
Flexible and efficient1

simulation-based inference for2

models of decision-making3

Jan Boelts1,2, Jan-Matthis Lueckmann1, Richard Gao1, Jakob H. Macke1,34

*For correspondence:
jan.boelts@uni-tuebingen.de (JB);
jakob.macke@uni-tuebingen.de
(JHM)

1Machine Learning in Science, Excellence Cluster Machine Learning, University of5

Tübingen; 2Technical University of Munich; 2Max Planck Institute for Intelligent Systems6

Tübingen7

8

Abstract Inferring parameters of computational models that capture experimental data is a9

central task in cognitive neuroscience. Bayesian statistical inference methods usually require the10

ability to evaluate the likelihood of the model—however, for many models of interest in cognitive11

neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based12

inference (SBI) offers a solution to this problem by only requiring access to simulations produced13

by the model. Here, we provide an efficient SBI method for models of decision-making. Our14

approach, Mixed Neural Likelihood Estimation (MNLE), trains neural density estimators on model15

simulations to emulate the simulator, and is designed to capture both the continuous (e.g.,16

reaction times) and discrete (choices) data of decision-making models. The likelihoods of the17

emulator can then be used to perform Bayesian parameter inference on experimental data using18

standard approximate inference methods like Markov Chain Monte Carlo sampling. We19

demonstrate MNLE on two variants of the drift-diffusion model (DDM) and compare its20

performance to a recently proposed method for SBI on DDMs, called Likelihood Approximation21

Networks (LANs, Fengler et al. 2021). We show that MNLE is substantially more efficient than22

LANs: it achieves similar likelihood accuracy with six orders of magnitude fewer training23

simulations, and is substantially more accurate than LANs when both are trained with the same24

budget. This enables researchers to train MNLE on custom-tailored models of decision-making,25

leading to fast iteration of model design for scientific discovery.26

27

Introduction28

Computational modeling is an essential part of the scientific process in cognitive neuroscience:29

Models are developed from prior knowledge and hypotheses, and compared to experimentally ob-30

served phenomena (Churchland and Sejnowski, 1988; McClelland, 2009). Computational models31

usually have free parameters which need to be tuned to find those models that capture experi-32

mental data. This is often approached by searching for single best-fitting parameters using grid33

search or optimization methods. While this point-wise approach has been used successfully (Lee34

et al., 2016; Patil et al., 2016) it can be scientifically more informative to perform Bayesian infer-35

ence over the model parameters: Bayesian inference takes into account prior knowledge, reveals36

all the parameters consistent with observed data, and thus can be used for quantifying uncer-37

tainty, hypothesis testing, and model selection (Lee, 2008; Shiffrin et al., 2008; Lee and Wagen-38

makers, 2014; Schad et al., 2021). Yet, as the complexity of models used in cognitive neuroscience39

increases, Bayesian inference becomes challenging for two reasons. First, for many commonly40

1 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

jan.boelts@uni-tuebingen.de
jakob.macke@uni-tuebingen.de
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

MCMC

simulator neural density estimation

posterior samples

rt
up

v

a

prior

data

a

v

up

up

a
v

a
v

rt

a

v

pr
ob

ab
ili

ty

reaction time (rt)
down

up

a

v

rt

Figure 1. Training a neural density estimator on simulated data to perform parameter inference. Our goal is to perform Bayesian
inference on models of decision-making for which likelihoods cannot be evaluated (here a drift-diffusion model for illustration, left). We train a
neural density estimation network on synthetic data generated by the model, to provide access to (estimated) likelihoods. Our neural density
estimators are designed to account for the mixed data types of decision-making models (e.g. discrete valued choices and continuous valued
reaction times, middle). The estimated likelihoods can then be used for inference with standard Markov Chain Monte Carlo (MCMC) methods,
i.e., to obtain samples from the posterior over the parameters of the simulator given experimental data (right). Once trained, our method can be
applied to flexible inference scenarios like varying number of trials or hierarchical inference without having to retrain the density estimator.

used models, computational evaluation of likelihoods is challenging because often no analytical41

form is available. Numerical approximations of the likelihood are typically computationally expen-42

sive, rendering standard approximate inference methods like Markov chain Monte Carlo (MCMC)43

inapplicable. Second, models and experimental paradigms in cognitive neuroscience often induce44

scenarios in which inference is repeated for varying numbers of experimental trials and changing45

hierarchical dependencies between model parameters (Lee, 2011). As such, fitting computational46

models with arbitrary hierarchical structures to experimental data often still requires idiosyncratic47

and complex inference algorithms.48

Approximate Bayesian computation (ABC, Sisson et al., 2018) offers a solution to the first chal-49

lenge by enabling Bayesian inference based on comparing simulated with experimental data, with-50

out the need to evaluate an explicit likelihood function. Accordingly, various ABC methods have51

been applied to and developed for models in cognitive neuroscience and related fields (Turner52

and Van Zandt, 2012, 2018; Palestro et al., 2018a; Kangasrääsiö et al., 2019). However, ABC meth-53

ods are limited regarding the second challenge because they become inefficient as the number54

of model parameters increases (Lueckmann et al., 2021) and require generating new simulations55

whenever the observed data or parameter dependencies change.56

More recent approaches from the field simulation-based inference (SBI, Cranmer et al., 2020)57

have the potential to overcome these limitations by using machine learning algorithms such as58

neural networks. Recently, Fengler et al. (2021) presented an SBI-algorithm for a specific problem59

in cognitive neuroscience—inference for drift-diffusion models (DDM). They introduced a new ap-60

proach, called likelihood approximation networks (LANs), which uses neural networks to predict61

log-likelihoods from data and parameters. The predicted likelihoods can subsequently be used to62

generate posterior samples using MCMC methods. LANs are trained in a three-step procedure.63

First, a set ofN parameters is generated and for each of theN parameters the model is simulated64

M times. Second, for each of the N parameters, empirical likelihood targets are estimated from65

the M model simulations using kernel density estimation (KDE) or empirical histograms. Third,66

a training dataset consisting of parameters, data points and empirical likelihood targets is con-67

structed by augmenting the initial set of N parameters by a factor of 1000: for each parameter,68

1000 data points and empirical likelihood targets are generated from the learned KDE. Finally, su-69

pervised learning is used to train a neural network to predict log-likelihoods, by minimizing a loss70

function (the Huber loss) between the network-predicted log-likelihoods and the (log of) the empir-71

ically estimated likelihoods. Overall, LANs require a large number of model simulations such that72

the histogram-probability of each possible observed data and for each possible combination of73

2 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

input parameters, can be accurately estimated—N ⋅M model simulations, e.g., 1.5 × 106 × 105 (15074

billion) for the examples used in Fengler et al. (2021). The extremely high number of model simula-75

tions will make it infeasible formost users to run this training themselves, so that there would need76

to be a repository from which users can download pre-trained LANs. This restricts the application77

of LANs to a small set of canonical models like drift-diffusion models, and prohibits customization78

and iteration of models by users. In addition, the high simulation requirement limits this approach79

to models whose parameters and observations are sufficiently low-dimensional for histograms to80

be sampled densely.81

To overcome these limitations, we propose an alternative approach called Mixed Neural Like-82

lihood Estimation (MNLE). MNLE builds on recent advances in probabilistic machine learning, and83

in particular on the framework of neural likelihood estimation (Papamakarios et al., 2019b; Lueck-84

mann et al., 2019) but is designed to specifically capture the mixed data types arising in models85

of decision-making, e.g., discrete choices and continuous reaction times. Neural likelihood esti-86

mation has its origin in classical synthetic likelihood (SL) approaches (Wood, 2010; Drovandi et al.,87

2018). Classical SL approaches assume the likelihood of the simulation-based model to be Gaus-88

sian (so that its moments can be estimated frommodel simulations) and then use MCMCmethods89

for inference. This approach and various extensions of it have been widely used (Price et al., 2018;90

Ong et al., 2018; An et al., 2019; Priddle et al., 2021)—but inherently they need multiple model91

simulations for each parameter in the MCMC chain to estimate the associated likelihood.92

Neural likelihood approaches instead perform conditional density estimation, i.e., they train a93

neural network to predict the parameters of the approximate likelihood conditioned on the model94

parameters (e.g., Papamakarios et al., 2019b; Lueckmann et al., 2019). By using a conditional den-95

sity estimator, it is possible to exploit continuity across different model parameters, rather than96

having to learn a separate density for each individual parameter as in classical SL. Recent advances97

in conditional density estimation (such as normalizing flows, Papamakarios et al., 2019a) further98

allow lifting the parametric assumptions of classical SL methods and learning flexible conditional99

density estimators which are able tomodel a wide range of densities, as well as highly nonlinear de-100

pendencies on the conditioning variable. In addition, neural likelihood estimators yield estimates101

of the probability density which are guaranteed to be non-negative and normalized, and which can102

be both sampled and evaluated, acting as a probabilistic emulator of the simulator (Lueckmann103

et al., 2019).104

Our approach, MNLE, uses neural likelihood estimation to learn an emulator of the simulator.105

The training phase is a simple two-step procedure: first, a training dataset of N parameters �106

is sampled from a proposal distribution and corresponding model simulations x are generated.107

Second, the N parameter-data pairs (�, x) are directly used to train a conditional neural likelihood108

estimator to estimate p(x|�). Like for LANs, the proposal distribution for the training data can be any109

distribution over �, and should be chosen to cover all parameter-values one expects to encounter in110

empirical data. Thus, the prior distribution used for Bayesian inference constitutes a useful choice,111

but in principle any distribution that contains the support of the prior can be used. To account112

for mixed data types, we learn the likelihood estimator as a mixed model composed of one neural113

density estimator for categorical data and one for continuous data, conditioned on the categorical114

data. This separation allows us to choose the appropriate neural density estimator for each data115

type, e.g., a Bernoulli model for the categorical data and a normalizing flow (Papamakarios et al.,116

2019a) for the continuous data. The resulting joint density estimator gives access to the likelihood,117

which enables inference via MCMC methods. See Figure 1 for an illustration of our approach, and118

Methods and Materials for details.119

Both LANs andMNLEs allow for flexible inference scenarios common in cognitive neuroscience,120

e.g., varying number of trials with same underlying experimental conditions or hierarchical infer-121

ence, and need to be trained only once. However, there is a key difference between the two ap-122

proaches. LANs use feed-forward neural networks to perform regression frommodel parameters123

to empirical likelihood targets obtained from KDE. MNLE instead learns the likelihood directly by124

3 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

performing conditional density estimation on the simulated data without requiring likelihood tar-125

gets. This makes MNLE by design more simulation efficient than LANs—we demonstrate empir-126

ically that it can learn likelihood-estimators which are as good or better than those reported in127

the LAN paper, but using a factor of 1,000,000 fewer simulations (Fengler et al., 2021). When us-128

ing the same simulation-budget for both approaches, MNLE substantially outperforms LAN across129

several performance metrics. Moreover, MNLE results in a density estimator that is guaranteed130

to correspond to a valid probability distribution and can also act as an emulator that can gener-131

ate synthetic data without running the simulator. The simulation-efficiency of MNLEs allows users132

to explore and iterate on their own models without generating a massive training dataset, rather133

than restricting their investigations to canonical models for which pre-trained networks have been134

provided by a central resource. To facilitate this process, we implemented ourmethod as an exten-135

sion to an open-source toolbox for SBI methods (Tejero-Cantero et al., 2020), and provide detailed136

documentation and tutorials.137

Results138

Evaluating the performance of mixed neural likelihood estimation (MNLE) on the139

drift-diffusion model140

We first demonstrate the efficiency and performance of MLNEs on a classical model of decision-141

making, the drift-diffusion model (DDM, Ratcliff and McKoon, 2008). The DDM is an influential142

phenomenological model of a two-alternative perceptual decision-making task. It simulates the143

evolution of an internal decision variable that integrates sensory evidence until one of two decision144

boundaries is reached and a choice is made (Figure 1, left). The decision variable is modeled with145

a stochastic differential equation which, in the “simple” DDM version (as used in Fengler et al.,146

2021), has four parameters: the drift rate v, boundary separation a, the starting point w of the147

decision variable, and the non-decision time �. Given these four parameters � = (v, a,w, �), a single148

simulation of the DDM returns data x containing a choice c ∈ {0, 1} and the corresponding reaction149

time in seconds rt ∈ (�,∞): x = (c, rt).150

MNLE learns accurate likelihoods with a fraction of the simulation budget151

The simple version of the DDM is the ideal candidate for comparing the performance of different152

inference methods because the likelihood of an observation given the parameters, L(x|�), can be153

calculated analytically (Navarro and Fuss, 2009, in contrast to more complicated versions of the154

DDM, e.g., Ratcliff and Rouder (1998); Usher and McClelland (2001); Reynolds and Rhodes (2009)).155

This enabled us to evaluate MNLE’s performance with respect to the analytical likelihoods and the156

corresponding inferred posteriors of the DDM, and to compare against that of LANs on a range157

of simulation-budgets. For MNLE we used a budget of 105 simulations (henceforth referred to as158

MNLE5), for LANs we used budgets of 105 and 108 simulations (LAN5, LAN8, respectively, trained by159

us) and the pre-trained version based on 1011 simulations (LAN11) provided by Fengler et al. (2021).160

First, we evaluated the quality of likelihood approximations of MNLE5, and compared it to that161

of LAN{5,8,11}. BothMNLEs and LANswere in principle able to accurately approximate the likelihoods162

for both decisions and a wide range of reaction times (see Figure 2a for an example, and Details of163

the numerical comparison). However, LANs require a much larger simulation budget than MNLE164

to achieve accurate likelihood approximations, i.e., LANs trained with 105 or 108 simulations show165

visible deviations, both in the linear and in log-domain (Figure 2a, lines for LAN5 and LAN8).166

To quantify the quality of likelihood approximation, we calculated the Huber loss and themean-167

squared error (MSE) between the true and approximated likelihoods (Figure 2b,c), as well as be-168

tween the log-likelihoods (Figure 2d,e). Themetricswere calculated as averages over (log-)likelihoods169

of a fixed observation given 1000 parameters sampled from the prior, repeated for 100 obser-170

vations simulated from the DDM. For metrics calculated on the untransformed likelihoods (Fig-171

ure 2b,c), we found that MNLE5 was more accurate than LAN{5,8,11} on all simulation budgets, show-172

4 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

0.0

0.7

1.4

p(
x|

)

updown analytical
LAN5

LAN8

LAN11

MNLE5

0.00

0.01

0.02

Hu
be

r l
os

s

0.00

0.02

0.04

M
SE

2.0 1.0 0.0 1.0 2.0
x: reaction time [s]

15

10

5

0

lo
gp

(x
|

)

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.0

0.3

0.6

Hu
be

r l
os

s (
lo

g)

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.0

1.5

3.0

M
SE

 (l
og

)

a b c

d e

Figure 2. MNLE estimates accurate likelihoods for the drift-diffusion model. The classical drift-diffusion model (DDM) simulates reaction
times and choices of a two-alternative decision task and has an analytical likelihood which can be used for comparing the likelihood
approximations of MNLE and LAN. We compared MNLE trained with a budget of 105 simulations (green, MNLE5) to LAN trained with budgets of
105, 108 and 1011 simulations (shades of orange, LAN{5,8,11}, respectively). (a) Example likelihood for a fixed parameter � over a range of reaction
times (reaction times for down- and up-choices shown towards the left and right, respectively). Shown on a linear scale (top panel) and a
logarithmic scale (bottom panel). (b) Huber loss between analytical and estimated likelihoods calculated for a fixed simulated data point over
1,000 test parameters sampled from the prior, averaged over 100 data points (lower is better). Bar plot error bars show standard error of the
mean. (c) Same as in (b), but using mean squared error (MSE) over likelihoods (lower is better). (d) Huber loss on the log-likelihoods (LAN’s
training loss). (e) MSE on the log-likelihoods.
Figure 2–Figure supplement 1. Examples of synthetic DDM data generated from the MNLE emulator.

ing smaller Huber loss than LAN{5,8,11} in 99, 81 and 66 out of 100 comparisons, and smaller MSE173

than LAN{5,8,11} on 98, 81 and 66 out of 100 comparisons, respectively. Similarly, for the MSE calcu-174

lated on the log-likelihoods (Figure 2e), MNLE5 achieved smaller MSE than LAN{5,8,11} on 100, 100175

and 75 out of 100 comparisons, respectively. For the Huber loss calculated on the log-likelihoods176

(Figure 2d), we found that MNLE5 wasmore accurate than LAN5 and LAN8, but slightly less accurate177

than LAN11, showing smaller Huber loss than LAN{5,8} in all 100 comparisons, and larger Huber loss178

than LAN11 in 62 out of 100 comparisons. All the above pairwise comparisons were significant un-179

der the binomial test (p < 0.01), but note that these are simulated data and therefore the p-value180

can be arbitrarily inflated by increasing the number of comparisons. We also note that the Huber181

loss on the log-likelihoods is the loss which is directly optimized by LANs, and thus this comparison182

should in theory favor LANs over alternative approaches. Furthermore, the MNLE5 results shown183

here represent averages over ten random neural network initializations (five of which achieved184

smaller Huber loss than LAN11), whereas the LAN11 results are based on a single pre-trained net-185

work. Finally, we also investigated MNLE’s property to act as an emulator of the simulator and186

found the synthetic reaction times and choices generated from the MNLE emulator to match cor-187

responding data simulated from the DDM accurately (see Figure 2—Figure Supplement 1 and Ap-188

pendix 1).189

When using the learned likelihood estimators for inference with MCMC methods, their evalu-190

ation speed can also be important because MCMC often requires thousands of likelihood evalu-191

ations. We found that evaluating MNLE for a batch of 100 trials and ten model parameters (as192

used during MCMC) took 4.14±0.04ms (mean over 100 repetitions ± standard error of the mean),193

5 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

-2 2
v

reference
LAN11

MNLE5

ground-truth

0.5 2
a

0.3 0.7
w

1 1.4

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.00

1.05

2.10

m
ea

n
er

ro
r

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.0

0.5

1.0

va
ria

nc
e

er
ro

r

LA
N5

LA
N8
LA

N1
1

MNLE
5

ref
ere

nce
0.00

0.06

0.12

es
tim

at
io

n
er

ro
r

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.50

0.75

1.00

C2
ST

 sc
or

e

a b c

d e

Figure 3. MNLE infers accurate posteriors for the drift-diffusion model. Posteriors were obtained given 100-trial i.i.d. observations with
MCMC using analytical (i.e., reference) likelihoods, or those approximated using LAN{5,8,11} trained with simulation budgets 10{5,8,11}, respectively,
and MNLE5 trained with a budget of 105 simulations. (a) Posteriors given an example observation generated from the prior and the simulator,
shown as 95% contour lines in a corner-plot, i.e., one-dimension marginal (diagonal) and all pairwise two-dimensional marginals (upper triangle).
(b) Difference in posterior sample mean of approximate (LAN{5,8,11}, MNLE5) and reference posteriors (normalized by reference posterior
standard deviation, lower is better). (c) Same as in (b) but for posterior sample variance (normalized by reference posterior variance, lower is
better). (d) Parameter estimation error measured as mean squared error (MSE) between posterior sample mean and the true underlying
parameters (smallest possible error is given by reference posterior performance shown in blue). (e) Classification 2-sample test (C2ST) score
between approximate (LAN{5,8,11}, MNLE5) and reference posterior samples (0.5 is best). All bar plots show metrics calculated from 100
repetitions with different observations; error bars show standard error of the mean.
Figure 3–Figure supplement 1. Inference accuracy metrics for individual model parameters.
Figure 3–Figure supplement 2. Example posteriors and parameter recovery for LAN5 and LAN8.
Figure 3–Figure supplement 3. Inference accuracy metrics for different numbers of observed trials.

compared to 1.02±0.03ms for LANs, i.e., MNLE incurred a larger computational foot-print at evalu-194

ation time. Note that these timings are based on an improved implementation of LANs compared195

to the one originally presented in Fengler et al. (2021), and evaluation times can depend on the196

implementation, compute infrastructure and parameter settings (see Details of the numerical com-197

parison and Discussion). In summary, we found that MNLE trained with 105 simulations performed198

substantially better than LANs trained with 105 or 108 simulations, and similarly well or better than199

LANs trained with 1011 simulations, on all likelihood approximation accuracy metrics.200

MNLE enables accurate flexible posterior inference with MCMC201

In the previous sectionwe showed thatMNLE requires substantially fewer training simulations than202

LANs to approximate the likelihood accurately. To investigate whether these likelihood-estimates203

were accurate enough to support accurate parameter inference, we evaluated the quality of the204

resulting posteriors, using a framework for benchmarking SBI algorithms (Lueckmann et al., 2021).205

We used the analytical likelihoods of the simple DDM to obtain reference posteriors for 100 differ-206

ent observations, via MCMC sampling. Each observation consisted of 100 independent and identi-207

cally distributed (i.i.d.) trials simulated with parameters sampled from the prior (see Figure 3a for208

an example, details in Methods and Materials). We then performed inference using MCMC based209

6 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

on the approximate likelihoods obtained with MNLE (105 budget, MNLE5) and the ones obtained210

with LAN for each of the three simulation budgets (LAN{5,8,11}, respectively).211

Overall, we found that the likelihood approximation performances presented above were re-212

flected in the inference performances: MNLE5 performed substantially better than LAN5 and LAN8,213

and equally well or better than LAN11 (Figure 3b-d). In particular, MNLE5 approximated the poste-214

rior mean more accurately than LAN{5,8,11} (Figure 3b), being more accurate than LAN{5,8,11} in 100,215

90, and 67 out of 100 comparisons, respectively. In terms of posterior variance, MNLE5 performed216

better than LAN{5,8} and on par with LAN11 (Figure 3c), being more accurate than LAN{5,8,11} in 100,217

93, (p ≪ 0.01, binomial test) and 58 (p = 0.13) out of 100 pairwise comparisons, respectively.218

Additionally, we measured the parameter estimation accuracy as the mean squared error be-219

tween the posterior mean and the ground-truth parameters underlying the observed data. We220

found that MNLE5 estimation error was indistinguishable from that of the reference posterior, and221

that LAN performance was similar only for the substantially larger simulation budget of LAN11 (Fig-222

ure 3c), with MNLE being closer to reference performance than LAN{5,8,11} in 100, 91, and 66 out223

of 100 comparisons, respectively (all p < 0.01). Note that all three metrics were reported as av-224

erages over the four parameter dimensions of the DDM to keep the visualizations compact, and225

that this average did not affect the results qualitatively. We report metrics for each dimension in226

Figure 3—Figure Supplement 1, as well as additional inference accuracy results for smaller LAN227

simulation budgets (Figure 3—Figure Supplement 2) and for different numbers of observed trials228

(Figure 3—Figure Supplement 3).229

Finally, we used the classifier 2-sample test (C2ST, Lopez-Paz and Oquab, 2017; Lueckmann230

et al., 2021) to quantify the similarity between the estimated and reference posterior distributions.231

The C2ST is defined to be the error-rate of a classification algorithm which aims to classify whether232

samples belong to the true or the estimated posterior. Thus, it ranges from 0.5 (no difference233

between the distributions, the classifier is at chance level), to 1.0 (the classifier can perfectly distin-234

guish the two distributions). We note that the C2ST is a highly sensitive measure of discrepancy235

between two multivariate-distributions—e.g. if the two distributions differ in any dimension, the236

C2ST will be close to 1 even if all other dimensions match perfectly. We found that neither of the237

two approaches was able to achieve perfect approximations, but that MNLE5 achieved lower C2ST238

scores compared to LAN{5,8,11} on all simulation budgets (Figure 3e): mean C2ST score LAN{5,8,11},239

0.96, 0.78, 0.70 vs. MNLE5, 0.65, with MNLE5 showing a better score than LAN{5,8,11} on 100, 91, and240

68 out of 100 pairwise comparisons, respectively (all p < 0.01). In summary, MNLE achieves more241

accurate recovery of posterior means than LANs, similar or better recovery of posterior variances,242

and overall more accurate posteriors (as quantified by C2ST).243

MNLE posteriors have uncertainties which are well-calibrated244

For practical applications of inference, it is often desirable to know how well an inference proce-245

dure can recover the ground-truth parameters, and whether the uncertainty-estimates are well-246

calibrated, (Cook et al., 2006), i.e., that the uncertainty estimates of the posterior are balanced, and247

neither over-confident nor under-confident. For the DDM, we found that the posteriors inferred248

with MNLE and LANs (when using LAN11) recovered the ground-truth parameters accurately (in249

terms of posterior means, Figure 3d and Figure 4a)—in fact, parameter recovery was similarly ac-250

curate to using the ‘true’ analytical likelihoods, indicating that much of the residual error is due to251

stochasticity of the observations, and not the inaccuracy of the likelihood approximations.252

To assess posterior calibration, we used simulation-based calibration (SBC, Talts et al., 2018).253

The basic idea of SBC is the following: If one repeats the inference with simulations frommany dif-254

ferent prior samples, then, with a well-calibrated inference method, the combined samples from255

all the inferred posteriors should be distributed according to the prior. One way to test this is256

to calculate the rank of each ground-truth parameter (samples from the prior) under its corre-257

sponding posterior, and to check whether all the ranks follow a uniform distribution. SBC results258

indicated that MNLE posteriors were as well-calibrated as the reference posteriors, i.e., the empir-259

7 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

2 0 2
ground-truth v

2

0

2

po
st

er
io

r m
ea

n

0.50 1.25 2.00
ground-truth a

0.50

1.25

2.00

0.3 0.5 0.7
ground-truth w

0.3

0.5

0.7

0.2 1.0 1.8
ground-truth

0.2

1.0

1.8

reference
LAN11

MNLE5

identity

0 50 100
posterior rank v

0.0

0.5

1.0

em
pi

ric
al

 C
DF

0 50 100
posterior rank a

em
pi

ric
al

 C
DF

0 50 100
posterior rank w

em
pi

ric
al

 C
DF

0 50 100
posterior rank

em
pi

ric
al

 C
DF reference

LAN5

LAN8

LAN11

MNLE5

a

b

Figure 4. Parameter recovery and posterior uncertainty calibration for the DDM. (a) Underlying ground-truth DDM parameters plotted
against the sample mean of posterior samples inferred with the analytical likelihoods (reference, blue crosses), LAN (orange circles) and MNLE
(green circles), for 100 different observations. Markers close to diagonal indicate good recovery of ground-truth parameters; circles on top of
blue reference crosses indicate accurate posterior means. (b) Simulation-based calibration results showing empirical cumulative density
functions (CDF) of the ground-truth parameters ranked under the inferred posteriors calculated from 100 different observations. A
well-calibrated posterior must have uniformly distributed ranks, as indicated by the area shaded gray. Shown for reference posteriors (blue),
LAN posteriors obtained with increasing simulation budgets (shades of orange, LAN{5,8,11}) and MNLE posterior (green, MNLE5), and for each
parameters separately (v, a, w and �).
Figure 4–Figure supplement 1. Parameter recovery for different numbers of observed trials.
Figure 4–Figure supplement 2. Simulation-based calibration results for different numbers of observed trials.

ical cumulative density functions (CDF) of the ranks were close to that of a uniform distribution260

(Figure 4b)—thus, on this example, MNLE inferences would likely be of similar quality compared to261

using the analytical likelihoods. When trained with the large simulation budget of 1011 simulations,262

LANs, too appeared to recover most of the ground-truth parameters well. However, SBC detected263

a systematic underestimation of the parameter a and overestimation of the parameter �, and this264

bias increased for the smaller simulation budgets of LAN5 and LAN8 (Figure 4b, see the deviation265

below and above the desired uniform distribution of ranks, respectively).266

The results so far (i.e., Figure 3, Figure 4) indicate that both LAN11 and MNLE5 lead to similar pa-267

rameter recovery, but onlyMNLE5 leads to posteriors whichwerewell-calibrated for all parameters.268

These results were obtained using a scenario with 100 i.i.d. trials. When increasing the number of269

trials (e.g., to 1000 trials), posteriors become very concentrated around the ground-truth value. In270

that case, while the posteriors overall identified the ground-truth parameter value very well (Fig-271

ure 4—Figure Supplement 1c), even small deviations in the posteriors can have large effects on the272

posterior metrics (Figure 3—Figure Supplement 3). This effect was also detected by SBC, showing273

systematic biases for some parameters (Figure 4—Figure Supplement 2c). For MNLE, we found274

that these biases were smaller, and furthermore that it was possible to mitigate this effect by infer-275

ring the posterior using ensembles, e.g., by combining samples inferred with five MNLEs trained276

with identical settings but different random initialization (see Appendix 1 for details). These results277

show the utility of using SBC as a tool to test posterior coverage, especially when studying models278

8 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

-2.5 2.5
v

MNLE posterior
ground-truth

0.5 2
a

0.25 0.75
w

0.05 0.95

-1 -0.01

2 1 0 1 2
x: reaction time [s]

updown
observations
prior
predictive
posterior
predictive

0 50 100
posterior rank

0.0

0.5

1.0

em
pi

ric
al

 C
DF

v
a
w

a b

c

Figure 5. MNLE infers accurate posteriors for the DDM with collapsing bounds. Posterior samples were obtained given 100-trial
observations simulated from the DDM with linearly collapsing bounds, using MNLE and MCMC. (a) Approximate posteriors shown as 95%
contour lines in a corner-plot of one-dimensional (diagonal) and two-dimensional (upper triangle) marginals, for a representative 100-trial
observation simulated from the DDM. (b) Reaction times and choices simulated from the ground-truth parameters (blue) compared to those
simulated given parameters sampled from the prior (prior predictive distribution, purple) and from the MNLE posterior shown in (a) (posterior
predictive distribution, green). (c) Simulation-based calibration results showing empirical cumulative density functions (CDF) of the ground-truth
parameters ranked under the inferred posteriors, calculated from 100 different observations. A well-calibrated posterior must have uniformly
distributed ranks, as indicated by the area shaded gray. Shown for each parameters separately (v, a, w, � and
).

for which reference posteriors are not available, as we demonstrate in the next section.279

MNLE inferswell-calibrated, predictiveposteriors for aDDMwith collapsingbounds280

MNLE was designed to be applicable to models for which evaluation of the likelihood is not prac-281

tical so that standard inference tools cannot be used. To demonstrate this, we applied MNLE to a282

variant of the DDM for which analytical likelihoods are not available (note, however, that numeri-283

cal approximation of likelihoods for this model would be possible, see e.g., Shinn et al., 2020, and284

Methods and Materials for details). This DDM variant simulates a decision variable like the simple285

DDM used above, but with linearly collapsing instead of constant decision boundaries (see e.g.,286

Hawkins et al., 2015; Palestro et al., 2018b). The collapsing bounds are incorporated with an ad-287

ditional parameter
 indicating the slope of the decision boundary, such that � = (a, v,w, �,
) (see288

Details of the numerical comparison).289

We tested inference with MNLE on the DDM with linearly collapsing bound using observations290

comprised of 100 i.i.d. trials simulated with parameters sampled from the prior. Using the same291

MNLE training and MCMC settings as above, we found that posterior density concentrated around292

the underlying ground-truth parameters (see Figure 5a), suggesting that MNLE learned the under-293

lying likelihood accurately. To assess inference quality systematically without needing reference294

posteriors, we performed posterior predictive checks by running simulations with the inferred pos-295

teriors samples and comparing them to observed (simulated) data, and checked posterior calibra-296

tion properties using SBC.We found that the inferred posteriors have goodpredictive performance,297

i.e., data simulated from the inferred posterior samples accuratelymatched the observed data (Fig-298

9 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

ure 5b), and that their uncertainties are well-calibrated as quantified by the SBC results (Figure 5c).299

Overall, this indicated that MNLE accurately inferred the posterior of this intractable variant of the300

DDM.301

Discussion302

Statistical inference for computational models in cognitive neuroscience can be challenging be-303

causemodels often do not have tractable likelihood functions. The recently proposed LANmethod304

(Fengler et al., 2021) performs SBI for a subset of such models (DDMs) by training neural networks305

with model simulations to approximate the intractable likelihood. However, LANs require large306

amounts of training data, restricting its usage to canonical models. We proposed an alternative ap-307

proached called mixed neural likelihood estimation (MNLE), a synthetic neural likelihood method308

which is tailored to the data-types encountered in many models of decision-making.309

Our comparison on a tractable example problem used in Fengler et al. (2021) showed that310

MNLE performed on par with LANs using six orders of magnitude fewer model simulations for311

training. While Fengler et al. (2021) discuss that LANs were not optimized for simulation efficiency312

and that it might be possible to reduce the required model simulations, we emphasize that the313

difference in simulation-efficiency is due to an inherent property of LANs. For each parameter in314

the training data, LANs require empirical likelihood targets that have to be estimated by building315

histograms or kernel density estimates from thousands of simulations. MNLE, instead, performs316

conditional density estimation without the need of likelihood targets and can work with only one317

simulation per parameter. Because of these conceptual differences, we expect the substantial318

performance advantage of MNLE to be robust to the specifics of the implementation.319

After the networks are trained, the time needed for each evaluation determines the speed of in-320

ference. In that respect, both LANs andMNLEs are conceptually similar in that they require a single321

forward-pass through a neural network for each evaluation, and we found MNLE and the original322

implementation of LANs to require comparable computation times. However, evaluation time will323

depend, e.g., on the exact network architecture, software framework and computing infrastructure324

used. Code for a new PyTorch implementation of LANs has recently been released and improved325

upon the evaluation speed original implementation we compared to. While this new implementa-326

tion made LAN significantly faster for a single forward-pass, we observed that the resulting time327

difference with theMCMC-settings used here was only on the order of minutes, whereas the differ-328

ence in simulation time for LAN11 vs MNLE5 was on the order of days. The exact timings will always329

be implementation specific and whether or not these differences are important will depend on330

the application at hand. In a situation where iteration over model design is required (i.e., custom331

DDMs), an increase in training efficiency on the order of days would be advantageous.332

There exist a number of approaches with corresponding software packages for estimating pa-333

rameters of cognitive neuroscience models, and DDMs in particular. However, these approaches334

either only estimate single best-fitting parameters (Voss and Voss, 2007;Wagenmakers et al., 2007;335

Chandrasekaran and Hawkins, 2019; Heathcote et al., 2019; Shinn et al., 2020) or, if they perform336

fully Bayesian inference, can only produce Gaussian approximations to posteriors (Feltgen and337

Daunizeau, 2021), or are restricted to variants of the DDM for which the likelihood can be evalu-338

ated (Wiecki et al., 2013, HDDM). A recent extension of the HDDM toolbox includes LANs, thereby339

combining HDDM’s flexibility with LAN’s ability to perform inference without access to the likeli-340

hood function (but this remains restricted to variants of the DDM for which LAN can be pre-trained).341

In contrast, MNLE can be applied to any simulation-based model with intractable likelihoods and342

mixed data type-outputs. Here, we focused on the direct comparison to LANs based on variants343

of the DDM. We note that these models have a rather low-dimensional observation structure (as344

common inmany cognitive neurosciencemodels), and that our examples did not include additional345

parameter structure, e.g., stimulus encoding parameters, which would increase the dimensionality346

of the learning problem. However, other variants of neural density estimation have been applied347

successfully to a variety of problems with higher dimensionality (see e.g. Gonçalves et al., 2020;348

10 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Lueckmann et al., 2021; Glöckler et al., 2021; Dax et al., 2022). Therefore, we expect MNLE to be349

applicable to other simulation-based problemswith higher-dimensional observation structure and350

parameter spaces, and to scale more favourably than LANs. Like for any neural network-based ap-351

proach, applyingMNLE to different inference problemsmay require selecting different architecture352

and training hyperparameters settings, which may induce additional computational training costs.353

To help with this process, we adopted default settings which have been shown to work well on a354

large range of SBI benchmarking problems (Lueckmann et al., 2021), and we integrated MNLE into355

the established sbi python package that provides well-documented implementations for training-356

and inference performance of SBI algorithms.357

Several extensions to classical synthetic likelihood (SL) approaches have addressed the problem358

of a bias in the likelihood approximation due to the strong parametric assumptions, i.e., Gaussian-359

ity, the use of summary statistics, or finite-sample biases (Price et al., 2018; Ong et al., 2018; van360

Opheusden et al., 2020). MNLE builds on flexible neural likelihood estimators, e.g., normalizing361

flows, and does not require summary statistics for a low-dimensional simulator like the DDM, so362

would be less susceptible to these first two biases. It could be subject to biases resulting from363

the estimation of the log-likelihoods from a finite number of simulations. In our numerical experi-364

ments, and for the simulation-budgets we used, we did not observe biased inference results. We365

speculate that the ability of neural density estimators to pool data across multiple parameter set-366

tings (rather than using only data from a specific parameter set, like in classical synthetic likelihood367

methods) mitigates finite-sample effects.368

MNLE is a SBI method which uses neural density estimators to estimate likelihoods. Alterna-369

tives to neural likelihood estimation include neural posterior estimation (NPE, Papamakarios and370

Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019, which uses conditional density es-371

timation to learn the posterior directly) and neural ratio estimation (NRE, Hermans et al., 2020;372

Durkan et al., 2020, which uses classification to approximate the likelihood-to-evidence ratio to373

then perform MCMC). These approaches could in principle be applied here as well, however, they374

are not as well suited for the flexible inference scenarios common in decision-making models as375

MNLE: NPE by design does not allow for flexible inference scenarios but needs to be retrained376

because the posterior changes with changing number of trials or changing hierarchical inference377

setting; and NRE, performing ratio- and not density estimation, would not provide an emulator of378

the simulator.379

Regarding future research directions, MNLE has the potential to become more simulation effi-380

cient by using weight sharing between the discrete and the continuous neural density estimators381

(rather than to use separate neural networks, as we did here). Moreover, for high-dimensional382

inference problems in which slice sampling-based MCMC might struggle, MNLE could be used in383

conjunction with gradient-based MCMC methods like Hamiltonian Monte Carlo (HMC, Neal et al.,384

2011; Hoffman et al., 2014), or variational inference as recently proposed by Wiqvist et al. (2021)385

and Glöckler et al. (2021). With MNLE’s full integration into the sbi package, both gradient-based386

MCMCmethods from Pyro (Bingham et al., 2019), and variational inference for SBI (SNVI, Glöckler387

et al., 2021) are available as inference methods for MNLE (a comparison of HMC and SNVI to slice388

sampling-MCMC on one example observation resulted in indistinguishable posterior samples). Fi-389

nally, using its emulator property (see Appendix 1), MNLE could be applied in an active learning390

setting for highly expensive simulators in which new simulations are chosen adaptively accord-391

ing to a acquisition function in a Bayesian optimization framework (Gutmann and Corander, 2016;392

Lueckmann et al., 2019; Järvenpää et al., 2019) .393

In summary, MNLE enables flexible and efficient inference of parameters ofmodels in cognitive394

neurosciencewith intractable likelihoods. The training efficiency andflexibility of the neural density395

estimators used overcome the limitations of LANs (Fengler et al., 2021). Critically, these features396

enable researchers to develop customized models of decision-making and not just apply existing397

models to newdata. We implementedour approach as an extension to apublic sbipythonpackage398

with detailed documentation and examples to make it accessible for practitioners.399

11 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://github.com/mackelab/sbi
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Methods and Materials400

Mixed neural likelihood estimation401

Mixed neural likelihood estimation (MNLE) extends the framework of neural likelihood estimation402

(Papamakarios et al., 2019b; Lueckmann et al., 2019) to be applicable to simulation-based models403

with mixed data types. It learns a parametric model q (x|�) of the intractable likelihood p(x|�)404

defined implicitly by the simulation-basedmodel. The parameters are learned with training data405

{�n, xn}1∶N comprised of model parameters �n and their corresponding data simulated from the406

model xn|�n ∼ p(x|�n). The parameters are sampled from a proposal distribution over parameters407

�n ∼ p(�). The proposal distribution could be any distribution, but it determines the parameter408

regions for which the density estimator will be good in estimating likelihoods. Thus, the prior,409

or a distribution that contains the support of the prior (or even all priors which one expects to410

use in the future) constitutes a useful choice. After training, the emulator can be used to generate411

synthetic data x|� ∼ q (x|�) given parameters, and to evaluate the synthetic likelihood q (x|�) given412

experimentally observed data. Finally, the synthetic likelihood can be used to obtain posterior413

samples via414

p(�|x) ∝ q (x|�)p(�), (1)

through approximate inference with MCMC. Importantly, the training is amortized, i.e., the em-415

ulator can be applied to new experimental data without retraining (running MCMC is still required).416

We tailored MNLE to simulation-based models that return mixed data, e.g., in form of reaction417

times rt and (usually categorical) choices c as for the DDM. Conditional density estimation with nor-418

malizing flows has been proposed for continuous random variables (Papamakarios et al., 2019a),419

or discrete random variables (Tran et al., 2019), but not for mixed data. Our solution for estimat-420

ing the likelihood of mixed data is to simply factorize the likelihood into continuous and discrete421

variables,422

p(rt, c|�) = p(rt|�, c) p(c|�), (2)

and use two separate neural likelihood estimators: A discrete one q c to estimate p(c|�) and a423

continuous one q rt to estimate p(rt|�, c). We defined q c to be a Bernoulli model and use a neural424

network to learn the Bernoulli probability � given parameters �. For q rt we used a conditional425

neural spline flow (Durkan et al., 2019) to learn the density of rt given a parameter � and choice426

c. The two estimators are trained separately using the same training data (see Neural network427

architecture, training and hyperparameters for details). After training, the full neural likelihood428

can be constructed by multiplying the likelihood estimates q c and q rt back together:429

q c , rt (rt, c|�) = q c (c|�) q rt (rt|c,�). (3)

Note that, as the second estimator q rt (r|c,�) is conditioned on the choice c, our likelihood-430

model can account for statistical dependencies between choices and reaction times. The neural431

likelihood can then be used to approximate the intractable likelihood defined by the simulator,432

e.g., for inference with MCMC. Additionally, it can be used to sample synthetic data given model433

parameters, without running the simulator (see The emulator property of MNLE).434

Relation to LAN435

Neural likelihood estimation can be much more simulation efficient than previous approaches be-436

cause it exploits continuity across the parameters by making the density estimation conditional.437

Fengler et al. (2021), too, aim to exploit continuity across the parameter space by training a neural438

network to predict the value of the likelihood function from parameters � and data x. However,439

the difference to neural likelihood estimation is that they do not use the neural network for density440

estimation directly, but instead do classical neural network-based regression on likelihood targets.441

12 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Crucially, the likelihood targets first have to obtained for each parameter in the training data set.442

To do so, one has to perform density estimation using KDE (as proposed by Turner et al., 2015)443

or empirical histograms for every parameter separately. Once trained, LANs do indeed exploit444

the continuity across the parameter space (they can predict log-likelihoods given unseen data and445

parameters), however, they do so at a very high simulation cost: For a training data set ofN param-446

eters, they perform N times KDE based onM simulations each1, resulting is an overall simulation447

budget of N ⋅M (N =1.5 million andM =100,000 for “pointwise” LAN approach).448

Details of the numerical comparison449

The comparison between MNLE and LAN is based on the drift-diffusion model (DDM). The DDM450

simulates a decision variableX as a stochastic differential equation with parameters � = (v, a,w, �):451

dXt+� = vdt + dW , X� = w, (4)

where W a Wiener noise process. The priors over the parameters are defined to be uniform: v ∼452

 (−2, 2) is the drift, a ∼  (0.5, 2) the boundary separation, w ∼  (0.3, 0.7) the initial offset, � ∼453

 (0.2, 1.8) the non-decision time. A single simulation from the model returns a choice c ∈ {0, 1}454

and the corresponding reaction time in seconds rt ∈ (�,∞).455

For this version of the DDM the likelihood of an observation (c, rt) given parameters �, L(c, rt|�),456

can be calculated analytically (Navarro and Fuss, 2009). To simulate the DDM and calculate ana-457

lytical likelihoods we used the approach and the implementation proposed by Drugowitsch (2016).458

Wenumerically confirmed that the simulations and the analytical likelihoodsmatch those obtained459

from the research code provided by Fengler et al. (2021).460

To run LANs, we downloaded the neural network weights of the pre-trained models from the461

repositorymentioned in Fengler et al. (2021). The budget of training simulations used for the LANs462

was 1.5 × 1011 (1.5 million training data points, each obtained from KDE based on 105 simulations).463

We only considered the approach based on training a multilayer-perceptron (MLP) on single-trial464

likelihoods (“pointwise approach", Fengler et al., 2021). At a later stage of our study we performed465

additional experiments to evaluate the performance of LANs trained at smaller simulation budgets,466

e.g., for 105 and 108 simulations. For this analysis we used an updated implementation of LANs467

based on PyTorch that was provided by the authors. We used the training routines and default468

settings provided with that implementation. To train LANs at the smaller budgets we used the469

following splits of budgets into number of parameter settings drawn from the prior, and number470

of simulations per parameter setting used for fitting the KDE: for the 105 budgetwe used 102 and 103,471

respectively (we ran experiments splitting the other way around, but results were slightly better472

for this split); for the 108 budget we used an equal split of 104 each (all code publicly available, see473

Code availability).474

To run MNLE, we extended the implementation of neural likelihood estimation in the sbi tool-475

box (Tejero-Cantero et al., 2020). All comparisons were performed on a single AMD Ryzen Thread-476

ripper 1920X 12-Core processor with 2.2GHz and the code is publicly available (see Code availabil-477

ity).478

For theDDMvariantwith linearly collapsing decisionboundaries, the boundarieswere parametrized479

by the initial boundary separation, a, and one additional parameter,
 , indicating the slope with480

which the boundary approaches zero. This resulted in a five-dimensional parameter space for481

which we used the same prior as above, plus the an additional uniform prior for the slope
 ∼482

 (−1.0, 0). To simulate this DDM variant, we again used the Julia package by Drugowitsch (2016),483

but we note that for this variant no analytical likelihoods are available. While it would be possi-484

ble to approximate the likelihoods numerically using the Fokker-Planck equations (see, e.g., Shinn485

et al., 2020), this would usually involve a trade-off between computation time and accuracy as well486

as design of bespoke solutions for individual models, and was not pursued here.487

1For models with categorical output, i.e., all decision-making models, KDE is performed separately for each choice.

13 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Flexible Bayesian inference with MCMC488

Once the MNLE is trained, it can be used for MCMC to obtain posterior samples � ∼ p(�|x) given489

experimentally observed data x. To sample from posteriors via MCMC, we transformed the param-490

eters to unconstrained space, used slice sampling (Neal, 2003), and initialized ten parallel chains491

using sequential importance sampling (Papamakarios et al., 2019b), all as implemented in the sbi492

toolbox. We ran MCMC with identical settings for MNLE and LAN.493

Importantly, performing MNLE and then using MCMC to obtain posterior samples allows for494

flexible inference scenarios because the form of x is not fixed. For example, when the model pro-495

duces trial-based data that satisfy the i.i.d. assumption, e.g., a set of reaction times and choices496

X = {rt, c}Ni=1 in a drift-diffusion model, then MNLE allows to perform inference given varying num-497

bers of trials, without retraining. This is achieved by training MNLE based on single-trial likelihoods498

once and then combining multiple trials into the joint likelihood only when running MCMC:499

p(�|X) ∝
N
∏

i=1
q(rti, ci|�) p(�). (5)

Similarly, one can use the neural likelihood to perform hierarchical inference with MCMC, all with-500

out the need for retraining (see Hermans et al., 2020; Fengler et al., 2021, for examples).501

Stimulus- and inter-trial dependencies502

Simulation-based models in cognitive neuroscience often depend not only on a set of parameters503

�, but additionally on (a set of) stimulus variables s which are typically given as part of the exper-504

imental conditions. MNLE can be readily adapted to this scenario by generating simulated data505

with multiple stimulus variables, and including them as additional inputs to the network during in-506

ference. Similarly, MNLE could be adapted to scenarios in which the i.i.d. assumption across trials507

as used above (see Eq.Flexible Bayesian inference with MCMC) does not hold. Again, this would be508

achieved by adapting the model-simulator accordingly. For example, when inferring parameters509

� of a DDM for which the outcome of the current trial i additionally depends on current stimulus510

variables si as well as on previous stimuli sj and responses rj , then one would implement the DDM511

simulator as a function f (�; si−T ,… , si; ri−T ,… , ri−1) (where T is a history parameter) and then learn512

the underlying likelihood by emulating f with MNLE.513

Neural network architecture, training and hyperparameters514

Architecture515

For the architecture of the Bernoulli model we chose a feed-forward neural network that takes516

parameters � as input and predicts the Bernoulli probability � of the corresponding choices. For517

the normalizing flow we used the neural spline flow architecture (NSF, Durkan et al., 2019). NSFs518

use a standard normal base distribution and transform it using several modules of monotonic519

rational-quadratic splines whose parameters are learned by invertible neural networks. Using an520

unbounded base distribution formodeling data with bounded support, e.g., reaction time data rt ∈521

(0,∞), can be challenging. To account for this, we tested two approaches: We either transformed522

the reaction time data to logarithmic space to obtain an unbounded support (log rt ∈ (−∞,∞)), or523

we used a log-normal base distribution with rectified (instead of linear) tails for the splines (see524

Durkan et al., 2019, for details and Architecture and training hyperparameters for the architecture525

settings used)526

Training527

The neural network parameters c and rt were trained using the maximum likelihood loss and528

the Adam optimizer (Kingma and Ba, 2015). As proposal distribution for the training dataset we529

used the prior over DDMparameters. Given a training data set of parameters, choices and reaction530

times {�i, (ci, rti)}Ni=1 with �i ∼ p(�); (ci, rti) ∼ DDM(�i), we minimized the negative log-probability of531

14 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

the model. In particular, using the same training data, we trained the Bernoulli choice model by532

minimizing533

− 1
N

N
∑

i=1
log q c (ci|�i), (6)

and the neural spline flow by minimizing534

− 1
N

N
∑

i=1
log q rt (rt|ci,�i). (7)

Training was performed with code and training hyperparameter settings provided in the sbi tool-535

box (Tejero-Cantero et al., 2020).536

Hyperparameters537

MNLE requires a number of hyperparameter choices regarding the neural network architectures,538

e.g., number of hidden layers, number of hidden units, number of stacked NSF transforms, kind539

of base distribution, among others (Durkan et al., 2019). With our implementation building on the540

sbi package we based our hyperparameter choices on the default settings provided there. This541

resulted in likelihood accuracy similar to LAN, but longer evaluation times due to the complexity542

of the underlying normalizing flow architecture.543

To reduce evaluation time of MNLE, we further adapted the architecture to the example model544

(DDM). In particular, we ran a cross-validation of the hyperparameters relevant for evaluation time,545

i.e., number of hidden layers, hidden units, NSF transforms, spline bins, and selected those that546

were optimal in terms of Huber loss and mean-squared error between the approximate and the547

analytical likelihoods, as well as evaluation time. This resulted in an architecture with performance548

and evaluation time similar to LANs (more details in Appendix Architecture and training hyperpa-549

rameters). The cross-validation relied on access to the analytical likelihoods which is usually not550

given in practice, e.g., for simulators with intractable likelihoods. However, we note that in cases551

without access to analytical likelihoods a similar cross-validation can be performed using quality552

measures other than the difference to the analytical likelihood, e.g., by comparing the observed553

data with synthetic data and synthetic likelihoods provided by MNLE.554

Acknowledgments555

We thank Luigi Acerbi, Michael Deistler, Alexander Fengler, Michael Frank and IngeborgWenger for556

discussions and comments on a preliminary version of the manuscript. We also acknowledge and557

thank the Python (Van Rossum and Drake Jr, 1995) and Julia (Bezanson et al., 2017) communities558

for developing the tools enabling this work, including DifferentialEquations.jl (Rackauckas and559

Nie, 2017), DiffModels.jl (Drugowitsch, 2016), NumPy (Harris et al., 2020), pandas (pandas develop-560

ment team, 2020), Pyro (Bingham et al., 2019), PyTorch (Paszke et al., 2019), sbi (Tejero-Cantero561

et al., 2020), sbibm (Lueckmann et al., 2021) and Scikit-learn (Pedregosa et al., 2011).562

References563

An Z, South LF, Nott DJ, Drovandi CC. Accelerating Bayesian synthetic likelihoodwith the graphical lasso. Journal564

of Computational and Graphical Statistics. 2019; 28(2):471–475.565

Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical computing. SIAM review.566

2017; 59(1):65–98.567

Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip P, Horsfall P, Good-568

man ND. Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research. 2019;569

20(1):973–978.570

Chandrasekaran C, Hawkins GE. ChaRTr: An R toolbox for modeling choices and response times in decision-571

making tasks. Journal of neuroscience methods. 2019; 328:108432.572

15 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science. 1988; 242(4879):741–745.573

Cook SR, Gelman A, Rubin DB. Validation of software for Bayesian models using posterior quantiles. Journal574

of Computational and Graphical Statistics. 2006; 15(3):675–692.575

Cranmer K, Brehmer J, Louppe G. The frontier of simulation-based inference. Proceedings of the National576

Academy of Sciences. 2020; doi: 10.1073/pnas.1912789117.577

Dax M, Green SR, Gair J, Deistler M, Schölkopf B, Macke JH. Group equivariant neural posterior estimation. In:578

International Conference on Learning Representations; 2022. https://openreview.net/forum?id=u6s8dSporO8.579

Drovandi CC, Grazian C, Mengersen K, Robert C. Approximating the Likelihood in ABC. Handbook of approxi-580

mate bayesian computation. 2018; p. 321–368.581

Drugowitsch J. Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models.582

Scientific reports. 2016; 6(1):1–13.583

Durkan C, Bekasov A, Murray I, Papamakarios G. Neural spline flows. Advances in Neural Information Process-584

ing Systems. 2019; 32:7511–7522.585

Durkan C, Murray I, Papamakarios G. On contrastive learning for likelihood-free inference. In: International586

Conference on Machine Learning PMLR; 2020. p. 2771–2781.587

Feltgen Q, Daunizeau J. An overcomplete approach to fitting drift-diffusion decision models to trial-by-trial588

data. Frontiers in artificial intelligence. 2021; 4:23.589

Fengler A, Govindarajan LN, Chen T, Frank MJ. Likelihood approximation networks (LANs) for fast inference of590

simulation models in cognitive neuroscience. eLife. 2021; 10:e65074.591

Glöckler M, Deistler M, Macke JH. Variational methods for simulation-based inference. In: International Con-592

ference on Learning Representations; 2021. .593

Gonçalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Öcal K, Bassetto G, Chintaluri C, Podlaski WF, Had-594

dad SA, Vogels TP, Greenberg DS, Macke JH. Training deep neural density estimators to identify mechanistic595

models of neural dynamics. eLife. 2020; doi: 10.7554/eLife.56261.596

Greenberg D, Nonnenmacher M, Macke J. Automatic Posterior Transformation for Likelihood-Free Inference.597

In: Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine598

Learning Research PMLR; 2019. p. 2404–2414.599

Gutmann MU, Corander J. Bayesian optimization for likelihood-free inference of simulator-based statistical600

models. The Journal of Machine Learning Research. 2016; 17(1):4256–4302.601

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith602

NJ, et al. Array programming with NumPy. Nature. 2020; 585(7825):357–362.603

Hawkins GE, Forstmann BU, Wagenmakers EJ, Ratcliff R, Brown SD. Revisiting the evidence for collapsing604

boundaries and urgency signals in perceptual decision-making. Journal of Neuroscience. 2015; 35(6):2476–605

2484.606

Heathcote A, Lin YS, Reynolds A, Strickland L, Gretton M, Matzke D. Dynamic models of choice. Behavior607

research methods. 2019; 51(2):961–985.608

Hermans J, Begy V, Louppe G. Likelihood-free MCMC with Approximate Likelihood Ratios. In: Proceedings of609

the 37th International Conference on Machine Learning, vol. 98 of Proceedings of Machine Learning Research610

PMLR; 2020. .611

Hoffman MD, Gelman A, et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte612

Carlo. J Mach Learn Res. 2014; 15(1):1593–1623.613

Järvenpää M, Gutmann MU, Pleska A, Vehtari A, Marttinen P, et al. Efficient acquisition rules for model-based614

approximate Bayesian computation. Bayesian Analysis. 2019; 14(2):595–622.615

Kangasrääsiö A, Jokinen JP, Oulasvirta A, Howes A, Kaski S. Parameter inference for computational cognitive616

models with Approximate Bayesian Computation. Cognitive science. 2019; 43(6):e12738.617

KingmaDP, Ba J. Adam: AMethod for Stochastic Optimization. In: Proceedings of the 3rd International Conference618

on Learning Representations, ICLR; 2015. .619

16 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

10.1073/pnas.1912789117
https://openreview.net/forum?id=u6s8dSporO8
10.7554/eLife.56261
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Lee HS, Betts S, Anderson JR. Learning problem-solving rules as search through a hypothesis space. Cognitive620

science. 2016; 40(5):1036–1079.621

LeeMD. Three case studies in the Bayesian analysis of cognitivemodels. Psychonomic Bulletin & Review. 2008;622

15(1):1–15.623

Lee MD. How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical624

Psychology. 2011; 55(1):1–7.625

Lee MD, Wagenmakers EJ. Bayesian cognitive modeling: A practical course. Cambridge university press; 2014.626

Lopez-Paz D, Oquab M. Revisiting Classifier Two-Sample Tests. In: 5th International Conference on Learning627

Representations, ICLR; 2017. .628

Lueckmann JM, Bassetto G, Karaletsos T, Macke JH. Likelihood-free inference with emulator networks. In:629

Proceedings of The 1st Symposium on Advances in Approximate Bayesian Inference, vol. 96 of Proceedings of630

Machine Learning Research PMLR; 2019. p. 32–53.631

Lueckmann JM, Boelts J, Greenberg D, Goncalves P, Macke J. Benchmarking Simulation-Based Inference. In:632

Banerjee A, Fukumizu K, editors. Proceedings of The 24th International Conference on Artificial Intelligence and633

Statistics, vol. 130 of Proceedings of Machine Learning Research PMLR; 2021. p. 343–351.634

Lueckmann JM, Goncalves PJ, Bassetto G, Öcal K, Nonnenmacher M, Macke JH. Flexible statistical inference635

for mechanistic models of neural dynamics. Advances in Neural Information Processing Systems. 2017; 30.636

McClelland JL. The place of modeling in cognitive science. Topics in Cognitive Science. 2009; 1(1):11–38.637

Navarro DJ, Fuss IG. Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal638

of mathematical psychology. 2009; 53(4):222–230.639

Neal RM. Slice sampling. Annals of Statistics. 2003; p. 705–741.640

Neal RM, et al. MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo. 2011; 2(11):2.641

Ong VM, Nott DJ, Tran MN, Sisson SA, Drovandi CC. Variational Bayes with synthetic likelihood. Statistics and642

Computing. 2018; 28(4):971–988.643

van Opheusden B, Acerbi L, Ma WJ. Unbiased and efficient log-likelihood estimation with inverse binomial644

sampling. PLoS computational biology. 2020; 16(12):e1008483.645

Palestro JJ, Sederberg PB, Osth AF, Van Zandt T, Turner BM. Likelihood-free methods for cognitive science.646

Springer; 2018.647

Palestro JJ, Weichart E, Sederberg PB, Turner BM. Some task demands induce collapsing bounds: Evidence648

from a behavioral analysis. Psychonomic bulletin & review. 2018; 25(4):1225–1248.649

Papamakarios G, Murray I. Fast �-free Inference of Simulation Models with Bayesian Conditional Density650

Estimation. In: Advances in Neural Information Processing Systems 29 Curran Associates, Inc.; 2016.p. 1028–651

1036.652

Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. Normalizing flows for probabilis-653

tic modeling and inference. arXiv preprint arXiv:191202762. 2019; .654

Papamakarios G, Sterratt D, Murray I. Sequential Neural Likelihood: Fast Likelihood-free Inference with Au-655

toregressive Flows. In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics656

(AISTATS), vol. 89 of Proceedings of Machine Learning Research PMLR; 2019. p. 837–848.657

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison658

A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, et al. PyTorch: An659

Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing660

Systems 32 Curran Associates, Inc.; 2019. p. 8024–8035.661

Patil U, Hanne S, Burchert F, De Bleser R, Vasishth S. A computational evaluation of sentence processing deficits662

in aphasia. Cognitive Science. 2016; 40(1):5–50.663

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,664

Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine665

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.666

17 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Price LF, Drovandi CC, Lee A, Nott DJ. Bayesian synthetic likelihood. Journal of Computational and Graphical667

Statistics. 2018; 27(1):1–11.668

Priddle JW, Sisson SA, Frazier DT, Turner I, Drovandi C. Efficient Bayesian synthetic likelihood with whitening669

transformations. Journal of Computational and Graphical Statistics. 2021; p. 1–14.670

Rackauckas C, Nie Q. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differen-671

tial Equations in Julia. The Journal of Open Research Software. 2017; 5(1). doi: 10.5334/jors.151.672

Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural673

computation. 2008; 20(4):873–922.674

Ratcliff R, Rouder JN. Modeling response times for two-choice decisions. Psychological science. 1998; 9(5):347–675

356.676

Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009;677

90(4):877–887.678

Schad DJ, Betancourt M, Vasishth S. Toward a principled Bayesian workflow in cognitive science. Psychological679

methods. 2021; 26(1):103.680

Shiffrin RM, Lee MD, Kim W, Wagenmakers EJ. A survey of model evaluation approaches with a tutorial on681

hierarchical Bayesian methods. Cognitive Science. 2008; 32(8):1248–1284.682

ShinnM, LamNH, Murray JD. A flexible framework for simulating and fitting generalized drift-diffusionmodels.683

ELife. 2020; 9:e56938.684

Sisson SA, Y F, A BM. Overview of ABC. In: Handbook of Approximate Bayesian Computation CRC Press, Taylor &685

Francis Group; 2018.686

Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A. Validating Bayesian inference algorithms with687

simulation-based calibration. arXiv preprint arXiv:180406788. 2018; .688

pandas development team T, pandas-dev/pandas: Pandas. Zenodo; 2020. https://doi.org/10.5281/zenodo.689

3509134, doi: 10.5281/zenodo.3509134.690

Tejero-Cantero A, Boelts J, Deistler M, Lueckmann JM, Durkan C, Gonçalves PJ, Greenberg DS, Macke JH. sbi: A691

toolkit for simulation-based inference. Journal of Open Source Software. 2020; 5(52):2505. https://doi.org/692

10.21105/joss.02505, doi: 10.21105/joss.02505.693

Tran D, Vafa K, Agrawal K, Dinh L, Poole B. Discrete flows: Invertible generative models of discrete data. Ad-694

vances in Neural Information Processing Systems. 2019; 32:14719–14728.695

Turner BM, VanMaanen L, Forstmann BU. Informing cognitive abstractions through neuroimaging: the neural696

drift diffusion model. Psychological review. 2015; 122(2):312.697

Turner BM, Van Zandt T. A tutorial on approximate Bayesian computation. Journal ofMathematical Psychology.698

2012; 56(2):69–85.699

Turner BM, Van Zandt T. Approximating Bayesian inference through model simulation. Trends in cognitive700

sciences. 2018; 22(9):826–840.701

Usher M, McClelland JL. The time course of perceptual choice: the leaky, competing accumulator model. Psy-702

chological review. 2001; 108(3):550.703

Van Rossum G, Drake Jr FL. Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Nether-704

lands; 1995.705

Voss A, Voss J. Fast-dm: A free program for efficient diffusion model analysis. Behavior research methods.706

2007; 39(4):767–775.707

Wagenmakers EJ, Van Der Maas HL, Grasman RP. An EZ-diffusion model for response time and accuracy.708

Psychonomic bulletin & review. 2007; 14(1):3–22.709

Wiecki TV, Sofer I, Frank MJ. HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python.710

Frontiers in neuroinformatics. 2013; 7:14.711

18 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

10.5334/jors.151
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
10.5281/zenodo.3509134
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
10.21105/joss.02505
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

Wiqvist S, Frellsen J, Picchini U. Sequential Neural Posterior and Likelihood Approximation. arXiv preprint712

arXiv:210206522. 2021; .713

Wood SN. Statistical inference for noisy nonlinear ecological dynamic systems. Nature. 2010; 466(7310):1102–714

1104.715

Appendix 1716

Code availability717

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github.718

com/mackelab/sbi. Code for reproducing the results presented here, and tutorials on how to apply719

MNLE to other simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms.720

Architecture and training hyperparameters721

For the Bernoulli neural network we used three hidden layers with ten units each and sigmoid acti-722

vation functions. For the neural spline flow architecture (Durkan et al., 2019) we transformed the723

reaction time data to the log-domain, used a standard normal base distribution, two spline trans-724

forms with five bins each and conditioning networks with three hidden layers and ten hidden units725

each, and rectified linear unit activation functions. The neural network training was performed us-726

ing the sbi package with the following settings: learning rate 0.0005; training batch size 100; 10% of727

training data as validation data, stop training after 20 epochs without validation loss improvement.728

The emulator property of MNLE729

Being based on the neural likelihood estimation framework, MNLE naturally returns an emulator730

of the simulator that can be sampled to generate synthetic data without running the simulator.731

We found that the synthetic data generated by MNLE accurately matched the data we obtained by732

running the DDM simulator (Figure 2—Figure Supplement 1). This has several potential benefits: it733

can helpwith evaluating the performance of the density estimator, it enables almost instantaneous734

data generation (one forward pass in the neural network) even if the simulator is computationally735

expensive, and it gives full access to the internals of the emulator, e.g., to gradients w.r.t. to data736

or parameters.737

There is variant of the LAN approach which allows for sampling synthetic data as well: In the738

“Histogram-approach” (Fengler et al., 2021) LANs are trained with a convolutional neural network739

(CNN) architecture using likelihood targets in form of two-dimensional empirical histograms. The740

output of the CNN is a probability distribution over a discretized version of the data space which741

can, in principle, be sampled to generate synthetic DDM choices and reaction times. However, the742

accuracy of this emulator property of CNN-LANs is limited by the number of bins used to approxi-743

mate the continuous data space (e.g., 512 bins for the examples shown in Fengler et al. (2021)).744

19 of 19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://github.com/mackelab/mnle-for-ddms
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

2 1 0 1 2
x: reaction time [s]

DDM simulator
MNLE emulator

2 1 0 1 2
x: reaction time [s]

2 1 0 1 2
x: reaction time [s]

a b c

Figure 2–Figure supplement 1. Comparison of simulated DDM data and synthetic data sam-
pled from the MNLE emulator. Histograms of reaction times from 1000 i.i.d. trials generated
from three different parameters sampled from the prior (panel a, b, c) using the original DDM sim-
ulator (purple) and the emulator obtained from MNLE (green). “Down" choices are shown to the
left of zero and “up" choices to the right of zero.

745

0.0

0.2

0.4

m
ea

n
er

ro
r

parameter v

0.00

0.05

0.10 parameter a

0.00

0.04

0.08 parameter w

0.000

0.015

0.030 parameter

0.00

0.03

0.06

va
ria

nc
e

er
ro

r

0.000

0.001

0.002

0.00000

0.00075

0.00150

0.00000

0.00007

0.00014

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.0

0.2

0.4

es
tim

at
io

n
er

ro
r

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.00

0.01

0.02

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.000

0.005

0.010

LA
N5

LA
N8

LA
N1

1

MNLE
5

0.0000

0.0009

0.0018

a b c d

Figure 3–Figure supplement 1. DDM inference accuracy metrics for individual model param-
eters. Inference accuracy given a 100-trial observation, measured as posterior mean accuracy
(first row of panels), posterior variance (second row) and parameter estimation error (third row),
shown in absolute terms, for each of the four DDM parameters separately (panels a, b, c, and d, re-
spectively), and for each simulation budgets of LAN{5,8,11} (shades of orange) and for MNLE5 trained
with 105 simulations (green). Bars show the mean metric over 100 different observations, error
bars show standard error of the mean.

746

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

-2 2
v

reference
LAN5

LAN8

ground-truth

0.5 2
a

0.3 0.7
w

1 1.4

2 0 2
ground-truth v

2

0

2

po
st

er
io

r m
ea

n

0.50 1.25 2.00
ground-truth a

0.50

1.25

2.00 reference
LAN5

LAN8

0.3 0.5 0.7
ground-truth w

0.3

0.5

0.7

po
st

er
io

r m
ea

n

0.2 1.0 1.8
ground-truth

0.2

1.0

1.8

a b

Figure 3–Figure supplement 2. DDM example posteriors and parameter recovery for LANs
trainedwith smaller simulation budgets. (a) Posterior samples given 100-trial example observa-
tion, obtained with MCMC using LAN approximate likelihoods trained based on 105 (LAN5) and 108

simulations (LAN8), and with the analytical likelihoods (reference). (b) Parameter recovery of LAN
and the reference posterior shown as posterior samplemeans against the underlying ground-truth
parameters.

747

100 101 102 103

observed trials

10 3

10 2

10 1

es
tim

at
io

n
er

ro
r

LAN5

LAN8

LAN11

MNLE5

MNLE5 *

reference

100 101 102 103

observed trials

10 2

10 1

m
ea

n
er

ro
r

100 101 102 103

observed trials

10 2

10 1

100
re

la
tiv

e
va

ria
nc

e
er

ro
r

100 101 102 103

observed trials

0.50

0.75

1.00

C2
ST

a b c d

Figure 3–Figure supplement 3. DDM inference accuracy metrics for different numbers of ob-
served trials. Parameter estimation error (a), absolute posterior mean error (b), relative posterior
variance error (c) and C2ST scores (d) shown for LANwith increasing simulation budgets (shades of
orange, LAN{5,8,11}), MNLE trained with 105 simulations (green), and MNLE ensembles (purple). Met-
rics were calculated from 10,000 posterior samples and with respect to the reference posterior, for
100 different observations. Error bars show standard error of the mean.

748

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

2

0

2

1
tri

al

 p
os

te
rio

r m
ea

n

0.50

1.25

2.00

0.3

0.5

0.7

0.2

1.0

1.8

2

0

2

10
 tr

ia
ls

 p
os

te
rio

r m
ea

n
0.50

1.25

2.00

0.3

0.5

0.7

0.2

1.0

1.8

2 0 2
ground-truth v

2

0

2

10
00

 tr
ia

ls
 p

os
te

rio
r m

ea
n

0.50 1.25 2.00
ground-truth a

0.50

1.25

2.00

0.3 0.5 0.7
ground-truth w

0.3

0.5

0.7

0.2 1.0 1.8
ground-truth

0.2

1.0

1.8
reference
LAN11

MNLE5

a

c

b

Figure 4–Figure supplement 1. DDM parameter recovery for different number of observed
trials. True underlying DDM parameters plotted against posterior sample means for 1, 10, and
1000 of observed i.i.d. trial(s) (in rows) and for the four DDM parameters v, a, w and � (in columns).
Calculated from 10,000 posterior samples obtained with MCMC using the reference (blue), LAN11

(orange) and theMNLE5 (green) likelihoods. Black line shows the identity function indicating perfect
recovery.

749

0.0

0.5

1.0

1
tri

al

 e
m

pi
ric

al
 C

DF

reference
LAN11

MNLE5

MNLE5*

0.0

0.5

1.0

10
 tr

ia
ls

 e
m

pi
ric

al
 C

DF

0 50 100
0.0

0.5

1.0

10
00

 tr
ia

ls
 e

m
pi

ric
al

 C
DF

0 50 100 0 50 100 0 50 100

a

c

b

Figure 4–Figure supplement 2. DDM simulation-based calibration results for different num-
bers of observed trials. SBC results in form empirical conditional density functions of the ranks
of ground-truth parameters under the approximate posterior samples. We compared posterior
samples based on analytical likelihoods (blue), LAN11 (orange), MNLE5 (green), and an ensemble of
five MLNEs (MNLE5∗, purple); for each of the four parameters of the DDM and for 1, 10, 1000 ob-
served trials (panel a, b, and c, respectively). Grey areas show random deviations expected under
uniformly distributed ranks (ideal case).

750

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2021.12.22.473472doi: bioRxiv preprint

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Evaluating the performance of mixed neural likelihood estimation (MNLE) on the drift-diffusion model
	MNLE learns accurate likelihoods with a fraction of the simulation budget
	MNLE enables accurate flexible posterior inference with MCMC
	MNLE posteriors have uncertainties which are well-calibrated
	MNLE infers well-calibrated, predictive posteriors for a DDM with collapsing bounds

	Discussion
	Methods and Materials
	Mixed neural likelihood estimation
	Relation to LAN
	Details of the numerical comparison
	Flexible Bayesian inference with MCMC
	Neural network architecture, training and hyperparameters

	Acknowledgments
	Appendix 1
	Code availability
	Architecture and training hyperparameters
	The emulator property of MNLE

