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Abstract 

M4 muscarinic receptor is a G protein-coupled receptor that has been associated with 

alcohol and cocaine abuse, Alzheimer's disease and schizophrenia which makes it an 

interesting drug target. For many G protein-coupled receptors, the development of 

high-affinity fluorescence ligands has expanded the options for high throughput 

screening of drug candidates and serve as useful tools in fundamental receptor 

research. So far, the lack of suitable fluorescence ligands has limited studying M4 

receptor ligand binding. Here, we explored the possibilities of using fluorescence-

based methods for studying binding affinity and kinetics to M4 receptor of both labeled 

and unlabeled ligands. We used two TAMRA-labeled fluorescence ligands, UR-

MK342 and UR-CG072, for assay development. Using budded baculovirus particles 

as M4 receptor preparation and fluorescence anisotropy method, we determined the 

affinities and binding kinetics of both fluorescence ligands. The fluorescence ligands 

could also be used as reported probes for determining binding affinities of a set of 

unlabeled ligands. Based on these results, we took a step further towards a more 

natural signaling system and developed a method using live CHO-K1-hM4R cells and 

automated fluorescence microscopy suitable for routine determination of unlabeled 

ligand affinities. For quantitative image analysis, we developed random forest and 

deep learning-based pipelines for cell segmentation. The pipelines were integrated 

into the user-friendly open-source Aparecium software. Both developed methods were 

suitable for measuring fluorescence ligand saturation binding, association and 

dissociation kinetics as well as for screening binding affinities of unlabeled ligands. 
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Abbreviations 

5-TAMRA - 5-Carboxytetramethylrhodamine 

BBV - budded baculovirus 

BRET - bioluminescence resonance energy transfer 

CHO-K1 - Chinese hamster ovary cells  

DiI - 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate 

DL - deep learning 

DMEM/F12 - Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 

DPBS - Dulbecco's phosphate-buffered saline 

FA - fluorescence anisotropy 

GPCR - G-protein-coupled receptors 

GUI - graphical user interface 

HEK293-D3R - Human embryonic kidney 293 cells expressing dopamine D3 receptors 

HTS - high-throughput screening 

hM4 - human muscarinic acetylcholine receptor M4 subtype 

IC - Intracellular area 

NMBG - near-membrane background 

mAChR - muscarinic acetylcholine receptor 

MB - membrane  

MCC - Matthew’s correlation coefficient 

MOI - multiplicity of infection 

RF - random forest 

U-Net3-FL-1 - U-Net3 architecture based fluorescence image cell segmentation model 

RF-FL-1 - Random Forest based fluorescence image cell segmentation model 

U-Net3-BF-1 - U-Net3 architecture based bright-field image cell segmentation model 

RF-BF-1 -Random Forest based bright-field image cell segmentation model version 1 

RF-BF-2 -Random Forest based bright-field image cell segmentation model version 2 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473643doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473643
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

1.  Introduction 

Muscarinic acetylcholine receptors (mAChR) are a group of G-protein coupled 

receptors (GPCRs) with five subtypes M1-M5 which play a crucial role, e.g. in the 

regulation of memory, heart and bladder function and dopaminergic neurotransmission 

[1–4]. Lately, the M4R was suggested to be a potential drug target for the treatment of 

neurodegenerative and neuropsychiatric disorders like Alzheimer's disease or 

schizophrenia [5,6]. Furthermore, as new links emerge between the M4 receptor and 

alcoholism, as well as a between M4 receptor polymorphism and cocaine and heroin 

abuse, the M4 receptor becomes an even more versatile drug target [7,8]. Despite the 

growing importance, the development of novel drugs targeting the M4 receptor is 

difficult as the similarity of orthosteric binding sites of all mAChR leads to low subtype 

selectivity of ligands [9]. One solution is the development of allosteric modulators, 

which may exhibit higher subtype selectivity but relatively lower affinities [10]. To find 

suitable drugs, ligand screening remains an important step in the drug development 

process. Screening for new drug candidates using fluorescence methods has become 

quite popular due to several advantages over radioligand based assays [11]. However, 

until now only a limited number of fluorescence ligands have been available for 

mAChR and to our knowledge none have been extensively used to develop assays to 

study M4 receptors [12–14]. Recently, several novel low molecular weight fluorescently 

labeled ligands targeting mAChRs were described [15,16]. Of these ligands, TAMRA 

labeled UR-CG072 and UR-MK342 have already been successfully used for studying 

M2 receptors in nanoBRET and fluorescence anisotropy (FA) assays [17]. Even 

though these ligands show a slight preference for the M2 receptor, they still have high 

affinity for M1 and M4 receptors. Therefore, the new fluorescent ligands should be 

suitable as probes for studying M4 receptors in drug candidate screening assays as 

well as in a large variety of fluorescence microscopy techniques from live tissue 

systems to single-molecule studies [18–20]. 

One of the most common options for characterizing fluorescent probe binding to 

proteins including GPCRs is the FA method [21–25]. For the successful development 

of FA assays, several unique aspects must be considered. Most importantly, FA is a 

ratiometric assay with its value depending on the ratio of bound and free ligand. 

Therefore, all experiments must be designed in a way that the probe and receptor 
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concentrations are in a similar range, which means that ligand and receptor depletion 

should be taken into account [26]. The main advantage of the FA method is that there 

is no need to separate bound ligand from free ligand, making it easy to continuously 

collect time-course data during ligand binding. These time course data can be used to 

obtain kinetic parameters and to develop reaction kinetics models of ligand binding for 

more insight into the complicated regulation of signal transduction. In addition to cell 

membranes, budded baculovirus (BBV) particles can serve as a high-quality receptor 

source for FA assays. BBV particles are advantageous because they have a fixed 

shape (∼50 nm x 300 nm) and homogeneous size distribution, resulting in minimal 

noise and small variability between replicates compared to membrane preparations 

[26–28]. Due to the small size and low sedimentation rate of BBV particles they are 

well suited for performing homogeneous assays. However, downstream signaling 

cascades are not present BBV particles. Furthermore, BBV particles are produced in 

Sf9 insect cells, where the membrane composition differs from mammalian systems. 

Most of these problems can be avoided by using more natural live-cell assays for 

receptor display. Among multiple developed assays [29], NanoBRET has gained a lot 

of popularity in recent years due to its homogeneous format, possibility of real-time 

measurements and relatively good compatibility with a wide array of fluorophores. 

However, it requires genetically modified receptors, which may have an influence on 

ligand binding and receptor activation [30]. Studying wild type receptors is more 

difficult, as the receptor cannot be tagged which in turn does not allow to take 

advantage of the high sensitivity of bioluminescence approaches. Further, the plate 

reader based RET methods only provide cell population average statistics instead of 

single-cell resolution information which may hide some important effects. One solution 

to both problems is flow cytometry, which can measure fluorescent ligand binding to 

individual cells. However, it cannot follow binding to a single cell over time nor spatially 

resolve from which part of the cell the fluorescence originates from [31]. In contrast, 

high throughput microscopy can provide spatial information as well as time-course 

information for the same cells, making more detailed analysis possible. On the 

downside, extracting pharmacologically relevant quantitative information from the 

bioimages requires more complex data analysis algorithms. However, once an 

automated data analysis solution with user-friendly software exists, it can be re-used 

in future studies.  
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Microscopy methods open many possibilities for assay setup, but performing time-

resolved measurements with the cellular resolution is not trivial and existing methods 

have several potential issues [32]. In previously published works kinetics of ligand 

binding to live cells in an HTS compatible manner have only been analyzed by 

fluorescence intensity of the whole image [33,34]. For these methods, it is necessary 

to seed cells consistently as a high confluency monolayer, but this is either difficult or 

practically impossible to achieve with some cell lines [35]. Furthermore, it is much more 

difficult to identify individual cells from a dense monolayer thus reducing the number 

of parameters that can be studied. In addition, dense monolayers can significantly 

affect physicochemical environmental parameters such as oxygen concentration 

which can also have more direct effects on muscarinic receptor signaling [36]. For 

example, transient hypoxic conditions lead to increased phosphorylation of M1 and M2 

receptors [37]. Finally, dense cell monolayers can easily cause focusing errors in 

automated microscopy, as some cells may have detached or formed a second layer.  

A better approach was developed with HEK-293-D3R cells, which uses a machine-

learning algorithm for detecting only the fluorescence intensity originating from cell 

membranes in equilibrium conditions and does not rely on dense monolayers [35]. 

However, ligand binding kinetics were not analysed in that study. Nevertheless, kinetic 

measurements should be possible with a similar setup after adjusting the experimental 

design and the image analysis pipeline. 

The most difficult steps of microscopy image analysis are usually cell detection and 

segmentation, which is necessary for robust quantification of the fluorescence signal. 

Approaches for these tasks have gone through a paradigm shift from classical 

computer vision techniques to machine learning and especially deep learning (DL) 

methods. Deep neural networks dominate most of the developed benchmark datasets 

for general problems as well as bioimage analysis specifically [38–40]. A large number 

of DL architectures have been developed over the past few years, but their wide 

application can be limited by compatibility issues with popular image analysis software 

and too complex design for comprehensive understanding for life-scientists [41–48]. 

Therefore, a widely supported and well known U-Net architecture is used in the present 

study for cell segmentation from bright-field images, as it has shown good results for 

similar microscopy images [43,49]. 

In this study, we developed new fluorescence-based ligand binding assays for the M4 

receptor. These assays utilize two recently developed 5-TAMRA labeled 
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dibenzodiazepinone derivatives, UR-MK342 and UR-CG072 [15], and two different 

receptor sources. As both BBV particle-based FA and live cell based microscopy 

assays have distinct advantages, we studied and compared the two options and 

discovered, that both options are viable. To our best knowledge, this is the first detailed 

description of M4 receptor fluorescence ligand binding assays, which opens up many 

new possibilities to study these receptors.  
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2. Materials and methods 

Materials 

Assay buffer consisted of MilliQ water, 135 mM NaCl (AppliChem, Darmstadt, 

Germany), 1 mM CaCl2 (AppliChem), 5 mM KCl (AppliChem), 1 mM MgCl2 

(AppliChem), 11 mM Na-HEPES (pH = 7.4) (Sigma-Aldrich, Taufkirchen, Germany), 

protease inhibitor cocktail (according to the manufacturer's description, Roche, Basel, 

Switzerland) and 0,1% Pluronic® F-127 (Sigma-Aldrich). 

Muscarinic acetylcholine receptor ligands acetylcholine, arecoline, pirenzepine, 

pilocarpine, atropine and scopolamine were purchased from Sigma-Aldrich and 

carbachol from Tocris Bioscience (Abingdon, United Kingdom). The syntheses of the 

fluorescent ligands UR-MK342 and UR-CG072 [15] and the dualsteric M2R ligands 

UR-SK59[50], UR-SK75 [50]  and UNSW-MK259 [51], showing also high M4R affinity, 

were described previously. All ligand stock solutions were prepared using cell culture 

grade DMSO (AppliChem) and stored at -20 °C. 

Cell culture 

Spodoptera frugiperda Sf9 (Invitrogen Life Technologies, Schwerte, Germany) cells 

were maintained as a suspension culture in serum-free insect cell growth medium EX-

CELL 420 (Sigma-Aldrich) at 27 °C in a non-humidified environment. 

Non-transfected Chinese hamster ovary cells (CHO-K1) were purchased from ATCC, 

LGC Standards (Wesel, Germany) and CHO-K1 expressing human M4 receptor 

(CHO-K1-hM4R cells) were obtained from Missouri S&T cDNA Resource Centre 

(Bloomsberg, USA). CHO-K1 cells were cultured in DMEM/F12 (Sigma‐Aldrich) with 

9% FBS (Sigma‐Aldrich), antibiotic antimycotic solution (100 U/ml penicillin, 0,1 mg/ml 

streptomycin, 0,25 μg/ml amphotericin B) (Sigma‐Aldrich) and for CHO-K1-hM4R 750 

μg/mL of selection antibiotic geneticin (G418) (Capricorn Scientific, Ebsdorfergrund, 

Germany) were added. All mammalian cells were grown in a humidified incubator at 

37 °C with 5% CO2 until 90% confluency. To detach the cells from the plate 0.05% 

trypsin with EDTA (Gibco, Paisley, Scotland) was used. 

Cell culture viability and density were determined with an Automated Cell Counter 

TC20™ (Bio‐Rad Laboratories, Sundyberg, Sweden) by the addition of 0.2% trypan 
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blue (Sigma‐Aldrich). All experiments with CHO-K1-hM4R, CHO-K1 and Sf9 cell 

cultures were performed with passages 40-50, 33 and 2-25 respectively. Mammalian 

cell-lines were tested and determined to be mycoplasma-negative. 

Preparation of budded baculovirus particles 

The human M4 receptor in pcDNA3.1+ was purchased from cDNA Resource Center 

(www.cdna.org) and manufacturing and production of BBV containing human M4 

receptor were performed as described in [23] with some modification. For cloning M4 

into pFastBac vector, BamHI and XbaI sites were used with enzymes from (Thermo 

Fisher Scientific (Schwerte, Germany). To transform the bacmid into Sf9 cells the 

transfection reagent FuGene 6 (Promega Corporation, Madison, USA) was used 

according to the manufacturer's protocol. After the viruses were generated and 

collected, the amount of infectious viral particles per ml (IVP/ml) for all the 

baculoviruses was determined with the Image-based Cell Size Estimation (ICSE) 

assay [52]. 

To produce the BBV particles, Sf9 cells were infected with MOI = 3 and incubated for 

4 days (end viability of Sf9 cells was 55%). The supernatant, containing BBV particles, 

was gathered by centrifugation for 15 min at 1600 g. Next, the BBV particles were 

concentrated 40-fold by high-speed centrifugation (48000 g at 4 °C) for 40 min 

followed by washing with the assay buffer and homogenization with a syringe and a 

30G needle. The suspension was divided into aliquots and stored at -90 °C until the 

experiments. BBV particle preparations were done several times. Receptor 

concentration for the BBV particle stocks was estimated  Rstock_UR-CG072= 9.7 ± 1.1 nM 

and Rstock_UR-MK432= 5.5 ± 0.7 nM, using the model described in [28]. 

Fluorescence anisotropy experiments 

FA experiments were carried out on black flat bottom half-area 96 well plates (Corning, 

Glendale, USA). A suitable combination of the fluorescent ligand, competitive ligand 

and BBV particle suspension was added to each well. Assay buffer was added so that 

the final liquid volume in each well was 100 µL. 

In saturation binding experiments, two concentrations of fluorescent ligands were 

used, 2 nM and 20 nM for UR-CG072 and 1 nM and 6 nM for UR-MK342. 2 µM or 20 

μM UNSW-MK259 in the case of UR-CG072 and 1 µM or 6 μM scopolamine in the 
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case of UR-MK342 were used for determination of nonspecific binding. Two-fold serial 

dilutions of BBV particle suspension was added starting from 60 µL. Wells without BBV 

particles were used as a free fluorescent ligand control. 

For competition binding experiments the concentrations of fluorescent ligands UR-

CG072 and UR-MK342 were kept constant at 5 nM and the volume of BBV particles 

was also kept constant at 20 μL (Cfinal ≈ 1 - 2.2 nM). Five- or six-fold serial dilutions of 

the competitive ligands were used. Also, replicate wells with no competitive ligand 

were included and for blank correction replicate wells with only BBV particles was 

included. Measurements were carried out with 3 min intervals for 13-15 h at 27 °C. A 

custom made glass lid was used in all the experiments to minimize the evaporation 

from the wells. In all cases, BBV particles were added as the last component to initiate 

the ligand binding process.  

For kinetic experiments, 5 nM UR-CG072 or 6 nM UR-MK342 was used. In nonspecific 

binding wells, 6 µM or 3 µM scopolamine was added, respectively. The reaction was 

initiated by addition of 20 µL of M4 receptor displaying BBV particles. After 180 min the 

dissociation was initiated by the addition of 2 µL of 300 µM (Cfinal = 6 µM) or 150 µM 

(Cfinal = 3 µM) scopolamine for UR-CG072 or UR-MK342, respectively. 2 µL of assay 

buffer was added instead of the competitive ligand to association kinetics wells to 

maintain the equivalent volume in all wells. 

In all experiments, the fluorescence intensity values were blank corrected for BBV 

particle autofluorescence by subtracting the respective parallel or perpendicular 

fluorescence intensity value of a blank well from the respective measurement well. 

The blank wells contained no ligands but only the same concentration of BBV particles 

as the measurement well. 

FA measurements were performed with multi-mode plate reader Synergy NEO 

(BioTek Instruments, Winooski, USA), which is equipped with a polarizing 530(25) nm 

excitation filter and 590(35) nm emission filter allowing simultaneous parallelly and 

perpendicularly polarized fluorescence detection. At least three individual experiments 

were carried out in duplicate. 

Microscopy of DiI stained CHO-K1-hM4R cells 

CHO-K1-hM4R cells were grown as described above and seeded with a density of 

25 000 cells/well into a µ-Plate 96 well Black plate (Ibidi, Gräfelfing, Germany) 5 hours 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473643doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473643
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

before the experiment. A stock solution of 1 mM DiI (Invitrogen, Eugene, Oregon, USA) 

in DMSO stored at -20 °C was thawed and sonicated in an ultrasound bath for 5 min 

to disrupt aggregates. Cell medium was removed and replaced with 200 µL/well of 2 

µM DiI in DPBS with Mg2+ and Ca2+ (Sigma-Aldrich) to stain the cell membranes. The 

cells were incubated with the solution for 10 minutes before imaging. The cells were 

imaged with Cytation 5 cell imaging multi-mode plate reader equipped with 20X 

LUCPLFLN objective (Olympus) from Bright-field and RFP channels (LED light source 

with excitation filter 531(40) nm and emission filter 593(40) nm for RFP channel 

(BioTek Instruments) with the following parameters for bright-field: LED intensity = 4, 

integration time = 110 ms, camera gain = 24 and for RFP fluorescence channel: LED 

intensity = 1, integration time = 71 ms, camera gain = 24. The cells were imaged in 

the montage mode (196 locations) with Z-stack (10 planes, 4 planes below and 5 

planes above focus) to cover any imaging location-dependent variability and simulate 

potential autofocusing errors. 

Live-cell ligand binding imaging 

CHO-K1-hM4R cells were seeded into µ-Plate 96 well Black plate (Ibidi) at densities 

of 25 000 - 30 000 cells/well in DMEM/F-12 medium and incubated for 5-7 h. 

Immediately before the measurement, the cell culture media was exchanged for the 

same cell culture media containing ligands. At all times, the well volume was kept at 

200 µL. 

For determining UR-CG072 affinity to the M4 receptor, saturation binding experiments 

were carried out using two-fold dilutions of UR-CG072 starting from 8 nM. Nonspecific 

binding was measured in the presence of 3.7 μM scopolamine. The cells were 

incubated with ligands in Cytation 5 at 5% CO2 and 37 °C for 2 h before imaging. 

For measuring UR-CG072 binding kinetics to M4 receptor, 2 nM UR-CG072 was added 

to the cells and imaging was immediately initiated. To achieve sufficient temporal 

resolution, only two wells were imaged in parallel. After approximately 3 h of 

association, 10 µL of 100 µM scopolamine (Cfinal = 5 µM) was added to start 

dissociation. 

The competition binding assay was performed using 2 nM UR-CG072. The different 

competitive ligand concentrations were pipetted to the plate in randomized order, to 

avoid correlation between well imaging order and concentration. It was determined 
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that 2 h was sufficient to reach equilibrium for IC50 value measurement as the IC50 

values for scopolamine and carbachol at 2 h and 5 h remained constant within 

uncertainty limits. 

The imaging was performed with Cytation 5 as described above. Saturation binding 

experiments were performed with following imaging parameters in bright-field: LED 

intensity = 4, integration time = 110 ms, camera gain = 24 and in RFP fluorescence 

channel LED intensity = 1 or 2, integration time = 827 ms, camera gain = 24. For kinetic 

binding assays all the parameters were the same except for RFP fluorescence channel 

LED intensity = 5. For competition binding assays the imaging parameters used in 

bright-field were: LED intensity = 5, integration time = 1222 ms, camera gain = 0 and 

in RFP fluorescence channel: LED intensity = 5, integration time = 613 ms, camera 

gain = 24 or the same as for kinetic experiments. The cells were imaged in the 

montage mode (4 locations/well) with Z-stack (10 planes, 4 planes below focal plane, 

1 in focus and 5 planes above focal plane). 

Cell segmentation with ilastik software 

To develop a bright-field cell segmentation model based on the random forest (RF) 

algorithm, a total of three ilastik [53] pixel classification models were trained (RF-FL-

1, RF-BF-1 and RF-BF-2). Two of the models (RF-FL-1 and RF-BF-1) were 

intermediate helper models used for training the final RF-BF-2 model. Here, the 

models are named by combining the model type (RF or U-Net3), an input imaging 

modality that the model used for cell detection (BF for bright-field images and FL for 

fluorescence images) followed by the index of the model of the particular type. For 

developing the RF-FL-1 model, a set of fluorescence images of CHO-K1-hM4R cells 

stained with fluorescent lipophilic dye DiI was generated. 30 of these images were 

randomly chosen from different locations of the well for the training set. The images 

were in-focus (10 images), 3 μm above (10 images) and below (10 images) the focal 

plane to increase the model robustness against focusing errors. The Gaussian 

Smoothing, Laplacian of Gaussian, Gaussian Gradient Magnitude, Difference of 

Gaussians, Structure Tensor Eigenvalues, and Hessian of Gaussian Eigenvalues 

features were selected for sigma values of 0.70, 1.00, 1.60, 3.50, 5.00, 10.00, 15.00 

and 20.00 px. In addition, the Gaussian Smoothing feature with a sigma value of 0.30 

px was selected in the ilastik feature selection stage. RF-FL-1 was set up to perform 
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binary pixel classification using cell and background classes. Some pixels of cells and 

background were manually annotated by adding annotations over the respective pixels 

of the in-focus images. More annotations were added at the fringe of cells to enhance 

the accuracy of the predictions. The annotations of the in-focus images were 

transferred to the respective out-of-focus images from the same field of view. With 

these annotations, the random forest (RF) based model (RF-FL-1) was trained. Model 

export was set to generate simple binary segmentation. Then, the cells on the rest of 

the fluorescence images (186 images) were segmented in the batch processing mode 

creating a set of masks for 196 fields of view with the ten fields of view remaining in 

the training set. Next, the binary segmentation images were automatically reclassified 

into three classes: intracellular area (IC), membrane (MB) and near-membrane 

background (NMBG) with the rest of the pixels representing background (BG). IC class 

was generated by image erosion of the predicted cell masks by a 2-pixel radius disk 

structuring element. MB class was generated by image dilation of IC masks with a 3-

pixel radius disk structuring element and pixels were assigned to the NMBG class by 

further image dilation of the MB images with a 7-pixel radius disk structuring element 

and excluding pixels already assigned to MB or IC classes. Next, a class balancing 

step was performed to obtain an equal number of pixels for each of the classes. For 

that, all of the pixels from the class with the smallest number of pixels (MB) were 

selected and an equal number of pixels were selected randomly from IC and NMBG 

classes. The operation was performed for each image separately. Images generated 

by this process were considered as the ground truth for training RF-BF-1 model. RF-

BF-1 was trained to detect cells from contrasted projections of bright-field Z-stacks. 

The Z-stack of bright-field images was converted into a single higher contrast image 

as described in [35]. Twenty fields of view were used as a training set in RF-BF-1 for 

the detection of IC, MB, NMBG areas from the contrast-enhanced bright-field image 

projections. The Gaussian Smoothing, Laplacian of Gaussian, Gaussian Gradient 

Magnitude, Difference of Gaussians, Structure Tensor Eigenvalues, and Hessian of 

Gaussian Eigenvalues features were selected for sigma values of 0.70, 1.00, 1.60, 

3.50, 5.00, 10.00, 15.00, 20.00, 25.00, 30.00 and 35.00 px. In addition, the Gaussian 

Smoothing filter with a sigma value of 0.30 px was selected in the ilastik feature 

selection stage. Twenty ground truth images generated by RF-FL-1 were used as 

labels of IC, MB, NMBG classes in the respective images to train a model for the 

detection of three classes of pixels from the contrast-enhanced bright-field images. 
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The prediction quality was estimated by the recall, precision, F1 score and Matthews 

Correlation Coefficient (MCC) metrics as shown in Table 1. Classification quality 

metrics were measured by considering the IC pixels to form a positive class while all 

other classes (MB, NMBG, BG) were merged to form the negative class. Thus, 

misclassifications of pixels between MB, NMBG and BG classes had no impact on the 

quality metrics.  

Finally, the RF-BF-2 model was trained to improve the prediction quality of the RF-

BF-1 model by adjusting the class balance by adding ground truth annotation to pixels 

which the RF-BF-1 model had failed to classify. The same training set of 20 contrast-

enhanced bright-field images was used for the RF-BF-1 model. In this training run, the 

fourth class of pixels was created for background (BG) from all the previously 

unclassified pixels. To create ground truth images for RF-BF-2, the class balancing 

step was performed again as previously described. Additionally, the labels were 

improved by manually adding pixels to each class, which the RF-BF-1 model had failed 

to classify. The same image features were used as in the RF-BF-1 model. The 

prediction quality of RF-BF-2 was evaluated with the test set (Table 1, Fig 7 G). By 

visual inspection, the addition of extra labels removed the largest and clearest 

misclassifications (Fig 7 F, G) and the ones remaining were overlapping with areas 

where the volume of training data was already large. As overall image detection 

parameters were not better for RF-BF-2 compared to RF-BF-1 (Table 1), it was 

deemed that the model quality had reached a plateau and further addition of data 

would not provide any significant model generalization. 

Cell segmentation with deep learning 

For training the models for the DL pipeline, ten in-focus RFP fluorescence channel 

images of CHO-K1-hM4R cells stained with DiI dye were manually labeled using the 

ilastik Pixel classification pipeline user interface. For that, pixels were classified as 

either cells or background. The manually generated annotations were exported. Next, 

a background correction step was used to remove systematic illumination differences 

from the fluorescence images. The ten images along with corresponding ground truth 

annotations were randomly sampled into training, validation and test sets as follows: 

six images in the training set, two images in the validation set and two images in the 

test set. The training and validation set images were cropped to the input size of the 
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U-net (288 x 288 pixels) and augmented using a sequential augmenter with the 

augmentations (rescaling 0 - 5%, shearing 0 - 1 pixels, piecewise affine shearing 1-

5%, random rotation +-45 degrees, random left-right flip 50% probability and random 

up-down flip 50% probability) using the imgaug library [54]. A total of 6000 training tiles 

and 2000 validation tiles were generated (1000 augmented tiles of each image). The 

U-Net inspired fully convolutional U-Net3 architecture (Fig. 1 C) was used to train a 

model (U-Net3-FL-1) for cell detection from the fluorescence images [47,49]. The 

training was carried out using the following parameters: Adam optimizer [55], learning 

rate=0.0002, beta 1=0.9, beta 2=0.999, epsilon=10-8, number of epochs=20, loss 

function=binary cross-entropy. The validation set loss was confirmed to have reached 

a minimum within 20 epochs. The model quality was assessed for the test set images. 

Next, the model was used to predict the masks for 191 DiI labeled fluorescence 

images. These images were again separated into training, validation and test sets 

along with the corresponding in-focus bright-field images of the same fields of view 

(133, 29 and 29 images respectively). The focal plane had been manually chosen in a 

prior step. As it has been previously shown that similar DL network architectures 

require considerably more bright-field data to converge to an optimal solution 

compared to fluorescence data, a different strategy was chosen for training DL for cell 

detection from bright-field images [40,49,56]. As the training data volume was 

substantially larger, a data generator was used for cropping the images to the correct 

size (288 x 288 pixels) instead of predefined training and validation sets. A batch size 

of 8 images was used during training. No augmentation was used for bright-field data. 

The same model architecture was used for the U-Net3-BF-1 model as for U-Net3-FL-

1. In this training run, early stopping with patience = 20 was used, the model converged 

after 90 epochs. Also, learning rate reduction with a factor of 0.1 and patience = 10 

was used. All other parameters were the same as for the fluorescence-based model. 

The final model U-Net3-BF-1 was used to predict the segmentation of the test set and 

equivalent metrics were calculated (Table 1). 

Image analysis pipeline 

To carry out cell segmentation from all microscopy images, a suitable image analysis 

pipeline was developed. For using ilastik based models, the same pipeline was used 

as in [35] with minor modifications. The ilastik segmentation label index was updated 
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according to the RF-BF-1 model design (segmentation label index = 2) and 

morphological corrections were not utilized as it was not necessary for whole-cell 

segmentation in contrast to contour segmentation.  

For using the U-Net3-BF-1 model for prediction, the MembraneTools module of 

Aparecium data and image analysis software (https://gpcr.ut.ee/aparecium.html) was 

updated to be able to use Keras framework [57] models for prediction. Unlike for RF-

BF-1, for U-Net3-BF-1 only a single in-focus bright-field image was used for input 

instead of the contrast-enhanced image generated from bright-field Z-stacks. As the 

U-Net3-BF-1 model can predict only the 288 x 288-pixel patches, the bright-field 

images are tiled before prediction and the predictions are later stitched to original size 

images (Fig. 1 D, step a). 

The quality mask was manually generated (Fig 1 D, Stage 1) as previously described 

[35] and areas of low quality were removed from image quantification (Fig 1 D, step 

b). 

For fluorescence image quantification, the in-focus fluorescence image was selected 

from the Z-stack manually and the image intensity was calculated only for the areas 

detected as cells by the segmentation model. 

 

Software performance tests 

During software performance tests ilastik version 1.3.3post3 and MATLAB (The 

MathWorks, USA) version R2021a were used on a PC with 16 GB RAM, i7-10750H 

CPU (2.6 GHz) with 6 cores. DL pipeline inference was run on Nvidia Quadro T1000 

GPU. For training the DL models the High Performance Cluster of University of Tartu 

was used [58]. 
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Fig. 1. The architecture of the image analysis pipelines. For training the random-forest 

based RF-BF-2 model, a training pipeline (A) was used which also generated the 

helper models RF-FL-1 and RF-BF-1. For training the U-Net3-BF-1 model the training 

pipeline (B) was used which also generated the helper model U-Net3-FL-1. U-Net type 

architecture (C) was used for the DL pipeline. The cell detection pipeline using the 

trained models (D) was implemented in Aparecium MembraneTools module. In this 

pipeline, Stage 1 corresponds to data pre-processing, Stage 2 to cell segmentation 

and Stage 3 to data post-processing. In Step a of the cell detection pipeline, the U-

Net3-BF-1 model is used and in Step b the binary mask is corrected with the quality 

mask. 
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Pharmacological data analysis 

Aparecium 2.0 software was used to blank the raw parallel and perpendicular intensity 

values and calculate the FA values using the formula [59]: 

𝐹𝐴(𝑡) =
ூ(௧)಺಺ିூ(௧)఼

ூ(௧)಺಺ାଶ∙ூ(௧)఼
             (1)  

where, I(t)II is the parallel fluorescence intensity, and I(t)⟂ is the perpendicular 

fluorescence intensity at time point t. 

Ki values were calculated with the Cheng-Prusoff equation [60], using the IC50 values 

gained from data fitting with GraphPad Prism 5.0 (GraphPad Software, San Diego, 

USA) with a three-parameter logistic regression model ("log(inhibitor) vs. response").  

For calculation of kinetic parameters kon, koff and Kd_kinetic of the microscopy data, 

GraphPad Prism 5.0 "Association then dissociation" model was used. Kd calculation 

form microscopy data was also done with GraphPad Prism 5.0, but the model used 

was "One site -- Total and nonspecific binding".  

For Kd calculation from FA data a global model form [28], which takes ligand depletion 

into account was used. To calculate kon, koff and Kd_kinetic from FA kinetic data a 

modified version of IQMTools/SBToolbox2 (IntiQuan, Basel, Switzerland) was used to 

fit FA values with the previously published model [17]. The model assumes four 

possible interactions: the interaction between the receptor (R) and the fluorescence 

ligand (L), receptor and the competitive unlabeled ligand (C), nonspecific binding sites 

from the receptor preparation (NBV) and fluorescent ligand, the interaction between 

nonspecific binding sites on the microplate (N) and the fluorescent ligand. The 

corresponding reactions can be described by the following schemes: 

     R + L ⇄ RL 

     R + C ⇄ RC 

     NBV + L ⇄ NBVL 

     N + L ⇄ NL 

The concentrations in this model are connected to the predicted FA values through 

the equation:   

         𝐹𝐴(𝑡) =
{ோ௅}೟×ி஺ೃಽା{௅}೟×ி஺ಽ

{ோ௅}೟ା{௅}೟
                        (2) 

where {RL}t and {L}t are the instantaneous concentrations of RL and L respectively at 

timepoint t and FARL and FAL are the intrinsic fluorescence anisotropies of the RL and 

L states respectively. 
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All the uncertainties given are weighted standard error of the mean of at least 3 

independent experiments if not stated otherwise. 

Statistical analysis 

For determining the quality of all machine learning cell detection models, four metrics 

were considered: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
                           (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ା
                                                 (4)       

𝐹ଵ 𝑠𝑐𝑜𝑟𝑒 =
ଶ∗்௉

ଶ∗்௉ାி௉ାிே
                                           (5) 

𝑀𝐶𝐶 =
்௉∗்ேିி ∗ிே

ඥ(்௉ାி௉)∗(்௉ାிே)∗(்ேାி௉)∗(்ேାி )
                   (6) 

, where True positive (TP) denotes the number of correctly detected pixels belonging 

to cells, True negative (TN) is the number of correctly predicted pixels not belonging 

to cells, False positive (FP) is the number of non-cell pixels detected as cells, False 

negative (FN) is the number of cell pixels detected as non-cell pixels. 

To compare U-Net3-BF-1 and RF-BF-2 model qualities for determining IC50 values 

from the live-cell microscopy assay, the R2 of the nonlinear fits were compared in a 

pairwise manner using one-tailed Mann-Whitney U-test in GraphPad Prism 5.0 

assuming that U-Net3-BF-1 is the superior model. 

To determine the assay suitability for HTS applications, Z’ values were calculated 

according to the formula [61]: 

    𝑍′ = 1 −
ଷ(ఙ್೚೟೟೚೘ାఙ೟೚೛)

|ఓ್೚೟೟೚೘ିఓ೟೚೛|
     (7) 

Where σtop and σbottom represent the standard deviations of blank wells (negative 

controls) and wells with a full displacement of the fluorescent ligand (positive controls), 

respectively. µtop and µbottom correspond to means of negative and positive controls, 

respectively. The values from individual experiments were normalized to the 

respective top and bottom plateau values for each concentration-response curve 

separately to remove batch-to-batch variation effects of the receptor source. 
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3. Results  

Determination of binding affinities of UR-CG072 and UR-MK342 

to M4 receptor displayed in BBV particles with FA  

The fluorescence anisotropy method used here allows continuous measurement of 

receptor-fluorescence ligand complex formation or dissociation. FA depends on the 

ratios of free and bound fluorescence ligand states (equation 2). The specific 

fluorescence anisotropy values of each state depend on the fluorescence lifetime as 

well as the rotational freedom of the fluorophore in the corresponding state. To observe 

significant changes in FA signal it is necessary that the mole ratios of both the free 

and bound fluorescence ligand change when receptor concentration, total 

fluorescence ligand concentration, competitive ligand concentration, time or a 

combination of these factors is varied. This is best achieved when concentrations of 

the probe and its target protein are kept close to their binding Kd. 

For these reasons only certain fluorescence ligands with suitable fluorophores and 

binding affinities, usually from low picomolar to low nanomolar ranges, are considered 

as probe candidates for FA assay. Two 5-TAMRA labeled ligands, UR-CG072 and 

UR-MK342 from [15], were chosen for the development of fluorescence anisotropy 

assays due to a suitable label and high-affinity to M4 receptor determined by 

radioligand binding to whole cells. 

First, the saturation binding experiments were carried out to determine fluorescence 

ligand binding affinities to M4 receptors displayed on BBV particles. Both ligands 

showed similar and high binding affinity (Kd_UR-CG072 = 3.6 ± 1.1 nM, Kd_UR-MK342 = 1.2 ± 

0.5 nM) which are in good agreement with the radioligand binding values (Ki_UR-CG072 

= 3.7 ± 0.6 nM, Ki_UR-MK342= 0.97 ± 0.07 nM [15]). However, UR-MK342 binding has a 

larger dynamic range of FA values compared to UR-CG072. The same tendency was 

also found in FA assays with the M2 receptor [17]. As the effect is evident for both 

receptor subtypes, it might be attributed to the more flexible linker in UR-CG072. 

Nevertheless, high-affinity and sufficient dynamic range mean that both ligands would 

be suitable for kinetic measurements as well as using these as probes for measuring 

competitive ligand binding parameters. 
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Fig. 2. Binding curves of fluorescent ligand binding to M4 receptor. 1 nM (■, □) or 6 nM (●,○) 

UR-MK342 (A) or 2 nM (■,□) or 20 nM (●,○) UR-CG072 (B) incubated with different 

concentrations M4 receptor. Total binding (●, ■) was determined in the absence and 

nonspecific binding (○, □) in the presence of 1000-fold excess of UNSW-MK259 in the case 

of UR-CG072 or scopolamine in the case of UR-MK342. The 1 h measurement point for UR-

CG072 and 5 h measurement point for UR-MK342 are shown and was used for calculations. 

The concentration of M4 receptor binding sites (CM4) was calculated post hoc from the results 

of these experiments using the model described in [28]. A representative experiment of at 

least three independent experiments is shown. Experiments were performed in duplicates with 

all measurement data points shown. 

 

First, the saturation binding experiments were carried out to determine fluorescence 

ligand binding affinities to M4 receptors displayed on BBV particles. Both ligands 

showed similar and high binding affinity (Kd_UR-CG072 = 3.6 ± 1.1 nM, Kd_UR-MK342 = 1.2 

± 0.5 nM) which are in good agreement with the radioligand binding values (Ki_UR-CG072 

= 3.7 ± 0.6 nM, Ki_UR-MK342 = 0.97 ± 0.07 nM [15]). However, UR-MK342 binding has a 

larger dynamic range of FA values compared to UR-CG072. The same tendency was 

also found in FA assays with the M2 receptor [17]. As the effect is evident for both 

receptor subtypes, it might be attributed to the more flexible linker in UR-CG072. 

Nevertheless, high-affinity and sufficient dynamic range mean that both ligands would 

be suitable for kinetic measurements as well as using these as probes for measuring 

competitive ligand binding parameters. 

Next, the ligand binding kinetics of UR-CG072 and UR-MK342 to the M4 receptor were 

studied. In contrast to similar affinities, the kinetic properties of UR-CG072 and UR-
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MK342 were quite different (Fig. 3, Table 2). The faster association and dissociation 

kinetics of UR-CG072 make it more suitable for FA based screening assays as this 

allows increasing the assay throughput by shortening the incubation times which 

reduces problems concerning potential receptor source sedimentation, liquid 

evaporation or even degradation of the ligands or the receptor [62]. Faster kinetics is 

also beneficial for live-cell microscopy assays, where too long experiments can lead 

to problems with cell culture such as detachment and changes in medium composition.  

 

 

Fig. 3. Time course of FA change caused by UR-MK342 (A) or UR-CG072 (B) binding to M4 

receptors on the BBV particles. The reaction was initiated by the addition of 20 μL M4 receptor 

displaying BBV particles to 6 nM UR-MK342 (A) or 5 nM UR-CG072 (B) in the absence (◼, ●) 

or presence (○) of 6 μM (A) or 3 μM (B) scopolamine, respectively. After 180 min (indicated 

with an arrow) dissociation was initiated by the addition of 6 μM (A) or 3 μM (B) scopolamine 

(◼). An equivalent volume of assay buffer was added to association controls (●). 

Representative experiments of at least three independent experiments are shown. ΔFA is 

calculated by subtracting the FA value of nonspecific binding from the measured FA value of 

the corresponding measurement. 

 

Affinity screening a panel of MR ligands with UR-CG072 and UR-

MK342 

Fluorescence ligands are often applied for determining the affinities of unlabeled 

ligands. Therefore, the suitability of both ligands was studied as reporter probes in 
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competition with unlabeled M4 receptor ligands. For that, a panel of common M4 

receptor ligands was chosen such that the expected affinities would cover a wide 

range of values and contain both agonists and antagonists. In addition, some 

unlabeled ligands, which are structurally similar to the fluorescence ligands [50,51,63], 

were chosen to assess the assay’s ability to work with dualsteric  compounds. The set 

of ligands was investigated in competition binding experiments with both UR-CG072 

and UR-MK342 (Fig. 4). 

 

Fig 4. FA-based M4 receptor competition binding experiments performed with 5 nM UR-MK342 

(A) or 5 nM UR-CG072 (B) and reported muscarinic M4 receptor ligands. BBV particles 

displaying the M4 receptors (V(BBV) = 20 μL) were used as the receptor source. The 9 h 

measurement point is shown and used for analysis for all ligands. From the used competitive 

ligands, acetylcholine (●), carbachol (●), arecoline (●), pilocarpine (●) are agonists, 

scopolamine (■), atropine (■), pirenzepine (■), UNSW-MK259 (○), UR-SK75 (○) and UR-SK59 

(○) are antagonists. A representative experiment of at least three independent experiments 

performed in duplicates is shown. The error bars represent the SEM of duplicates. 

Normalization was performed by taking the upper plateau value as 100% and lower plateau 

value as 0% separately for each displacement curve. 

Both fluorescent ligands can successfully be used as reporter ligands with a high 

signal-to-noise ratio and very good Z-prime (Z’UR-CG072 = 0.52, Z’UR-MK342 = 0.67) 

making the assay compatible with high-throughput screening formats which generally 

require a minimum Z’ of 0.5. However, as UR-CG072 has faster kinetics than UR-

MK342, a longer incubation time is needed to determine the competitive ligand affinity 

using UR-MK342. To avoid possible under-or overestimation of IC50 values, it is 

important to wait until the equilibrium is reached [22]. 
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To make the measurement values comparable, the pKi values were calculated from 

the IC50 value for each ligand using the Cheng-Prussoff equation. While not all 

assumptions of the Cheng-Prussoff equation [60] are fulfilled, it has been previously 

shown that with these ligands the potential systematic error introduced by this 

operation is relatively small [17]. pKi values obtained from experiments using the two 

different reporter ligands correlated very well (R2 = 0.96) and the linear regression 

slope of the obtained pKi values with both probes is very close to unity (0.97 ± 0.04) 

while the intercept is close to zero (0.3 ± 0.3) (Fig. 5 A). This validates that both probes 

can be used to determine the unlabeled ligand affinities in the FA assay. 

Out of the tested ligands, UNSW-MK259, which represents non-labeled analogue of 

UR-CG072 (Fig 5), had the largest deviation from the best regression line. The reason 

for this deviation is unknown but may be connected to potential dualsteric binding 

modes of UNSW-MK259, UR-MK342 and UR-CG072 which could alter the binding 

mechanism. However, explaining this effect remains the topic of future studies. 

  

Fig 5. Correlations of binding affinities (pKi values) of ligands to M4 receptor, measured with 

different probes and assays. (A)  FA assays with UR-CG072 and UR-MK342; (B) FA assay 

with UR-MK342 and radioligand binding (literature data); (C) FA assay with UR-CG072 and 

radioligand binding (literature data); Investigated agonists are presented as orange symbols 

(■), antagonists as blue symbols (■). Black lines represent the best linear relationship between 

the datasets and the dashed black lines represent the 95% confidence bands. 

Adjusting live cell microscopy assay for measuring UR-CG072 

binding to M4 receptor 

To keep the cells viable and with normal morphology during imaging experiments it is 

necessary to maintain specific conditions, like 5% CO2, 37 °C and sufficient nutrient 
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concentrations in the media. These parameters may start to drift over long periods. 

Therefore, UR-CG072 was selected for the live-cell assay, due to its faster binding 

and dissociation kinetics. First, it was confirmed that the binding of 2 nM UR-CG072 

to CHO-K1-hM4R cells can be detected by fluorescence microscopy (Fig. 6 A1). For 

nonspecific binding controls, a similar experiment was performed in the presence of 5 

µM scopolamine. As illustrated in Fig 6 there is a significant difference in fluorescence 

intensity between total binding (Fig. 6 A1) and nonspecific binding (Fig. 6 B1). To 

confirm that all the signal is specifically caused by ligand binding to M4 receptors, the 

binding of 2 nM UR-CG072 to CHO-K1 cells not expressing M4 receptor was 

measured. Under these conditions, there was no detectable accumulation of UR-

CG072 to CHO-K1 cells (Fig. 6 C1). 

 

Fig. 6. Fluorescence microscopy images (top row) and corresponding bright-field images 

(bottom row) of UR-CG072 binding to CHO-K1 cells. Either wild-type CHO-K1 cells (C1 and 

C2) or CHO-K1-hM4R cells (A1, A2, B1, B2) in DMEM/F12 medium with added 9% FBS and 

antibiotic antimycotic solution were incubated with 2 nM UR-CG072 in the absence (A1, A2, 

C1, C2) or presence (B1, B2) of 5 μM scopolamine for 3 h. The number of seeded cells per 

well was 30 000. The contrast of fluorescence images was enhanced for presentation 

purposes only, the same lookup table was used for all images. The scale bar corresponds to 

50 μm. 

 

The results show that the differences between cell contour and cell body fluorescence 

intensities are smaller for the flatter CHO-K1 cells compared to HEK293 cells used in 
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a previous study [35] , which are elongated in the Z-direction. Therefore, it is necessary 

to analyze the fluorescence intensity of the whole cell body which introduces an 

increased proportion of cell autofluorescence to the signal. Moreover, the imaging 

experiments were carried out in nutrient-rich cell culture media rather than DPBS 

buffer as is suggested in [35]. This removes the need for more expensive special 

imaging media but increases background fluorescence levels. Combining these 

effects with using 5-TAMRA fluorophore instead of Cy3B as was used in [35], the 

overall signal level was greatly reduced in this assay compared to the previous one. 

However, as biological variability is still the main contributor to the assay uncertainty, 

reducing such variability at the cost of a reduced signal is still beneficial to the overall 

assay quality. 

These images also reveal that the amount of M4 receptors on the cell membrane 

surface in all cells is different and that in some cells ligand binding could not be 

detected at all (Fig. 6, A1-A2). This aspect should be considered when moving on to 

single-cell based quantification using this particular cell line. However, the current 

microscopy method averages the signal from a large number of cells and all cells used 

on a single assay day are seeded from the same population. Furthermore, the absolute 

intensity values have no direct or systematic influence on the calculated ligand binding 

parameters (Kd, kon, koff and Ki) and only lead to lowered signal-to-noise ratio. While a 

higher signal-to-noise ratio is beneficial in general, in the current case, it only has a 

limited impact on the overall measurement uncertainty. 

Comparison of Random Forest and Deep learning-based image 

analysis pipelines 

Since the morphologies of HEK293 cells and CHO-K1 cells and the fluorescence 

probes are different, it was necessary to adjust the original pipeline previously 

developed for HEK293 cell analysis [35]. Due to a lower contour contrast of CHO-K1 

cells compared to HEK293 cells, it was necessary to quantify the fluorescence 

intensity from the entire cell mask instead of only the cell contours.  

A second adjustment to the original pipeline was needed due to the lower apparent 

brightness of the ligand-receptor complex. While the NAPS-Cy3B fluorescence signal 

in the dopamine D3 receptor system was close to twice as high as the image 

background intensity [35], the signal of CHO-K1-hM4R bound UR-CG072 was only 4% 
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above the background signal. Due to the high absolute signal level in the D3 receptor 

system, it was not necessary to find the in-focus fluorescence plane in the original 

pipeline and instead the maximum intensity projection of the Z-stack could be used. In 

the current case, this approach is not suitable and leads to complete signal 

degradation (data not shown). Therefore, the fluorescence intensity must be quantified 

from the highest quality focal plane. 

Improvements were also introduced into the model development and ground-truth 

generation process. The original pipeline relied on a human analyst to detect cell 

contours from bright-field images. Even though it was necessary to perform this step 

only once, it required significant manual labour and detecting cell contours from bright-

field images is still more difficult compared to detection from fluorescence images. To 

address these issues, another approach was pursued. The cell membranes were 

stained with a lipophilic dye DiI and then imaged in both fluorescence and bright-field 

channels. For a small number of fluorescence images, cell masks were manually 

drawn. Next, machine learning models RF-FL-1 and U-Net3-FL-1 were trained to 

generate cell masks from the DiI stained fluorescence images. These models were in 

turn used to predict the masks from a larger dataset of fluorescence images. The 

prediction masks then served as slightly lower quality, but significantly higher quantity 

ground truth for the next set of models (RF-BF-1, RF-BF-2 and U-Net3-BF-1) which 

predict the cell masks from bright-field images. The same conceptual approach was 

successful for training both the RF-based pipeline implemented in ilastik as well as the 

U-Net3 based deep-learning pipeline developed using Jupyter notebooks [64] and 

Keras deep-learning framework [57]. Considering all the aspects, both developed 

pipelines were superior to the original pipeline from the pipeline development 

perspective with a significantly reduced amount of manual annotation required. 

Prediction quality comparison 

The prediction quality of the deep-learning models and ilastik based RF model were 

compared to determine the most suitable pipeline for analysis (Fig. 7, Table 1). 

Visually, all models can segment most of the cells from the bright-field images with 

good quality. The main difference between the models is that U-Net3-BF-1 (Fig. 7 H) 

produces cells with more consistent and smooth shapes, similar to the ground truth 

(Fig. 7 B) while RF-BF-2 (Fig. 7 G) creates rugged edges and also detects many small 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.22.473643doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473643
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

fragmented objects far from the cells. Numerically, the quality of bright-field detection 

(Table 1, F1 score = 0.89) is somewhat lower than the current state of the art solutions 

in the cell tracking challenge [65] when compared to the most similar dataset of DIC-

HeLa cells (F1 score = 0.93) [65–68]. However, it must be noted that such small 

differences could be easily caused by differences in imaging modes, magnifications, 

cell line morphology, amount of training data or among other parameters. The F1 score 

of the fluorescence image-based predictions of both U-Net3-FL-1 (Fig. 7 D) and RF-

FL-1 (Fig. 7 C) are already substantially lower than unity. At the same time, the U-

Net3-BF-1 model has only slightly lower quality metrics compared to U-Net3-FL-1 but 

RF-BF-2 has substantially lower metrics compared to RF-FL-1. This may indicate that 

a large proportion of the errors made by DL pipeline originates from the training of the 

fluorescence model U-Net3-FL-1 rather than the bright-field model U-Net3-BF-1. 

Interestingly, when comparing the U-Net3-FL-1 model predictions and the U-Net3-BF-

1 model predictions directly to one another instead of comparing these to the manually 

generated ground truth, the corresponding F1 score is 0.87. This is lower than the 

similarity between either the U-Net3-FL-1 model and manual ground truth (F1 score = 

0.91) or U-Net3-BF-1 and manual ground truth (F1 score = 0.89). It means that the U-

Net3-BF-1 model can surpass the prediction quality of the U-Net3-FL-1 model 

predictions in some instances while failing to do so in other cases. The ability of  U-

Net3-BF-1 to avoid at least some of the mispredictions generated by the U-Net3-FL-

1 model could mean that the proposed strategy of bright-field model generation is likely 

to work even with relatively small manually annotated datasets without the risk of 

overfitting. Interestingly, the RF-FL-1 model has a higher F1 score and MCC value 

compared to U-Net3-FL-1 model. However, these numbers should not be used to 

make conclusions about the general power of a particular machine-learning approach, 

since the training sets for models were not identical. Different training sets were used 

for practical considerations. For example, the datasets were chosen to be small 

enough that would allow training the models within a few hours and without the need 

for unconventionally large computational resources, while still achieving sufficiently 

high quality.  

Furthermore, analyzing the competition, saturation and kinetic experiments, with both 

U-Net3-BF-1 and RF-BF-2 models provides the opportunity to compare the pipeline 

performances not only on the image level but also on the pharmacological level. As 

the most commonly used metric for fit quality the R2 values of the nonlinear model 
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from each experiment were compared in a pairwise manner. The analysis revealed 

that the R2 values obtained from the DL pipeline are statistically significantly higher 

compared to the RF pipeline (p=0.03) calculated as described in Methods. U-Net3-

BF-1 based cell detection had a higher average R2 values (mean = 0.93±0.05 and 

median = 0.939) compared to the RF-BF-2 based cell detection pipeline (mean = 

0.89±0.09 and median = 0.911). The relatively large standard deviation of the R2 

values shows that the algorithmic uncertainty is not the primary source of uncertainty 

and instead the variability is caused by biological factors. The high average R2 values 

indicate that both pipelines work well in general and the difference is not very large in 

absolute terms, but also that the small inaccuracies in the cell segmentation stage are 

not cancelled out during the post-processing steps. Instead, the errors are carried over 

and degrade the final fitting quality. Therefore, the U-Net3 based DL pipeline can still 

offer considerable advantages over RF based approach at both image level and 

downstream nonlinear regression level. Thus, from the quality perspective, it is 

reasonable to prefer the DL pipeline with U-Net3-BF-1 over the RF pipeline using the 

RF-BF-2 model. As the U-Net3-BF-1 model showed higher overall quality, all the 

following presented results were obtained using the DL pipeline. 

 

Fig. 7. Microscopy images and corresponding binary masks of CHO-K1-hM4R cells stained 

with DiI. The top row shows cell detection from the fluorescence image (A) by manual 

segmentation (B), RF-FL-1 model (C) and U-Net3-FL-1 (D). The bottom row shows cell 

detection from the bright-field image (E) by RF-BF-1 model (F), RF-BF-2 model (G) and U-

Net3-BF-1 (H). The scale bar corresponds to 50 µm. 
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Table 1. Quality metrics of the developed machine learning models. 

                

Model 

Metric 

U-Net3-FL-1 RF-FL-1 U-Net3-BF-1 RF-BF-1 RF-BF-2 

Recall 0.94 0.91 0.86 0.75 0.72 
Precision 0.88 0.94 0.93 0.77 0.74 

F1 score 0.91 0.93 0.89 0.76 0.73 
MCC 0.89 0.91 0.86 0.71 0.67 

 

Usability of Deep Learning and ilastik pipelines for microscopy 

image analysis  

In addition to model quality, the usability aspects of the developed pipelines were 

compared. The most relevant ones were general computational hardware 

requirements, pipeline speed, convenience of using the pipelines in terms of user 

interfaces and finally, the convenience of developing new machine learning models in 

case of adapting the developed assay for a different microscope or cell line.  

It was identified that the speed of the ilastik based RF models is substantially slower 

compared to the U-Net3 based DL models used for analysing the microscopy images. 

The difference was especially evident in the case when a GPU (graphical processing 

unit) was used for computations, which considerably speeded up the DL models. A 

modern computer was able to analyze the results with both DL and ilastik pipelines in 

a comparable time for preparing an experiment or performing the imaging, thus, 

making the analysis quite manageable. On average, analyzing a single 904 x 1224 

pixel image took 12 seconds with RF pipeline and 3.5 seconds with DL pipeline. 

Compared to spectroscopy methods, large data volumes generated by the microscopy 

experiments may cause storage issues. Therefore, before using the proposed 

microscopy methods, the user should make sure that sufficient memory is available 

for the experiments. 

Another aspect to consider is the analysis convenience, which in the case of image 

analysis software is related to the need of manually adjusting the algorithm parameters 

and performing some of the image analysis, preprocessing or post-processing steps 

manually. For both DL and ilastik pipelines, no manual parameter adjustment is 

needed removing one common obstacle in image analysis. In addition to choosing 
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convenient machine learning models, it was necessary to choose a suitable interface 

for using the machine learning models and performing the pre and post-processing 

steps. Many such interfacing software tools such as FIJI (DeepImageJ [69]), 

CellProfiler [70] and ImJoy [71] allow almost unlimited flexibility for developing image 

analysis pipelines but also require that users have some knowledge of how image 

analysis pipelines work internally. These software currently also do not provide 

convenient out-of-the-box options for metadata handling required for pharmacological 

assays. Therefore, we chose Aparecium software (https://gpcr.ut.ee/aparecium.html) 

as the interfacing platform, as it is specifically designed for making image analysis 

pipelines as user-friendly as possible through graphical user interfaces (GUI) while 

providing enough options for post-processing and metadata handling to carry out the 

biochemical analysis at the cost of less flexibility for general image analysis. 

Finally, the aspect of machine learning model development was considered as it is 

usually necessary to retrain the models from scratch or perform transfer learning if the 

method is used for widely different datasets [72,73]. In this study, two quite different 

model development environments were used. Model development in ilastik is relatively 

straightforward, requiring no programming skills and is done entirely through a GUI 

provided by the standalone ilastik software. Installing the software is very simple and 

there are multiple tutorials available for using the GUI. Development of the DL models 

including U-Net is somewhat more difficult, requiring access to a python installation 

and preferentially to a Jupyter notebook server. However, this process is significantly 

simplified thanks to the recently developed ZeroCostDL4Mic framework [72]. 

ZeroCostDL4Mic reduces the training process to a point-and-click level without the 

need to adjust the code. Therefore, both ilastik and deep-learning image analysis 

pipelines are sufficiently simplified that model training does not require extensive past 

experience with ilastik being the simplest option. Therefore, ilastik pipeline and the RF 

model is recommended for machine learning applications where ease-of-use is more 

important than a slight loss in quality. These practical considerations are quite dynamic 

as software tools develop and are likely to change in the future. 
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Determination of binding affinities with UR-CG072 to M4 receptor 

in live cell microscopy 

For determining the binding affinity of UR-CG072, an assay design similar to the 

radioligand saturation binding experiment was used. From these data a Kd of 2.85 ± 

0.10 nM was obtained (Fig. 8), which is also in good agreement with all previous 

results (Table 2). Interestingly, there is a small decline in nonspecific binding with 

increasing concentration (Fig. 8), but it is not of biological origin and is instead 

explained by a shadow-imaging effect which is caused by nonspecific binding of UR-

CG072 to the well surface making the background brighter than the cells. This effect, 

however, does not interfere with the overall measurement. 

 

Fig. 8 Saturation binding of UR-CG072 binding to live CHO-K1-hM4R cells. The CHO-K1-

hM4R cells (25000 cells/well) were incubated for 5 h with two‐fold serial dilutions of UR-CG072 

in the range of 0–8 nM and with (nonspecific binding, ●) or without (total binding, ●) 3.7 µM 

scopolamine. The background-corrected cells’ fluorescence intensities were determined by 

the cell detection algorithm as described in Materials and Methods and are presented as mean 

± SEM from a representative experiment of three independent experiments performed in 

duplicate. Four images from different fields of view were taken from a single well. 

 

Due to the good photostability of the 5-TAMRA label and the moderate kinetic rates of 

UR-CG072 binding, the kon and koff of UR-CG072 could be measured with the 

described live-cell system. The binding of UR-CG072 (Fig. 9) is fully reversible by the 

addition of 10 µM scopolamine after 3 hours of association (indicated by the arrow). 

Moreover, the Kd (2.6 ± 0.7 nM) obtained from kinetic data is in good agreement with  
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Fig. 9 Association and dissociation of UR-CG072 (2 nM) to and from live CHO-K1-hM4R cells. 

Dissociation was initiated with 5 µM scopolamine after 185 min (indicated with the arrow). A 

representative experiment of three independent experiments performed in duplicates is 

shown. Duplicate values are shown on the graph as separate points, to account for the 

measurement time difference between the replicates. Four images from different fields of view 

were taken from a single well. For analysis the GraphPad Prism model “Association then 

dissociation” was used. 

 

Table 2 Overview of binding parameters of UR-CG072 and UR-MK342 

 Method Kd (nM) ± S.E.M 
kon (nM-1 min-1) ± 

S.E.M 
koff (min-1) ± 

S.E.M 

U
R

-C
G

0
7

2
 

FA equilibrium 3.6 ± 1.1   

FA kinetic SB 
toolbox 

8.5 ± 0.8 0.00173 ± 0.0002 0.0147 ± 0.002 

Microscopy 
saturation 

2.85 ± 0.10   

Microscopy 
kinetic 

2.6 ± 0.7 0.017 ± 0.007 0.046 ± 0.004 

Radioligand 
displacement (Ki) 

3.7 ± 0.6 [15]   

U
R

-M
K

3
4

2
 

FA equilibrium 1.2 ± 0.5   

FA kinetic SB 
toolbox 

1.3 ± 0.4 0.0028 ± 0.001 0.0037 ± 0.0012 

Radioligand 
displacement (Ki) 

0.97  ± 0.07 [15]   
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previous values from both saturation binding assay as well as fluorescence anisotropy 

assays (Table 2). 

Lastly, competition binding experiments were carried out to confirm that the developed 

microscopy method is also suitable for screening novel unlabeled ligands in the future. 

Displacement curves were obtained for six ligands with varying structures, affinities 

and efficacies (Fig. 10). Regression analysis was used to obtain the IC50 values from 

these data, which in turn were used to calculate pKi values of the unlabeled ligands 

(Table 3). 

 

Fig. 10 Inhibition of UR-CG072 binding to live CHO-K1-hM4R cells by muscarinic receptor 

ligands. The CHO-K1-hM4R cells (25 000 cells/well) were incubated with 2 nM UR-CG072 and 

different concentrations of carbachol (●), arecoline (●), scopolamine (■), atropine (■), 

pirenzepine (■), UNSW-MK259 for 120 min as described in Materials and Methods. The cell 

fluorescence intensities were determined by the membrane detection algorithm using the U-

Net3-BF-1 model and are presented as mean ± SEM from a representative experiment 

performed in duplicate. Four images from different fields of view were measured from a single 

well. Normalization was done separately for each ligand, 100% corresponds to wells where 

no competitors were added and 0% corresponds to the wells where the competitors’ 

concentration is the largest. 
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Fig. 11 Correlation plots of affinities (pKi values) of reported muscarinic receptor ligands 

measured with UR-CG072 in different assay systems. (A) Comparison of pKi values 

determined in the microscopy competition binding assay and pKi values obtained from the FA 

competition binding assay. (B) Comparison of pKi values determined in the microscopy 

competition binding assay and pKi values obtained from radioligand binding assay from 

literature (Table 3). Investigated agonists are presented as orange symbols (■), antagonists 

as blue symbols (■). Black lines represent the best linear relationship between the datasets 

and the dashed black line represent 95% confidence bands. 
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Table 3. Overview of nonlabled ligand affinities 

  FA Microscopy Radioligand 

Nonlabled 
ligand 

UR-MK342 UR-CG072 UR-CG072   

 pKi ±  
S.E.M. 

N pKi ±  
S.E.M. 

N pKi  ±  
S.E.M. 

N pKi ±  
S.E.M. 

Ref. 

Carbachol 3.7  ± 0.2 3 3.46  ± 
0.09 

3 5.28  ± 
0.05 

3 4.5 ± 
0.3 

[74–78] 

Arecoline 3.9  ± 0.2 3 3.52  ± 
0.11 

3 5.00  ± 
0.03 

3 5.0 ± 
0.4 

[74,77,
79] 

Acetylcholine 4.5  ± 0.2 3 4.55  ± 
0.09 

3     4.6 ± 
0.13 

[74,80] 

Pilocarpine 4.7  ± 0.2 3 4.56  ± 
0.09 

3     5.31  ± 
0.12 

[74,77] 

Pirenzepine 6.3  ± 0.2 3 6.16  ± 
0.08 

3 6.95 ± 
0.07 

3 6.9 ± 
0.2 

[76–
78,81–
88] 

Scopolamine 8.30  ± 
0.10 

6 8.13  ± 
0.09 

3 9.18  ± 
0.03 

3 9.28 ± 
0.19 

[81,83] 

Atropine 8.62  ± 
0.16 

3 8.64  ± 
0.09 

3 10.33  ± 
0.16 

3 9.21 ± 
0.10 

[76–
78,81,8

3–
85,88,8

9] 
UNSW-MK259 7.4  ± 0.2 3 8.64  ± 

0.11 
5 8.07  ± 

0.03 
3 8.63 ± 

0.6 
[63] 

UR-SK75 9.0  ± 0.2 4 8.65  ± 
0.08 

3     8.59 ± 
0.6 

[50] 

UR-SK59 8.9  ± 0.2 3 8.51  ± 
0.08 

3     8.57 ± 
0.6 

[50] 
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4. Discussion 

The M4 receptor is connected to multiple diseases and is, therefore, an interesting 

target for drug development. In modern drug screening, the fluorescence-based 

methods have gained popularity, but the limited availability of fluorescent ligands for 

the M4 receptor has significantly hindered studies of this receptor. Recently, a set of 

new dibenzodiazepinone-type fluorescent ligands with high-affinity to the M4 receptor 

was synthesized, of which UR-MK342 and UR-CG072 were labeled with TAMRA [15]. 

In previous studies, TAMRA label has been successfully used in FA assays among 

other methods [90–92]. Therefore, these probes are promising candidates for 

developing new ligand binding assays for the M4 receptor. Experimental results from 

the FA assay show that both UR-MK342 and UR-CG072 bind to M4 receptors with 

high affinity and the Kd values are in good agreement with previous radioligand binding 

measurements. Although both ligands also have sufficiently high signals and Z-prime 

values to be compatible with HTS assay standards, UR-CG072 is preferred in 

screening assays due to its faster binding kinetics, which allows reduction of required 

incubation time and mitigates the effects of evaporation and potential sedimentation. 

Since UR-CG072 and UR-MK342 have previously been studied in the M2 receptor FA 

assay system [17], similarities and differences in both receptor systems present an 

opportunity to gain more insight into their binding mechanism. Interestingly, the FA 

value of the receptor-ligand complex remains the same regardless of which receptor 

subtype, M2 or M4, is measured. This similarity is evident for both fluorescent ligands. 

In contrast, the receptor-ligand complex FA value depends on fluorescent ligand is 

used and is consistently lower for UR-CG072 compared to UR-MK342 in complexes 

with both M2 and M4 receptor subtypes. This may indicate that the binding poses and 

the rotational freedom of the fluorophore moiety are similar between the two subtypes. 

There are also some differences in the binding properties of these probes between the 

FA assays of M2 and M4 receptors. Both ligands seem to show somewhat higher 

affinity towards the M2 receptor, but the differences are relatively small [17]. This is 

expected as orthosteric binding sites of M2 and M4 are structurally very similar [9]. 

However, there could be differences in the binding site accessibility since the 

association kinetics of both probes to the M2 receptor are faster compared to the M4 

receptor. This is not surprising as ligand binding to muscarinic receptors is known to 

be a complex process even for somewhat smaller ligands. For example, N-
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methylscopolamine first binds to the allosteric site before binding to the orthosteric site 

of the M2 and M3 receptor subtypes [93]. The most striking difference between ligand 

binding to M2 and M4 receptors is the apparent lack of a clear two-phase kinetic 

behaviour in the case of M4 receptor while it is present for the M2 receptor. This could 

indicate that M2 and M4 receptor systems have differences beyond the orthosteric 

binding site properties as the two-phase behaviour of the M2 receptor-ligand binding 

was not specific to FA or BBV system but was also present in nanoBRET assay with 

mammalian cells [17]. This may indicate heterogeneity of the M2 receptor population, 

where receptors with multiple affinity states are present while the apparent 

heterogeneity is also ligand-dependent. For the M4 receptor, such heterogeneity was 

not observed with the ligands used in this study. The nature of this heterogeneity 

remains elusive but may be explained by the simultaneous existence of M2 receptor 

dimers and monomers or ligand interactions with M2 receptor allosteric sites. 

Dimerization of the M2 receptor is also supported by multiple previous studies while 

there is no information available about M4 receptor dimerization  [94–96]. 

The FA method with BBV particles has many advantages such as kinetics 

measurement possibilities, relatively low cost, fast measurements and receptor source 

stability, which is achieved by using a single production batch of the BBV particle stock. 

Therefore, the FA based assay is a suitable option for HTS applications. However, 

there are also several differences between the BBV particle model system and in vivo 

or ex vivo conditions. For example, the live cell systems allow studying G-protein and 

𝛽-Arrestin signalling and other protein-protein interactions. Furthermore, cholesterol in 

the membrane has an effect on ligand binding to muscarinic receptors [97], thus using 

live mammalian cells allows obtaining more relevant measurement results. Therefore, 

a live cell-based assay system, although still having notable differences from in vivo 

systems, is a significant step closer to native systems. Live-cell assays also have some 

general disadvantages such as slightly higher cost per experiment due to more 

advanced equipment required to perform the measurements and maintain cell culture. 

Additionally, live-cell measurements usually have higher uncertainty due to day-to-day 

variability. It must also be considered that the live-cell systems, which overexpress the 

receptors, do not fully reflect natural system and may lead to considerable biases. 

The results show that receptor-ligand complex formation on the surface of live cells 

can be studied by automated fluorescence microscopy, which allows relatively fast 

measurements and high content spatio-temporal data collection. In addition, 
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microscopy images can be used to study cell morphology, fluorophore localization, cell 

migration and cell death, which cannot be easily achieved with flow cytometry nor 

nanoBRET based measurement systems. These parameters can be useful for 

studying GPCR signaling [98]. Although a wide variety of advanced microscopy 

techniques allow measuring these parameters in great detail, high-end microscopy is 

often not automatic and, therefore, not suitable for high content studies. In contrast, 

automatic plate reader-based microscopes achieve a unique balance between the 

data volume and quality. This kind of automated live-cell microscopy has previously 

been used to study ligand binding to dopamine D3 receptors [35]. In the present study 

this method was further developed to enable the quantification of receptor-ligand 

binding in both equilibrium and kinetic modes. Faster kinetics of UR-CG072 compared 

to UR-MK342 favour using it in live-cell assays as shorter experiment times avoid 

negative effects such as cell detachment, changes in nutrient and oxygen 

concentration and cell death. 

Although microscopy methods also pose some challenges related to data volumes, 

data analysis speed and data analysis pipeline usability, the results of this study show 

that suitable software and machine-learning models overcome these problems. The 

model comparison shows that while DL pipeline provides higher quality results the 

ilastik pipeline models are easier to retrain. As the final pharmacological parameters 

obtained with U-Net3-BF-1 and RF-BF-2 models are similar, with average LogIC50 

difference of 0.15 units between models from an individual displacement curve, then 

both options are viable in practise depending on needed quality and user´s level of 

expertise. A unique challenge with machine-learning based image analysis pipelines 

is the need to retrain the models if a sufficiently large domain shift is introduced into 

the assay such as changing the cell line or microscopy setup. Fortunately, this has to 

be done only once for a particular assay setup and easy to use options exist for 

retraining the models. Altogether, the data analysis is not a limiting factor of the 

proposed live-cell assay. 

Using the described live-cell microscopy approach combined with machine-learning 

based data analysis allowed measuring ligand binding to M4 receptor with high quality. 

It is important to mention that such quality can be achieved with the fluorescence signal 

of bound UR-CG072 being only 4% above the background, which is substantially less 

than almost 200% achieved with the HEK293-D3R system in a previous study [35]. 

This lower signal is caused by a combination of multiple factors. Firstly, TAMRA 
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fluorophore used in UR-CG072 has a lower quantum yield compared to Cy3B used in 

NAPS-Cy3B ligand. Secondly, the M4 receptor is not expressed in all CHO-K1-hM4R 

cells while the D3 receptor was expressed in HEK293 cells. As a final factor, using the 

cell culture medium instead of DPBS during imaging increases the image background 

intensity. Surprisingly, the reduction of absolute signal by a factor of 50 does not affect 

the final uncertainty of the measurements to any significant extent. The obtained R2 

values for both saturation binding and displacement experiments are very similar for 

both D3 and M4 receptor microscopy assays. Essentially, it means that biological 

variability is the highest contributor to the total uncertainty while decreased signal has 

negligible uncertainty contribution. This, in turn means that this kind of assay design 

should work just as well with either relatively low quantum yield fluorophores or vice-

versa with systems that have receptor expression more comparable to physiological 

expression levels if a high brightness probe is available. Thus, the proposed approach 

to study ligand binding to receptors has a much wider application range than previously 

demonstrated. Finally, the current results prove the universality of this kind of 

microscopy assay, as switching to another receptor and cell line did not require major 

changes to the analysis pipeline or assay protocol. 

The developed live-cell microscopy assay can be performed in the saturation binding 

mode, association and dissociation kinetic modes as well as in displacement 

experiments for measuring the affinity of unlabeled ligands. The kinetic measurements 

show that the fluorescence signal is quite stable once the equilibrium is reached after 

the association phase. It is also evident that scopolamine induces full displacement of 

UR-CG072 from the M4 receptor as the signal reaches the same level as was in the 

starting point (Fig 9). Although the signal does not reach zero after dissociation, this is 

caused by autofluorescence, not by incomplete dissociation. UR-CG072 also has 

sufficiently fast kinetics for performing association and dissociation kinetics so that the 

morphology of CHO-K1-hM4R cells remains normal and the cells remain attached to 

the plate for the entire experiment. Both the kinetic measurements and saturation 

experiments prove that UR-CG072 retains its high affinity towards the M4 receptor in 

the live cell system, as expected from previous radioligand binding studies [15], while 

having a very low level of nonspecific binding to the cells. This makes UR-CG072 a 

promising fluorescent probe also for more advanced microscopy methods such as live-

cell TIRF microscopy. The displacement curves obtained with UR-CG072 and 

unlabeled ligands have quite high quality and, therefore, this assay is suitable for the 
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determination of affinities of unlabeled ligand binding to M4 receptor. The system 

remains stable for the duration of long experiments meaning that accurate end-point 

measurements can be obtained for an entire microplate even if imaging the full plate 

is not instantaneous. These properties also suggest that the assay can be used for 

small scale screening of novel ligands for example to confirm binding affinities in a 

live-cell system. The live-cell system is also internally consistent as the Kd values 

obtained from saturation binding measurements and kinetic measurements are in 

excellent agreement. 

Overall, the Kd values of UR-CG072 obtained from both saturation and kinetic FA and 

live cell microscopy assays are in good agreement with each other (Table 2, Fig. 11). 

pKi values of M4 receptor ligands determined with the UR-CG072 using either FA or 

live-cell microscopy assay, were also in good agreement (R2 = 0.91). The slope of the 

correlation was 0.84 while the intercept was 2.2. The live cell method systematically 

estimates higher affinities for low affinity ligands while for high-affinity ligands in the 

nanomolar range the estimated values are numerically more similar between the 

assays (Fig. 11). However, most low affinity ligands are agonists while high-affinity 

ligands are antagonists. Therefore, it is difficult to determine whether there is a 

systematic difference between assays for low affinity ligands or simply agonists. 

Agonism causing the systematic difference is theoretically well founded, as the high-

affinity receptor state is usually stabilized by G-proteins, which are not present in the 

BBV particles. A similarly good correlation was previously found between nanoBRET 

assay and FA assay using the same probe with M2 receptor (R2 = 0.94) with the same 

systematic differences between the pKi values measured in BBV particles and live-

cells [17]. This further supports that the systematic difference between the determined 

agonist pKi values is caused by differences between BBV particle and live-cell 

systems. 

The developed live cell microscopy assay can be modified for wider applications in the 

future. One development direction is further assay automatization by removing the 

remaining manual steps from the data analysis process. This could also include an 

even more standardized pipeline for machine learning model development or a larger 

set of pretrained models that cover the detection of most common cell lines. We 

believe that it can be further developed to an extent at which the live-cell microscopy 

could also be used in an HTS context. Another development direction is a shift towards 

more natural systems such as tissue preparations, live tissues or tumor spheroids and 
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measuring additional downstream signaling events in addition to ligand binding. Using 

these more challenging systems requires finding suitable fluorophores to overcome 

tissue autofluorescence and ligands with suitable kinetic properties to slow down 

fluorescence ligand dissociation during washing steps. Additionally, more advanced 

DL models may be necessary. The present study serves as a solid foundation for such 

developments. 

As for the more general unlabeled ligand screening, both FA and live-cell microscopy 

methods and fluorescence ligands could be utilized as a rapid and convenient options 

for guiding the synthesis of novel M4 receptor ligands and allosteric modulators. Both 

methods also allow for kinetic measurements which may help uncover more detailed 

binding mechanisms. Overall, choosing the suitable method for a specific experiment 

highly depends on the required throughput and availability of equipment. While FA 

method with BBV particles fulfils many requirements of HTS applications, live-cells are 

a vastly more flexible option for studying complex signaling pathways. Therefore, live-

cell microscopy-based ligand binding assays are likely to have an ever-growing role in 

the future of ligand binding studies. 
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