bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted January 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

FLEXIBLE AND EFFICIENT SIMULATION-BASED INFERENCE FOR
MODELS OF DECISION-MAKING

Jan Boelts':? Jan-Matthis Lueckmann! Richard Gao' Jakob H. Macke!-3

Machine Learning in Science, Excellence Cluster Machine Learning, University of Tiibingen
2Technical University of Munich
3Max Planck Institute for Intelligent Systems Tiibingen

January 19, 2022

ABSTRACT

Identifying parameters of computational models that capture experimental data is a central task in
cognitive neuroscience. Bayesian statistical inference aims to not only identify a single configuration
of best-fitting parameters, but to recover all model parameters that are consistent with the data and
prior knowledge. Statistical inference methods usually require the ability to evaluate the likelihood of
the model—however, for many models of interest in cognitive neuroscience, the associated likelihoods
cannot be computed efficiently. Simulation-based inference (SBI) offers a solution to this problem
by only requiring access to simulations produced by the model. Here, we provide an efficient SBI
method for models of decision-making. Our approach, Mixed Neural Likelihood Estimation (MNLE),
trains neural density estimators on model simulations to emulate the simulator. The likelihoods
of the emulator can then be used to perform Bayesian parameter inference on experimental data
using standard approximate inference methods like Markov Chain Monte Carlo sampling. While
most neural likelihood estimation methods target continuous data, MNLE works with mixed data
types, as typically obtained in decision-making experiments (e.g., binary decisions and associated
continuous reaction times). We demonstrate MNLE on two variants of the drift-diffusion model
(DDM) and compare its performance to a recently proposed method for SBI on DDMs, called
likelihood approximation networks (LAN, Fengler et al. 2021). We show that MNLE is substantially
more efficient than LANS, requiring six orders of magnitudes fewer model simulations to achieve
comparable likelihood accuracy and evaluation time while providing the same level of flexibility. We
include an implementation of our algorithm in the user-friendly open-source package sbi.

1 Introduction

Computational modeling is an essential part of the scientific process in cognitive neuroscience: Models are devel-
oped from prior knowledge and hypotheses, and compared to experimentally observed phenomena (Churchland and
Sejnowski, |1988; McClelland, 2009). Computational models usually have free parameters which need to be tuned
to find those models that capture experimental data. This is often approached by searching for single best-fitting
parameters using grid search or optimization methods. While this point-wise approach has been used successfully
(Lee et al., |2016; [Patil et al., [2016) it can be scientifically more informative to perform Bayesian inference over the
model parameters: Bayesian inference takes into account prior knowledge, reveals all the parameters consistent with
observed data, and thus can be used for quantifying uncertainty, hypothesis testing, and model selection (Lee, 2008}
Shiffrin et al.| [2008; [Lee and Wagenmakers|, 2014} [Schad et al.| 2021). Yet, as the complexity of models used in
cognitive neuroscience increases, Bayesian inference becomes challenging for two reasons. First, for many commonly
used models, computational evaluation of likelihoods is challenging because there is no analytical form available, and
numerical approximations of the likelihood are computationally expensive, rendering standard approximate inference
methods like Markov chain Monte Carlo (MCMC) inapplicable. Second, models and experimental paradigms in
cognitive neuroscience often induce scenarios in which inference is repeated for varying numbers of experimental trials
and changing hierarchical dependencies between model parameters (Lee, [2011). As such, fitting computational models
with arbitrary hierarchical structures to experimental data often still requires idiosyncratic and complex inference
algorithms.
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Figure 1: Training a neural likelihood estimator on simulated data to perform parameter inference. Our goal
is to perform Bayesian inference on models of decision-making for which likelihoods cannot be evaluated (here a
drift-diffusion model for illustration, left). We train a neural density estimation network on synthetic data generated by
the model, to provide access to (estimated) likelihoods. We use neural density estimators which account for the mixed
data types of decision-making models (e.g. discrete valued choices and continuous valued reaction times, middle). These
estimates can then be used for inference with MCMC, i.e., to obtain samples from the posterior over the parameters
of the simulator given experimental data (right). The inference can be performed for many inference scenarios like
varying number of trials or hierarchical inference without re-training the neural likelihood estimator.

Approximate Bayesian computation (ABC, |Sisson et al., 2018) offers a solution to the first challenge by enabling
Bayesian inference based on comparing simulated with experimental data, without the need to evaluate an explicit
likelihood function. Accordingly, various ABC methods have been applied to and developed for models in cognitive
neuroscience and related fields (Turner and Van Zandt, 2012} |2018; [Palestro et al.| 2018a; Kangasraasio et al.,[2019).
However, ABC methods are limited regarding the second challenge because they become inefficient as the number of
model parameters increases (Lueckmann et al., 2021) and require generating new simulations whenever the observed
data or parameter dependencies change.

More recent approaches from the field simulation-based inference (SBI, |Cranmer et al., [2020) have the potential to
overcome these limitations by using machine learning algorithms such as neural networks. Recently, [Fengler et al.
(2021)) presented an SBI-algorithm for a specific problem in cognitive neuroscience—inference for drift-diffusion
models (DDM). They introduced a new approach, called likelihood approximation networks (LANs), which uses
neural networks to predict log-likelihoods from data and parameters. The predicted likelihoods can subsequently be
used to generate posterior samples using MCMC methods. LANs are trained in a three-step procedure. First, a set
of N parameters is generated and for each of the N parameters the model is simulated M times. Second, for each
of the N parameters, empirical likelihood targets are estimated from the M model simulations using kernel density
estimation (KDE) or empirical histograms. Third, a training dataset consisting of parameters, data points and empirical
likelihood targets is constructed by augmenting the initial set of N parameters by a factor of 1000: for each parameter,
1000 data points and empirical likelihood targets are generated from the learned KDE. Finally, supervised learning
is used to train a neural network to predict log-likelihoods, by minimizing a loss function (the Huber loss) between
the network-predicted log-likelihoods and the (log of) the empirically estimated likelihoods. Overall, LANs require a
large number of model simulations such that the histogram-probability of each possible observed data and for each
possible combination of input parameters, can be accurately estimated—N - M model simulations, e.g., 1.5 - 106 - 10°
(150 billion) for the examples used in |[Fengler et al.| (2021). The extremely high number of model simulations will
make it infeasible for most users to run this training themselves, so that there would need to be a repository from which
users can download pre-trained LANs. This restricts the application of LANs to a small set of canonical models like
drift-diffusion models, and prohibits customization and iteration of models by users. In addition, the high simulation
requirement limits this approach to models whose parameters and observations are sufficiently low-dimensional for
histograms to be sampled densely.

To overcome these limitations, we propose an alternative approach called Mixed Neural Likelihood Estimation (MNLE).
MNLE builds on recent advances in probabilistic machine learning, and in particular on the framework of neural
likelihood estimation (Papamakarios et al.,|2019bj |Lueckmann et al., |2019) but is designed to specifically capture the
mixed data types arising in models of decision-making, e.g., discrete choices and continuous reaction times. Neural
likelihood estimation has its origin in classical synthetic likelihood (SL) approaches (Wood, 2010; | Drovandi et al.,
2018)). SL assumes the likelihood of the simulation-based model to be Gaussian (so that its moments can be estimated
from model simulations) and then uses MCMC methods for inference. This approach and various extensions of it have
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been widely used (Price et al., 2018};|Ong et al.,|2018;|An et al.|[2019; [Priddle et al.| 202 1)—but inherently they need
multiple model simulations for each parameter in the MCMC chain to estimate the associated likelihood.

Neural likelihood approaches instead perform conditional density estimation, i.e., they train a neural network to predict
the parameters of the approximate likelihood conditioned on the model parameters (e.g. Papamakarios et al., 2019b;
Lueckmann et al., 2019). By using a conditional density estimator, it is possible to exploit continuity across different
model parameters, rather than having to learn a separate density for each individual parameter as in classical SL. Recent
advances in conditional density estimation (such as normalizing flows (Papamakarios et al., 2019a)) further allow lifting
the parametric assumptions of classical SL methods and learning flexible conditional density estimators which are able
to model a wide range of densities, as well as highly nonlinear dependencies on the conditioning variable. In addition,
the neural likelihood estimator yields estimates of the probability density which are guaranteed to be non-negative
and normalized, and which can be both sampled and evaluated, acting as a probabilistic emulator of the simulator
(Lueckmann et al., 2019).

Our approach, MNLE, uses neural likelihood estimation to learn an emulator of the simulator. The training phase is
a simple two-step procedure: first, a training dataset of NV parameters 6 is sampled from a proposal distribution and
corresponding model simulations x are generated and second, the N parameter-data pairs (0, x) are directly used to
train a conditional neural likelihood estimator to estimate p(x|@). Like for LANS, the proposal distribution for the
training data can be any distribution over 6, and should be chosen to cover all parameter-values one expects to encounter
in empirical data. Here, we choose to use the prior that is used in the inference phase as the proposal distribution. To
account for mixed data types, we learn the likelihood estimator as a mixed model composed of one neural density
estimator for categorical data and one for continuous data, conditioned on the categorical data. This separation allows
us to choose the appropriate neural density estimator for each data type, e.g., a Bernoulli model for the categorical data
and a normalizing flow (Papamakarios et al.,2019a) for the continuous data. The resulting joined density estimator
gives access to the likelihood, which enables inference via MCMC methods, and it acts as an emulator that can generate
synthetic data. See Fig[T|for an illustration of our approach, and section ] for details.

Both LANs and MNLE:s allow for flexible inference scenarios common in cognitive neuroscience, e.g., varying number
of trials with same underlying experimental conditions or hierarchical inference, and need to be trained only once.
However, there is a key difference between the two approaches. LANs use feed-forward neural networks to perform
regression from model parameters to empirical likelihood targets obtained from KDE. MNLE learns the likelihood
directly by performing conditional density estimation on the simulated data without requiring likelihood targets. This
makes MNLE by design more simulation efficient than LANs—we will demonstrate empirically that it can learn
likelihood-estimators which are as good, or better, than those of LAN, but using a factor of 1.000.000 fewer simulations
(Fengler et al.| [2021). Moreover, MNLE results in a density estimator that is guaranteed to correspond to a valid
probability distribution and can also act as an emulator that can be sampled to generate synthetic data without running
the simulator. The simulation-efficiency of MNLEs allows users to explore and iterate on their own models without
generating a massive training dataset, rather than being restricted to canonical models for which pre-trained networks
have been provided by a central resource. To facilitate this process, we implemented our method as an extension to an
open-source toolbox for SBI methods (Tejero-Cantero et al.,|2020), and provide tutorials for user-friendly access.

2 Results

2.1 Evaluating the performance of mixed neural likelihood estimation (MNLE) on the drift-diffusion model

We first demonstrate the efficiency and performance of MLNESs on a classical model of decision-making, the drift-
diffusion model (DDM, Ratcliff and McKoon, 2008). The DDM is an influential phenomenological model of a
two-alternative perceptual decision-making task. It simulates the evolution of an internal decision variable that
integrates sensory evidence until one of two decision boundaries is reached and a choice is made (Fig[l] left). The
decision variable is modeled with a stochastic differential equation which, in the “simple” DDM version (as used in
Fengler et al.|2021)), has four parameters: the drift rate v, boundary separation a, the starting point w of the decision
variable, and the non-decision time 7. Given these four parameters @ = (v, a, w, 7), a single simulation of the DDM
returns data x containing a choice ¢ € {0, 1} and the corresponding reaction time in seconds rt € (7,0): x = (¢, t).

This version of the DDM is the ideal candidate for comparing the performance of different inference methods because
the likelihood of an observation given the parameters, L(x|@), can be calculated analytically (Navarro and Fuss, [2009}
in contrast to more complicated versions of the DDM, e.g., Ratcliff and Rouder| (1998)); Usher and McClelland|(2001);
Reynolds and Rhodes| (2009)). We evaluated MNLE'’s performance, and compared against the publicly available
pre-trained LAN neural networks (Fengler et al.| 2021)), based on the analytical likelihoods and the inferred posteriors
of the DDM.
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Figure 2: MNLE estimates accurate likelihoods for the drift-diffusion model. The classical drift-diffusion model
(DDM) simulates reaction times and choices of a two-alternative decision task and has an analytical likelihood which
can be used for comparing the likelihood approximations of MNLE and LAN. A) Example likelihood for a fixed
parameter 8 over a range of reaction times (reaction times for down- and up-choices shown towards the left and right,
respectively). B) Huber loss between analytical and estimated log-likelihoods shown for 100 simulated data calculated
over 1000 test parameters sampled from the prior. Box plot notches indicate 95% confidence intervals around the
median (black line). C) Same as in B but using mean squared error. D) Evaluation time for a batch of observed data
and parameters as used during inference given a 100-trial DDM observation and MCMC sampling with ten parallel
chains. Shown as mean over 100 repetitions, black bars indicate standard error of the mean. E) Number of simulations
from the model required for training. LAN results reproduced using pre-trained LANs from [Fengler et al.| (2021)). Note
the usage of log-scale.

2.2 MNLE learns accurate likelihoods with a fraction of the simulation budget

First, we evaluated the quality of likelihood approximations of MNLE, and compared it to that of a LAN. Both MNLEs
and LANSs were able to accurately approximate the likelihoods for both decisions and a wide range of reaction times
(see Fig[JA for an example, and section [£.3] for details of the comparison), although some deviations become visible in
the log-domain, for extremely unlikely reaction times (e.g. for likelihoods less than 10~%).

To quantitatively evaluate the quality of approximation, we calculated the Huber loss and mean-squared error (MSE)
between the true and approximated log-likelihoods (Fig[2B,C). The metrics were calculated as averages over (approxi-
mate) likelihoods of a fixed observation given 1000 parameters sampled from the prior, repeated for 100 observations
simulated from the DDM. We found that MNLEs were at least as accurate as LANs (median Huber loss, lower is
better, MNLE: 0.12, LAN: 0.16). On 85 out of the 100 comparisons, MNLE had a smaller Huber loss than LAN. This
pairwise comparison is significant under the binomial test (p < 107'2), but note that these are simulated data and
therefore the p-value can be arbitrarily inflated by increasing the number of comparisons. We note that the Huber loss is
the loss which is directly optimized by LANSs, and thus this comparison should in theory favor LANSs over alternative
approaches. When using the MSE for comparison, we similarly found that MNLEs achieved an error which was as
small, or smaller, than that of LANs (median MSE, MNLE: 0.52, LAN: 1.06; Figlzp). In this case, MNLEs achieved a
smaller MSE than LANS for 89 out of 100 comparisons (p < 10715, binomial test).

When using the learned likelihood estimators for inference with MCMC methods, their evaluation speed can be
important because MCMC often requires thousands of likelihood evaluations. We found that evaluating MNLE for a
batch of 100 trials and ten model parameters (as used during MCMC) took 4.34 + 0.04ms (mean over 100 repetitions
=+ standard error of the mean), compared to 5.2 & 0.03ms for LANS, i.e., MNLE did not incur a larger computational
foot-print at evaluation time (Fig[2D). Note that these timings are based on the implementation of LANs in |[Fengler]
et al.[(2021)), and evaluation times can depend on the implementation, compute infrastructure and parameter settings,
see section [4.3|for details and the Discussion.).
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Figure 3: Posterior accuracy for the drift-diffusion model. Posteriors given a 100-trial i.i.d. observation, obtained
with MCMC using analytical (i.e., reference) likelihoods, or those approximated using LANs and MNLE, respectively.
A) Posterior samples shown as a corner-plot, i.e., one-dimension marginal histograms (diagonal) and all pair-wise
two-dimensional marginals (upper triangle). B) Absolute difference in posterior sample mean normalized by reference
posterior standard deviation (zero is best). C) Absolute difference in posterior variances normalized by reference
posterior variance (zero is best). D) Ratio of approximate and reference posterior variance (one is best). E) Classification
2-sample test (C2ST) accuracy between approximate (LANs, MNLE) and reference posterior samples (0.5 is best). All
box plots show metrics calculated from 100 repetitions with different observations; box plot notches represent the 95%
confidence interval around the median (black line).

Finally, we compared the number of model simulations required for training: For this example, MNLE was trained
using 105 simulations. In contrast, for the LAN results in Fengler et al.|(2021) which we used for these comparisons,
more than 10! simulations were used (1.5 x 10° different parameter settings for training and simulated 10° times for
each of them to obtain empirical likelihood-targets).

Thus, in summary, we found that MNLE matched the performance of LANSs on the accuracy metrics (Fi gQB,C), was
equally fast to evaluate (Fig[2]D), but using up to six orders of magnitudes fewer simulations during training (Fig[2E).

2.3 MNLE enables accurate flexible posterior inference with MCMC

In the previous section, we showed that both methods were similarly accurate in approximating likelihoods. To
investigate whether these likelihood-estimates were accurate enough to support accurate parameter inference, we
evaluated the quality of the resulting posteriors, using a framework for benchmarking SBI performance (Lueckmann
et al., [2021). We used the analytical likelihoods of the simple DDM model to obtain reference posteriors using
MCMC sampling, for 100 different observations. Each observation consisted of 100 i.i.d. trials simulated with the
same parameter sampled from the prior (see Fig[3JA for an example, details in section[4.4). We found that MNLEs
approximated the posterior mean more accurately than LANs (median relative mean error MNLE: 0.32, LANs: 0.56),
and was more accurate in 76 out of 100 comparisons (p < 1075; see Fig). In terms of the posterior variance,
MNLE performed on par with LANs (median relative variance error MNLE: 0.21, LAN: 0.24), being more accurate
in 58 of 100 pairwise comparisons (p = 0.13). Additionally, we used ‘dispersion’, i.e., the ratio of estimated and
reference posterior variance, to quantify the accuracy of recovering the variance and found that both approaches slightly
overestimated the posterior variances (median dispersion MNLE: 1.12, median LAN: 1.16; Fig[3|C and D). Overall, we
found both MNLE and LAN posterior moments to be very close to the moments of the reference posteriors in absolute
terms (median absolute mean difference MNLE: 0.02, LANs: 0.03; median absolute variance difference MNLE: 0.0003,
LANs: 0.0002; Suppl. Fig[A.T[C).

Finally, we used the classifier 2-sample test (C2ST, [Lopez-Paz and Oquab, |2017; [Lueckmann et al.,|2021) to quantify
the similarity between the estimated and reference posterior distributions. The C2ST is defined to be the error-rate
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Figure 4: Parameter recovery and posterior uncertainty calibration for the DDM. A) Underlying ground-truth
DDM parameters plotted against the sample mean of posterior samples inferred with the analytical likelihoods (reference,
blue crosses), LAN (orange circles) and MNLE (green circles), for 100 different observations. Markers close to diagonal
indicate good recovery of ground-truth parameters; circles on top of blue reference crosses indicate accurate posterior
means. B) Simulation-based calibration results showing empirical cumulative density functions (CDF) of the ground-
truth parameters ranked under the inferred posteriors calculated from 100 different observations. A well-calibrated
posterior must have uniformly distributed ranks, as indicated by the area shaded gray. Shown for reference posteriors
(blue), LAN posteriors (orange) and MNLE posterior (green), and for each parameters separately (v, a, w and 7).

of a classification algorithm which aims to classify whether samples belong to the true or the estimated posterior.
Thus, it ranges from 0.5 (no difference between the distributions, the classifier is at chance level), to 1.0 (the classifier
can perfectly distinguish the two distributions). We note that the C2ST is a highly sensitive measure of discrepancy
between two multivariate-distributions—e.g. if the two distributions differ in any dimension, the C2ST will be close
to 1 even if all other dimensions match perfectly. We found that neither of the two approaches was able to achieve
perfect approximations, but that MNLE achieved lower C2ST scores (median C2ST score MNLEs: 0.64, LAN: 0.71,
lower score on 81 out of 100 comparisons, p < 107%; Fig). In summary, MNLE achieves more accurate recovery of
posterior means than LANS, similar recovery of posterior variances, and overall more accurate posteriors (as quantified
by C2ST).

2.4 MNLE posteriors have uncertainties which are well-calibrated

For practical applications of inference, it is often desirable to know how well an inference procedure can recover the
ground-truth parameters, and whether the uncertainty-estimates are well-calibrated, (Cook et al., [2006), i.e., that the
uncertainty estimates of the posterior are balanced, and neither over-confident nor under-confident. For the DDM, we
found that the posteriors inferred with MNLE and LANs recovered the ground-truth parameters accurately (in terms of
posterior means, Fig[JA)—in fact, parameter recovery was similarly accurate to using the ‘true’ analytical likelihoods,
indicating that much of the residual error is due to stochasticity of the observations, and not the inaccuracy of the
likelihood approximations.

To assess posterior calibration we used simulation-based calibration (SBC, Talts et al., 2018)). The basic idea of SBC is
that, if one repeats the inference with many simulated observations and averages the corresponding posteriors, then,
in a well-calibrated inference method, these should converge to the prior distribution, and be neither more broad nor
more narrow. SBC results indicated that MNLE posteriors were as well-calibrated as the reference posteriors, i.e., the
ranks of the ground-truth parameters under the inferred posteriors were uniformly distributed (Fig[4B)—thus, on this
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Figure 5: Posterior inference results for the DDM with collapsing bounds. Posterior samples were obtained
given 100-trial observations simulated from the DDM with linearly collapsing bounds, using MNLE and MCMC. A)
Approximate posterior samples shown as one- and two-dimensional marginals in a corner-plot, for a representative 100-
trial observation simulated from the DDM. B) Reaction times and choices simulated from the ground-truth parameters
(blue) compared to those simulated given parameters sampled from the prior (prior predictive distribution, purple)
and from the MNLE posterior shown in A) (posterior predictive distribution, green). C) Simulation-based calibration
results showing empirical cumulative density functions (CDF) of the ground-truth parameters ranked under the inferred
posteriors, calculated from 100 different observations. A well-calibrated posterior must have uniformly distributed
ranks, as indicated by the area shaded gray. Shown for each parameters separately (v, a, w, 7 and 7).

example, MNLE inferences would likely be of similar quality compared to using the analytical likelihoods. LANS, too,
appeared to recover most of the ground-truth parameters well, however, SBC detected a systematic underestimation of
the parameter a and overestimation of the parameter 7 (FigldB, see the deviation below and above the desired uniform
distribution of ranks, respectively).

The results so far (i.e., Fig[3J4) indicate that both LANs and MNLE lead to similar parameter recovery, but only MNLE
leads to posteriors which were well-calibrated for all parameters. These results were obtained using a scenario with 100
i.i.d. trials. When increasing the number of trials (here, to 1000 trials), posteriors become very concentrated around
the ground-truth value. In that case, while the posteriors overall identified the ground-truth parameter value very well,
even small deviations in the posteriors can have large effects on the posterior metrics (Suppl. Fig[A.T). This effect was
also detected by SBC, showing systematic biases for some parameters (Suppl. Fig/A.2). For MNLE, we found that
these biases were smaller, and furthermore that it was possible to mitigate this effect by inferring the posterior using
ensembles, e.g., by combining samples inferred with five MNLEs trained with identical settings but different random
initialization (see section [A.5]for details). Overall, SBC provides a important tool for testing posterior coverage. In
particular, it is applicable to models for which reference posteriors are not available, as we demonstrate in the next
section.

2.5 MNLE infers well-calibrated, predictive posteriors for a DDM with collapsing bounds

MNLE was designed to be applicable to models for which evaluation of the likelihood is not practical so that standard
inference tools cannot be used. To demonstrate this, we applied MNLE to a variant of the DDM for which analytical
likelihoods are not available (note, however, that numerical approximation of likelihoods for this model would be
possible, see e.g.,|Shinn et al.} 2020, and section@]for details). This DDM variant simulates a decision variable like
the “simple” DDM used above, but with linearly collapsing instead of constant decision boundaries (see e.g.,|Hawkins
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et al.| 2015} [Palestro et al., |2018b)). The collapsing bounds are incorporated with an additional parameter 7y indicating
the slope of the decision boundary, such that 6 = (a, v, w, 7,7) (see section for details).

We tested inference with MNLE on the DDM with linearly collapsing bound using observations comprised of 100 i.i.d.
trials simulated with parameters sampled from the prior. Using the same MNLE training and MCMC settings as above,
we found that posteriors centered around the underlying ground-truth parameters (see Fig[5]A), suggesting that MNLE
learned the underlying likelihood accurately. To assess inference quality systematically without needing reference
posteriors, we performed posterior predictive checks by running simulations with the inferred posteriors samples and
comparing them to observed (simulated) data, and checked posterior calibration properties using SBC (as demonstrated
in section [2.4). We found that the inferred posteriors have good predictive performance, i.e., data simulated from the
inferred posterior samples accurately matched the observed data (Fig[5B), and that their uncertainties are well-calibrated
as quantified by the SBC results (Fig[5[C). Overall, this indicated that MNLE accurately inferred the posterior of this
intractable variant of the DDM.

3 Discussion

Statistical inference for computational models in cognitive neuroscience can be challenging because models often do
not have tractable likelihood functions. The recently proposed LAN-method (Fengler et al., [2021)) performs SBI for
a subset of such models (DDMs) by training neural networks with model simulations to approximate the intractable
likelihood. However, LANs require large amounts of training data, restricting its usage to canonical models. We
proposed an alternative approached called mixed neural likelihood estimation (MNLE), a synthetic neural likelihood
method which is tailored to the data-types encountered in many models of decision-making.

Our comparison on a tractable example problem used in [Fengler et al.| (2021) showed that MNLE performed on par
with LANs using six orders of magnitude fewer model simulations for training. While Fengler et al.| (2021)) discuss
that LANs were not optimized for simulation efficiency and that it might be possible to reduce the required model
simulations, we emphasize that the difference in simulation-efficiency is due to an inherent property of LANs. For
each parameter in the training data, LANs require empirical likelihood targets that have to be estimated by building
histograms or kernel density estimates from thousands of simulations. MNLE, instead, performs conditional density
estimation without the need of likelihood targets and can work with only one simulation per parameter. Because of these
conceptual differences, we expect the substantial performance advantage of MNLE to be robust to the specifics of the
implementation. After the networks are trained, the time needed for each evaluation determines the speed of inference.
In that respect, both LANs and MNLEs are conceptually similar in that they require a single forward-pass through a
neural network for each evaluation, and we found them to require comparable computation times. However, evaluation
time will depend, e.g., on the network architecture, software framework and computing infrastructure used. Code for a
newer implementation of LANs has recently been released which likely improves upon the original implementation
we compared to. The exact timings will always be implementation specific and whether or not these differences are
important will be depend on the application at hand.

There exist a number of approaches with corresponding software packages for estimating parameters of cognitive
neuroscience models, and DDMs in particular. However, these toolboxes either only estimate single best-fitting
parameters (Voss and Voss| 2007; [Wagenmakers et al., 2007} |Chandrasekaran and Hawkins|, 20195 Heathcote et al.}
2019; |Shinn et al.| 2020; Feltgen and Daunizeaul, 2021) or, if they perform fully Bayesian inference, are restricted to
variants of the DDM for which the likelihood can be evaluated (Wiecki et al., 2013, HDDM). A recent extension of
the HDDM toolbox includes LANSs, thereby combining HDDM’s flexibility with LAN’s ability to perform inference
without access to the likelihood function (but this remains restricted to variants of the DDM for which LAN can be
pre-trained). In contrast, MNLE can be applied to any simulation-based model with intractable likelihoods and mixed
data type-outputs. While we here focused on the direct comparison to LANs based on variants of the DDM, we note
that MNLEs are by no means limited to that class of models (see, e.g.Lueckmann et al., 2021 [Makinen et al.| 2021}
Lemos et al., 2021}, for a selection of applications of other neural likelihood methods in other fields).

Several extensions to classical SL approaches have addressed the problem of a bias in the likelihood approximation due
to the strong parametric assumptions, i.e., Gaussianity, the use of summary statistics, or finite-sample biases (Price
et al., 2018} |Ong et al., 2018}, van Opheusden et al., [2020). MNLE builds on flexible neural likelihood estimators,
e.g., normalizing flows, and does not require summary statistics for a low-dimensional simulator like the DDM, so
would be less susceptible to these first two biases. It could be subject to biases resulting from the estimation of the
log-likelihoods from a finite number of simulations. In our numerical experiments, and for the simulation-budgets we
used, we did not observe biased inference results. We speculate that the ability of neural density estimators to pool data
across multiple parameter settings (rather than using only data from a specific parameter set, like in classical synthetic
likelihood methods) mitigates finite-sample effects.
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MNLE is a SBI method which uses neural density estimators to estimate likelihoods. Alternatives to neural likelihood
estimation include neural posterior estimation (NPE, |Papamakarios and Murray, [2016} |Lueckmann et al., 2017
Greenberg et al., 2019, which uses conditional density estimation to learn the posterior directly) and neural ratio
estimation (NRE, |Hermans et al.| 2020; |Durkan et al.| 2020, which uses classification to approximate the likelihood-to-
evidence ratio to then use MCMC for inference). These approaches could in principle be applied here as well, however,
they are not as well suited for the flexible inference scenarios common in decision-making models as MNLE: NPE
by design does not allow for flexible inference scenarios but needs to be retrained because the posterior changes with
changing number of trials or changing hierarchical inference setting; NRE, performing ratio- and not density estimation,
would not provide an emulator of the simulator. Regarding future research directions, MNLE has the potential to
become more simulation-efficient by using weight sharing between the discrete and the continuous neural density
estimators (rather than to use separate neural networks, as we did here). Moreover, for high-dimensional inference
problems in which MCMC might struggle, MNLE could be used in conjunction with variational inference as recently
proposed by [Wiqvist et al.| (2021)) and |Anonymous|(2022). Finally, using its emulator property, MNLE could be applied
in an active learning setting for highly expensive simulators in which new simulations are chosen adaptively according
to a acquisition function in a Bayesian optimization framework (Gutmann and Corander}, |2016; [Lueckmann et al.,|2019;
Jarvenpai et al., 2019) .

In summary, MNLE enables flexible and efficient inference of parameters of models in cognitive neuroscience with
intractable likelihoods. The training efficiency and flexibility of the neural density estimators used overcome the
limitations of LANs (Fengler et al.,2021])). Critically, these features enables researchers to develop customized models
of decision-making, not just apply existing models to new data. We implemented our approach as an extension to a
public sbi python package to make it accessible for practitioners with detailed documentation and examples.

4 Methods

4.1 Mixed neural likelihood estimation

Mixed neural likelihood estimation (MNLE) extends the framework of neural likelihood estimation (Papamakarios
et al.| 2019b; Lueckmann et al., 2019) to be applicable to simulation-based models with mixed data types. It learns a
parametric model g, (x|@) of the intractable likelihood p(x|@) defined implicitly by the simulation-based model. The
parameters v are learned with training data {6,,,x,, }1.5 comprised of model parameters 6,, and their corresponding
data simulated from the model x,,|0,, ~ p(x|0,,). The parameters are sampled from a proposal distribution over
parameters 6,, ~ p(0). The proposal distribution could be any distribution, but it determines the parameter regions for
which the density estimator will be good in estimating likelihoods. Thus, the prior, or a distribution that contains the
support of the prior (or even all priors which one expects to use in the future) constitutes a useful choice. After training,
the emulator can be used to generate synthetic data x|@ ~ ¢, (x|6) given parameters, and to evaluate the synthetic
likelihood g, (x|@) given experimentally observed data. Finally, the synthetic likelihood can be used to obtain posterior
samples via

p(0]x) o gy (x|60)p(6),
through approximate inference with MCMC. Importantly, the training is amortized, i.e., the emulator can be applied to
new experimental data without retraining (running MCMC is still required).

We tailored MNLE to simulation-based models that return mixed data, e.g., in form of reaction times rt¢ and (usually
categorical) choices c as for the DDM. Conditional density estimation with normalizing flows has been proposed for
continuous random variables (Papamakarios et al.,2019a), or discrete random variables (Tran et al.,[2019), but not for
mixed data. Our solution for estimating the likelihood of mixed data is to simply factorize the likelihood into continuous
and discrete variables,

p(rt, @) = p(rt|, c) p(c|6),
and use two separate neural likelihood estimators: A discrete one gy, to estimate p(c|@) and a continuous one gy,., to
estimate p(rt|0, c). We defined g, to be a Bernoulli model and use a neural network learn the Bernoulli probability p
given parameters 8. For g, , we used a conditional neural spline flow (Durkan et al.,|2019) to learn the density of rt
given a parameter 8 and choice c. The two estimators are trained separately using the same training data (see section
[.3] for details on neural network architecture and training). After training, the full neural likelihood can be constructed
by multiplying the likelihood estimates ¢, and gy, , back together:

Qe (11, ¢10) = 44 (¢]0) gy, (7t]c, 0).

Note that, as the second estimator ¢y, , (|c, @) is conditioned on the choice ¢, our likelihood-model can account for
statistical dependencies between choices and reaction times. The neural likelihood can then be used to approximate the
intractable likelihood defined by the simulator, e.g., for inference with MCMC. Additionally, it can be used to sample
synthetic data given model parameters, without running the simulator (see section[A.4).
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4.2 Relation to LAN

Neural likelihood estimation can be much more simulation efficient than previous approaches because it exploits
continuity across the parameters by making the density estimation conditional. [Fengler et al.[(2021]), too, aim to exploit
continuity across the parameter space by training a neural network to predict the value of the likelihood function
from parameters 0 and data x. However, the difference to neural likelihood estimation is that they do not use the
neural network for density estimation directly, but instead do classical neural network-based regression on likelihood
targets. Crucially, the likelihood targets first have to obtained for each parameter in the training data set. To do so, one
has to perform density estimation using KDE (as proposed by [Turner et al., 2015)) or empirical histograms for every
parameter separately. Once trained, LANs do indeed exploit the continuity across the parameter space (they can predict
log-likelihoods given unseen data and parameters), however, they do so at a very simulation high cost: For a training
data set of N parameters, they perform N times KDE based on M simulations eaclﬂ resulting is an overall simulation
budget of N - M (N =1.5 million and M =100,000 for “pointwise” LAN approach).

4.3 Details of the numerical comparison

The comparison between MNLE and LAN is based on the drift-diffusion model (DDM). The DDM simulates a decision
variable X as a stochastic differential equation with parameters @ = (v, a, w, 7):

dXpir = vdt +dW, X, = w, (1)

where W a Wiener noise process. The priors over the parameters are defined to be uniform: v ~ U(—2,2) is the
drift, a ~ U(0.5,2) the boundary separation, w ~ U(0.3,0.7) the initial offset, 7 ~ 1/(0.2,1.8) the non-decision
time. A single simulation from the model returns a choice ¢ € {0, 1} and the corresponding reaction time in seconds
rt € (1,00).

For this version of the DDM the likelihood of an observation (¢, rt) given parameters 6, L(c, rt|@), can be calculated
analytically (Navarro and Fuss||[2009). To simulate the DDM and calculate analytical likelihoods we used the approach
and the implementation proposed by |Drugowitsch| (2016). We numerically confirmed that the simulations and the
analytical likelihoods match those obtained from the research code provided by [Fengler et al.[(2021).

To run LANSs, we downloaded the neural network weights of the pre-trained models from the repository mentioned in
Fengler et al.|(2021)) (at the time our analysis, the implementation of LANs as part of the HDDM toolbox indicated
in [Fengler et al.| (2021)) has not been made publicly available yet). The budget of training simulations used for the
LANs was 1.5 x 10! (1.5 million training data points, each obtained from KDE based on 10° simulations). We
only considered the approach based on training a multilayer-perceptron (MLP) on single-trial likelihoods (“pointwise
approach", Fengler et al.|[2021). The pre-trained LANs of the original publication are implemented in Keras (Chollet
et al.| 2015) and we based our comparisons on these networks.

To run MNLE, we extended the implementation of neural likelihood estimation in the sbi toolbox (Tejero-Cantero
et al.| 2020). All comparisons were performed on a single AMD Ryzen Threadripper 1920X 12-Core processor with
2.2GHz and the code is publicly available (see Section [A.T).

For the DDM variant with linearly collapsing decision boundaries, the boundaries were parametrized by the initial
boundary separation, a, and one additional parameter, -, indicating the slope with which the boundary approaches
zero. This resulted in a five-dimensional parameter space for which we used the same prior as above, plus the an
additional uniform prior for the slope v ~ U(—1.0, 0). To simulate this DDM variant, we again used the Julia package
by [Drugowitsch| (2016)), but we note that for this variant no analytical likelihoods are available. While it would be
possible to approximate the likelihoods numerically using the Fokker-Planck equations (see, e.g.,/Shinn et al.,2020),
this would usually involve a trade-off between computation time and accuracy as well as design of bespoke solutions
for individual models, and was not pursued here.

4.4 Flexible Bayesian inference with MCMC

Once the MNLE is trained, it can be used for MCMC to obtain posterior samples 6 ~ p(6|x) given experimentally
observed data x. To sample from posteriors via MCMC, we transformed the parameters to unconstrained space, used
slice sampling (Neall |2003), and initialized ten parallel chains using sequential importance sampling (Papamakarios
et al.| 2019b), all as implemented in the sbi toolbox. We ran MCMC with identical settings for MNLE and LAN.

Importantly, performing MNLE and then using MCMC to obtain posterior samples allows for flexible inference
scenarios because the form of x is not fixed. For example, when the model produces trial-based data that satisfy the
i.i.d. assumption, e.g., a set of reaction times and choices X = {rt, c}f\il in a drift-diffusion model, then MNLE

"For models with categorical output, i.e., all decision-making models, KDE is performed separately for each choice.
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allows to perform inference given varying numbers of trials. This is achieved by training MNLE based on single-trial
likelihoods (only once) and then combining multiple trials into the joint likelihood only when running MCMC:

N

p(6]X) Hq(rti, ci|0) p(6). 2)

Similarly, one can use the neural likelihood to perform hierarchical inference with MCMC, all without the need for
retraining (see Hermans et al., [2020; [Fengler et al., [2021} for examples).

Stimulus- and inter-trial dependencies Simulation-based models in cognitive neuroscience often depend not only
on a set of parameters 8, but additionally on (a set of) stimulus variables s which are typically given as part of the
experimental conditions. MNLE can be readily adapted to this scenario by generating simulated data with multiple
stimulus variables, and including them as additional inputs to the network during inference. Similarly, MNLE could be
adapted to scenarios in which the i.i.d. assumption across trials as used above (see Eq[2) does not hold. Again, this would
be achieved by adapting the model-simulator accordingly. For example, when inferring parameters € of a DDM for which
the outcome of the current trial ¢ additionally depends on current stimulus variables s; as well as on previous stimuli
s; and responses 7;, then one would implement the DDM simulator as a function f (0;8i—Ty oy Si3TiTy ey Tim1)
(where T is a history parameter) and then learn the underlying likelihood by emulating f with MNLE.

4.5 Neural network architecture, training and hyperparameters

Architecture For the architecture of the Bernoulli model we chose a feed-forward neural network that takes parameters
0 as input and predicts the Bernoulli probability p of the corresponding choices. For the normalizing flow we used the
neural spline flow architecture (NSF, Durkan et al., 2019). NSFs use a standard normal base distribution and transform
it using several modules of monotonic rational-quadratic splines whose parameters are learned by invertible neural
networks. Using an unbounded base distribution for modeling data with bounded support, e.g., reaction time data
rt € (0,00), can be challenging. To account for this, we tested two approaches: We either transformed the reaction
time data to logarithmic space to obtain an unbounded support (logrt € (—00,0)), or we used a log-normal base
distribution with rectified (instead of linear) tails for the splines (see |Durkan et al.,[2019] for details and section for
the final architecture settings)

Training The neural network parameters . and v, were trained using the maximum likelihood loss and Adam
(Kingma and Ba, 2015). As proposal distribution for the training dataset we used the prior over DDM parameters. Given
a training data set of parameters, choices and reaction times {0;, (c;,7t;)}~_; with 8; ~ p(8); (c;,7t;) ~ DDM(8;),
we minimized the negative log-probability of the model. In particular, using the same training data, we trained the
Bernoulli choice model by minimizing

1 N
N > log gy, (ci]6:),
=1

and the neural spline flow by minimizing

N
1
N Z log gy, (1t|c;, 0;).

i=1

Training was performed with code and training hyperparameter settings provided in the sbi toolbox (Tejero-Cantero
et al.l [2020).

Hyperparameters MNLE requires a number of hyperparameter choices regarding the neural network architectures,
e.g., number of hidden layers, number of hidden units, number of stacked NSF transforms, kind of base distribution,
among others (Durkan et al.,2019). With our implementation building on the sbi package we based our hyperparameter
choices on the default settings provided there. This resulted in likelihood accuracy similar to LAN, but longer evaluation
times due to the complexity of the underlying normalizing flow architecture.

To reduce evaluation time of MNLE, we further adapted the architecture to the example model (DDM). In particular,
we run a cross-validation of the hyperparameters relevant for evaluation time, i.e., number of hidden layers, hidden
units, NSF transforms, spline bins, and selected those that were optimal in terms of Huber loss and mean-squared error
between the approximate and the analytical likelihoods, as well as evaluation time. This resulted in an architecture with
performance and evaluation time similar to LANs (more details in appendix [A.2)). The cross-validation relied on access
to the analytical likelihoods which is usually not given in practice, e.g., for simulators with intractable likelihoods.
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However, we note that in cases without access to analytical likelihoods a similar cross-validation can be performed
using quality measures other than the difference to the analytical likelihood, e.g., by comparing the observed data with
synthetic data and synthetic likelihoods provided by MNLE.
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Figure A.1: Posterior accuracy metrics for different numbers of observed trials of the simple DDM. Posterior
metrics C2ST, absolute posterior mean error, and absolute error in posterior variance are shown for different number of
observed trials in panels A, B, C, and D respectively. They were calculated from 10.000 posterior samples and with
respect to the reference posterior, for LAN (orange), MNLE (green), and an ensemble of five MLNEs (MNLE*, purple).

A Appendix

A.1 Code availability

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github.com/
mackelab/sbi. Code for running MNLE and reproducing the results presented here can be found at https://
github.com/mackelab/mnle-for-ddms,

A.2 Architecture and training hyperparameters

For the Bernoulli neural network we used three hidden layers with ten units each and sigmoid activation functions. For
the neural spline flow architecture (Durkan et al., 2019) we transformed the reaction time data to the log-domain, used
a standard normal base distribution, two spline transforms with five bins each and conditioning networks with three
hidden layers and ten hidden units each, and rectified linear unit activation functions. The neural network training was
performed using the sbi package with the following settings: learning rate 0.0005; training batch size 100; 10% of
training data as validation data, stop training after 20 epochs without validation loss improvement.

A.3 Supplementary figures
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Figure A.2: Simulation-based calibration results for different numbers of observed trials for the simple DDM.
SBC results in form empirical conditional density functions of the ranks of ground-truth parameters under the approxi-
mate posterior samples. We compared posterior samples based on analytical likelihoods (blue), LAN (orange), MNLE
(green), and an ensemble of five MLNEs (MNLE¥*, purple); for each of the four parameters of the DDM and for 1, 10,
100, 1000 observed trials (panel A, B, C, and D, respectively). Grey areas show random deviations expected under
uniformly distributed ranks (ideal case).

A.4 MNLE provides an accurate emulator of the DDM

Being based on the neural likelihood estimation framework, MNLE naturally returns such an emulator of the simulator
that can be sampled to generate synthetic data without running the simulator. We found that the synthetic data generated
by MNLE accurately matched the data we obtained by running the DDM simulator (Fig[A.3)). This has several potential
benefits: it can help with evaluating the performance of the density estimator, it enables almost instantaneous data
generation (one forward pass in the neural network) even if the simulator is computationally expensive, and it gives full
access to the internals of the emulator, e.g., to gradients w.r.t. to data or parameters.

There is variant of the LAN approach which allows for sampling synthetic data as well: In the “Histogram-approach”
(Fengler et al.||2021)) LANSs are trained with a convolutional neural network (CNN) architecture using likelihood targets
in form of two-dimensional empirical histograms. The output of the CNN is a probability distribution over a discretized
version of the data space which can, in principle, be sampled to generate synthetic DDM choices and reaction times.
However, the accuracy of this emulator property of CNN-LANSs is limited by the number of bins used to approximate
the continuous data space (e.g., 512 bins for the examples shown in|Fengler et al.| (2021)).

A.5 Parameter recovery and posterior coverage

When testing methods for fitting parameters of computational models to experimental data, one common approach is
to test their ability to recover ground-truth parameters from simulated data. For example, one would obtain posterior
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Figure A.3: Comparison of simulated DDM data and synthetic data sampled from the MNLE emulator. His-
tograms of reaction times from 1000 i.i.d. trials generated from three different parameters sampled from the prior (panel
A, B, C) using the original DDM simulator (purple) and the emulator obtained from MNLE (green). “Down" choices
are shown to the left of zero and “up" choices to the right of zero.

samples given simulated data for which one knows the ground-truth parameters, and then compare the mean or the
mode of the posterior with the ground-truth parameter (see e.g. Fengler et al., [2021]).

While it is true that for an increasing number of i.i.d. trials the posteriors should becomes narrower around the ground-
truth parameters, it is not the case that the posterior is generally “centered” on the ground-truth parameters. When only
little information is available, e.g., only a small number of trials was observed, the resulting posterior should reflect this
uncertainty and should be rather broad. Additionally, irrespective of the variance of the posterior, when one repeats the
inference for many different simulated data points, the positions of the ground-truth parameters in percentiles of the
inferred posteriors should cover the entire range of percentiles (Talts et al., |2018)). Thus, it is often more informative to
check the coverage of the inferred posteriors instead of checking for parameter recovery by comparing posterior means
with ground-truth parameters.

To demonstrate this, we compared parameter recovery and posterior coverage for inference in the DDM. In the main
paper we ran inference with LANs and MNLE for 100 different 100-trial observations. Additionally, we tested parameter
recovery and coverage for observed data comprised of 1, 10, and 1000 trials. For parameter recovery, we calculated
sample means from 10.000 MCMC samples obtained using LANs and MNLE and compared them to the underlying
true parameters.

We found that single-trial observations, the large uncertainty in the parameter estimate was reflected in large posterior
variance so that posterior means did not recover ground-truth parameters (Fig[A.4JA, note that MNLE and LAN posterior
means actually matched the reference posterior means). For ten or more observed trials both methods give good recovery
performance showing high correlation between ground-truth parameters and sample means (Fig/A.4] R > 0.99).

Additionally, we used simulation-based calibration (SBC, [Talts et al., 2018) to check the calibration properties of
LANs and MNLE. According to SBC, it is a necessary condition for a valid inference method that samples from
the data-averaged posterior are distributed according to the prior (or equivalently that the ground-truth parameters
ranked under the approximated posterior have uniform ranks). Our results showed that the posteriors obtained from
analytical likelihoods were well calibrated (as expected). For MNLE and LAN we found that posteriors were well
calibrated for small numbers of trials (<100), while larger number of trials some systematic biases occur: For MNLE,
the drift parameter v which tends to be over-estimated, and for LAN, posteriors are less well calibrated for the boundary
parameter a (under-estimation) and the non-decision time 7 (over-estimation), confirming the visual tendencies in
parameter recovery from above (Fig[A.4} see Talts et al.| (2018) section 4.2 for a guide on visual interpretation of SBC
results).

We also calculate posterior metrics for all four numbers of trials (1,10,100, and 1000) and found that posterior accuracy
metrics also decrease for increasing number of observed i.i.d. trials (Fig[A.I). However, we note that the posteriors
given large number of trials tend to have very small variances so that metrics like C2ST and dispersion show decreased
performance where the absolute error is in fact relatively small (Fig[A.TD).

There might be two possible explanation for the systematic biases for larger trial counts detected by SBC (Fig[A.2).
First, for large trial counts the posteriors tend to have very low variance such that small deviations in the approximate
posteriors lead to large effects in the SBC analysis and the other inference quality metrics. Second, both methods are
trained to predict single-trial likelihoods. As a consequence, small errors in the the likelihood predictions can amplify
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Figure A.4: Parameter recovery for different number of i.i.d. DDM trials. True underlying DDM parameters
plotted against posterior sample means for 1, 10, and 1000 of observed i.i.d. trial(s) (in rows) and for the four DDM
parameters v, a, w and 7 (in columns). Calculated from 10.000 posterior samples obtained with MCMC using the
reference (blue), LAN (orange) and the MNLE (green) likelihoods. Black line shows the identity function indicating
perfect recovery.

when they are multiplied over all observed trials. In line with this hypothesis we observed that posteriors inferred with
an ensemble of five MNLEs (MNLE*, colored purple in Fig[A-2) show better calibration, C2ST score and bias.
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