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Abstract  43 

Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellu-44 

lar parasite Plasmodium falciparum, an agent of human malaria, relies on membrane 45 

transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, ex-46 

change of metabolites between organelles and generation and maintenance of 47 

transmembrane electrochemical gradients for its growth and replication within human eryth-48 

rocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a 49 

number of membrane transport proteins remain unclear, which is particularly true for orphan 50 

membrane transporters that have no or limited sequence homology to transporter proteins in 51 

other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, 52 

targeted gene disruption, conditional knockdown and knockout approaches to investigate the 53 

subcellular localization and essentiality of six membrane transporters during intraerythrocytic 54 

development of P. falciparum parasites. They are localized at different subcellular structures 55 

– the food vacuole, the apicoplast, and the parasite plasma membrane – and four out of the 56 

six membrane transporters are essential during asexual development. Additionally, the 57 

plasma membrane resident transporter 1 (PMRT1, PF3D7_1135300), a unique Plasmodium-58 

specific plasma membrane transporter, was shown to be essential for gametocytogenesis 59 

and functionally conserved within the genus Plasmodium. Overall, we reveal the importance 60 

of four orphan transporters to blood stage P. falciparum development, which have diverse 61 

intracellular localizations and putative functions. 62 

Importance (150 words) 63 

Plasmodium falciparum-infected erythrocytes possess multiple compartments with designat-64 

ed membranes. Transporter proteins embedded in these membranes do not only facilitate 65 

movement of nutrients, metabolites and other molecules between these compartments, but 66 

are common therapeutic targets and can also confer antimalarial drug resistance. Orphan 67 

membrane transporter in P. falciparum without sequence homology to transporters in other 68 

evolutionary lineages and divergent to host transporters may constitute attractive targets for 69 

novel intervention approaches. Here, we localized six of these putative transporters at differ-70 

ent subcellular compartments and probed into their importance during asexual parasite 71 

growth using reverse genetic approaches. In total, only two candidates turned out to be dis-72 

pensable for the parasite, highlighting four candidates as putative targets for therapeutic in-73 

terventions. This study reveals the importance of several orphan transporters to blood stage 74 

P. falciparum development.   75 

Introduction 76 

Plasmodium spp. malaria parasites inhabit diverse intracellular niches and need to import 77 

nutrients and export waste across both, host-cell and parasite membranes. Despite this, 78 
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there are less than 150 putative membrane transporters encoded in the genome of Plasmo-79 

dium falciparum, the most virulent malaria parasite, making up only 2.5% of all encoded 80 

genes (P. falciparum 3D7 v3.2: 5280 genes) (1–8), which is reduced compared to other uni-81 

cellular organisms of similar genome size. The loss of redundant transporters is a typical 82 

feature of many intracellular parasites (9) and, as a result, the proportion of transporters that 83 

are indispensable for parasite survival increases (2), some of which have been shown to be 84 

critical for the uptake of several anti-Plasmodial compounds and/or to be involved in drug 85 

resistance (10–23). Moreover, the parasite’s intracellular lifestyle resulted in the evolution of 86 

additional specialized transporters without human homologues (1). During its 87 

intraerythrocytic development, the parasite relies on the uptake of nutrients, such as amino 88 

acids, pantothenate or fatty acids, from its host erythrocyte as well as from the extracellular 89 

blood plasma (24–27). As P. falciparum resides in a parasitophorous vacuole (PV) in the 90 

host erythrocyte, nutrients acquired from the extracellular milieu must traverse multiple 91 

membranes: the erythrocyte plasma membrane (EPM), the parasitophorous vacuole mem-92 

brane (PVM), the parasite plasma membrane (PPM) and eventually membranes of intracellu-93 

lar organelles, such as those of the apicoplast or mitochondria (24, 28–30). The unique re-94 

quirements of malaria parasite survival have led to the evolution of a number of orphan 95 

transporters, whose localization or function cannot be predicted based on sequence homolo-96 

gy to transporters in other organisms (4, 31). Despite the likely importance of uniquely 97 

adapted transporters to P. falciparum survival, subcellular localization, essentiality, function 98 

and substrate specificity for most P. falciparum transporters has not been directly determined 99 

(2, 24, 29). The best functional evidence available for many Plasmodium-specific transport-100 

ers comes from a recent knockout screen of these orphan transporters in the rodent malaria 101 

parasite Plasmodium berghei (31). However, whether observations for different transporters 102 

in the P. berghei model are directly transferrable to P. falciparum have yet to be examined. 103 

Therefore, in this study, we explored the localization and essentiality of four predicted orphan 104 

transporters that had been partially characterised in P. berghei and included two additional 105 

transporters with no experimental characterization available. 106 

Results 107 

To date, the predicted ‘transportome’ of P. falciparum consists of 117 putative transport sys-108 

tems (encoded by 144 genes) classified as channels (n=19), carriers (n=69), and pumps 109 

(n=29) (2). Functions of the vast majority of transporter genes were inferred from sequence 110 

homology to model organisms, however, given their lack of homology, 39 gene products 111 

could not be associated with any functional or subcellular localization and were categorized 112 

as orphan transporters accordingly (4). A subset of orphan transporters characterized in the 113 

P. berghei malaria model was selected for further characterization in P. falciparum. The four 114 

transporters selected were reported to be important at different stages of rodent malaria par-115 
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asite growth with i) P. berghei drug/metabolite transporter 2 (PfDMT2: PF3D7_0716900) 116 

found to be essential for asexual blood stage development, ii) P. berghei zinc transporter 1 117 

(PfZIP1: PF3D7_0609100) was essential across transmission stages but not blood stages, 118 

where there was only a slight growth defect, iii) P. berghei cation diffusion facilitator family 119 

protein (PfCDF: PF3D7_0715900) knockout parasites had a defect during transmission stag-120 

es but not during asexual stages, and iv) P. berghei major facilitator superfamily domain-121 

containing protein (PfMFS6: PF3D7_1440800) was found to be essential for parasite trans-122 

mission from mosquitos to a new host, with a growth defect observed at asexual and game-123 

tocyte stages but not during mosquito stage parasite growth (31, 32). In order to confirm ex-124 

pression of these four, initially selected, transporters in P. falciparum asexual stages, we 125 

searched the list of “Genes coding for transport proteins” included in the Malaria Parasite 126 

Metabolic Pathways (MPMP) database (1, 33) for proteins with i) RNA-seq (34, 35) and ii) 127 

proteomics evidence (36, 37) in asexual blood stages. During our initial searches of the 128 

MPMP database but also including PlasmoDB (38) and the most recent P. falciparum 3D7 129 

genome (v3.2) and annotations, we identified two additional putative transporters in P. falci-130 

parum (PF3D7_0523800, PF3D7_1135300), whose P. berghei homologs were not targeted 131 

and functionally characterized by Kenthirapalan et al. (31) or investigated in any other exper-132 

imental model. Given their obvious lack of sequence homology to transporter proteins in oth-133 

er evolutionary lineages and clear classification as orphan membrane transporter, both pro-134 

teins were subsequently included in our characterization of P. falciparum orphan transport-135 

ers, and named as ‘food vacuole resident transporter 1’ (FVRT1: PF3D7_0523800) and as 136 

‘plasma membrane resident transporter 1’ (PMRT1: PF3D7_1135300) based on their subcel-137 

lular localization. AlphaFold-based structure predictions (39) and results from structure ho-138 

mology search (40) of all six selected transporters are provided in Figure S1.  139 

Localization of putative P. falciparum transporters 140 

To determine subcellular localization, we tagged the six putative transporters endogenously 141 

with GFP using the selection-linked integration (SLI) system (41) (Figure 1A). Additionally, a 142 

glmS ribozyme sequence was included in the 3’UTR, which enabled conditional gene knock-143 

down upon addition of glucosamine (42). Correct integration of the plasmid into the respec-144 

tive genomic locus was verified by PCR and expression of the GFP-fusion protein was con-145 

firmed by Western blot for each generated cell line (Figure S2A, B). 146 

All transgenic cell lines expressed the GFP-fusion protein, demonstrating that these trans-147 

porters are expressed in asexual blood stage parasites (Figure 1B-G, S2A). Expression lev-148 

els were sufficient to allow determination of subcellular localization (Figure 1B–G): (i) 149 

PF3D7_0523800-GFP localized to the food vacuole, (ii) PfDMT2-GFP and PfMFS6-GFP 150 

apicoplast localization, and (iii) PfZIP1-GFP and PF3D7_1135300-GFP parasite plasma 151 

membrane (PPM) localization. However, PfCDF-GFP showed an obscure staining pattern 152 
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with a weak spot within the parasite cytosol in ring and trophozoite state parasites, but multi-153 

ple foci in schizont stages (Figure 1D). To pinpoint this localization, an additional cell line with 154 

endogenously 3xHA-tagged PfCDF was generated, confirming the focal localization of 155 

PfCDF in asexual stages (Figure S2C).  156 

Except for PfCDF, the observed localizations of the other five transporters were confirmed by 157 

co-localization studies using appropriate episomally expressed marker proteins: P40PX-158 

mCherry (43, 44) for the food vacuole, ACP-mCherry (45, 46) for apicoplast and Lyn-159 

mCherry (41, 47) for PPM. The focal distribution of PfCDF-GFP was co-localized with a 160 

rhoptry (ARO-mCherry (48, 49)) and a micronemes (AMA1-mCherry (50, 51)) marker, but 161 

PfCDF-GFP did not colocalize with either marker (Figure 1H). Additionally, for PfZIP and 162 

PF3D7_1135300 the PPM localization was further confirmed in free merozoites (Figure S2D, 163 

E) and by confocal microscopy-based co-localization of PF3D7_1135300-GFP with the PPM 164 

marker Lyn-mCherry (Figure S2F). Accordingly, as noted above, we named PF3D7_0523800 165 

as ‘food vacuole resident transporter 1’ (FVRT1) and PF3D7_1135300 as ‘plasma mem-166 

brane resident transporter 1’ (PMRT1).  167 

Targeted-gene disruption (TGD), conditional knockdown and conditional knockout of 168 

putative transporters 169 

In order to test whether the putative transporters are essential for P. falciparum during its 170 

intraerythrocytic cycle, we first tried to functionally inactivate them by targeted gene disrup-171 

tion (TGD) using the SLI system (41) (Figure S3A). TGD cell lines were successfully ob-172 

tained for PfZIP1 and PfCDF (Figure S3B, C). For PfZIP1-TGD, the correct integration of the 173 

plasmid into the genomic locus and absence of wildtype locus was verified by PCR and sub-174 

sequent growth experiments revealed no growth defect compared to P. falciparum 3D7 175 

wildtype parasites (Figure S2B), suggesting its redundancy during asexual parasite prolifera-176 

tion. For PfCDF-TGD the correct integration of the plasmid into the genomic locus was also 177 

verified, but wildtype DNA was still detectable and remained even upon prolonged culturing 178 

under G418/WR selection and limited dilution cloning (Figure S3C). In contrast, six 179 

(PfPMRT1, PfDMT2) or eight (PfFVRT1, PfMFS6) independent attempts to obtain TGD cell 180 

lines for the other four transporters with the respective plasmids failed, indicating that these 181 

genes have an indispensable role in blood stage parasite growth. 182 

To probe into the function of the putative transporters where we were unable to generate 183 

gene-disruptions, we utilized the glmS ribozyme sequence. The corresponding sequence 184 

was integrated into the 3’UTR of the targeted genes. This enabled the induction of condition-185 

al degradation of respective mRNAs upon addition of glucosamine (42) and the assessment 186 

of the phenotypic consequences. Upon addition of 2.5 mM glucosamine to young ring stage 187 

parasites we found a 76.8% (+/- SD 3.7) reduction in GFP fluorescence intensity in PfDMT2-188 

GFP parasites, 72.7% (+/- SD 9.4) reduction in PfMFS6-GFP and a 77.7% (+/- SD 6.1) re-189 
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duction in PfPMRT1-GFP in schizonts of the same cycle (Figure 2A–C, S4A–C). No measur-190 

able reduction in fluorescence intensity could be detected for PfFVRT1-GFP or PfCDF-GFP 191 

expressing parasite lines (Figure S4D–F). Presence of the glmS cassette in both plasmids 192 

was confirmed by PCR (Figure S4H). For parasite cell lines with a significant reduction in the 193 

expression of the endogenously tagged protein, proliferation was analyzed in the absence 194 

and presence of 2.5 mM glucosamine (Figure 2D, S4G). While no significant effect on growth 195 

was observed for PfMFS6, a growth reduction of 68.5 % (+/- SD 2.1) over two cycles was 196 

observed upon knockdown of PfDMT2. For PfPMRT1, a minor growth delay was measura-197 

ble, which resulted in a significantly reduced parasitemia at day 3 upon knockdown using 2.5 198 

mM glucosamine (two tailed Wilcoxon rank sum test, W = 15, n1 = 5, n2 = 3, P = 0.03), but 199 

was not significant when using 5 mM glucosamine (two tailed Wilcoxon rank sum test, W = 200 

10, n1 = 4, n2 = 3, P = 0.16) (Figure 2E). Additionally, significantly fewer newly formed ring 201 

stage parasites were observed at 84 hours post invasion (hpi) (Figure 2F), and multiple pair-202 

wise post-hoc comparisons using the Conover-Iman rank sum test and Benjamini-Hochberg 203 

method to control the false discovery rates showed significant step-wise reductions of ring 204 

stage parasites after induction of GlmS-based knockdown of PfPMRT1 using both, 2.5 mM 205 

glucosamine (adjusted P = 0.0078) and 5 mM glucosamine (adjusted P = 0.0005) in compar-206 

ison to untreated control cell cultures. 207 

To better characterize the minor growth phenotype of PfPMRT1-GFP-glmS parasites that 208 

might be due to incomplete knockdown, we generated a conditional PfPMRT1 knockout cell 209 

line (condΔPMRT1) using the Dimerizable Cre (DiCre) system (52, 53). Again using the SLI 210 

system (41), the endogenous PfPMRT1 was disrupted upstream of the region encoding the 211 

N-terminal transmembrane domain, but, at the same time introducing a recodonized second 212 

functional copy of PfPMRT1 flanked by loxP sites in the genomic locus. This loxP-flanked 213 

allelic copy of PfPMRT1 encodes an additional 3x hemagglutinin (HA) tag, which can be 214 

conditionally excised upon addition of a rapamycin analog (rapalog) via the enzymatic activity 215 

of an episomally expressed DiCre (Figure 3A). First, correct integration of the plasmid into 216 

the genomic locus was verified by PCR (Figure 3B). Second, expression and localization of 217 

the recodonized HA-tagged protein at the PPM was verified by colocalization with the 218 

merozoite plasma membrane marker MSP1 (54) (Figure 3C). Third, excision of the 219 

recodonized gene upon rapalog addition was confirmed on genomic level by PCR (Figure 220 

3D) and on protein level by Western blot analysis at 24 hpi and 48 hpi (Figure 3E). To assess 221 

the effect of conditional PfPMRT1 knockout on parasite proliferation, we determined growth 222 

of the transgenic parasite cell line with and without rapalog over five days (Figure 3F, S5A). 223 

In contrast to the glmS-based knockdown experiment, DiCre-based gene excision (induced 224 

by the addition of rapalog to young ring stages of condΔPMRT1 parasite cell cultures) abol-225 

ished growth within the first replication cycle (Figure 3F, S5A). The specificity of the observed 226 
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growth phenotype was verified by gene complementation. To achieve this, we episomally 227 

expressed recodonized PfPMRT1 with TY1-epitope tag either under the constitutive nmd3 or 228 

the weaker sf3a2 promoter (55) in the condΔPMRT1 cell line (Figure 3D, F, S5B, C). Correct 229 

localization of the TY1-tagged PfPMRT1 at the PPM was verified by immunofluorescence 230 

assays (IFA) (Figure 3G). Notably both, complementation of the PfPMRT1 knockout cell line 231 

(condΔPMRT1) with recodonized PfPMRT1 either under control of the constitutive nmd3 or 232 

the weaker sf3a2 promoter, restored parasite growth (Figure 3F, S5B, C). The level of growth 233 

restoration with low level expression of recodonized PfPMRT1 is in line with the results from 234 

glmS-knockdown experiments, which showed that a reduction of about 75% in protein ex-235 

pression resulted only in a minor growth perturbation (Figure 2C, D).  236 

Loss of the PPM-localized PfPMRT1 leads to an arrest of parasite development at 237 

trophozoite stage and the formation of PPM derived protrusions 238 

To determine, which particular parasite stages are affected by the knockout of PfPMRT1, we 239 

added rapalog to tightly synchronized parasites at different time points (4, 20 and 32 hpi) 240 

(Figure 4A) and monitored parasite growth by flow cytometry. Additionally, we quantified 241 

growth perturbation by microscopy of Giemsa smears at 4, 20, 24, 32, 40, 48, 72 and 96 hpi 242 

(Figure 4B, S6A, B). When adding rapalog at 4 hpi, parasite development progressed 243 

through ring and early trophozoite stages up to 24 hpi with no visible abnormality. After-244 

wards, parasites with deformed and enlarged protrusions started to appear and further de-245 

velopment occurred to be stalled. At 32 hpi, almost all parasites had developed to late 246 

trophozoites/early schizonts in the control, whereas these stages were completely absent in 247 

PfPMRT1-deficient parasites. Over 50% of the parasites were pycnotic or possessed large 248 

protrusions, the remaining parasites stayed arrested at the trophozoite stage. Quantification 249 

of the percentage of parasites with protrusions between 20 hpi and 32 hpi revealed 94.8% 250 

(+/- SD 4.0) protrusion-positive parasites (Figure 4C). The activation of gene excision at later 251 

time points by adding rapalog at 20 hpi or 32 hpi resulted in no or minor growth perturbation 252 

in the first cycle with successful re-invasion, but again led to parasites arresting at the 253 

trophozoite stage in the second cycle with an accumulation of protrusions (Figure 4A, S6A, 254 

B).  255 

In order to get further insights into the morphological changes in PfPMRT1-deficient para-256 

sites, we incubated these parasites with dihydroethidium (DHE) to visualize the parasite cy-257 

tosol (44). We observed an absence of staining within the protrusions, suggesting they are 258 

not filled with parasite cytosol (Figure 4D). Next, we transfected the condΔPMRT1 cell line 259 

with a plasmid encoding the PPM marker Lyn-mCherry (41) and observed Lyn-mCherry-260 

positive protrusions upon knockout of PfPMRT1 starting to become visible at 24 hpi, indicat-261 

ing that the protrusions originate from the PPM (Figure 4E). In line with this, protrusion mem-262 
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branes were also stainable with BODIPY TR C5 ceramide in condΔPMRT1 parasites at 32 263 

hpi (Figure 4F).  264 

Depletion of PfPMRT1 results in an early arrest of gametocyte development 265 

RNA-seq data suggest PfPMRT1 is also expressed during other developmental stages, such 266 

as gametocytes (56, 57). Therefore, we assessed expression of PfPMRT1-GFP during 267 

gametocytogenesis by re-engineering PfPMRT1-GFP-glmS in the inducible gametocyte pro-268 

ducer (iGP) ‘3D7-iGP’ (58) parasite line, which allows the robust induction of sexual commit-269 

ment by conditional expression of gametocyte development 1 protein (GDV1) upon addition 270 

of shield-1 (58) (Figure S7A). We show that PfPMRT1 is indeed expressed during all stages 271 

of gametocytogenesis and again localizes to the PPM, colocalizing with the PPM-marker 272 

Lyn-mCherry (41) (Figure 5A, B). Conditional knockdown of PfPMRT1 via the glmS-ribozyme 273 

system (Figure S7B) resulted in a reduction in PfPMRT1-GFP fluorescence intensity of 274 

79.4% (+/- SD 9.2%) at 7 days post induction (dpi) or 75.5% (+/- SD 23.2%) at 10 dpi, with-275 

out an effect on gametocyte development (Figure S7C–F). In order to exclude that a role of 276 

PfPMRT1 in gametocytogenesis is covered by only a partial knockdown resulting in low lev-277 

els of expressed protein and to determine if PfPMRT1 is essential for gametocytogenesis, we 278 

episomally expressed GDV1-GFP-DD in the condΔPMRT1 parasite line, enabling conditional 279 

induction of sexual commitment upon addition of shield 1 in these parasites (59). Conditional 280 

knockout of PfPMRT1 in these transgenic parasites at day three post gametocyte induction 281 

resulted in pycnotic parasites from day 5 onwards, while excision of PfPMRT1 at day 5 post 282 

induction had no effect on gametocyte development (Figure 5C, D). Excision of the 283 

recodonized gene upon rapalog addition was confirmed at a genomic level by PCR for both 284 

conditions (Figure 5E). Quantification of parasite stages at day 10 post induction of GDV1 285 

expression revealed 77.9% (+/- SD 7.7%) gametocytes and 22.1% (+/- SD 7.7%) pycnotic 286 

parasites in the control, while 100% of parasites were already pycnotic in the cultures, with 287 

induced knockout by addition of rapalog at day 3 post gametocyte induction by GDV1 ex-288 

pression (Figure 5F). This data indicates that PfPMRT1 is important for early gametocyte 289 

development. 290 

PMRT1 is unique to the genus Plasmodium and interspecies complementation assays 291 

showed partial functional conservation  292 

PfPMRT1 shows a lack of sequence similarities with known or putative transporters and/or 293 

conserved domains shared with known transporter families (2, 5). Our phylogenetic analysis 294 

revealed that homologs of PfPMRT1 are present across Plasmodium species with amino 295 

acid sequence identities of about 90% in the subgenus Laverania, but about 50% outside 296 

Laverania (Figure 6A). However, prediction of the protein structure using AlphaFold (39) indi-297 

cates two bundles of four transmembrane helices with reasonable similarity of the C-terminal 298 
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bundle with the photosynthetic reaction center Maquette-3 protein (60) (RMSD of 3.12) (Fig-299 

ure 6B, Figure S1B). In order to test for functional conservation, we expressed the PfPMRT1 300 

homologs of P. vivax (PVP01_0936100) and P. knowlesi (PKNH_0933400) episomally as C-301 

terminal Ty-1 fusion proteins under the nmd3 promoter in the condΔPMRT1 parasites. Both 302 

fusion proteins are expressed. They were again localized at the PPM as shown by IFA (Fig-303 

ure 6C, Figure S8), and, importantly, were able to partially restore growth after two cycles to 304 

64.8% (+/- SD 9.8%) and 65.1% (+/- SD 7.4%) compared to condΔPMRT1 parasites (Figure 305 

6D, S8). Excision of the recodonized endogenous Pfpmrt1 gene upon rapalog addition was 306 

confirmed at a genomic level by PCR (Figure 6E). These data indicate that PMRT1 is func-307 

tionally conserved within the genus Plasmodium.  308 

Discussion 309 

In this manuscript we functionally described four so called  “orphan transporter” (31) in P. 310 

falciparum , which were partially characterized in P. berghei, and included two additional so 311 

far uncharacterized proteins with transporter sequence signature.  312 

We localized PfFVRT1-GFP – annotated on PlasmoDB (38) as putative divalent metal trans-313 

porter – at the food vacuole of the parasite, which is in line with a previously predicted food 314 

vacuole association (1) and its reported homology (1, 61) to the conserved eukaryotic 315 

endosomal/lysosomal natural resistance-associated macrophage protein (NRAMP) trans-316 

porter (62) in our structure similarity search. Repeated attempts to generate a TGD cell line 317 

failed, indicating an important role of this transporter during asexual blood stage develop-318 

ment which is in agreement with data from a P. falciparum genome wide essentiality screen 319 

(63).  320 

In concordance with recently published data identifying PbDMT2 and PbMFS6 as leaderless 321 

apicoplast transporters (32), we localized GFP-fusion proteins of PfDMT2 and PfMFS6 at the 322 

apicoplast. Successful knockdown of PfDMT2 resulted in a growth defect in the second cycle 323 

after induction, resembling the described delayed death phenotype of other apicoplast genes 324 

that were functionally inactivated (32, 64–66). It suggests an essential role of PfDMT2 in 325 

apicoplast physiology, as observed by Sayers et al. (32) for the rodent malaria P. berghei. 326 

This is further supported by our failed attempts to disrupt this gene using the SLI system.   327 

We also failed to disrupt the PfMFS6 locus, which is in agreement with the gene knockout 328 

studies in P. berghei that led to a markedly decreased multiplication rate (31, 32, 67). Never-329 

theless, glmS-based knock-down, although comparable to PfDMT2-GFP knockdown (72.7% 330 

versus 76.8% reduction in GFP fluorescence, respectively) had no effect on parasite prolifer-331 

ation in our study. This might indicate that these reduced levels of PfMFS6, in contrast to 332 

reduced levels of PfDMT2, are sufficient for normal asexual replication in vitro. 333 

Another candidate, PfCDF, annotated as putative cation diffusion facilitator family protein, 334 

showed multiple cytosolic foci within the parasite with no co-localization with apical organelle 335 
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markers. The homologue in Toxoplasma gondii, TgZnT (TgGT1_251630) shows a similar 336 

cellular distribution (68). It has recently been shown to transport Zn2+, to localize to vesicles 337 

at the plant-like vacuole in extracellular tachyzoites and to be present at dispersed vesicles 338 

throughout the cytoplasm of intracellular tachyzoites (68). The essentiality of PfCDF for in 339 

vitro blood stage growth is debatable. We were not able to generate a clonal wild-type free 340 

TGD cell line although correct integration of the plasmid into the genomic locus could be veri-341 

fied (Figure S3C). This  points towards its dispensability for in vitro blood stage growth, which 342 

is supported by i) its high (1.0) mutagenesis index score in a P. falciparum genome-wide mu-343 

tagenesis screen (63) and ii) gene deletion experiments in rodent malaria species showing 344 

that CDF proteins are non-essential for in vivo blood stage development in P. yoelii (69) and 345 

P. berghei (31, 67).   346 

Finally, two putative transporters, PfZIP1 and PfPMRT1, localized to the PPM. We show that 347 

PfZIP1 is non-essential for P. falciparum in vitro blood stage development, in line with a high 348 

(0.7) mutagenesis index score in a P. falciparum genome-wide mutagenesis screen (63). 349 

However, this is in contrast to the reported strong fitness loss in P. berghei (67) knockout 350 

mutants and failed knockout attempts in P. yoelli and P. berghei in vivo mouse models (32, 351 

69). These observations may reflect differences between Plasmodium species or differing 352 

requirements for in vitro and in vivo growth conditions.  353 

PfPMRT1 is annotated as a conserved Plasmodium membrane protein with unknown func-354 

tion. It has been described as a protein showing structural characteristics of a transporter, 355 

without sharing sequence similarities with known or putative transporters and/or conserved 356 

domains of known transporter families (2, 5). It encompasses 410 amino acids with eight 357 

predicted (70) transmembrane domains (TM) (Figure S1). The N- and C-terminal parts of 358 

PfPMRT1 are both predicted (71) to be facing the cytosolic side of the parasite. Surface elec-359 

trostatics indicate a clear polarity of PfPMRT1 with negative charges facing the 360 

parasitophorous vacuole (PV) lumen and positive charges inside the parasite cytosol (Figure 361 

S8F). The loops protruding into the PV lumen of PfPMRT1 are generally larger than the cyto-362 

solic loops and possess stretches of negatively charged amino acids likely relevant for its 363 

transport function. Further functional characterization of PfMRT1 will deliver insight into its 364 

transporter capabilities and its physiological role.  365 

Our phylogenetic analysis confirmed PMRT1 as unique for Plasmodium species with high 366 

sequence conservation only within the Laverania subgenus (72). In line with data from ge-367 

nome-wide mutagenesis screens (63, 67) and reported failed knockout attempts in P. yoelii 368 

(69), we found that PfPMRT1 is essential for parasite growth, as its functional inactivation 369 

resulted in growth arrest at the trophozoite stage accompanied by the accumulation of PPM-370 

derived protrusions within the parasite. In contrast, conditional knockdown resulted only in a 371 

growth delay, indicating that minor residual PfPMRT1 protein levels appear to be sufficient to 372 
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promote parasite growth. This finding was validated by episomal expression of an allelic copy 373 

under the control of the weak sf3a2 promoter (55) in the PfPMRT1 knockout parasites. Addi-374 

tionally, we found that PfPMRT1 is essential for early gametocytogenesis. Interestingly, the 375 

induction of the knockout at stage II–III had no effect on gametocytogenesis. This might be 376 

due to sufficient amounts of PfPMRT1 already present at the PPM, but could also indicate 377 

that the function of the transporter is not required for later stage gametocyte maturation.  378 

For future work, further functional and pharmacological characterization of this transporter 379 

will provide insights into its biological role in different stages of the parasites life cycle, as 380 

transcriptomic data indicates – along with expression in blood stages (34, 35) – PfPMRT1 is 381 

expressed in oocysts of P. falciparum (73, 74) and P. berghei (75).  382 

Material and methods 383 

Cloning of plasmid constructs for parasite transfection 384 

For endogenous tagging using the SLI system (41) a 889 bp (for PfPMRT1; 385 

PF3D7_1135300), 905 bp (PfFVRT1; PF3D7_0523800), 827bp (PfZIP1; PF3D7_0609100), 386 

873 bp (PfDMT2; PF3D7_0716900), 877 bp (PfMFS6; PF3D7_1440800), 785 bp (PfCDF; 387 

PF3D7_0715900) long homology region (HR) was amplified using 3D7 gDNA and cloned 388 

into pSLI-GFP-glmS (76) (derived from pSLI-GFP (41)) using the NotI/MluI restriction site. In 389 

order to generate PfPMRT1-2xFKBP-GFP a 1000 bp long HR was amplified using 3D7 390 

gDNA and cloned into pSLI-2xFKBP-GFP (41).  391 

For SLI-based targeted gene disruption (SLI-TGD) (41) a 501 bp (PfPMRT1), 378 bp 392 

(PfFVRT1), 511 bp (PfZIP1), 399 bp (PfDMT2), 396 bp (PfMFS6), 741 bp (PfCDF) long ho-393 

mology region was amplified using 3D7 gDNA and cloned into the pSLI-TGD plasmid (41) 394 

using NotI and MluI restriction sites. 395 

For conditional deletion of PfPMRT1, the first 492 bp of the PfPMRT1 gene were PCR ampli-396 

fied to append a first loxP site and a recodonized T2A skip peptide. The recodonized full-397 

length coding region of PfPMRT1 was synthesized (GenScript, Piscataway, NJ, USA) and 398 

PCR amplified with primers to add a second loxP site after the gene to obtain a second 399 

fragment. Both fragments were cloned into pSLI-3xHA (55), using NotI/SpeI and AvrII/XmaI 400 

sites. This resulted in plasmid pSLI-PfPMRT1-loxP and the resulting transgenic cell line after 401 

successful genomic modification was transfected with pSkip-Flox (41) using 2 μg/ml 402 

Blasticidin S to obtain a line expressing the DiCre fragments (condΔPMRT1). 403 

For complementation constructs, the recodonized PfPMRT1 gene was PCR amplified using 404 

primers to append the TY1 sequence and cloned via XhoI and AvrII or KpnI into pEXP1comp 405 

(55) containing yDHODH as a resistance marker and different promoters (nmd3 406 

(PF3D7_0729300), sf3a2 (PF3D7_0619900)) driving expression of the expression cassette. 407 

This resulted in plasmids c-nmdrPfPMRT1-ty1 and c-sf3a2PfPMRT1-ty1.  408 
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PfPMRT1 homologues of P. vivax (PVP01_0936100) (77) and P. knowlesi (PKNH_0933400) 409 

(78) were amplified from parasite gDNA and cloned into pnmd3EXP1comp (55) via the 410 

XhoI/AvrII restriction site. For co-localization experiments the plasmids pLyn-FRB-mCherry 411 

(41), P40PX-mCherry (44), pARL-crtACP-mCherry (46), pARL-ama1ARO-mCherry (49) and 412 

pARL-ama1AMA1-mCherry (51) were used. For conditional gametocyte induction yDHODH 413 

was amplified by PCR from pARL-ama1AMA1-mCherry-yDHODH (51) and cloned into GDV1-414 

GFP-DD-hDHFR(59)(59) using the XhoI/XhoI restriction site.  415 

Oligonucleotides and plasmids used in this study are listed in Table S1A and S1B. 416 

P. falciparum culture and transfection 417 

Blood stages of P. falciparum 3D7 were cultured in human erythrocytes (O+). Cultures were 418 

maintained at 37°C in an atmosphere of 1% O2, 5% CO2 and 94% N2 using RPMI complete 419 

medium containing 0.5% Albumax according to standard protocols (79). To maintain syn-420 

chronized parasites, cultures were treated with 5% sorbitol (80).  421 

Induction of gametocytogenesis was done as previously described (58, 59). Briefly, GDV1-422 

GFP-DD expression was achieved by addition of 4 µM shield-1 to the culture medium and 423 

gametocyte cultures were treated with 50 mM N-acetyl-D-glucosamine (GlcNAc) for five days 424 

starting 72 hours post shield-1 addition to eliminate asexual parasites(81). Alternatively, 425 

asexual ring stage cultures with >10% parasitemia were synchronized with Sorbitol (80) 426 

cultured for 24 hours and treated with 50 mM N-acetyl-D-glucosamine (GlcNAc) (81) for five 427 

days.   428 

For transfection, Percoll-purified (82) late-schizont-stage parasites were transfected with 50 429 

µg of plasmid DNA using Amaxa Nucleofector 2b (Lonza, Switzerland) as previously de-430 

scribed(83). Transfectants were selected either using 4 nM WR99210 (Jacobus Pharmaceu-431 

ticals), 2 μg/ml Blasticidin S (Life Technologies, USA), or 0.9 μM DSM1 (84) (BEI Resources; 432 

https://www.beiresources.org). In order to select for parasites carrying the genomic modifica-433 

tion using the SLI system (41), G418 (Sigma-Aldrich, St. Louis, MO) at a final concentration 434 

of 400 µg/ml was added to 5% parasitemia culture. The selection process and testing for 435 

integration were performed as previously described (41). 436 

For SLI-TGD, a total of six (PfPMRT1, PfDMT2, PfZIP1, PfCDF) or eight (PfFVRT1, PfMFS6) 437 

independent 5 ml cultures containing the episomal plasmid were selected under G418 for at 438 

least eight weeks. 439 

Imaging and immunofluorescence analysis (IFA) 440 

Fluorescence images of infected erythrocytes were observed and captured using a Zeiss 441 

Axioskop 2plus microscope with a Hamamatsu Digital camera (Model C4742-95), a Leica 442 

D6B fluorescence microscope equipped with a Leica DFC9000 GT camera and a Leica Plan 443 

Apochromat 100x/1.4 oil objective or an Olympus FV3000 with a x100 MPLAPON oil objec-444 
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tive (NA 1.4). Confocal microscopy was performed using a Leica SP8 microscope with laser 445 

excitation at 405 nm, 490 nm, and 550 nm for DAPI, GFP, and mCherry excitation, respec-446 

tively. An HC PL APO 63x NA 1.4 oil immersion objective was used and images were ac-447 

quired with the HyVolution mode of the LASX microscopy software. After recording, images 448 

were deconvolved using Huygens (express deconvolution, setting ‘Standard’). 449 

Microscopy of unfixed IEs was performed as previously described (85). Briefly, parasites 450 

were incubated in RPMI1640 culture medium with Hoechst-33342 (Invitrogen) for 15 minutes 451 

at 37°C prior to imaging. 7 µl of IEs were added on a glass slide and covered with a cover 452 

slip. Control images of 3D7 wild type parasites across the IDC are included in Figure S8D, E.  453 

BODIPY TR C5 ceramide (Invitrogen) staining was performed by adding the dye to 32 hours 454 

post invasion parasites in a final concentration of 2.5 μM in RPMI as previously described 455 

(85). For DHE staining of the parasite cytosol (44), 80 µl of resuspended parasite culture 456 

were incubated with DHE at a final concentration of 4.5 µg/ml in the dark for 15 minutes prior 457 

to imaging.  458 

IFAs were performed as described previously (86). Briefly, IEs were smeared on slides and 459 

air-dried. Cells were fixed in 100% ice cold methanol for 3 minutes at -20°C. Afterwards, cells 460 

were blocked with 5% milk powder for 30 minutes. Next primary antibodies were diluted in 461 

PBS/3% milk powder and incubated for 2 hours, followed by three washing steps in PBS. 462 

Secondary antibodies were applied for 2 hours in PBS/3% milk powder containing 1 μg/ml 463 

Hoechst-33342 (Invitrogen) or DAPI (Roche) for nuclei staining, followed by 3 washes with 464 

PBS. One drop of mounting medium (Mowiol 4-88 (Calbiochem)) was added and the slide 465 

sealed with a coverslip for imaging.  466 

To assess the localisation of the endogenously HA-tagged PfPMRT1 IFAs were performed in 467 

suspension with Compound 2-stalled schizonts (87) to distinguish protein located at the PPM 468 

from that located at the PVM as previously done (55, 88). For this, trophozoite stages were 469 

treated with Compound 2 (1 μM) overnight, and arrested schizonts were harvested, washed 470 

in PBS, and fixed with 4% paraformaldehyde/0.0075% glutaraldehyde in PBS. Cells were 471 

permeabilized with 0.5% Triton X-100 in PBS, blocked with 3% BSA in PBS, and incubated 472 

overnight with primary antibodies diluted in 3% BSA in PBS. Cells were washed 3 times with 473 

PBS and incubated for 1 hour with Alexa 488 nm or Alexa 594 nm conjugated secondary 474 

antibodies specific for human and rat IgG (Invitrogen) diluted 1:2,000 in 3% BSA in PBS and 475 

containing 1 μg/ml DAPI. Cells were directly imaged after washing 5 times with PBS 476 

Antisera used: 1:200 mouse anti-GFP clones 7.1 and 13.1  (Roche), 1:500 rat anti-HA clone 477 

3F10 (Roche), 1:1000 human anti-MSP1 (89), 1:10000 mouse anti-TY1 (ThermoFischer Sci-478 

entific Cat.No: MA5-23513). Contrast and intensities were linear adjusted if necessary and 479 

cropped images were assembled as panels using Fiji (90), Corel Photo-Paint X6 and 480 

Adobe Photoshop CC 2021. 481 
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Immunoblots 482 

For immunoblotting parasites were released from erythrocytes by incubation with 0.03% 483 

saponin in PBS for 10 minutes on ice followed by three wash steps with D-PBS. Proteins 484 

were then extracted with lysis buffer (4 % SDS, 0.5 % Triton X-100, 0.5x D-PBS in dH2O) in 485 

the presence of protease cocktail inhibitor (Roche) and 1 mM PMSF followed by addition of 486 

reducing SDS sample buffer and 5 minutes incubation at 55°C. Parasite proteins were sepa-487 

rated on a 10% SDS-PAGE gel using standard procedures and transferred to a nitrocellulose 488 

membrane (Amersham™Protran™ 0.45 µm NC, GE Healthcare) using a transblot device 489 

(Bio-Rad) according to manufacturer’s instructions or to a nitrocellulose membrane (Licor) in 490 

a tankblot device (Bio-Rad) using transfer buffer (0.192 M glycine, 0.1% SDS, 25 mM Tris-491 

HCl pH = 8.0) with 20% methanol.  492 

Rabbit anti-aldolase (91) and anti-SBP1 (91) antibodies were diluted 1:2,000, mouse anti-493 

GFP clones 7.1 and 13.1 (Roche) antibody was diluted 1:500 or 1:1,000, mouse anti-Ty1 494 

(Sigma) was diluted 1:20000, rabbit anti-BIP (92) was diluted 1:2500 and rat anti-HA clone 495 

3F10 (Roche) antibody was diluted 1:1,000. 496 

The chemiluminescent signal of the HRP-coupled secondary antibodies (Dianova) was visu-497 

alized using a Chemi Doc XRS imaging system (Bio-Rad) and processed with Image Lab 498 

Software 5.2 (Bio-Rad). To perform loading controls and ensure equal loading of parasite 499 

material anti-aldolase antibodies were used. The corresponding immunoblots were incubated 500 

two times in stripping buffer (0.2 M glycine, 50 mM DTT, 0.05% Tween 20) at 55°C for 1 hour 501 

and washed 3 times with TBS for 10 minutes. For Western blots shown in Figure 502 

S8C fluorescent signals of secondary goat anti-rabbit IgG coupled to IRDye® 680CW and 503 

goat anti-mouse IgG coupled to IRDye® 800CW were visualized using Odyssey Fc Imager 504 

by LI-COR Biosciences. 505 

Growth Assay 506 

A flow cytometry-based assay adapted from previously published assays (44, 93) was per-507 

formed. For this, parasite cultures were resuspended and 20 µl samples were transferred to 508 

an Eppendorf tube. 80 µl RPMI containing Hoechst-33342 and dihydroethidium (DHE) was 509 

added to obtain final concentrations of 5 µg/ml and 4.5 µg/ml, respectively. Samples were 510 

incubated for 20 minutes (protected from UV light) at room temperature, and parasitemia was 511 

determined using an LSRII flow cytometer by counting 100,000 events using the FACSDiva 512 

software (BD Biosciences) or using an ACEA NovoCyte flow cytometer.  513 

Stage distribution assay 514 

In order to obtain tightly synchronized parasite cultures, percoll purified schizonts (82) were 515 

cultured for four hours together with fresh erythrocytes, followed by sorbitol synchronization 516 

and resulting in a four-hour age window of parasites. Next, the culture was divided in four 517 
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dishes and rapalog was added at a final concentration of 250 nM immediately to one dish 518 

and at 20 hours post invasion (hpi) and 32 hpi to the respective dishes. Giemsa smears and 519 

samples for flow cytometry were collected at the indicated timepoints. The parasitemia was 520 

determined using a flow cytometry assay and the stages were determined microscopically 521 

counting at least 50 infected erythrocytes per sample and timepoint.  522 

Gametocyte stage distribution assay 523 

Giemsa-stained blood smears 10 days post induction of GDV1 expression were obtained 524 

and at least 10 fields of view were recorded using a 63x objective per treatment and time 525 

point. Erythrocyte numbers were then determined using the automated Parasitemia software 526 

(http://www.gburri.org/parasitemia/) while the number of gametocytes, pycnotic and asexual 527 

parasites was determined manually in >1800 erythrocytes per sample. This assay was done 528 

blinded.  529 

GlmS-based knockdown 530 

GlmS based knockdown assay was adapted from previously published assays (42, 76). To 531 

induce knockdown 2.5 or 5 mM glucosamine was added to highly synchronous early rings 532 

stage parasites. As a control, the same amount of glucosamine was also added to 3D7 533 

wildtype parasites. For all analyses, the growth medium was changed daily, and fresh glu-534 

cosamine were added every day. 535 

Knockdown was quantified by fluorescence live cell microscopy at day 1 and 3 of the growth 536 

assay. Parasites with similar size were imaged, and fluorescence was captured with the 537 

same acquisition settings to obtain comparable measurements of the fluorescence intensity. 538 

Fluorescence intensity (integrated density) was measured with Fiji(90), and background was 539 

subtracted in each image. The data were analyzed with Graph Pad Prism version 8. 540 

GlmS based knockdown experiments in gametocytes were performed as described previ-541 

ously (94). Briefly, synchronized ring stage cultures were induced by the addition of shield-1. 542 

At day 3 post induction the culture was spilt into two dishes and one dish was cultured in the 543 

presence of 2.5 mM glucosamine for the remaining ten days. Knockdown was quantified by 544 

fluorescence live cell microscopy at day 7 and 10 post induction, as described above and 545 

gametocyte parasitemia was determined at day 10 post induction using the automated 546 

Parasitemia software (http://www.gburri.org/parasitemia/).  547 

DiCre mediated conditional knockout 548 

The parasites containing the integrated pSLI-PfPMRT1-loxP construct were transfected with 549 

pSkip-Flox (41) using 2 μg/ml Blasticidin S to obtain a line expressing the DiCre fragments. 550 

To induce excision, the tightly synchronized parasites (detailed description see growth as-551 

say) were split into 2 dishes and rapalog was added to one dish (Clontech, Mountain View, 552 

CA) to a final concentration of 250 nM. The untreated dish served as control culture. Excision 553 
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was verified at genomic level after 24 and 48 hours of cultivation by PCR and on protein level 554 

by Western blot using anti-HA antibodies.  555 

Phylogenetic analysis 556 

A blastp search of the PMRT1 sequence (PlasmoDB (38): PF3D7_1135300; UniProt: 557 

Q8II12) was performed against the nr database (9 May 2021) using Geneious Prime 558 

2021.2.2 (https://www.geneious.com) and an E-value of 10e-0 (BLOSUM62 substitution ma-559 

trix). Blast hits were filtered for sequences from taxa represented in the currently favored 560 

haemosporidian parasite phylogeny (95). The phylogeny derived from an amino acid align-561 

ment using Bayesian framework with a partitioned supermatrix and a relaxed molecular clock 562 

(18_amino_acid_partitioned_BEAST_relaxed_clock_no_outgroup.tre; (95)) was visualized 563 

with associated data using the R package ggtree v3.3.0.900 (96, 97). A multiple protein se-564 

quence alignment of PMRT1 and homologous sequences was performed using MAFFT 565 

v7.490 (98) using the G-INS-I algorithm to obtain a highly accurate alignment. Protein statis-566 

tics were calculated using Geneious Prime 2021.2.2 (https://www.geneious.com) and EM-567 

BOSS pepstats v6.6.0.0 (99). 568 

Prediction of protein structures   569 

AlphaFold structure predictions (39) were retrieved from https://alphafold.ebi.ac.uk and the 570 

PDB used for DALI protein structure homology search (40). PyMOL Molecular Graphics Sys-571 

tem, Version 2.5.2 Schrödinger was used for visualization of all structures, generation of fig-572 

ures and the calculation of the root mean square deviation (RMSD) between the predicted 573 

crystal structure of PfPMRT1 and the Maquette-3 protein (PDB: 5vjt (60)) by cealign. The 574 

Adaptive Poisson-Boltzmann Solver (APBS) within PyMOL was used to predict the surface 575 

electrostatics of PfPMRT1. 576 

Parasite icons were generated using BioRender (biorender.com), plasmids and oligonucleo-577 

tides were designed using ApE (100) and statistical analysis was performed using GraphPad 578 

Prism version 8 (GraphPad Software, USA).  579 
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 611 

Figures 612 

Figure 1: Subcellular localization of six putative P. falciparum transporters during 613 

asexual blood stage development. 614 

(A) Schematic representation of endogenous tagging strategy using the selection-linked in-615 

tegration system (SLI). pink, human dihydrofolate dehydrogenase (hDHFR); grey, homology 616 

region (HR); green, green fluorescence protein (GFP) tag; dark grey, T2A skip peptide; blue, 617 

neomycin resistance cassette; orange, glmS cassette. Stars indicate stop codons, and ar-618 

rows depict primers (P1 to P4) used for the integration check PCR. (B–G) Localization of (B) 619 

PfFVRT1-GFP-glmS, (C) PfZIP1-GFP-glmS, (D) PfCDF-GFP-glmS, (E) PfDMT2-GFP-glmS, 620 

(F) PfMFS6-GFP-glmS and (G) PfPMRT1-GFP-glmS by live-cell microscopy in ring, 621 

trophozoite and schizont stage parasites. Nuclei were stained with Hoechst-33342. (H) Co-622 

localization of the GFP-tagged putative transporters with marker proteins P40PX-mCherry 623 

(food vacuole), ACP-mCherry (apicoplast), Lyn-mCherry (parasite plasma membrane), ARO-624 
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mCherry (rhoptry) and AMA1-mCherry (microneme) as indicated. Nuclei were stained with 625 

Hoechst- 33342. Scale bar, 2 µm. 626 

 627 

Figure 2: Conditional knockdown of putative transporter indicate importance of 628 

PfDMT2 and PfPMRT1 for parasites fitness.   629 

(A–C) Live cell microscopy and quantification of knockdown by measuring mean fluores-630 

cence intensity (MFI) density and size (area) of (A) PfDMT2-GFP-glmS (B) PfMFS6-GFP-631 

glmS and (C) PfPMRT1-GFP-glmS parasites 40 hours after treatment without (control) or 632 

with 2.5 mM glucosamine. Scale bar, 2 µm. Statistics are displayed as mean +/- SD of three 633 

(A–B) or four (C) independent experiments and individual data points are color-coded by ex-634 

periments according to Superplots guidelines (101). P-values displayed were determined 635 

with two-tailed unpaired t-test. (D) Growth of parasites treated without (control) or with 2.5 636 

mM glucosamine determined by flow cytometry is shown as relative parasitemia values after 637 

two cycles. Shown are means +/- SD of three (PfPMRT1-GFP-glmS, PfDMT2-GFP-glmS, 638 

PfMFS6-GFP-glmS) and five (3D7 wild type parasites) independent growth experiments. P-639 

values displayed were determined with unpaired t test with Welch correction and Benjamin-640 

Hochberg for multiple testing correction. Individual growth curves are shown in Figure S4G. 641 

(E) Growth of PfPMRT1-glmS and 3D7 parasites after treatment with 2.5 mM (left panel) and 642 

5 mM glucosamine (right panel) compared to untreated control parasites over five consecu-643 

tive days. P-values displayed were determined for comparison between PfPMRT1-glmS and 644 

3D7 parasites at day 3 using two-tailed Wilcoxon rank sum test. (F) Mean +/- SD distribution 645 

of ring and schizont stage parasites in PfPMRT1-glmS and 3D7 cell lines treated without 646 

(control), with 2.5 mM or 5 mM glucosamine at 84 hpi (80 hours post addition of glucosa-647 

mine) of three independent experiments. P-values displayed were determined using the 648 

Conover-Iman rank sum test and Benjamini-Hochberg method for multiple testing correction 649 

after Kruskal-Wallis testing. 650 

Figure 3: PfPMRT1 is essential for asexual blood stage development. 651 

(A) Simplified schematic of DiCre-based conditional PfPMRT1 knockout using selection-652 

linked integration (SLI). Pink, human dihydrofolate dehydrogenase (hDHFR); grey, homology 653 

region (HR); green, T2A skip peptide; light blue, recodonized PfPMRT1; dark blue, 3xHA tag, 654 

yellow, neomycin phosphotransferase resistance cassette; orange, loxp sequence. Scissors 655 

indicate DiCre mediated excision sites upon addition of rapalog. Stars indicate stop codons, 656 

and arrows depict primers (P1 to P5) used for the integration check PCR and excision PCR.  657 

(B) Diagnostic PCR of unmodified wildtype and transgenic condΔPMRT1 knock-in (KI) cell 658 

line to check for genomic integration using Primer P1-P4 as indicated in (A). (C) Immunofluo-659 

rescence assay (IFA) of condΔPMRT1 late stage schizont parasites showing localization of 660 
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PfPMRT1-3xHA at the parasite plasma membrane (PPM) co-localizing with the merozoite 661 

surface protein 1 (MSP1). (D) Diagnostic PCR to verify the excision at genomic level at 24 662 

hpi / 20 hours post rapalog addition for condΔPMRT1 and at 48 hpi for condΔPMRT1, c-663 
nmd3PfPMRT1-ty1 and c-sf3a2PfPMRT1-ty1 parasites using Primer P1-P5 as indicated in (A). 664 

Black arrow head, original locus; red arrow head, excised locus. (E) Western blot using α-HA 665 

to verify knockout of PfPMRT1 on protein level 4, 24 and 48 hours post invasion. Expected 666 

molecular weight of PfPMRT1-3xHA: 53.3 kDa. Antibodies detecting Aldolase and SBP1 667 

were used as loading controls. (F) Growth curves of condΔPMRT1, c-nmd3PfPMRT1-ty1 and 668 

c-sf3a2PfPMRT1-ty1 parasites +/- rapalog monitored over five days by flow cytometry. One 669 

representative growth curve is depicted (replicates in Figure S5). Summary is shown as rela-670 

tive parasitemia values, which were obtained by dividing the parasitemia of rapalog treated 671 

cultures by the parasitemia of the corresponding untreated ones. Shown are means +/- SD of 672 

three (condΔPMRT1, c-nmd3PfPMRT1-ty1) or four (c-sf3a2PfPMRT1-ty1) independent growth 673 

experiments. (G) IFA of condΔPMRT1 complemented with C-terminal TY1-tagged PfPMRT1 674 

constructs expressed either under the constitutive nmd3 or the weak sf3a2 promoter to verify 675 

PPM localization. Scale bar, 2 µm. 676 

 677 

Figure 4: Knockout of PfPMRT1 results in accumulation of PPM-derived protrusions 678 

and growth arrest at the trophozoite stage. 679 

(A) Parasite stage distribution in Giemsa smears displayed as heatmap showing percentage 680 

of parasite stages for tightly synchronized (+/- 2 h) 3D7 control and condΔPMRT1 (rapalog 681 

treated at 4 hpi, 20 hpi or 32 hpi) parasite cultures over two consecutive cycles. A second 682 

replicate is shown in Figure S6A (B) Giemsa smears of control and at 4 hpi rapalog treated 683 

condΔPMRT1 parasites over two cycles. Scale bar, 5 µm. (C) Live cell microscopy of 4 hour 684 

window synchronized 3D7 control and condΔPMRT1 parasites +/- rapalog stained with 685 

dihydroethidium (DHE) at 20–32 hpi. (D) Quantification of parasites displaying protrusions 686 

(green) for 4 hour window synchronized 3D7 control and rapalog treated condΔPMRT1 para-687 

sites. Shown are percentages of normal parasites versus parasites displaying protrusions as 688 

means +/- SD of three independent experiments. (E) Live cell microscopy of 8 hour window 689 

synchronized 3D7 control and rapalog treated condΔPMRT1 parasites, episomally express-690 

ing the PPM marker Lyn-mCherry at 24–40 hpi. (F) Live cell microscopy of 3D7 control and 691 

condΔPMRT1 parasites +/- rapalog stained with BODIPY TR C5 ceramide at 32 hpi. Scale 692 

bar, 2 µm. 693 

 694 

Figure 5: PfPMRT1 is essential for early gametocyte development. 695 
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(A) Live cell microscopy of 3D7-iGP-PfPMRT1-GFP parasites across the complete gameto-696 

cyte development. White arrow heads indicate remaining GDV1-GFP signal observed in 697 

close proximity to the Hoechst signal, as previously reported (59, 94, 102, 103). (B) Live cell 698 

microscopy of PfPMRT1-GFP parasites expressing the PPM marker Lyn-mCherry. Nuclei 699 

were stained with Hoechst-33342. Scale bar, 2 µm. (C) Experimental setup of gametocyte 700 

induction upon GDV1-GFP-DD expression (+shield-1) and conditional PfPMRT1 knockout 701 

(+rapalog) and elimination of asexual blood stage parasites (+GlcNac). (D) Gametocyte de-702 

velopment over 12 days of condΔPMRT1/GDV1-GFP-DD or 3D7-iGP parasites without (con-703 

trol) or with rapalog addition at day 3 (3 dpi) or day 5 (5 dpi) after induction of sexual com-704 

mitment by conditional expression of GDV1-GFP upon addition of shield-1. Scale bar, 5 µm. 705 

(E) Diagnostic PCR to verify the excision on genomic level at 5 dpi and 12 dpi. Black arrow 706 

head, original locus; red arrow head, excised locus. (F) Representative Giemsa smears and 707 

quantification of parasite stage distribution at day 10 post induction for parasites treated 708 

without (control) or with rapalog at day 3 post induction. For each condition parasitemia and 709 

parasite stages distribution in (ΔPMRT1: ncontrol= 3370, 2304, 2759 and nrapalog = 3010, 1830, 710 

2387; 3D7-iGP: ncontrol= 4985, 4685, 5206 and nrapalog = 4930, 4332, 5384) erythrocytes of 711 

three independent experiments were determined and are displayed as percentage. Nuclei 712 

were stained with Hoechst-33342. Scale bar, 10 µm. 713 

 714 

Figure 6: PMRT1 is a genus-specific transporter with conserved function. 715 

(A) Phylogenetic tree of haemosporidian parasites (modified from (95)) containing PMRT1 716 

homologous sequences associated with data on pairwise amino acid sequence identity to 717 

PfPMRT1. The phylogeny is derived from Bayesian Inference using BEAST using a fully par-718 

titioned amino acid dataset and lognormal relaxed molecular clock (95). Silhouettes depict 719 

representatives of the vertebrate hosts for each lineage and white filled bars indicate pair-720 

wise identities of PMRT1 homologs used for subsequent complementation assays. (B) Struc-721 

tural alignment of predicted PfPMRT1 structure with Maquette-3 protein (PDB: 5vjt) (60). 722 

Both structures have a root mean square deviation (RMSD) over the aligned α-carbon posi-723 

tion of 3.12 over 184 residues calculated in PyMol. (C) IFA of c- nmd3Pk-ty1 and c- nmd3Pv-ty1 724 

parasites to verify correct localization of the expressed complementation fusion proteins at 725 

the parasite plasma membrane. Nuclei were stained with Hoechst-33342. Scale bar, 2 µm.  726 

(D) Growth of condΔPMRT1 parasites complemented with PfPMRT1 homologs from P. vivax 727 

(PVP01_0936100) and P. knowlesi (PKNH_0933400). Shown are relative parasitemia val-728 

ues, which were obtained by dividing the parasitemia of rapalog treated cultures by the 729 

parasitemia of the corresponding untreated controls together with means +/- SD from three c- 730 
nmd3Pf-ty1 (≙ c-nmd3PfPMRT1-ty1 Figure 3D, S5B) and six (c- nmd3Pk-ty1, c- nmd3Pv-ty1) inde-731 

pendent growth experiments. One sample t-test (E) Diagnostic PCR to verify the excision of 732 
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PfPMRT1 on genomic level at 48 hpi for c- nmd3Pf-ty1, c- nmd3Pk-ty1 and c- nmd3Pv-ty1 para-733 

sites. Black arrow head, original locus; red arrow head, excised locus. 734 

 735 

Figure S1: Structure predictions and structure homology search of candidate proteins 736 

(A) AlphaFold structure predictions of the six selected orphan transporters visualized in 737 

PyMol. (B) Results from protein structure comparison server Dali using the AlphaFold-738 

generated PDB files of the selected transporters as input structure. Shown are the top five 739 

non-redundant hits with Z score (significance estimate), msd (difference between the root-740 

mean-square-deviation (rmsd) value associated with a protein structure pair and the rmsd 741 

value that would have been observed in the case that the two structures had the same crys-742 

tallographic resolution), lali (number of aligned positions), nres (number of residues in the 743 

matched structure) and %id (the percentage sequence identity in the match).  744 

 745 

Figure S2: Validation of generated transgenic cell lines by PCR and Western blot. 746 

(A) Confirmatory PCR of unmodified wildtype (WT) and transgenic knock-in (KI) cell lines 747 

(PF3D7_0523800-GFP-glmS (PfFVRT1), PF3D7_0609100-GFP-glmS (PfZIP1), 748 

PF3D7_0715900-GFP-glmS (PfCDF), PF3D7_0716900-GFP-glmS (PfDMT2), 749 

PF3D7_1440800-GFP-glmS (PfMFS6) and PF3D7_1135300-GFP-glmS (PfPMRT1)) to 750 

check for genomic integration at the 3’- and 5’-end of the locus. Position of the primer used 751 

are indicated with numbered arrows in Figure 1A. (B) Western Blot analysis of wildtype (3D7) 752 

and knock-in (KI) cell lines using mouse anti-GFP to detect the tagged full-length protein 753 

(upper panel) and rabbit anti-aldolase to control for equal loading (lower panel). Protein size 754 

is indicated in kDa. Expected molecular weight for GFP fusion proteins: PfFVRT1 (107.5 755 

kDa), PfZIP1 (69.0 kDa), PfDMT2 (66.4 kDa), PfMFS6 (98.8 kDa), PfPMRT1 (77.5 kDa), 756 

PfCDF (91.6 kDa) (C) Localization of PfCDF-3xHA by IFA in ring, trophozoite and schizont 757 

parasites. Nuclei were stained with Hoechst. Diagnostic PCR of unmodified wildtype (WT) 758 

and transgenic knock-in (KI) cell line. (D) Localization of PfPMRT1_2xFKBP-GFP across the 759 

IDC. Nuclei were stained with DAPI. Scale bar, 2 µm. Diagnostic PCR of unmodified wildtype 760 

(WT) and transgenic knock-in (KI) cell line. (E) Localization of PfZIP1-GFP in merozoites. 761 

Nuclei were stained with DAPI. Scale bar, 2 µm. (F) Confocal microscopy of PfPMRT1-GFP 762 

co-expressing the PPM marker Lyn-mCherry. Scale bar, 1µm. Nuclei were stained with 763 

Hoechst.   764 

 765 

Figure S3: Targeted gene disruption (TGD) of PfZIP1 and PfCDF. 766 

A) Schematic representation of TGD strategy using the selection-linked integration system 767 

(SLI). pink, human dihydrofolate dehydrogenase (hDHFR); grey, homology region (HR); 768 
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green, green fluorescence protein (GFP) tag; dark grey, T2A skip peptide; blue, neomycin 769 

resistance cassette. Stars indicate stop codons, and arrows depict primers (P1 to P4) used 770 

for the integration check PCR. (B) Localization of PfZIP1-TGD-GFP in ring, trophozoite and 771 

schizont parasites. Nuclei were stained with Hoechst-33342. Scale bar, 2 µm. Confirmatory 772 

PCR of unmodified wildtype (WT) and transgenic targeted gene disruption (TGD) cell line. 773 

Growth curves of PfZIP1-TGD vs. 3D7 parasites monitored over five days by FACS. Three 774 

independent growth experiments were performed and a summary is shown as percentage of 775 

growth compared to 3D7 parasites. (C) Localization of PfCDF-TGD in ring, trophozoite and 776 

schizont parasites. Nuclei were stained with DAPI. Confirmatory PCR of unmodified wildtype 777 

(WT) and transgenic targeted gene disruption (TGD) cell line. Scale bar, 1 µm.  778 

 779 

Figure S4: Conditional knockdown via glmS system.  780 

Live cell microscopy of (A) PfFVRT1-GFP-glmS, (B) PfCDF-GFP-glmS, (C) PfZIP1-GFP-781 

glmS (D) PfDMT2-GFP-glmS, (E) PfMFS6-GFP-glmS and (F) PfPMRT1-GFP-glmS parasites 782 

40 hours after treatment without (control) or with 2.5 mM Glucosamine. Nuclei were stained 783 

with Hoechst-33342. Scale bar, 2 µm. (G) Individual growth curves of the growth assays 784 

shown in Figure 2D. (H) PCR using a GFP forward and glmS reverse primer confirming the 785 

presence of the GFP and glmS sequence in the pSLI-PfFVRT1-GFP-glmS and PfCDF-GFP-786 

glmS plasmids. pSLI-PF3D7_0631900-GFP (35) was used as negative control.  787 

 788 

Figure S5: Conditional knockout of PfPMRT1 via DiCre-based system 789 

Replicates of growth curves of condΔPMRT1, c-nmd3PfPMRT1-ty1 and c-sf3a2PfPMRT1-ty1 790 

parasites +/- rapalog monitored over five days by FACS shown in Figure 3. 791 

 792 

Figure S6: Conditional knockout of PfPMRT1 793 

(A) Parasite stage distribution in Giemsa smears displayed as heatmap showing percentage 794 

of stages for control, 4 hpi, 20 hpi or 32 hpi rapalog treated 4 hour window synchronized 795 

condΔPMRT1parasite cultures over one cycle. (B) Giemsa smears of control and 4 hpi, 20 796 

hpi or 32 hpi rapalog treated parasites at 4, 16, 20, 24, 32, 40 and 48 hpi. Scale bar, 5 µm.  797 

 798 

Figure S7: Conditional knockdown of PfPMRT1 has no effect during gametocyte de-799 

velopment. 800 

(A) Confirmatory PCR of unmodified wildtype (WT) and transgenic 3D7-iGP-PfPMRT1-GFP-801 

glmS to check for genomic integration at the 3’- and 5’-end of the locus. Position of the pri-802 

mer used are indicated with numbered arrows in Figure 1A. (B) Schematic representation of 803 
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the experimental setup. (C) Live cell microscopy of 3D7-iGP-PfPMRT1-GFP stage I – V ga-804 

metocytes. Scale bar, 2 µm. (D) Giemsa smears of stage I – V gametocytes cultured either 805 

without (control) or with 2.5 mM glucosamine. Scale bar, 5 µm. (E) Quantification of knock-806 

down by measuring mean fluorescence intensity (MFI) density and size (area) of parasites at 807 

day 7 and day 12 post induction of gametocytogenesis cultured either without (control) or 808 

with 2.5 mM glucosamine. Scale bar, 2 µm. Statistics are displayed as mean +/- SD of four 809 

independent experiments and individual data points are displayed as scatterplot color-coded 810 

by experiments according to Superplots guidelines(101)(101). P-values displayed were de-811 

termined with two-tailed unpaired t-test. (F) For each condition gametocytemia at day 10 post 812 

gametocyte induction was determined by counting between 1256-2653 (mean 2147) cells 813 

per condition in Giemsa-stained thin blood smears. Displayed are means +/- SD of inde-814 

pendent growth experiments with the number of experiments (n) indicated. P-values dis-815 

played were determined with two-tailed unpaired t-test. 816 

 817 

Figure S8: Individual growth curves of c- nmd3Pk-ty1 (A) and c- nmd3Pv-ty1 (B) parasites +/- 818 

rapalog monitored over two IDCs by FACS shown in Figure 6. (C) Western Blot analysis of c- 819 
nmd3Pf-ty1, c- nmd3Pk-ty1 and c- nmd3Pv-ty1 cell lines using mouse anti-ty1 to detect the tagged 820 

full-length protein (upper panel) and rabbit anti-BIP to control for loading (lower panel). Pro-821 

tein size is indicated in kDa. (D) and (E) 3D7 wild type parasites imaged across the IDC to 822 

establish autofluorescence levels with Zeiss Axioskop 2plus microscope (D) or Leica D6B 823 

fluorescence microscope (E). (F) Surface electrostatics of the predicted PfPMRT1 structure 824 

generated by APBS within PyMol. 825 

 826 

Table S1: Oligonucleotides and plasmids used in this study 827 

 828 
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