bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

*For correspondence:
jan.boelts@uni-tuebingen.de (JB);
jakob.macke®uni-tuebingen.de

(HM) °

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27

28
29
30
31
32
33
34
35
36
37
38
39

40

available under aCC-BY-NC 4.0 International license.

Flexible and efficient
simulation-based inference for
models of decision-making

Jan Boelts’2, Jan-Matthis Lueckmann’, Richard Gao', Jakob H. Macke'

TMachine Learning in Science, Excellence Cluster Machine Learning, University of
Tlbingen; 2Technical University of Munich; 2Max Planck Institute for Intelligent Systems
Tubingen

Abstract Inferring parameters of computational models that capture experimental data is a
central task in cognitive neuroscience. Bayesian statistical inference methods usually require the
ability to evaluate the likelihood of the model—however, for many models of interest in cognitive
neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based
inference (SBI) offers a solution to this problem by only requiring access to simulations produced
by the model. Here, we provide an efficient SBI method for models of decision-making. Our
approach, Mixed Neural Likelihood Estimation (MNLE), trains neural density estimators on model
simulations to emulate the simulator, and is designed to capture both the continuous (e.g.,
reaction times) and discrete (choices) data of decision-making models. The likelihoods of the
emulator can then be used to perform Bayesian parameter inference on experimental data using
standard approximate inference methods like Markov Chain Monte Carlo sampling. We
demonstrate MNLE on two variants of the drift-diffusion model (DDM) and compare its
performance to a recently proposed method for SBl on DDMs, called Likelihood Approximation
Networks (LANs, Fengler et al. 2021). We show that MNLE is substantially more efficient than
LANSs: it achieves similar likelihood accuracy with six orders of magnitude fewer training
simulations, and is substantially more accurate than LANs when both are trained with the same
budget. This enables researchers to train MNLE on custom-tailored models of decision-making,
leading to fast iteration of model design for scientific discovery.

Introduction

Computational modeling is an essential part of the scientific process in cognitive neuroscience:
Models are developed from prior knowledge and hypotheses, and compared to experimentally ob-
served phenomena (Churchland and Sejnowski, 1988; McClelland, 2009). Computational models
usually have free parameters which need to be tuned to find those models that capture experi-
mental data. This is often approached by searching for single best-fitting parameters using grid
search or optimization methods. While this point-wise approach has been used successfully (Lee
et al., 2016; Patil et al., 2016) it can be scientifically more informative to perform Bayesian infer-
ence over the model parameters: Bayesian inference takes into account prior knowledge, reveals
all the parameters consistent with observed data, and thus can be used for quantifying uncer-
tainty, hypothesis testing, and model selection (Lee, 2008; Shiffrin et al., 2008; Lee and Wagen-
makers, 2014; Schad et al., 20217). Yet, as the complexity of models used in cognitive neuroscience
increases, Bayesian inference becomes challenging for two reasons. First, for many commonly

10f19

jan.boelts@uni-tuebingen.de
jakob.macke@uni-tuebingen.de
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

. N
/5|mulator /neural density est|mat|on\ /posterlor samples h
M M)
up
. . '
a
u
I RRC
reaction time (rt)) U v
N AN / - %

Figure 1. Training a neural density estimator on simulated data to perform parameter inference. Our goal is to perform Bayesian
inference on models of decision-making for which likelihoods cannot be evaluated (here a drift-diffusion model for illustration, left). We train a
neural density estimation network on synthetic data generated by the model, to provide access to (estimated) likelihoods. Our neural density
estimators are designed to account for the mixed data types of decision-making models (e.g. discrete valued choices and continuous valued
reaction times, middle). The estimated likelihoods can then be used for inference with standard Markov Chain Monte Carlo (MCMC) methods,
i.e., to obtain samples from the posterior over the parameters of the simulator given experimental data (right). Once trained, our method can be
applied to flexible inference scenarios like varying number of trials or hierarchical inference without having to retrain the density estimator.

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

used models, computational evaluation of likelihoods is challenging because often no analytical
form is available. Numerical approximations of the likelihood are typically computationally expen-
sive, rendering standard approximate inference methods like Markov chain Monte Carlo (MCMC)
inapplicable. Second, models and experimental paradigms in cognitive neuroscience often induce
scenarios in which inference is repeated for varying numbers of experimental trials and changing
hierarchical dependencies between model parameters (Lee, 20717). As such, fitting computational
models with arbitrary hierarchical structures to experimental data often still requires idiosyncratic
and complex inference algorithms.

Approximate Bayesian computation (ABC, Sisson et al., 2018) offers a solution to the first chal-
lenge by enabling Bayesian inference based on comparing simulated with experimental data, with-
out the need to evaluate an explicit likelihood function. Accordingly, various ABC methods have
been applied to and developed for models in cognitive neuroscience and related fields (Turner
and Van Zandt, 2012, 2018; Palestro et al., 2018a; Kangasridsio et al., 2019). However, ABC meth-
ods are limited regarding the second challenge because they become inefficient as the number
of model parameters increases (Lueckmann et al., 2021) and require generating new simulations
whenever the observed data or parameter dependencies change.

More recent approaches from the field simulation-based inference (SBI, Cranmer et al., 2020)
have the potential to overcome these limitations by using machine learning algorithms such as
neural networks. Recently, Fengler et al. (2021) presented an SBl-algorithm for a specific problem
in cognitive neuroscience—inference for drift-diffusion models (DDM). They introduced a new ap-
proach, called likelihood approximation networks (LANs), which uses neural networks to predict
log-likelihoods from data and parameters. The predicted likelihoods can subsequently be used to
generate posterior samples using MCMC methods. LANs are trained in a three-step procedure.
First, a set of N parameters is generated and for each of the N parameters the model is simulated
M times. Second, for each of the N parameters, empirical likelihood targets are estimated from
the M model simulations using kernel density estimation (KDE) or empirical histograms. Third,
a training dataset consisting of parameters, data points and empirical likelihood targets is con-
structed by augmenting the initial set of N parameters by a factor of 1000: for each parameter,
1000 data points and empirical likelihood targets are generated from the learned KDE. Finally, su-
pervised learning is used to train a neural network to predict log-likelihoods, by minimizing a loss
function (the Huber loss) between the network-predicted log-likelihoods and the (log of) the empir-
ically estimated likelihoods. Overall, LANs require a large number of model simulations such that
the histogram-probability of each possible observed data and for each possible combination of

20f 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

29

100

101

available under aCC-BY-NC 4.0 International license.

input parameters, can be accurately estimated—N - M model simulations, e.g., 1.5 x 10° x 10° (150
billion) for the examples used in Fengler et al. (2021). The extremely high number of model simula-
tions will make itinfeasible for most users to run this training themselves, so that there would need
to be a repository from which users can download pre-trained LANSs. This restricts the application
of LANs to a small set of canonical models like drift-diffusion models, and prohibits customization
and iteration of models by users. In addition, the high simulation requirement limits this approach
to models whose parameters and observations are sufficiently low-dimensional for histograms to
be sampled densely.

To overcome these limitations, we propose an alternative approach called Mixed Neural Like-
lihood Estimation (MNLE). MNLE builds on recent advances in probabilistic machine learning, and
in particular on the framework of neural likelihood estimation (Papamakarios et al., 2019b; Lueck-
mann et al., 2079) but is designed to specifically capture the mixed data types arising in models
of decision-making, e.g., discrete choices and continuous reaction times. Neural likelihood esti-
mation has its origin in classical synthetic likelihood (SL) approaches (Wood, 2070; Drovandi et al.,
2018). Classical SL approaches assume the likelihood of the simulation-based model to be Gaus-
sian (so that its moments can be estimated from model simulations) and then use MCMC methods
for inference. This approach and various extensions of it have been widely used (Price et al., 2018;
Ong et al., 2018; An et al., 2019; Priddle et al., 2027)—but inherently they need multiple model
simulations for each parameter in the MCMC chain to estimate the associated likelihood.

Neural likelihood approaches instead perform conditional density estimation, i.e., they train a
neural network to predict the parameters of the approximate likelihood conditioned on the model
parameters (e.g., Papamakarios et al., 2019b; Lueckmann et al., 2019). By using a conditional den-
sity estimator, it is possible to exploit continuity across different model parameters, rather than
having to learn a separate density for each individual parameter as in classical SL. Recent advances
in conditional density estimation (such as normalizing flows, Papamakarios et al., 2019a) further
allow lifting the parametric assumptions of classical SL methods and learning flexible conditional
density estimators which are able to model a wide range of densities, as well as highly nonlinear de-
pendencies on the conditioning variable. In addition, neural likelihood estimators yield estimates
of the probability density which are guaranteed to be non-negative and normalized, and which can
be both sampled and evaluated, acting as a probabilistic emulator of the simulator (Lueckmann
et al., 2019).

Our approach, MNLE, uses neural likelihood estimation to learn an emulator of the simulator.
The training phase is a simple two-step procedure: first, a training dataset of N parameters 6
is sampled from a proposal distribution and corresponding model simulations x are generated.
Second, the N parameter-data pairs (6,x) are directly used to train a conditional neural likelihood
estimator to estimate p(x|0). Like for LANs, the proposal distribution for the training data can be any
distribution over 6, and should be chosen to cover all parameter-values one expects to encounterin
empirical data. Thus, the prior distribution used for Bayesian inference constitutes a useful choice,
but in principle any distribution that contains the support of the prior can be used. To account
for mixed data types, we learn the likelihood estimator as a mixed model composed of one neural
density estimator for categorical data and one for continuous data, conditioned on the categorical
data. This separation allows us to choose the appropriate neural density estimator for each data
type, e.g., a Bernoulli model for the categorical data and a normalizing flow (Papamakarios et al.,
2019a) for the continuous data. The resulting joint density estimator gives access to the likelihood,
which enables inference via MCMC methods. See Figure 1 for an illustration of our approach, and
Methods and Materials for details.

Both LANs and MNLEs allow for flexible inference scenarios common in cognitive neuroscience,
e.g., varying number of trials with same underlying experimental conditions or hierarchical infer-
ence, and need to be trained only once. However, there is a key difference between the two ap-
proaches. LANs use feed-forward neural networks to perform regression from model parameters
to empirical likelihood targets obtained from KDE. MNLE instead learns the likelihood directly by

30f 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

performing conditional density estimation on the simulated data without requiring likelihood tar-
gets. This makes MNLE by design more simulation efficient than LANs—we demonstrate empir-
ically that it can learn likelihood-estimators which are as good or better than those reported in
the LAN paper, but using a factor of 1,000,000 fewer simulations (Fengler et al., 2027). When us-
ing the same simulation-budget for both approaches, MNLE substantially outperforms LAN across
several performance metrics. Moreover, MNLE results in a density estimator that is guaranteed
to correspond to a valid probability distribution and can also act as an emulator that can gener-
ate synthetic data without running the simulator. The simulation-efficiency of MNLEs allows users
to explore and iterate on their own models without generating a massive training dataset, rather
than restricting their investigations to canonical models for which pre-trained networks have been
provided by a central resource. To facilitate this process, we implemented our method as an exten-
sion to an open-source toolbox for SBI methods (Tejero-Cantero et al., 2020), and provide detailed
documentation and tutorials.

Results

Evaluating the performance of mixed neural likelihood estimation (MNLE) on the
drift-diffusion model

We first demonstrate the efficiency and performance of MLNEs on a classical model of decision-
making, the drift-diffusion model (DDM, Ratcliff and McKoon, 2008). The DDM is an influential
phenomenological model of a two-alternative perceptual decision-making task. It simulates the
evolution of aninternal decision variable that integrates sensory evidence until one of two decision
boundaries is reached and a choice is made (Figure 1, left). The decision variable is modeled with
a stochastic differential equation which, in the “simple” DDM version (as used in Fengler et al.,
2021), has four parameters: the drift rate v, boundary separation g, the starting point w of the
decision variable, and the non-decision time z. Given these four parameters 6 = (v, a, w, 7), a single
simulation of the DDM returns data x containing a choice ¢ € {0, 1} and the corresponding reaction
time in seconds rt € (z, ®): X = (c, r1).

MNLE learns accurate likelihoods with a fraction of the simulation budget

The simple version of the DDM is the ideal candidate for comparing the performance of different
inference methods because the likelihood of an observation given the parameters, L(x|0), can be
calculated analytically (Navarro and Fuss, 2009, in contrast to more complicated versions of the
DDM, e.g., Ratcliff and Rouder (1998); Usher and McClelland (2001); Reynolds and Rhodes (2009)).
This enabled us to evaluate MNLE's performance with respect to the analytical likelihoods and the
corresponding inferred posteriors of the DDM, and to compare against that of LANs on a range
of simulation-budgets. For MNLE we used a budget of 10° simulations (henceforth referred to as
MNLES), for LANs we used budgets of 105 and 10® simulations (LAN>, LAN3, respectively, trained by
us) and the pre-trained version based on 10'' simulations (LAN!") provided by Fengler et al. (2021).

First, we evaluated the quality of likelihood approximations of MNLE®, and compared it to that
of LANG311} Both MNLEs and LANs were in principle able to accurately approximate the likelihoods
for both decisions and a wide range of reaction times (see Figure 2a for an example, and Details of
the numerical comparison). However, LANs require a much larger simulation budget than MNLE
to achieve accurate likelihood approximations, i.e., LANs trained with 10 or 10® simulations show
visible deviations, both in the linear and in log-domain (Figure 2a, lines for LAN> and LAN?).

To quantify the quality of likelihood approximation, we calculated the Huber loss and the mean-
squared error (MSE) between the true and approximated likelihoods (Figure 2b,c), as well as be-
tween the /og-likelihoods (Figure 2d,e). The metrics were calculated as averages over (log-)likelihoods
of a fixed observation given 1000 parameters sampled from the prior, repeated for 100 obser-
vations simulated from the DDM. For metrics calculated on the untransformed likelihoods (Fig-
ure 2b,c), we found that MNLE3 was more accurate than LAN#&!!} on all simulation budgets, show-

40f19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

a b C
141 down | up — analytical 0.02 0.04+
LAN® §
s 11 - w
207 LAN - 0.01] B oos
] — MNLE? g | =
T " I |
0.01 - -
' 0.00- 0.00-
d e
01 0.61 304
=)
3 2 [—~ by
2 3 ")) | g
x A k=]
2 S 0.3 o151
8‘ —10 5) |
g} 9 : s
>
—15- I l
2.0 1.0 0.0 1.0 20 20 < 298 0.0° RIS
X: reaction time [s] F 3 \y% @é\/ F & \Y$ \‘\@’

Figure 2. MNLE estimates accurate likelihoods for the drift-diffusion model. The classical drift-diffusion model (DDM) simulates reaction
times and choices of a two-alternative decision task and has an analytical likelihood which can be used for comparing the likelihood
approximations of MNLE and LAN. We compared MNLE trained with a budget of 10° simulations (green, MNLE?) to LAN trained with budgets of
10%, 10® and 10'! simulations (shades of orange, LAN{>3111 respectively). (a) Example likelihood for a fixed parameter 6 over a range of reaction
times (reaction times for down- and up-choices shown towards the left and right, respectively). Shown on a linear scale (top panel) and a
logarithmic scale (bottom panel). (b) Huber loss between analytical and estimated likelihoods calculated for a fixed simulated data point over
1,000 test parameters sampled from the prior, averaged over 100 data points (lower is better). Bar plot error bars show standard error of the
mean. (c) Same as in (b), but using mean squared error (MSE) over likelihoods (lower is better). (d) Huber loss on the log-likelihoods (LAN's
training loss). (e) MSE on the log-likelihoods.

Figure 2-Figure supplement 1. Examples of synthetic DDM data generated from the MNLE emulator.

ing smaller Huber loss than LANG311}in 99, 81 and 66 out of 100 comparisons, and smaller MSE
than LANG#11 on 98, 81 and 66 out of 100 comparisons, respectively. Similarly, for the MSE calcu-
lated on the log-likelihoods (Figure 2e), MNLE® achieved smaller MSE than LANG#11} on 100, 100
and 75 out of 100 comparisons, respectively. For the Huber loss calculated on the log-likelihoods
(Figure 2d), we found that MNLE® was more accurate than LAN® and LAN?, but slightly less accurate
than LAN!!, showing smaller Huber loss than LAN#} in all 100 comparisons, and larger Huber loss
than LAN!! in 62 out of 100 comparisons. All the above pairwise comparisons were significant un-
der the binomial test (p < 0.01), but note that these are simulated data and therefore the p-value
can be arbitrarily inflated by increasing the number of comparisons. We also note that the Huber
loss on the log-likelihoods is the loss which is directly optimized by LANs, and thus this comparison
should in theory favor LANs over alternative approaches. Furthermore, the MNLE’ results shown
here represent averages over ten random neural network initializations (five of which achieved
smaller Huber loss than LAN!), whereas the LAN!! results are based on a single pre-trained net-
work. Finally, we also investigated MNLE's property to act as an emulator of the simulator and
found the synthetic reaction times and choices generated from the MNLE emulator to match cor-
responding data simulated from the DDM accurately (see Figure 2—Figure Supplement 1 and Ap-
pendix 1).

When using the learned likelihood estimators for inference with MCMC methods, their evalu-
ation speed can also be important because MCMC often requires thousands of likelihood evalu-
ations. We found that evaluating MNLE for a batch of 100 trials and ten model parameters (as
used during MCMC) took 4.14+0.04 ms (mean over 100 repetitions + standard error of the mean),

50f 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

2.104

1.054

I ‘ |
e S % o olm ©) HHE

0.5

mean error
variance error

NS Q " he) NS Q > he)
NRIRIR SRR
S F IS
0.5
d e
0.124 1.00+
:
= (0]
o o
C Q |
£ 0.061 o 0.751
—— reference g Q '
LAN?? = | | O
—— MNLE® ¢ . |
—— ground-truth 6 0.00 = "y o 050 e
S & SRR
4 RSO SN

Figure 3. MNLE infers accurate posteriors for the drift-diffusion model. Posteriors were obtained given 100-trial i.i.d. observations with
MCMC using analytical (i.e., reference) likelihoods, or those approximated using LAN>811} trained with simulation budgets 100811}, respectively,
and MNLE? trained with a budget of 10° simulations. (a) Posteriors given an example observation generated from the prior and the simulator,
shown as 95% contour lines in a corner-plot, i.e., one-dimension marginal (diagonal) and all pairwise two-dimensional marginals (upper triangle).
(b) Difference in posterior sample mean of approximate (LAN:311} ' MNLE’) and reference posteriors (normalized by reference posterior
standard deviation, lower is better). (c) Same as in (b) but for posterior sample variance (normalized by reference posterior variance, lower is
better). (d) Parameter estimation error measured as mean squared error (MSE) between posterior sample mean and the true underlying
parameters (smallest possible error is given by reference posterior performance shown in blue). (e) Classification 2-sample test (C2ST) score
between approximate (LANG311) ' MNLE’) and reference posterior samples (0.5 is best). All bar plots show metrics calculated from 100
repetitions with different observations; error bars show standard error of the mean.

Figure 3-Figure supplement 1. Inference accuracy metrics for individual model parameters.
Figure 3-Figure supplement 2. Example posteriors and parameter recovery for LAN> and LANS,
Figure 3-Figure supplement 3. Inference accuracy metrics for different numbers of observed trials.

19a compared to 1.02+0.03 ms for LANs, i.e., MNLE incurred a larger computational foot-print at evalu-
105 ation time. Note that these timings are based on an improved implementation of LANs compared
106 to the one originally presented in Fengler et al. (2021), and evaluation times can depend on the
197 implementation, compute infrastructure and parameter settings (see Details of the numerical com-
108 parison and Discussion). In summary, we found that MNLE trained with 103 simulations performed
100 sUbstantially better than LANs trained with 10° or 108 simulations, and similarly well or better than
200 LANSs trained with 10!! simulations, on all likelihood approximation accuracy metrics.

200 MNLE enables accurate flexible posterior inference with MCMC

202 Inthe previous section we showed that MNLE requires substantially fewer training simulations than
203 LANSs to approximate the likelihood accurately. To investigate whether these likelihood-estimates
204 Were accurate enough to support accurate parameter inference, we evaluated the quality of the
208 resulting posteriors, using a framework for benchmarking SBI algorithms (Lueckmann et al., 2021).
200 We used the analytical likelihoods of the simple DDM to obtain reference posteriors for 100 differ-
207 ent observations, via MCMC sampling. Each observation consisted of 100 independent and identi-
208 Cally distributed (i.i.d.) trials simulated with parameters sampled from the prior (see Figure 3a for
200 an example, details in Methods and Materials). We then performed inference using MCMC based

6 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

241

242

243

available under aCC-BY-NC 4.0 International license.

on the approximate likelihoods obtained with MNLE (10° budget, MNLES) and the ones obtained
with LAN for each of the three simulation budgets (LANG311 respectively).

Overall, we found that the likelihood approximation performances presented above were re-
flected in the inference performances: MNLE’® performed substantially better than LAN® and LANS,
and equally well or better than LAN! (Figure 3b-d). In particular, MNLE> approximated the poste-
rior mean more accurately than LANGS!U (Figure 3b), being more accurate than LANGS1} in 100,
90, and 67 out of 100 comparisons, respectively. In terms of posterior variance, MNLE> performed
better than LAN®#3} and on par with LAN!! (Figure 3c), being more accurate than LANG311 in 100,
93, (p < 0.01, binomial test) and 58 (p = 0.13) out of 100 pairwise comparisons, respectively.

Additionally, we measured the parameter estimation accuracy as the mean squared error be-
tween the posterior mean and the ground-truth parameters underlying the observed data. We
found that MNLE’ estimation error was indistinguishable from that of the reference posterior, and
that LAN performance was similar only for the substantially larger simulation budget of LAN!! (Fig-
ure 3c), with MNLE being closer to reference performance than LAN&!1} in 100, 91, and 66 out
of 100 comparisons, respectively (all p < 0.01). Note that all three metrics were reported as av-
erages over the four parameter dimensions of the DDM to keep the visualizations compact, and
that this average did not affect the results qualitatively. We report metrics for each dimension in
Figure 3—Figure Supplement 1, as well as additional inference accuracy results for smaller LAN
simulation budgets (Figure 3—Figure Supplement 2) and for different numbers of observed trials
(Figure 3—Figure Supplement 3).

Finally, we used the classifier 2-sample test (C2ST, Lopez-Paz and Oquab, 2017; Lueckmann
et al., 2021) to quantify the similarity between the estimated and reference posterior distributions.
The C2ST is defined to be the error-rate of a classification algorithm which aims to classify whether
samples belong to the true or the estimated posterior. Thus, it ranges from 0.5 (no difference
between the distributions, the classifier is at chance level), to 1.0 (the classifier can perfectly distin-
guish the two distributions). We note that the C2ST is a highly sensitive measure of discrepancy
between two multivariate-distributions—e.g. if the two distributions differ in any dimension, the
C2ST will be close to 1 even if all other dimensions match perfectly. We found that neither of the
two approaches was able to achieve perfect approximations, but that MNLE> achieved lower C2ST
scores compared to LANG31 on all simulation budgets (Figure 3e): mean C2ST score LANGS:11),
0.96, 0.78, 0.70 vs. MNLE?, 0.65, with MNLE> showing a better score than LAN&!1} on 100, 91, and
68 out of 100 pairwise comparisons, respectively (all p < 0.01). In summary, MNLE achieves more
accurate recovery of posterior means than LANSs, similar or better recovery of posterior variances,
and overall more accurate posteriors (as quantified by C2ST).

MNLE posteriors have uncertainties which are well-calibrated

For practical applications of inference, it is often desirable to know how well an inference proce-
dure can recover the ground-truth parameters, and whether the uncertainty-estimates are well-
calibrated, (Cook et al., 2006), i.e., that the uncertainty estimates of the posterior are balanced, and
neither over-confident nor under-confident. For the DDM, we found that the posteriors inferred
with MNLE and LANs (when using LAN!!) recovered the ground-truth parameters accurately (in
terms of posterior means, Figure 3d and Figure 4a)—in fact, parameter recovery was similarly ac-
curate to using the ‘true’ analytical likelihoods, indicating that much of the residual error is due to
stochasticity of the observations, and not the inaccuracy of the likelihood approximations.

To assess posterior calibration, we used simulation-based calibration (SBC, Talts et al., 2018).
The basic idea of SBC is the following: If one repeats the inference with simulations from many dif-
ferent prior samples, then, with a well-calibrated inference method, the combined samples from
all the inferred posteriors should be distributed according to the prior. One way to test this is
to calculate the rank of each ground-truth parameter (samples from the prior) under its corre-
sponding posterior, and to check whether all the ranks follow a uniform distribution. SBC results
indicated that MNLE posteriors were as well-calibrated as the reference posteriors, i.e., the empir-

7 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint

(which was not certified by peer

review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a
24 2.004 1.84
5 + reference
g LAN1!
5 0 1.251 1.0/ MNLE®
—_ . .
o — identity
(%]
o
[e
-2 0.50-% ‘ ‘ : ‘ . 0.2 ‘ ‘
0.50 1.25 2.00 0.3 0.5 0.7 0.2 1.0 1.8
b ground-truth v ground-truth a ground-truth w ground-truth T
1.04
w w w w —
i i L P reference
@) O @) @) LAN3
Sos 8] S S LAN®
_ —_ —_ —_
g g g g L
_ 5
S S S S MNLE
0.0 : ‘ y : ‘ y :) N :)
0 50 100 0 50 100 0 50 100 0 50 100
posterior rank v posterior rank a posterior rank w posterior rank T

Figure 4. Parameter recovery and posterior uncertainty calibration for the DDM. (a) Underlying ground-truth DDM parameters plotted
against the sample mean of posterior samples inferred with the analytical likelihoods (reference, blue crosses), LAN (orange circles) and MNLE
(green circles), for 100 different observations. Markers close to diagonal indicate good recovery of ground-truth parameters; circles on top of
blue reference crosses indicate accurate posterior means. (b) Simulation-based calibration results showing empirical cumulative density
functions (CDF) of the ground-truth parameters ranked under the inferred posteriors calculated from 100 different observations. A
well-calibrated posterior must have uniformly distributed ranks, as indicated by the area shaded gray. Shown for reference posteriors (blue),
LAN posteriors obtained with increasing simulation budgets (shades of orange, LAN>811}) and MNLE posterior (green, MNLE?), and for each
parameters separately (v, a, w and 7).

Figure 4-Figure supplement 1. Parameter recovery for different numbers of observed trials.
Figure 4-Figure supplement 2. Simulation-based calibration results for different numbers of observed trials.

276

277

278

ical cumulative density functions (CDF) of the ranks were close to that of a uniform distribution
(Figure 4b)—thus, on this example, MNLE inferences would likely be of similar quality compared to
using the analytical likelihoods. When trained with the large simulation budget of 10'! simulations,
LANSs, too appeared to recover most of the ground-truth parameters well. However, SBC detected
a systematic underestimation of the parameter a and overestimation of the parameter , and this
bias increased for the smaller simulation budgets of LAN®> and LAN? (Figure 4b, see the deviation
below and above the desired uniform distribution of ranks, respectively).

The results so far (i.e., Figure 3, Figure 4) indicate that both LAN!! and MNLE? lead to similar pa-
rameter recovery, but only MNLES leads to posteriors which were well-calibrated for all parameters.
These results were obtained using a scenario with 100 i.i.d. trials. When increasing the number of
trials (e.g., to 1000 trials), posteriors become very concentrated around the ground-truth value. In
that case, while the posteriors overall identified the ground-truth parameter value very well (Fig-
ure 4—Figure Supplement 1c), even small deviations in the posteriors can have large effects on the
posterior metrics (Figure 3—Figure Supplement 3). This effect was also detected by SBC, showing
systematic biases for some parameters (Figure 4—Figure Supplement 2c). For MNLE, we found
that these biases were smaller, and furthermore that it was possible to mitigate this effect by infer-
ring the posterior using ensembles, e.g., by combining samples inferred with five MNLEs trained
with identical settings but different random initialization (see Appendix 1 for details). These results
show the utility of using SBC as a tool to test posterior coverage, especially when studying models

8 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

a b down up
- [] observations
prior
1[+ predictive
—_— posterior
-2.5 2.5 - predictive
v
J L s t T
0.5 2 - - - "
a 2 1 0 1 2
X: reaction time [s]
+
C
0.25 0.75

— MNLE posterior
— ground-truth 6

T
- - Py
| _

(1IN
o
O

+— = v

9O a
0.05 0.95 =
o

T e w

Q T

Y

-1 -0.01 100
Y posterior rank

Figure 5. MNLE infers accurate posteriors for the DDM with collapsing bounds. Posterior samples were obtained given 100-trial
observations simulated from the DDM with linearly collapsing bounds, using MNLE and MCMC. (a) Approximate posteriors shown as 95%
contour lines in a corner-plot of one-dimensional (diagonal) and two-dimensional (upper triangle) marginals, for a representative 100-trial
observation simulated from the DDM. (b) Reaction times and choices simulated from the ground-truth parameters (blue) compared to those
simulated given parameters sampled from the prior (prior predictive distribution, purple) and from the MNLE posterior shown in (a) (posterior
predictive distribution, green). (c) Simulation-based calibration results showing empirical cumulative density functions (CDF) of the ground-truth
parameters ranked under the inferred posteriors, calculated from 100 different observations. A well-calibrated posterior must have uniformly
distributed ranks, as indicated by the area shaded gray. Shown for each parameters separately (v, a, w, r and y).

for which reference posteriors are not available, as we demonstrate in the next section.

MNLE infers well-calibrated, predictive posteriors for a DDM with collapsing bounds
MNLE was designed to be applicable to models for which evaluation of the likelihood is not prac-
tical so that standard inference tools cannot be used. To demonstrate this, we applied MNLE to a
variant of the DDM for which analytical likelihoods are not available (note, however, that numeri-
cal approximation of likelihoods for this model would be possible, see e.g., Shinn et al., 2020, and
Methods and Materials for details). This DDM variant simulates a decision variable like the simple
DDM used above, but with linearly collapsing instead of constant decision boundaries (see e.g.,
Hawkins et al., 2015; Palestro et al., 2018b). The collapsing bounds are incorporated with an ad-
ditional parameter y indicating the slope of the decision boundary, such that 6 = (a, v, w, 7,7) (see
Details of the numerical comparison).

We tested inference with MNLE on the DDM with linearly collapsing bound using observations
comprised of 100 i.i.d. trials simulated with parameters sampled from the prior. Using the same
MNLE training and MCMC settings as above, we found that posterior density concentrated around
the underlying ground-truth parameters (see Figure 5a), suggesting that MNLE learned the under-
lying likelihood accurately. To assess inference quality systematically without needing reference
posteriors, we performed posterior predictive checks by running simulations with the inferred pos-
teriors samples and comparing them to observed (simulated) data, and checked posterior calibra-
tion properties using SBC. We found that the inferred posteriors have good predictive performance,
i.e., data simulated from the inferred posterior samples accurately matched the observed data (Fig-

9 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

ure 5b), and that their uncertainties are well-calibrated as quantified by the SBC results (Figure 5c).
Overall, this indicated that MNLE accurately inferred the posterior of this intractable variant of the
DDM.

Discussion

Statistical inference for computational models in cognitive neuroscience can be challenging be-
cause models often do not have tractable likelihood functions. The recently proposed LAN method
(Fengler et al., 2021) performs SBI for a subset of such models (DDMs) by training neural networks
with model simulations to approximate the intractable likelihood. However, LANs require large
amounts of training data, restricting its usage to canonical models. We proposed an alternative ap-
proached called mixed neural likelihood estimation (MNLE), a synthetic neural likelihood method
which is tailored to the data-types encountered in many models of decision-making.

Our comparison on a tractable example problem used in Fengler et al. (2021) showed that
MNLE performed on par with LANs using six orders of magnitude fewer model simulations for
training. While Fengler et al. (2021) discuss that LANs were not optimized for simulation efficiency
and that it might be possible to reduce the required model simulations, we emphasize that the
difference in simulation-efficiency is due to an inherent property of LANs. For each parameter in
the training data, LANs require empirical likelihood targets that have to be estimated by building
histograms or kernel density estimates from thousands of simulations. MNLE, instead, performs
conditional density estimation without the need of likelihood targets and can work with only one
simulation per parameter. Because of these conceptual differences, we expect the substantial
performance advantage of MNLE to be robust to the specifics of the implementation.

After the networks are trained, the time needed for each evaluation determines the speed of in-
ference. In that respect, both LANs and MNLEs are conceptually similar in that they require a single
forward-pass through a neural network for each evaluation, and we found MNLE and the original
implementation of LANs to require comparable computation times. However, evaluation time will
depend, e.g., on the exact network architecture, software framework and computing infrastructure
used. Code for a new PyTorch implementation of LANs has recently been released and improved
upon the evaluation speed original implementation we compared to. While this new implementa-
tion made LAN significantly faster for a single forward-pass, we observed that the resulting time
difference with the MCMC-settings used here was only on the order of minutes, whereas the differ-
ence in simulation time for LAN'' vs MNLE®> was on the order of days. The exact timings will always
be implementation specific and whether or not these differences are important will depend on
the application at hand. In a situation where iteration over model design is required (i.e., custom
DDMs), an increase in training efficiency on the order of days would be advantageous.

There exist a number of approaches with corresponding software packages for estimating pa-
rameters of cognitive neuroscience models, and DDMs in particular. However, these approaches
either only estimate single best-fitting parameters (Voss and Voss, 2007; Wagenmakers et al., 2007,
Chandrasekaran and Hawkins, 2019; Heathcote et al., 2019; Shinn et al., 2020) or, if they perform
fully Bayesian inference, can only produce Gaussian approximations to posteriors (Feltgen and
Daunizeau, 2021), or are restricted to variants of the DDM for which the likelihood can be evalu-
ated (Wiecki et al., 2013, HDDM). A recent extension of the HDDM toolbox includes LANSs, thereby
combining HDDM's flexibility with LAN’s ability to perform inference without access to the likeli-
hood function (but this remains restricted to variants of the DDM for which LAN can be pre-trained).
In contrast, MNLE can be applied to any simulation-based model with intractable likelihoods and
mixed data type-outputs. Here, we focused on the direct comparison to LANs based on variants
of the DDM. We note that these models have a rather low-dimensional observation structure (as
common in many cognitive neuroscience models), and that our examples did not include additional
parameter structure, e.g., stimulus encoding parameters, which would increase the dimensionality
of the learning problem. However, other variants of neural density estimation have been applied
successfully to a variety of problems with higher dimensionality (see e.g. Goncalves et al., 2020;

10 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Lueckmann et al., 2021; Glockler et al., 2021; Dax et al., 2022). Therefore, we expect MNLE to be
applicable to other simulation-based problems with higher-dimensional observation structure and
parameter spaces, and to scale more favourably than LANSs. Like for any neural network-based ap-
proach, applying MNLE to different inference problems may require selecting different architecture
and training hyperparameters settings, which may induce additional computational training costs.
To help with this process, we adopted default settings which have been shown to work well on a
large range of SBI benchmarking problems (Lueckmann et al., 2021), and we integrated MNLE into
the established sbi python package that provides well-documented implementations for training-
and inference performance of SBI algorithms.

Several extensions to classical synthetic likelihood (SL) approaches have addressed the problem
of a bias in the likelihood approximation due to the strong parametric assumptions, i.e., Gaussian-
ity, the use of summary statistics, or finite-sample biases (Price et al., 2018; Ong et al., 2018; van
Opheusden et al., 2020). MNLE builds on flexible neural likelihood estimators, e.g., normalizing
flows, and does not require summary statistics for a low-dimensional simulator like the DDM, so
would be less susceptible to these first two biases. It could be subject to biases resulting from
the estimation of the log-likelihoods from a finite number of simulations. In our numerical experi-
ments, and for the simulation-budgets we used, we did not observe biased inference results. We
speculate that the ability of neural density estimators to pool data across multiple parameter set-
tings (rather than using only data from a specific parameter set, like in classical synthetic likelihood
methods) mitigates finite-sample effects.

MNLE is a SBI method which uses neural density estimators to estimate likelihoods. Alterna-
tives to neural likelihood estimation include neural posterior estimation (NPE, Papamakarios and
Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2079, which uses conditional density es-
timation to learn the posterior directly) and neural ratio estimation (NRE, Hermans et al., 2020;
Durkan et al., 2020, which uses classification to approximate the likelihood-to-evidence ratio to
then perform MCMC). These approaches could in principle be applied here as well, however, they
are not as well suited for the flexible inference scenarios common in decision-making models as
MNLE: NPE by design does not allow for flexible inference scenarios but needs to be retrained
because the posterior changes with changing number of trials or changing hierarchical inference
setting; and NRE, performing ratio- and not density estimation, would not provide an emulator of
the simulator.

Regarding future research directions, MNLE has the potential to become more simulation effi-
cient by using weight sharing between the discrete and the continuous neural density estimators
(rather than to use separate neural networks, as we did here). Moreover, for high-dimensional
inference problems in which slice sampling-based MCMC might struggle, MNLE could be used in
conjunction with gradient-based MCMC methods like Hamiltonian Monte Carlo (HMC, Neal et al.,
2011; Hoffman et al., 2014), or variational inference as recently proposed by Wiqvist et al. (2021)
and Glackler et al. (20217). With MNLE's full integration into the sbi package, both gradient-based
MCMC methods from Pyro (Bingham et al., 2019), and variational inference for SBI (SNVI, Glockler
et al., 2021) are available as inference methods for MNLE (a comparison of HMC and SNVI to slice
sampling-MCMC on one example observation resulted in indistinguishable posterior samples). Fi-
nally, using its emulator property (see Appendix 1), MNLE could be applied in an active learning
setting for highly expensive simulators in which new simulations are chosen adaptively accord-
ing to a acquisition function in a Bayesian optimization framework (Gutmann and Corander, 2016;
Lueckmann et al., 2019; Jéirvenpdid et al., 2019) .

In summary, MNLE enables flexible and efficient inference of parameters of models in cognitive
neuroscience with intractable likelihoods. The training efficiency and flexibility of the neural density
estimators used overcome the limitations of LANs (Fengler et al., 2021). Critically, these features
enable researchers to develop customized models of decision-making and not just apply existing
models to new data. We implemented our approach as an extension to a public sbi python package
with detailed documentation and examples to make it accessible for practitioners.

11 0f 19

https://github.com/mackelab/sbi
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Methods and Materials

Mixed neural likelihood estimation

Mixed neural likelihood estimation (MNLE) extends the framework of neural likelihood estimation
(Papamakarios et al., 2019b; Lueckmann et al., 2019) to be applicable to simulation-based models
with mixed data types. It learns a parametric model g, (x|6) of the intractable likelihood p(x|6)
defined implicitly by the simulation-based model. The parameters y are learned with training data
{6,,x,},.n comprised of model parameters 0, and their corresponding data simulated from the
model x,|6, ~ p(x|60,). The parameters are sampled from a proposal distribution over parameters
0, ~ p(@). The proposal distribution could be any distribution, but it determines the parameter
regions for which the density estimator will be good in estimating likelihoods. Thus, the prior,
or a distribution that contains the support of the prior (or even all priors which one expects to
use in the future) constitutes a useful choice. After training, the emulator can be used to generate
synthetic data x|6 ~ g, (x|0) given parameters, and to evaluate the synthetic likelihood q,,(x|0) given
experimentally observed data. Finally, the synthetic likelihood can be used to obtain posterior
samples via

p(0|x) « q,,(x|0)p(0), (M

through approximate inference with MCMC. Importantly, the training is amortized, i.e., the em-
ulator can be applied to new experimental data without retraining (running MCMC is still required).

We tailored MNLE to simulation-based models that return mixed data, e.g., in form of reaction
times rt and (usually categorical) choices ¢ as for the DDM. Conditional density estimation with nor-
malizing flows has been proposed for continuous random variables (Papamakarios et al., 2019a),
or discrete random variables (Tran et al., 2019), but not for mixed data. Our solution for estimat-
ing the likelihood of mixed data is to simply factorize the likelihood into continuous and discrete
variables,

p(rt, c|0) = p(rt]6, c) p(c|0), (2)

and use two separate neural likelihood estimators: A discrete one g, to estimate p(c|6) and a
continuous one g,, to estimate p(rt|0,c). We defined q,, to be a Bernoulli model and use a neural
network to learn the Bernoulli probability p given parameters 6. For g, we used a conditional
neural spline flow (Durkan et al., 20719) to learn the density of rt given a parameter 6 and choice
c. The two estimators are trained separately using the same training data (see Neural network
architecture, training and hyperparameters for details). After training, the full neural likelihood
can be constructed by multiplying the likelihood estimates ¢, and g, back together:

Gy, (11, 10) = g, (c|0) g, (r1c,6). 3)

Note that, as the second estimator a,, (rle,0) is conditioned on the choice ¢, our likelihood-
model can account for statistical dependencies between choices and reaction times. The neural
likelihood can then be used to approximate the intractable likelihood defined by the simulator,
e.g., for inference with MCMC. Additionally, it can be used to sample synthetic data given model
parameters, without running the simulator (see The emulator property of MNLE).

Relation to LAN

Neural likelihood estimation can be much more simulation efficient than previous approaches be-
cause it exploits continuity across the parameters by making the density estimation conditional.
Fengler et al. (2021), too, aim to exploit continuity across the parameter space by training a neural
network to predict the value of the likelihood function from parameters 6 and data x. However,
the difference to neural likelihood estimation is that they do not use the neural network for density
estimation directly, but instead do classical neural network-based regression on likelihood targets.

12 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a2 Crucially, the likelihood targets first have to obtained for each parameter in the training data set.
a3 To do so, one has to perform density estimation using KDE (as proposed by Turner et al., 2015)
aaa Or empirical histograms for every parameter separately. Once trained, LANs do indeed exploit
a5 the continuity across the parameter space (they can predict log-likelihoods given unseen data and
a6 parameters), however, they do so at a very high simulation cost: For a training data set of N param-
a7 eters, they perform N times KDE based on M simulations each’, resulting is an overall simulation
aas budget of N - M (N =1.5 million and M =100,000 for “pointwise” LAN approach).

ws Details of the numerical comparison
a0 The comparison between MNLE and LAN is based on the drift-diffusion model (DDM). The DDM
«s1 simulates a decision variable X as a stochastic differential equation with parameters 6 = (v, a, w, 7):

dx,,, =vdt+dW, X, =w, (4)

2 Where W a Wiener noise process. The priors over the parameters are defined to be uniform: v ~
3 U(=2,2) is the drift, a ~ 1°(0.5,2) the boundary separation, w ~ 1/°(0.3,0.7) the initial offset, = ~
s U'(0.2,1.8) the non-decision time. A single simulation from the model returns a choice ¢ € {0, 1}
a5 and the corresponding reaction time in seconds rz € (z, o).

456 For this version of the DDM the likelihood of an observation (c, rt) given parameters 6, L(c, rt|6),
ss7 can be calculated analytically (Navarro and Fuss, 2009). To simulate the DDM and calculate ana-
s lytical likelihoods we used the approach and the implementation proposed by Drugowitsch (2016).
a0 We numerically confirmed that the simulations and the analytical likelihoods match those obtained
w0 from the research code provided by Fengler et al. (2021).

461 To run LANs, we downloaded the neural network weights of the pre-trained models from the
w2 repository mentioned in Fengler et al. (2021). The budget of training simulations used for the LANs
a3 Was 1.5 x 10" (1.5 million training data points, each obtained from KDE based on 10° simulations).
w2 We only considered the approach based on training a multilayer-perceptron (MLP) on single-trial
a5 likelihoods (“pointwise approach”, Fengler et al., 2021). At a later stage of our study we performed
w6 additional experiments to evaluate the performance of LANs trained at smaller simulation budgets,
w7 e.g., for 10° and 10® simulations. For this analysis we used an updated implementation of LANs
s based on PyTorch that was provided by the authors. We used the training routines and default
a0 Settings provided with that implementation. To train LANs at the smaller budgets we used the
a0 following splits of budgets into number of parameter settings drawn from the prior, and number
471 Of simulations per parameter setting used for fitting the KDE: for the 10° budget we used 10> and 103,
472 respectively (we ran experiments splitting the other way around, but results were slightly better
a7z for this split); for the 10® budget we used an equal split of 10* each (all code publicly available, see
a7a Code availability).

475 To run MNLE, we extended the implementation of neural likelihood estimation in the sbi tool-
a7 box (Tejero-Cantero et al., 2020). All comparisons were performed on a single AMD Ryzen Thread-
a7z ripper 1920X 12-Core processor with 2.2GHz and the code is publicly available (see Code availabil-
478 Ity)

70 For the DDM variant with linearly collapsing decision boundaries, the boundaries were parametrized
ss0 by the initial boundary separation, a4, and one additional parameter, y, indicating the slope with
ss1 Which the boundary approaches zero. This resulted in a five-dimensional parameter space for
sz Which we used the same prior as above, plus the an additional uniform prior for the slope y ~
a3 U'(—1.0,0). To simulate this DDM variant, we again used the Julia package by Drugowitsch (2016),
s but we note that for this variant no analytical likelihoods are available. While it would be possi-
a5 ble to approximate the likelihoods numerically using the Fokker-Planck equations (see, e.g., Shinn
a6 et al., 2020), this would usually involve a trade-off between computation time and accuracy as well
ss7 as design of bespoke solutions for individual models, and was not pursued here.

TFor models with categorical output, i.e., all decision-making models, KDE is performed separately for each choice.

13 0f 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Flexible Bayesian inference with MCMC

Once the MNLE is trained, it can be used for MCMC to obtain posterior samples 6 ~ p(6|x) given
experimentally observed data x. To sample from posteriors via MCMC, we transformed the param-
eters to unconstrained space, used slice sampling (Neal, 2003), and initialized ten parallel chains
using sequential importance sampling (Papamakarios et al., 2019b), all as implemented in the sbi
toolbox. We ran MCMC with identical settings for MNLE and LAN.

Importantly, performing MNLE and then using MCMC to obtain posterior samples allows for
flexible inference scenarios because the form of x is not fixed. For example, when the model pro-
duces trial-based data that satisfy the i.i.d. assumption, e.g., a set of reaction times and choices
X = {rt,c} in a drift-diffusion model, then MNLE allows to perform inference given varying num-
bers of trials, without retraining. This is achieved by training MNLE based on single-trial likelihoods
once and then combining multiple trials into the joint likelihood only when running MCMC:

N
p(O1X) o [art;, ¢;16) p(6). (5)
i=1
Similarly, one can use the neural likelihood to perform hierarchical inference with MCMC, all with-
out the need for retraining (see Hermans et al., 2020; Fengler et al., 2021, for examples).

Stimulus- and inter-trial dependencies

Simulation-based models in cognitive neuroscience often depend not only on a set of parameters
0, but additionally on (a set of) stimulus variables s which are typically given as part of the exper-
imental conditions. MNLE can be readily adapted to this scenario by generating simulated data
with multiple stimulus variables, and including them as additional inputs to the network during in-
ference. Similarly, MNLE could be adapted to scenarios in which the i.i.d. assumption across trials
as used above (see Eq.Flexible Bayesian inference with MCMC) does not hold. Again, this would be
achieved by adapting the model-simulator accordingly. For example, when inferring parameters
6 of a DDM for which the outcome of the current trial i additionally depends on current stimulus
variables s; as well as on previous stimuli s; and responses r;, then one would implement the DDM
simulator as a function f(0; s,_z» ..., 8;3Fi_ps ---» 1;_y) (Where T is a history parameter) and then learn
the underlying likelihood by emulating f with MNLE.

Neural network architecture, training and hyperparameters

Architecture

For the architecture of the Bernoulli model we chose a feed-forward neural network that takes
parameters 0 as input and predicts the Bernoulli probability p of the corresponding choices. For
the normalizing flow we used the neural spline flow architecture (NSF, Durkan et al., 2019). NSFs
use a standard normal base distribution and transform it using several modules of monotonic
rational-quadratic splines whose parameters are learned by invertible neural networks. Using an
unbounded base distribution for modeling data with bounded support, e.g., reaction time data rz €
(0, o), can be challenging. To account for this, we tested two approaches: We either transformed
the reaction time data to logarithmic space to obtain an unbounded support (logrt € (=0,)), Or
we used a log-normal base distribution with rectified (instead of linear) tails for the splines (see
Durkan et al., 2019, for details and Architecture and training hyperparameters for the architecture
settings used)

Training

The neural network parameters y, and y,, were trained using the maximum likelihood loss and
the Adam optimizer (Kingma and Ba, 2015). As proposal distribution for the training dataset we
used the prior over DDM parameters. Given a training data set of parameters, choices and reaction
times {0, (c;, rt,)} X, with 6, ~ p(0); (c;,rt;) ~ DDM(6,), we minimized the negative log-probability of

14 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

563

564

565

available under aCC-BY-NC 4.0 International license.

the model. In particular, using the same training data, we trained the Bernoulli choice model by
minimizing

N
1
- ; log g, (c,16,), (6)

and the neural spline flow by minimizing

N
1
-~ ; logg, (r|c;,,). (7)

Training was performed with code and training hyperparameter settings provided in the sbi tool-
box (Tejero-Cantero et al., 2020).

Hyperparameters

MNLE requires a number of hyperparameter choices regarding the neural network architectures,
e.g., number of hidden layers, number of hidden units, number of stacked NSF transforms, kind
of base distribution, among others (Durkan et al., 2019). With our implementation building on the
sbi package we based our hyperparameter choices on the default settings provided there. This
resulted in likelihood accuracy similar to LAN, but longer evaluation times due to the complexity
of the underlying normalizing flow architecture.

To reduce evaluation time of MNLE, we further adapted the architecture to the example model
(DDM). In particular, we ran a cross-validation of the hyperparameters relevant for evaluation time,
i.e., number of hidden layers, hidden units, NSF transforms, spline bins, and selected those that
were optimal in terms of Huber loss and mean-squared error between the approximate and the
analytical likelihoods, as well as evaluation time. This resulted in an architecture with performance
and evaluation time similar to LANs (more details in Appendix Architecture and training hyperpa-
rameters). The cross-validation relied on access to the analytical likelihoods which is usually not
given in practice, e.g., for simulators with intractable likelihoods. However, we note that in cases
without access to analytical likelihoods a similar cross-validation can be performed using quality
measures other than the difference to the analytical likelihood, e.g., by comparing the observed
data with synthetic data and synthetic likelihoods provided by MNLE.

Acknowledgments

We thank Luigi Acerbi, Michael Deistler, Alexander Fengler, Michael Frank and Ingeborg Wenger for
discussions and comments on a preliminary version of the manuscript. We also acknowledge and
thank the Python (Van Rossum and Drake Jr, 1995) and Julia (Bezanson et al., 2017) communities
for developing the tools enabling this work, including DifferentialEquations. j1 (Rackauckas and
Nie, 2017), DiffModels. j1 (Drugowitsch, 2016), NumPy (Harris et al., 2020), pandas (pandas develop-
ment team, 2020), Pyro (Bingham et al., 2019), PyTorch (Paszke et al., 2019), sbi (Tejero-Cantero
et al., 2020), sbibm (Lueckmann et al., 2027) and Scikit-learn (Pedregosa et al., 2011).

References
An Z, South LF, Nott D), Drovandi CC. Accelerating Bayesian synthetic likelihood with the graphical lasso. Journal
of Computational and Graphical Statistics. 2019; 28(2):471-475.

Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical computing. SIAM review.
2017; 59(1):65-98.

Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip P, Horsfall P, Good-
man ND. Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research. 2019;
20(1):973-978.

Chandrasekaran C, Hawkins GE. ChaRTr: An R toolbox for modeling choices and response times in decision-
making tasks. Journal of neuroscience methods. 2019; 328:108432.

150f 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

619

available under aCC-BY-NC 4.0 International license.

Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science. 1988; 242(4879):741-745.

Cook SR, Gelman A, Rubin DB. Validation of software for Bayesian models using posterior quantiles. Journal
of Computational and Graphical Statistics. 2006; 15(3):675-692.

Cranmer K, Brehmer J, Louppe G. The frontier of simulation-based inference. Proceedings of the National
Academy of Sciences. 2020; doi: 10.1073/pnas.1912789117.

Dax M, Green SR, Gair J, Deistler M, Schélkopf B, Macke JH. Group equivariant neural posterior estimation. In:
International Conference on Learning Representations; 2022. https:/ /openreview.net/forum?id=u6s8dSporO8.

Drovandi CC, Grazian C, Mengersen K, Robert C. Approximating the Likelihood in ABC. Handbook of approxi-
mate bayesian computation. 2018; p. 321-368.

Drugowitsch J. Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models.
Scientific reports. 2016; 6(1):1-13.

Durkan C, Bekasov A, Murray |, Papamakarios G. Neural spline flows. Advances in Neural Information Process-
ing Systems. 2019; 32:7511-7522.

Durkan C, Murray |, Papamakarios G. On contrastive learning for likelihood-free inference. In: International
Conference on Machine Learning PMLR; 2020. p. 2771-2781.

Feltgen Q, Daunizeau J. An overcomplete approach to fitting drift-diffusion decision models to trial-by-trial
data. Frontiers in artificial intelligence. 2021; 4:23.

Fengler A, Govindarajan LN, Chen T, Frank MJ. Likelihood approximation networks (LANs) for fast inference of
simulation models in cognitive neuroscience. eLife. 2021; 10:e65074.

Glockler M, Deistler M, Macke JH. Variational methods for simulation-based inference. In: International Con-
ference on Learning Representations; 2021. .

Goncalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Ocal K, Bassetto G, Chintaluri C, Podlaski WF, Had-
dad SA, Vogels TP, Greenberg DS, Macke JH. Training deep neural density estimators to identify mechanistic
models of neural dynamics. eLife. 2020; doi: 10.7554/eLife.56261.

Greenberg D, Nonnenmacher M, Macke J. Automatic Posterior Transformation for Likelihood-Free Inference.
In: Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine
Learning Research PMLR; 2019. p. 2404-2414.

Gutmann MU, Corander J. Bayesian optimization for likelihood-free inference of simulator-based statistical
models. The Journal of Machine Learning Research. 2016; 17(1):4256-4302.

Harris CR, Millman KJ, van der Walt S}, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith
NJ, et al. Array programming with NumPy. Nature. 2020; 585(7825):357-362.

Hawkins GE, Forstmann BU, Wagenmakers EJ, Ratcliff R, Brown SD. Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision-making. Journal of Neuroscience. 2015; 35(6):2476-
2484,

Heathcote A, Lin YS, Reynolds A, Strickland L, Gretton M, Matzke D. Dynamic models of choice. Behavior
research methods. 2019; 51(2):961-985.

Hermans J, Begy V, Louppe G. Likelihood-free MCMC with Approximate Likelihood Ratios. In: Proceedings of
the 37th International Conference on Machine Learning, vol. 98 of Proceedings of Machine Learning Research
PMLR; 2020. .

Hoffman MD, Gelman A, et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte
Carlo.] Mach Learn Res. 2014; 15(1):1593-1623.

Jarvenpaa M, Gutmann MU, Pleska A, Vehtari A, Marttinen P, et al. Efficient acquisition rules for model-based
approximate Bayesian computation. Bayesian Analysis. 2019; 14(2):595-622.

Kangasraasio A, Jokinen JP, Oulasvirta A, Howes A, Kaski S. Parameter inference for computational cognitive
models with Approximate Bayesian Computation. Cognitive science. 2019; 43(6):e12738.

Kingma DP, BaJ. Adam: A Method for Stochastic Optimization. In: Proceedings of the 3rd International Conference
on Learning Representations, ICLR; 2015. .

16 of 19

10.1073/pnas.1912789117
https://openreview.net/forum?id=u6s8dSporO8
10.7554/eLife.56261
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

620

621

627

628

629

637

638

640

641

available under aCC-BY-NC 4.0 International license.

Lee HS, Betts S, Anderson JR. Learning problem-solving rules as search through a hypothesis space. Cognitive
science. 2016; 40(5):1036-1079.

Lee MD. Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review. 2008;
15(1):1-15.

Lee MD. How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical
Psychology. 2011; 55(1):1-7.

Lee MD, Wagenmakers EJ. Bayesian cognitive modeling: A practical course. Cambridge university press; 2014.

Lopez-Paz D, Oquab M. Revisiting Classifier Two-Sample Tests. In: 5th International Conference on Learning
Representations, ICLR; 2017. .

Lueckmann JM, Bassetto G, Karaletsos T, Macke JH. Likelihood-free inference with emulator networks. In:
Proceedings of The 1st Symposium on Advances in Approximate Bayesian Inference, vol. 96 of Proceedings of
Machine Learning Research PMLR; 2019. p. 32-53.

Lueckmann JM, Boelts J, Greenberg D, Goncalves P, Macke J. Benchmarking Simulation-Based Inference. In:
Banerjee A, Fukumizu K, editors. Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, vol. 130 of Proceedings of Machine Learning Research PMLR; 2021. p. 343-351.

Lueckmann JM, Goncalves PJ, Bassetto G, Ocal K, Nonnenmacher M, Macke JH. Flexible statistical inference
for mechanistic models of neural dynamics. Advances in Neural Information Processing Systems. 2017; 30.

McClelland JL. The place of modeling in cognitive science. Topics in Cognitive Science. 2009; 1(1):11-38.

Navarro DJ, Fuss IG. Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal
of mathematical psychology. 2009; 53(4):222-230.

Neal RM. Slice sampling. Annals of Statistics. 2003; p. 705-741.
Neal RM, et al. MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo. 2011; 2(11):2.

Ong VM, Nott DJ, Tran MN, Sisson SA, Drovandi CC. Variational Bayes with synthetic likelihood. Statistics and
Computing. 2018; 28(4):971-988.

van Opheusden B, Acerbi L, Ma WJ. Unbiased and efficient log-likelihood estimation with inverse binomial
sampling. PLoS computational biology. 2020; 16(12):e1008483.

Palestro JJ, Sederberg PB, Osth AF, Van Zandt T, Turner BM. Likelihood-free methods for cognitive science.
Springer; 2018.

Palestro JJ, Weichart E, Sederberg PB, Turner BM. Some task demands induce collapsing bounds: Evidence
from a behavioral analysis. Psychonomic bulletin & review. 2018; 25(4):1225-1248.

Papamakarios G, Murray |. Fast e-free Inference of Simulation Models with Bayesian Conditional Density
Estimation. In: Advances in Neural Information Processing Systems 29 Curran Associates, Inc.; 2016.p. 1028-
1036.

Papamakarios G, Nalisnick E, Rezende D), Mohamed S, Lakshminarayanan B. Normalizing flows for probabilis-
tic modeling and inference. arXiv preprint arXiv:191202762. 2019; .

Papamakarios G, Sterratt D, Murray |. Sequential Neural Likelihood: Fast Likelihood-free Inference with Au-
toregressive Flows. In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics
(AISTATS), vol. 89 of Proceedings of Machine Learning Research PMLR; 2019. p. 837-848.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison
A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing
Systems 32 Curran Associates, Inc.; 2019. p. 8024-8035.

Patil U,Hanne S, Burchert F, De Bleser R, Vasishth S. A computational evaluation of sentence processing deficits
in aphasia. Cognitive Science. 2016; 40(1):5-50.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011; 12:2825-2830.

17 of 19

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

available under aCC-BY-NC 4.0 International license.

Price LF, Drovandi CC, Lee A, Nott D). Bayesian synthetic likelihood. Journal of Computational and Graphical
Statistics. 2018; 27(1):1-11.

Priddle JW, Sisson SA, Frazier DT, Turner |, Drovandi C. Efficient Bayesian synthetic likelihood with whitening
transformations. Journal of Computational and Graphical Statistics. 2021; p. 1-14.

Rackauckas C, Nie Q. DifferentialEquations.jl - A Performant and Feature-Rich Ecosystem for Solving Differen-
tial Equations in Julia. The Journal of Open Research Software. 2017; 5(1). doi: 10.5334/jors.151.

Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural
computation. 2008; 20(4):873-922.

Ratcliff R, Rouder JN. Modeling response times for two-choice decisions. Psychological science. 1998; 9(5):347-
356.

Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009;
90(4):877-887.

Schad DJ, Betancourt M, Vasishth S. Toward a principled Bayesian workflow in cognitive science. Psychological
methods. 2021; 26(1):103.

Shiffrin RM, Lee MD, Kim W, Wagenmakers EJ. A survey of model evaluation approaches with a tutorial on
hierarchical Bayesian methods. Cognitive Science. 2008; 32(8):1248-1284.

Shinn M, Lam NH, Murray JD. A flexible framework for simulating and fitting generalized drift-diffusion models.
ELife. 2020; 9:e56938.

Sisson SA, Y F, ABM. Overview of ABC. In: Handbook of Approximate Bayesian Computation CRC Press, Taylor &
Francis Group; 2018.

Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A. Validating Bayesian inference algorithms with
simulation-based calibration. arXiv preprint arXiv:180406788. 2018; .

pandas development team T, pandas-dev/pandas: Pandas. Zenodo; 2020. https://doi.org/10.5281/zenodo.
3509134, doi: 10.5281/zen0d0.3509134.

Tejero-Cantero A, Boelts J, Deistler M, Lueckmann JM, Durkan C, Gongalves PJ, Greenberg DS, Macke JH. sbi: A
toolkit for simulation-based inference. Journal of Open Source Software. 2020; 5(52):2505. https://doi.org/
10.21105/joss.02505, doi: 10.21105/joss.02505.

Tran D, Vafa K, Agrawal K, Dinh L, Poole B. Discrete flows: Invertible generative models of discrete data. Ad-
vances in Neural Information Processing Systems. 2019; 32:14719-14728.

Turner BM, Van Maanen L, Forstmann BU. Informing cognitive abstractions through neuroimaging: the neural
drift diffusion model. Psychological review. 2015; 122(2):312.

Turner BM, Van Zandt T. A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology.
2012; 56(2):69-85.

Turner BM, Van Zandt T. Approximating Bayesian inference through model simulation. Trends in cognitive
sciences. 2018; 22(9):826-840.

Usher M, McClelland JL. The time course of perceptual choice: the leaky, competing accumulator model. Psy-
chological review. 2001; 108(3):550.

Van Rossum G, Drake Jr FL. Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Nether-
lands; 1995.

Voss A, Voss J. Fast-dm: A free program for efficient diffusion model analysis. Behavior research methods.
2007; 39(4):767-775.

Wagenmakers EJ, Van Der Maas HL, Grasman RP. An EZ-diffusion model for response time and accuracy.
Psychonomic bulletin & review. 2007; 14(1):3-22.

Wiecki TV, Sofer |, Frank M). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python.
Frontiers in neuroinformatics. 2013; 7:14.

18 of 19

10.5334/jors.151
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
10.5281/zenodo.3509134
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
10.21105/joss.02505
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

713

714

715

available under aCC-BY-NC 4.0 International license.

Wiquist S, Frellsen J, Picchini U. Sequential Neural Posterior and Likelihood Approximation. arXiv preprint
arXiv:210206522. 2021; .

Wood SN. Statistical inference for noisy nonlinear ecological dynamic systems. Nature. 2010; 466(7310):1102-
1104,

Appendix 1

Code availability

We implemented MNLE as part of the open source package for SBI, sbi, available at https://github.
com/mackelab/shi. Code for reproducing the results presented here, and tutorials on how to apply
MNLE to other simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms.

Architecture and training hyperparameters

For the Bernoulli neural network we used three hidden layers with ten units each and sigmoid acti-
vation functions. For the neural spline flow architecture (Durkan et al., 2019) we transformed the
reaction time data to the log-domain, used a standard normal base distribution, two spline trans-
forms with five bins each and conditioning networks with three hidden layers and ten hidden units
each, and rectified linear unit activation functions. The neural network training was performed us-
ing the sbi package with the following settings: learning rate 0.0005; training batch size 100; 10% of
training data as validation data, stop training after 20 epochs without validation loss improvement.

The emulator property of MNLE

Being based on the neural likelihood estimation framework, MNLE naturally returns an emulator
of the simulator that can be sampled to generate synthetic data without running the simulator.
We found that the synthetic data generated by MNLE accurately matched the data we obtained by
running the DDM simulator (Figure 2—Figure Supplement 1). This has several potential benefits: it
can help with evaluating the performance of the density estimator, it enables almostinstantaneous
data generation (one forward pass in the neural network) even if the simulator is computationally
expensive, and it gives full access to the internals of the emulator, e.g., to gradients w.r.t. to data
or parameters.

There is variant of the LAN approach which allows for sampling synthetic data as well: In the
“Histogram-approach” (Fengler et al., 2021) LANs are trained with a convolutional neural network
(CNN) architecture using likelihood targets in form of two-dimensional empirical histograms. The
output of the CNN is a probability distribution over a discretized version of the data space which
can, in principle, be sampled to generate synthetic DDM choices and reaction times. However, the
accuracy of this emulator property of CNN-LANSs is limited by the number of bins used to approxi-
mate the continuous data space (e.g., 512 bins for the examples shown in Fengler et al. (2021)).

19 of 19

https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://github.com/mackelab/mnle-for-ddms
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

745

746

available under aCC-BY-NC 4.0 International license.

b C
2 1 0 1 2 2 1 0 1 2

X: reaction time [s]

DDM simulator
1 MNLE emulator

2 1 0 1 2

X: reaction time [s]

X: reaction time [s]

Figure 2-Figure supplement 1. Comparison of simulated DDM data and synthetic data sam-
pled from the MNLE emulator. Histograms of reaction times from 1000 i.i.d. trials generated
from three different parameters sampled from the prior (panel a, b, ¢) using the original DDM sim-
ulator (purple) and the emulator obtained from MNLE (green). “Down" choices are shown to the
left of zero and “up" choices to the right of zero.

a
parameter v parameter a parameter w parameter T
0. | 0.10 0.08 0.030 |
5 I I
IS
(V]
c 0.2 0.05 _ 0.04 0.015 I
3
1S ! . : \
0.0 ﬁ—e—J 0.00 ﬁ—e—el 000 EEEE gl L EOEE
_ 0.06 0.002 0.00150 0.00014
5] | | | L
(O]
§ 0.03 0.001 0.00075 { 0.00007 1 .
.© | [i
fe i
0.00 0.000 0.00000 1 EH BE 50000
504 0.02 0.010- 0.0018
5ol
= | | |
c
o2 0.01 I 0.005 { 0.0009 {
o |
£ | | I
foo Mlimm) CHN .| sie. '
voo O & N L 0.00 o S o 0.000- o ® 55 0'00007"‘7—'%__7-‘;
S SE SN LS S&§ & SN S E
RSN S SARCEN SRS SARSEIN S ARSI S

Figure 3-Figure supplement 1. DDM inference accuracy metrics for individual model param-
eters. Inference accuracy given a 100-trial observation, measured as posterior mean accuracy
(first row of panels), posterior variance (second row) and parameter estimation error (third row),
shown in absolute terms, for each of the four DDM parameters separately (panels a, b, ¢, and d, re-
spectively), and for each simulation budgets of LAN®>#!!} (shades of orange) and for MNLES trained
with 10° simulations (green). Bars show the mean metric over 100 different observations, error
bars show standard error of the mean.

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint

747

available under aCC-BY-NC 4.0 International license.

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

a b 2.007 . reference
c LAN®
©
[
& Q:m}}) €
S 1.25
I I~
2 2 I
4 3
Qo >
& W 0.50 1"
0.50 1.25 2.00
— ground-truth a
0.5 2
a
1.8
c
©
[}
0.3 0 £
. 7 .
— reference w 2 1o
LAN> g
[%)
— LANB 8
— ground-truth 6 19 022 !
1 1.4 0.3 0.5 0.7 0.2 1.0 1.8

T

ground-truth w

ground-truth T

Figure 3-Figure supplement 2. DDM example posteriors and parameter recovery for LANs
trained with smaller simulation budgets. (a) Posterior samples given 100-trial example observa-
tion, obtained with MCMC using LAN approximate likelihoods trained based on 103 (LAN3) and 108
simulations (LAN?®), and with the analytical likelihoods (reference). (b) Parameter recovery of LAN
and the reference posterior shown as posterior sample means against the underlying ground-truth

parameters.

[
=)
|

-+ reference

102
observed trials

10° 10!

10°

107t

100

10! 102
observed trials

103

10°

1072

10! 102 10°

observed trials

10°

.
e
N £
[
£ - o
e 5 2 2
5 LAN ® 5 IS
S < 0.75
2 LANS c IS 0
© © S 18]
€ 1072 LAN* g @ 1071
E= £ >
g -+ MNLES 2
5% £
MNLE 1o v

10! 102
observed trials

10° 103

Figure 3-Figure supplement 3. DDM inference accuracy metrics for different numbers of ob-
served trials. Parameter estimation error (a), absolute posterior mean error (b), relative posterior
variance error (c) and C2ST scores (d) shown for LAN with increasing simulation budgets (shades of
orange, LAN&11) MNLE trained with 10° simulations (green), and MNLE ensembles (purple). Met-
rics were calculated from 10,000 posterior samples and with respect to the reference posterior, for
100 different observations. Error bars show standard error of the mean.

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473472; this version posted June 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

a
c
©
OJ
_E
C
ey}
=T
~g
%)
o
Qo
b
=
©
[
w g
O o
=<)
==
28
[=]
o
C
2.00 0.7 1.8
c + reference
©
] QEJ LAN1L
= MNLE>
pagi=} 1.25 0.5 1.0
85
3
=3
o
- 0.50/2% 0322 0.2
-2 0 2 0.50 1.25 2.00 0.3 0.5 0.7 0.2 1.0 1.8
ground-truth v ground-truth a ground-truth w ground-truth

Figure 4-Figure supplement 1. DDM parameter recovery for different number of observed
trials. True underlying DDM parameters plotted against posterior sample means for 1, 10, and
1000 of observed i.i.d. trial(s) (in rows) and for the four DDM parameters v, a, w and z (in columns).
Calculated from 10,000 posterior samples obtained with MCMC using the reference (blue), LAN!!
(orange) and the MNLE? (green) likelihoods. Black line shows the identity function indicating perfect
recovery.

-
=3

— reference o - ; 4
LANY s .

— MNLES Vs A e
MNLES* . L Yy

1 trial
empirical CDF
o
wn
Y

e
o

,_.
o
N
Y
.
\
°\

10 trials
empirical CDF
o
w
\

Y
N

4
o

-
o

1000 trials
empirical CDF
o
«

0.0/2
0 50 100 0 50 100

50 100

Figure 4-Figure supplement 2. DDM simulation-based calibration results for different num-
bers of observed trials. SBC results in form empirical conditional density functions of the ranks
of ground-truth parameters under the approximate posterior samples. We compared posterior
samples based on analytical likelihoods (blue), LAN!! (orange), MNLE’ (green), and an ensemble of
five MLNEs (MNLE>*, purple); for each of the four parameters of the DDM and for 1, 10, 1000 ob-
served trials (panel a, b, and ¢, respectively). Grey areas show random deviations expected under
uniformly distributed ranks (ideal case).

https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Evaluating the performance of mixed neural likelihood estimation (MNLE) on the drift-diffusion model
	MNLE learns accurate likelihoods with a fraction of the simulation budget
	MNLE enables accurate flexible posterior inference with MCMC
	MNLE posteriors have uncertainties which are well-calibrated
	MNLE infers well-calibrated, predictive posteriors for a DDM with collapsing bounds

	Discussion
	Methods and Materials
	Mixed neural likelihood estimation
	Relation to LAN
	Details of the numerical comparison
	Flexible Bayesian inference with MCMC
	Neural network architecture, training and hyperparameters

	Acknowledgments
	Appendix 1
	Code availability
	Architecture and training hyperparameters
	The emulator property of MNLE

