGLVM in more detail.

331 In CPLVM, variations shared between background and target condition are assumed to

m
=0

5 be captured by two sets of latent variables {22} | and {2 and target condition-specific
%3 variations are described by latent variables {t;}7,, where n, m are the number of background
;s and target cells, respectively. Library size differences between the two conditions are modeled
= by {al}7., and {af}7",, whereas gene-specific library sizes are parameterized by J € RY,
16 where (G is the number of genes. Each data point is considered Poisson distributed, with rate
= parameter determined by a?d® (S 2}) for a background cell i and by o6 ® (ST 21+ W Tt;) for
18 a target cell j, where S, W are model weights that linearly combine the latent variables, and
130 ® represents an element-wise product. The model weights and latent variables are assumed
10 to have Gamma priors, § has a standard log-normal prior, and a?, a§- have log-normal priors
s with parameters given by the empirical mean and variance of log total counts in each dataset.
sz Posterior distributions are fitted using variational inference with mean-field approximation
a3 and log-normal variational distributions.

344 The CA modeling approaches of CGLVM and CPLVM are similar. In CGLVM, however,
us  the relationships of latent factors are considered additive and relate to the Poisson rate
15 parameter via an exponential link function (similar to a generalized linear modeling scheme).

sar - All the priors and variational distributions are Gaussian in CGLVM.

« Model optimization details

u9  For all datasets, contrastiveVI models were trained with 80% of the background and target
;0 data, and with 20% of the data reserved as a validation set for early stopping to determine
31 the number of training epochs needed. Training was early stopped when the validation
2 variational lower bound showed no improvement for 45 epochs, typically resulting in 127 to

353 500 epochs of training. All contrastiveVI models were trained with the Adam optimizer [20]

15
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3¢ with € = 0.01, learning rate at 0.001, and weight decay at 107%. The same hyperparameters
55 and training scheme were used to optimize the scVI models using only target data, usually
6 with 274 to 500 epochs of training based on the early stopping criterion. As in Jones et al.,
57 the CPLVMs were trained via variational inference using all background and target data for
15 2,000 epochs with the Adam optimizer with ¢ = 107® and learning rate at 0.05, and the
39 CGLVMs were similarly trained for 1,000 epochs and learning rate at 0.01 [I7]. All models
w0 were trained with 10 salient and 10 background latent variables for five times with different
s random weight initializations. We also trained models with varying salient latent dimension

32 sizes and obtained overall consistent results (Supplementary Figure .

w Datasets and preprocessing

s Here we briefly describe all datasets used in this work along with any corresponding pre-
35 processing steps. All preprocessing steps were performed using the Scanpy Python package
w6 [37]. All our code for downloading and preprocessing these datasets is publicly available
ss7 at https://github.com/suinleelab/contrastiveVI. For all experiments we retained the
s top 2,000 most highly variable genes returned from the Scanpy highly variable genes
w0 function with the flavor parameter set to seurat_v3. For all datasets, the number of cells

w0 in the background vs. target can be found in Supplementary Table [3|

sn  Zheng et al., 2017

;2 This dataset consists of single-cell RNA expression levels of a mixture of bone marrow
w3 mononuclear cells (BMMCs) from 10x Genomics [1]. For our target dataset, we use samples
s taken from patients with acute myeloid leukemia (AML) before and after a stem cell trans-
a5 plant. For our background dataset, we use measurements taken from two healthy control
we  patients released as part of the same study. All data is publicly available: files containing
;77 measurements from first patient pre- and post-transplant can be found here and here, re-
sis - spectively; from the second patient pre- and post-transplant here and here, respectively; and

sro from the two healthy control patients here and here.

0 Haber et al., 2017

s This dataset (Gene Expression Omnibus accession number (GSE92332) used scRNA-seq
;2 measurements to investigate the responses of intestinal epithelial cells in mice to differ-
;3 ent pathogens. In particular, in this dataset responses to Salmonella and the parasite H.
s polygyrus were investigated. Here our target dataset consisted measurements of cells in-

s fected with Salmonella and from cells 10 days after being infected with H. polygyrus, while
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s our background consisted of measurements from healthy control cells released as part of the

;7 same study.

s McFarland et al., 2020

;0 'This dataset measured cancer cell lines’ transcriptional responses after being treated with
30 various small-molecule therapies. For our target dataset, we used data from cells that were
;1 exposed to idasanutlin, and for our background we used data from cells that were exposed to
32 a control solution of dimethyl sulfoxide (DMSO). TP53 mutation status was determined by
33 cross-referencing with a list of cell lines with mutations provided by the authors in the code
s repository accompanying the paper. The data was downloaded from the authors’ Figshare

305 repository.

w6 Kvaluation metrics

s Here we describe the quantitative metrics used in this study. All metrics were computed

s using their corresponding implementations in the scikit-learn Python package [7].

300 Silhouette width

w0 We calculate silhouette width using the latent representations returned by each method. For
w1 a given sample 7, the sillhouete width s(i) is defined as follows. Let a(i) be the average
w2 distance between i and the other samples with the same ground truth label, and let b(i) be
w03 the smallest average distance between ¢ and all other samples with a different label. The

a4 silhouette score s(i) is then

b(i) — a(7) .
max (a(i), b))

406 A silhouette width close to one indicates that ¢ is tightly clustered with cells with the

405 S(Z =

w7 same ground truth label, while a score close to -1 indicates that a cell has been grouped with

s0s cells with a different label.

w0 Adjusted Rand index

a0 The adjusted Rand index (ARI) measures agreement between reference clustering labels and
a1 labels assigned by a clustering algorithm. Given a set of n samples and two sets of clustering
a2 labels describing those cells, the overlap between clustering labels can be described using a
a3 contingency table, where each entry indicates the number of cells in common between the

as  two sets of labels. Mathematically, the ARI is calculated as

17
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>y () = [ @) B/ 6)
U@+ @] - [Zos,®]/ 6

se where n;; is the number of cells assigned to cluster ¢ based on the reference labels and

a1 ARI =

a7 cluster 7 based on a clustering algorithm, a; is the number of cells assigned to cluster ¢ in the
s reference set, and b; is the number of cells assigned to cluster j by the clustering algorithm.
a0 ARI values close to 1 indicate agreement between the reference labels and labels assigned by

a0 a clustering algorithm.

21 Adjusted mutual information

a2 The adjusted mutual information (AMI) is a corrected-for-chance version of the normalized
»3 mutual information, and it is another measure of the agreement between reference clustering

24 labels and labels assigned by a clustering algorithm. For two clusterings U and V', we have

[(U;V) —E[[(U; V)]
(HU)+ H(V))/2=E[I(U; V)]

AMI(U,V) =

26 where [ represents mutual information, and H represents entropy. AMI values closer to 1

27 indicate greater agreement between U and V.
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