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Abstract1

Genetic variation of the entire genome represents population structure, yet individual loci2

can show distinct patterns. Such deviations identified through genome scans have often been3

attributed to effects of selection instead of randomness. This interpretation assumes that long4

enough genomic intervals average out randomness in underlying genealogies, which represent5

local genetic ancestries. However, an alternative explanation to distinct patterns has not been6

fully addressed: too few genealogies to average out the effect of randomness. Specifically,7

distinct patterns of genetic variation may be due to reduced local recombination rate, which8

reduces the number of genealogies in a genomic window. Here, we associate distinct patterns of9

local genetic variation with reduced recombination rates in a songbird, the Eurasian blackcap10

(Sylvia atricapilla), using genome sequences and recombination maps. We find that distinct11

patterns of local genetic variation reflect haplotype structure at low-recombining regions12

either shared in most populations or found only in a few populations. At the former species-13

wide low-recombining regions, genetic variation depicts conspicuous haplotypes segregating14

in multiple populations. At the latter population-specific low-recombining regions, genetic15

variation represents variance among cryptic haplotypes within the low-recombining populations.16

With simulations, we confirm that these distinct patterns of haplotype structure evolve due17

to reduced recombination rate, on which the effects of selection can be overlaid. Our results18

highlight that distinct patterns of genetic variation can emerge through evolution of reduced19

local recombination rate. Recombination landscape as an evolvable trait therefore plays20

an important role determining the heterogeneous distribution of genetic variation along the21

genome.22
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Introduction23

Patterns of genetic variation in the genome represent ancestries of sequences and are influenced24

by population history. While genome-wide genetic variation represents population structure25

(McVean, 2009; Patterson et al., 2006), randomness in genealogies also contributes to fluctuation26

of local genetic variation along recombining chromosomes. Specifically, genealogies can differ27

between loci even under the same population history (Dutheil et al., 2009; Martin & Van28

Belleghem, 2017; McVean & Cardin, 2005; Pamilo & Nei, 1988; Wakeley, 2008, 2020; Wiuf29

& Hein, 1999). This is because realisation of a genealogy under a given population history30

is a probabilistic process: an ancestral haplotype for a set of individuals at one locus is not31

necessarily a common ancestor of the same set of individuals at another locus (Shipilina et32

al., 2023). Patterns of local genetic variation along the genome tend to conform with the33

population structure with random fluctuation (Fig. 1).34
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Figure 1: Distinct patterns of genetic variation can be due to reduced recombination rate.
Population history (A) affects the distribution of possible genealogies (B) from which local genealogies
are drawn (C). The number of genealogies in a genomic interval with a fixed physical length depends
on the local recombination rate (C). Mutations occurring on the genealogies (not shown) determine the
patterns of realised genetic variation. The realised genetic variation can be summarised and visualised
with various methods such as PCA (D). (1) In freely recombining neutral regions, mutations represent
many genealogies and hence the pattern of genetic variation converges to the population structure. (2,
3) In low-recombining neutral regions, mutations represent few genealogies covering the region leading
to patterns of genetic variation distinct from the population structure. (3) Due to randomness in
sampling of genealogies, some of such distinct patterns can be similar to patterns expected at targets
of selective factors (c.f. 4). (4) At targets of selection, distribution of possible genealogies is different
from that at neutral regions, which is depicted as a different set of possible genealogies in B and the
dotted arrow.

Inference of population structure as well as other genome-wide analyses based on genetic35

variation take advantage of a sufficient number of unlinked variable sites (e.g. single nucleotide36

polymorphisms (SNPs)) to eliminate the effect of randomness. One of the most common37

methods to summarise population structure based on this approach is principal component38

analysis (PCA) applied on a whole-genome genotype table (McVean, 2009; Price et al., 2006).39

In a whole-genome PCA, variation among individuals based on variable sites of the entire40

genome are usually projected onto a few major axes (some analyses use many more axes), and41
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the distances among individuals on these reduced dimensions represent genetic differences.42

Summarising population structure and other related measures using the entire genome has43

been proven to be an effective approach to eliminate random fluctuation of genealogies along44

the genome (Bhatia et al., 2013; Cao et al., 2020; Fedorova et al., 2013; Peter, 2022; Shao et45

al., 2023).46

However, some fundamental biological questions concern selective factors that systemat-47

ically bias the shape of genealogies at a genomic local scale, shifting the expected patterns48

of genetic variation from the population structure. For example, patterns of local genetic49

variation are distinct under selection against gene flow (Fig. 1C4), positive selection and50

adaptive introgression because they affect coalescence rate, topology, and branch lengths51

of the underlying genealogies (Hejase et al., 2020; Martin et al., 2015; Setter et al., 2020;52

Speidel et al., 2019; Wolf & Ellegren, 2017). Empirically, genome scans of population genetic53

summary statistics have been commonly used to identify regions with distinct patterns of54

genetic variation (Delmore et al., 2018; Irwin et al., 2018; Kawakami et al., 2017; Roesti et al.,55

2013; Rougemont et al., 2021). Many of these have identified regions with distinct patterns,56

such as elevated differentiation and reduced diversity, within low-recombining genomic regions57

(Geraldes et al., 2011; Kawakami et al., 2017; Renaut et al., 2013; Roesti et al., 2013, 2013;58

Rougemont et al., 2021). Distinct patterns at low-recombining regions can influence the59

chromosome-wide (Knief et al., 2016; Neafsey et al., 2010) and even genome-wide population60

structure (Mérot et al., 2021). These associations between distinct patterns of genetic variation61

at “outlier regions” or “genomic islands” and reduced recombination rate is often interpreted62

as linked selection (Burri et al., 2015; Burri, 2017; Delmore et al., 2015, 2018; Irwin et al., 2018;63

Kawakami et al., 2017; Roesti et al., 2013; Rougemont et al., 2021; Van Doren et al., 2017).64

However, a non-selective explanation is equally conceivable and yet often overlooked: the focal65

genomic region may contain too few underlying genealogies for a genome scan to eliminate the66

effect of random fluctuation simply due to low recombination rate, which is represented as the67

distinct patterns of genetic variation (Booker et al., 2020; Lotterhos, 2019). Specifically, it has68

not been well studied what aspects of distinct patterns of genetic variation can be explained69

by reduced recombination rate, and what other aspects reflect the effect of selection.70
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We address the effect of reduced recombination rate on local genetic variation using71

a songbird species, Eurasian blackcap (Sylvia atricapilla, hereafter “blackcap”), which is72

characterised by variability in seasonal migration across its distribution range (Berthold, 1988,73

1991; Delmore et al., 2020a; Helbig, 1991). Populations with diverged migratory phenotypes74

split as recently as ~30,000 years ago, likely corresponding to the last glacial period and75

now exhibit population structure (Fig. 2A-C, Sup. Fig. 1) (Delmore et al., 2020b). Due76

to their recent split and relatively large effective population size, genetic differentiation is77

very low among blackcap populations (Delmore et al., 2020b). The presence of population78

structure albeit with the low levels of differentiation makes the blackcap a perfect system79

to investigate local deviations of genetic variation: even the slightest effects of factors that80

change local genetic variation are likely detectable because such effects are not obscured by81

population structure. In addition, fine-scale recombination maps for multiple populations82

are available for this species (Bascón-Cardozo et al., 2022a), facilitating investigation of the83

relationship between changes in the recombination landscape and locally distinct patterns of84

genetic variation.85

By leveraging a large-scale genomic re-sequencing dataset, we first systematically explore86

distinct patterns of local genetic variation along the blackcap genome, and compare these with87

genomic regions exhibiting reduced recombination rate. We further investigate the patterns of88

genetic variation in outlier regions and associate them with the prevalence of recombination89

suppression across populations. We also conduct simulations to analyse how reduced local90

recombination rate in the entire species and in a subpopulation with and without selection91

affects patterns of genetic variation through time. Finally, we propose a model of local genetic92

variation representing haplotype structure corresponding to evolutionary changes in local93

recombination rate.94

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2021.12.22.473882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/


Results95

Chromosome-level reference assembly96

To allow population genomic analyses in the blackcap system, we generated a chromosome-level97

reference genome using the Vertebrate Genomes Project pipeline v1.5 (Rhie et al., 2021). We98

collected blood of a female blackcap from Tarifa, Spain population. We generated contigs99

from Pacbio long reads, sorted haplotypes, and scaffolded them with 10X Genomics linked100

reads, Bionano Genomics optical mapping, and Arima Genomics Hi-C linked reads. Base call101

errors were polished with both PacBio long reads and Arrow short reads to achieve above Q40102

accuracy (no more than 1 error every 10,000 bp). Manual curation identified 33 autosomes and103

Z and W chromosomes (plus 1 unlocalised W). Autosomes were named in decreasing order of104

size, and all had counterparts in the commonly used VGP reference zebra finch assembly (Sup.105

Table 2). The final 1.1 Gb assembly had 99.14% assigned to chromosomes, with a contig N50106

of 7.4 Mb, and scaffold N50 of 73 Mb, indicating a high-quality assembly that fulfills the VGP107

standard metrics. The primary and alternate haplotype assemblies are provided under NCBI108

BioProject PRJNA558064, accession numbers GCA_009819655.1 and GCA_009819715.1.109

Deviation of genetic variation coincides with low-recombining regions110

To investigate the genome-wide distribution of genetic variation, we mapped short reads of111

the whole-genomes of 179 blackcaps including 69 newly sequenced individuals (Sup. Table112

1) on a de novo-assembled reference genome generated through the Vertebrate Genomes113

Project (VGP, Rhie et al., 2021), and called SNPs (Materials and Methods). To characterise114

genome-wide genetic variation, we performed PCA using SNPs in all autosomes, revealing115

population structure. While PC1 and PC2 represented differentiation of island populations116

(Fig. 2B), PC3 represented structure within continental populations with different migratory117

phenotypes (Fig. 2C). To identify genomic regions with patterns of genetic variation distinct118

from the population structure, we performed local PCA using lostruct (Li & Ralph, 2019).119

Briefly, lostruct performs PCA in sliding genomic windows and dissimilarity of PCA among120

windows are summarised with multidimensionality scaling (MDS). Distinct patterns of genetic121

variation of windows relative to the background are represented by extreme values along122
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the MDS axes. Multiple windows with correlated patterns of genetic variation distinct123

from the population structure are represented by extreme values along the same MDS axis.124

This approach allowed systematic and unbiased exploration unaffected by our definition of125

populations of the blackcaps. We performed lostruct on both genotype and phased haplotype126

data with window size of 1,000 SNPs. We identified outlier windows by applying threshold127

MDS values (the mode of the distribution ± 0.3). We further identified genomic regions with128

distinct patterns of genetic variation by finding genomic intervals longer than 100 kb with129

at least five outlier windows based on the same MDS axis and merging the intervals based130

on the genotype- and phased haplotype-based approaches. This yielded 32 genomic regions131

with distinct patterns of variation (hereafter “outlier regions”, Fig. 2D, Sup. Table 3, Sup.132

Fig. 3). Their size ranged from 0.12 to 8.11 Mb (mean and median of 0.71 and 0.29 Mb),133

and each region contained 5,000 to 356,000 SNPs. Comparing the genomic distribution of134

these outlier regions to population-level recombination maps, we found that low-recombining135

regions (nominally recombination rate lower than the 20 percentile of each chromosome) were136

significantly enriched in the outlier regions (permutation tests with n = 1,000, p-value =137

0.000 (Sup. Fig. 10)). Among these 32 outlier regions, 19 coincided with regions in which138

recombination rate was reduced in most tested populations (“species-wide” low-recombining139

regions), 11 coincided with regions in which recombination rate was reduced in one or two140

populations (“population-specific” low-recombining regions), and two did not coincide with141

low-recombining regions in any population (Fig. 2E, F, Sup. Fig. 9).142
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Figure 2: Local PCA outliers coincide with species-wide and population-specific low-
recombining regions A. Geographic location of blackcap populations included in this study. Each
point on the map represents a sampling location where multiple individuals were sampled. Populations
were defined based on the geographic location, migratory phenotype, and genomic-wide population
structure. B, C. Genome-wide PCA illustrating population structure. D. Distribution of outlier
regions based on local PCA using lostruct. E, F Inferred recombination rates along two exemplified
chromosomes (chromosomes 1 and 14) in three blackcap populations (cont_medlong, Azores, and
Cape Verde). In D-F, purple and green shades respectively indicate positions of outliers that coincide
with species-wide and population-specific low-recombining regions. The two green shades in F both
overap with Azores and Cape Verde-specific low-recombining regions. cont_medlong: medium and long
distance migrant population breeding on the continent; cont_short: short distance migrant population
breeding on the continent; cont_res: resident (non-migrant) population breeding on the continent. All
island populations (Canary, Madeira, Azores, Cape Verde, Mallorca and Crete) are resident.
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To further investigate the outlier regions, we separately performed PCA using SNPs in143

each region, revealing diverse patterns of distinct genetic variation (Fig. 3A-C top). First,144

species-wide low-recombining regions showed different levels of clustering of individuals in145

PCA. Specifically, the PCA projections consisted of either three distinct clusters (Fig. 3A146

top, Sup. Fig. 6), six loose clusters (Fig. 3B top, Sup. Fig. 6), or mixture of all individuals147

without apparent clustering (Sup. Fig. 6), suggesting that they represent haplotype structure148

with different numbers of low-recombining alleles. These clusters did not clearly separate149

populations, indicating a greater contribution of haplotype structure than the population150

structure. Four of these (e.g. Fig. 3A top, Sup. Figs. 6, 11) had the clearest clustering151

patterns with three groups of individuals in PCA , which is expected for a haplotype block152

with two distinct alleles (Huang et al., 2020; Ma & Amos, 2012; Todesco et al., 2020). Two153

of these regions showed LD patterns consistent with segregating inversions (Fig. 3A bottom,154

Sup. Fig. 12), and the other two showed patterns of non-inversion haplotype blocks (Sup. Fig.155

12), indicating that recombination suppression with different mechanisms resulted in similar156

patterns of genetic variation due to presence of two distinct segregating haplotypes.157
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Figure 3: Patterns of genetic variation and linkage disequilibrium at local PCA outliers
Top: PCA at exemplified outlier regions visualising the patterns of local genetic variation. Data
points represent blackcap individuals colour-coded by population as depicted in Fig. 2. Bottom: LD
calculated for all individuals (top-left diagonal) and for subset individuals (bottom-right diagonal).
A. A putative inversion. Three clusters correspond to combination of two non-recombining alleles
possessed by individuals, depicted as AA, AB, and BB. LD calculated using AA individuals is not
elevated, in line with heterozygote-specific recombination suppression at an inversion locus (Sup. Fig.
14). B. A species-wide low-recombining region with six loose clusters of individuals. LD calculated
using subset individuals was elevated, suggesting genotype-non-specific recombination suppression. C.
A population-specific low-recombining region. The variance in genetic distances between individuals of
the low-recombining populations (Azores (blue) and Cape Verde (light blue)) is greater than between
other pairs of individuals (top). LD calculated using individuals of the low-recombining populations is
elevated (bottom).

Second, population-specific low-recombining regions exhibited distinct patterns of genetic158

variation consistently across the outlier regions. While individuals from the low-recombining159

populations were spread in PCA projections, individuals of other populations were more160

densely clustered (Fig. 3C top). This pattern indicates that the variance in genetic distances161

between a pair of individuals of the low-recombining populations is greater than between162

individuals of normally recombining populations. LD was elevated only in the low-recombining163

populations (Fig. 3C bottom), supporting population-specific reduction in recombination rate.164
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Reduced recombination rate generates distinct patterns of genetic variation165

To discern the effect of reduced recombination rate, demographic history, and unequal sample166

sizes among population on outlier regions, we performed neutral coalescent simulations using167

msprime (Baumdicker et al., 2022). We prepared 11 scenarios differing in the presence/absence168

of population subdivision, equal/unequal sizes of populations, presence/absence of gene flow169

between populations, and recombination rate in the middle of the chromosome relative to170

the chromosomal background (Sup. Fig. 19, Sup. Table 8). We applied lostruct on the171

simulated data to identify outlier regions. In all 1,000 replicates, reduced local recombnation172

rate resulted in distinct patterns of genetic variation irrespective of the population structure173

and demographic history (Sup. Fig. 20). We also asked whether population genetic summary174

statistics are affected. The mean nucleotide diversity (π), Tajima’s D, and FST were not175

affected, yet the variance of these statistics was greater within the low-recombining region176

than in the chromosomal background (Sup. Figs. 21, 22, 23).177

To address how species-wide and population-specific reduction in recombination rate178

affect the patterns of genetic variation over time, we performed forward simulations using179

SLiM (Haller & Messer, 2022). First, to investigate the effects of species-wide reduction in180

local recombination rate, we simulated one ancestral population of 1,000 diploids with a low-181

recombining genomic region that splits into three subpopulations (pop1, pop2, pop3. Fig. 4A).182

We sampled individuals over time after the populations split and conducted PCA both in the183

low-recombining and normally recombining genomic regions. PCA patterns at low-recombining184

regions (Fig. 4B, C, Sup. Fig. 24) were distinct from normally recombining regions (Fig. 4D).185

The low-recombining regions exhibited three, six, or more clusters of individuals resembling186

our empirical results. The clusters of individuals represented genotypes consisting of different187

combinations of ancestral haplotypes (Sup. Fig. 25). The distinct patterns representing188

haplotype structure persisted until population structure started to emerge along the PC axes189

(Fig. 4B, C). Accordingly, the percentages of variation explained by PC1 and PC2 were higher190

at low-recombining regions than in normally recombining region until this transition (Fig. 4C).191

Distinct patterns in the low-recombining regions persisted over longer times than it took for192

population structure in normally recombining region to emerge (Fig. 4D). These results suggest193
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that distinct patterns of genetic variation in species-wide low-recombining regions represent194

haplotype structure whose transition to the population structure is slower than in normally195

recombining regions.196
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Figure 4: Simulation of a species-wide low-recombining region. A. Simulated demography
scenario. Our simulated genome contained two chromosomes, one with a low-recombining region and the
other without. B, C. PCA showing patterns of genetic variation at the species-wide low-recombining
region at three time points in three exemplified simulation replicates. D. PCA showing patterns of
genetic variation at a normally recombining chromosome at three time points in the same replicates as
B.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2021.12.22.473882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/


Second, to investigate the effects of population-specific reduction in local recombination197

rate, we performed forward simulations. Three populations (pop1, pop2, and pop3) and198

their ancestral population had 1,000 diploid individuals, and pop1 evolved a reduced local199

recombination rate. We considered two cases with respect to when the population-specific200

reduction in recombination rate is introduced: before or after differentiation of populations. In201

the first scenario (Sup. Fig. 26), recombination suppression was introduced at the same time202

as the three populations split, while in the second scenario (Fig. 5A) recombination suppression203

was introduced 4,000 generations after the split. We conducted PCA in genomic regions204

with and without population-specific recombination suppression using individuals sampled205

over time. In both scenarios, the genomic region with population-specific recombination206

suppression transiently showed distinct patterns of genetic variation (Fig. 5B, Sup. Fig. 26B)207

resembling the empirical results, while regions without population-specific suppression showed208

population structure (Fig. 5C). Haplotype structure was not as conspicuous as in species-wide209

low-recombining regions (Sup. Fig. 27B, F, c.f. Sup. Fig. 25) due to standing genetic210

variation. Mutations originating in the non-recombining population were enriched in the set211

of mutations that have the greatest contribution to the distinct pattern of PCA (Sup. Fig.212

27C, G. χ2 tests, p-value = 1.14 × 10−12 for model 1 and p-value = 2.30 × 10−32 for model213

2). These mutations were significantly associated with each other in the underlying genealogy214

sharing common branches compared to other mutations originating in the same population215

(Sup. Fig. 27D, H. Materials and Methods, Kolmogorov-Smirnov tests, p-value = 7.74 × 10−6216

for model 1 and p-value = 0.0012 for model 2), indicating that the distinct pattern of genetic217

variation represents sets of mutations that occurred in ancestral haplotypes. Associations218

between these population-specific mutations on ancestral haplotypes would have eventually219

decayed by recombination events, but in the low-recombining population the association was220

maintained due to suppressed recombination, resulting in the cryptic haplotype structure.221
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Figure 5: Simulation of a population-specific low-recombining region. A. Simulated scenario.
Simulated genome contained two chromosomes, one with a population-specific low-recombining region
and the other without. B, C. PCA showing patterns of genetic variation at the population-specific
low-recombining region (B) and the normally recombining chromosome (C) at three time points in one
exemplified simulation replicate.

Effect of selection on patterns of genetic variation222

Selection is known to cause distinct patterns of genetic variation (Nielsen, 2005). To test223

whether the outlier regions based on lostruct identified in the blackcap genome are also224

targets of selection, we measured nucleotide diversity (π) and Tajima’s D in each population,225

as well as ratio between non-synonymous and synonymous substitutions (dN/dS) for annotated226

genes. Many species-wide low-recombining regions showed reduced nucleotide diversity (Sup.227
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Fig. 29) and Tajima’s D (Sup. Fig. 28), suggesting that they are under either positive or228

purifying selection. Most genes within outlier regions had dN/dS below 0 (Sup. Fig. 30) with229

a few genes with positive dN/dS, indicating that most genes are under purifying selection and230

a few others are under positive selection. Furthermore, sequence analysis indicated that some231

but not all species-wide low-recombining outlier regions coincide with putative pericentromeric232

regions with enrichment of long tandem repeats (Sup. Figs. 33, 34). These results indicate233

that the outlier regions may experience effects of selection in addition to reduced recombination234

rates.235

We asked whether the distinct patterns of local genetic variation at the outlier regions236

observed in blackcaps represent the effect of selection instead of reduced recombination rates.237

Specifically, we addressed wheather the distinct patterns of genetic variation representing238

haplotype structure could be caused by (i) purifying or (ii) positive selection alone or if they239

primarily represent the effect of reduced recombination rate. To this end, we used SLiM240

to simulate purifying and positive selection with and without reduction in recombination241

rate, and investigated local genetic variation over time by PCA. First, to investigate the242

effect of purifying selection, we simulated two chromosomes with and without a species-wide243

low-recombining region under the same demographic history as the neutral scenario (Fig. 4A)244

but with different strength of purifying selection by introducing mutations with different ratios245

between the rates of neutral and deleterious mutations (Materials and Methods). Distinct246

patterns of genetic variation representing haplotype structure evolved only in scenarios where247

recombination rate was reduced irrespective of the distribution of fitness effects (DFE) (Sup.248

Fig. 31). Stronger purifying selection (DFE with more frequent deleterious mutations in our249

simulation) decreased the time for distinct patterns of genetic variation at low-recombining250

regions to be overtaken by population structure (Sup. Fig. 31A, C). Second, to investigate251

the effect of positive selection, we simulated a chromosome with or without a species-wide252

low-recombining region under the same demographic history, and introduced a beneficial253

mutation 100 generations after the population split in one population (Sup. Fig. 32A) or 100254

generations before the split in the ancestral population (Sup. Fig. 32D). For simulations in255

which the beneficial mutation persisted, we recorded the patterns of local genetic variation by256
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PCA over time. Although positive selection affected patterns of genetic variation compared to257

the neutral scenario, distinct patterns of genetic variation representing discrete haplotypes were258

unique to scenarios with reduced recombination rate in both cases (Sup. Fig. 32B-E). These259

results indicate that distinct patterns of genetic variation represented in local PCA, as in the260

blackcap outlier regions, primarily reflect haplotype structure due to reduced recombination261

rate, on which the effect of selection can be overlaid.262

Discussion263

Distinct patterns of genetic variation at low-recombining regions: Genealog-264

ical interpretations265

Genealogical noise, genealogical bias, and mutational noise266

A number of empirical population genomics studies have identified ecologically and evolution-267

arily important genomic regions by locating outlier regions with distinct patterns of genetic268

variation (Jones et al., 2012; Lamichhaney et al., 2016; Lawniczak et al., 2010; Lundberg et269

al., 2021; Malinsky et al., 2015). Genomic windows in such studies are assumed to be both270

large enough to eliminate the effect of random fluctuation in local genetic variation and small271

enough to capture the localised signatures of selection. We showed empirically that genomic272

regions with distinct patterns of genetic variation identified by a population genomic scan273

based on principal component analysis (PCA) highly overlap with low-recombining genomic274

regions (Fig. 2). With simulations, we showed that although selection may affect the amount275

and pattern of local genetic variation around the target locus, the distinct patterns of genetic276

variation represented by PCA at low-recombining regions can be primarily explained by277

haplotype structure due to reduced recombination rate (Figs. 4, 5). We discuss our findings278

from the perspective of underlying genealogies.279

We first define three terms: (1) genealogical noise, (2) genealogical bias, and (3) mutational280

noise. (1) By “genealogical noise” we refer to the fact that gene genealogies vary along the281

genome following a null distribution given a population history (Dutheil et al., 2009; Martin282

& Van Belleghem, 2017; McVean & Cardin, 2005; Wakeley, 2008, 2020; Wiuf & Hein, 1999).283
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(2) By “genealogical bias” we refer to the fact that selective processes can systematically shift284

the distribution of local genealogies away from the null distribution. For example, genealogies285

under positive selection, selection against gene flow, adaptive introgression, and balancing286

selection are biased due to bursts of coalescence, faster lineage sorting, and introduction and287

maintenance of long branches (Barton & Etheridge, 2004; Guerrero et al., 2012; Hejase et al.,288

2020; Martin et al., 2019; Setter et al., 2020; Speidel et al., 2019; Taylor, 2013). On top of289

these, (3) randomness in the process of mutation causes additional noise in realised genetic290

variation (Ralph et al., 2020), which we call “mutational noise”. For example, the first and291

the second halves of a chromosomal interval with a single genealogy can still have slightly292

different patterns of genetic variation because they represent some finite numbers of different293

mutations.294

Species-wide low-recombining regions295

We showed in blackcaps that some distinct patterns of genetic variation are associated with296

species-wide low-recombining regions (Fig. 2). This is in line with previous studies reporting297

negative correlation between recombination rate and genetic differentiation (Burri et al., 2015;298

Burri, 2017; Delmore et al., 2015, 2018; Irwin et al., 2018; Kawakami et al., 2017; Roesti et al.,299

2013; Rougemont et al., 2021; Van Doren et al., 2017). To investigate what factors affect distinct300

patterns of gentic variation at low-recombining regions (Fig. 3) in more detail, we performed301

simulations of low-recombining regions with and without selection, and demonstrated that302

haplotype structure underlies the distinct patterns which persists only transiently until the303

effect of the population structure emerges (Figs. 4, 5). This transiency reflects a shift from304

local genetic variation primarily representing haplotype structure (Lotterhos, 2019; Ma &305

Amos, 2012) to that representing population structure, which can be interpreted based on the306

underlying genealogies. Low-recombining regions have few underlying genealogies per interval307

of a fixed physical length and haplotype structure at such regions tends to reflect their basal308

branches because basal branches tend to be longer than peripheral branches (Wakeley, 2008).309

At a time point soon after a population split event, peripheral branches covering more recent310

times than the population split harbour fewer mutations than basal branches. Therefore, the311

realised pattern of genetic variation at this stage has the greatest contributions by mutations312
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on the long basal branches undifferentiated among populations (i.e. consisting standing genetic313

variation), representing a few ancestral haplotypes that descend the current sample. As time314

passes after the population split, the proportion of mutations that have occurred after the315

population split increases while some ancestral haplotypes can be lost by chance (i.e. drift),316

increasing the contribution of population structure on genetic variation. This type of distinct317

patterns of genetic variation arises predominantly in low-recombining regions but less so in318

normally recombining regions. This is because haplotype structure representing a few ancestral319

lineages would become less prominent with recombination as different segments of a current320

haplotype can follow distinct ancestries and thus the genealogical noise is effectively averaged321

out.322

Some low-recombining regions may have genealogies with much shorter basal branches than323

other low-recombining regions because the variance in the basal branch length is greater than324

peripheral branches (Wakeley, 2008). The over-representation of a few ancestral haplotypes325

in genetic variation requires long basal branches in the underlying genealogies, and thus326

low-recombining regions with relatively short basal branches cannot accommodate sufficient327

mutations to represent distinct ancestral haplotypes. This decreases the relative contribution of328

genealogical noise compared to mutational noise (Supplementary Notes 1.1). Distinct patterns329

of genetic variation with varying levels of clustering of individuals in PCA in our empirical330

results (Sup. Fig. 6) may correspond to different ratios between genealogical and mutational331

noise due to large variance in the basal branch lengths of underlying genealogies. Specifically,332

some outlier regions with mixture of individuals from multiple populations without distinct333

clusters and population subdivision in PCA may have underlying genealogies with short basal334

branches leading to greater contributions of mutational noise on the realised genetic variation.335

Population-specific low-recombining regions336

We both empirically and with simulations showed that population-specific low-recombining337

regions exhibit distinct patterns of genetic variation in which individuals of low-recombining338

and normally recombining populations have different variance in genetic distances (Fig. 3C,339

Fig. 5). This unequal variance in low-recombining and normally recombining populations can340
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be interpreted based on the underlying genealogies (Sup. Fig. 35). We consider the ancestry341

of current samples of low-recombining and normally recombining populations and split the342

ancestry at the time T when the population-specific recombination suppression initiated (Sup.343

Fig. 35A). At time T , there were n1 and n2 ancestral haplotypes that descend all current344

samples in low-recombining and normally recombining populations. At times older than T ,345

the ancestors of the n1 and n2 haplotypes may freely recombine within each set, making the346

genetic distances among ancestral haplotypes within each population close to equidistant (Sup.347

Fig. 35B). After the initiation of the population-specific reduction in recombination rate, the348

ancestry of one current sequence of the low-recombining population can be traced back to either349

one of the n1 ancestral haplotypes present at the time T (Sup. Fig. 35A). On the contrary, the350

ancestry of one current sequence of the normally recombining population can be traced back351

to multiple ancestral haplotypes of the n2 sequences because of the presence of recombination352

(Sup. Fig. 35A). From the perspective of mutations, in the low-recombining population,353

mutations that arose on the same haplotype tend to be linked until the present time because354

of the suppressed recombination. On the other hand, in the normally recombining population,355

mutations that arose on the same ancestral haplotype less likely stay linked until the present356

time because recombination can dissociate them. Because shuffling of haplotypes reduces the357

variance of genetic distances among sequences, population-specific reduction in recombination358

rates leads to greater variance in low-recombining population than in normally recombining359

population as observed in our empirical results and simulations. In short, because of the360

different recombination rates between the populations, genealogical noise is more efficiently361

eliminated in the normally recombining population than in the low-recombining population.362

The haplotype structure at population-specific low-recombining region is only cryptic and363

less apparent than in species-wide low-recombining regions because other standing mutations364

coexist on the same haplotype, which are older than the initiation of the population-specific365

recombination suppression (Sup. Fig. 27). The elevated PC loadings at linked mutations366

originating in the low-recombining population could be informative to study evolutionary change367

in local recombination rate: the ages of such mutations mapped on inferred genealogies might368

be useful to estimate the timing at which the population-specific recombination suppression369
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initiated.370

In our empirical analyses in blackcaps, we detected the effect of population-specific371

reduction of recombination rate in Azores and Cape Verde island populations (Fig. 3C, Sup.372

Fig. 7). It remains unclear why reduced recombination rate in certain populations but not373

others is reflected as distinct patterns of genetic variation by lostruct. The recent split of374

Azores and Cape Verde populations from other populations, accompanied by reduction in375

population size and the level of isolation (Delmore et al., 2020b) may have contributed to376

more efficient spread of reduced recombination rate.377

Recombination landscape as a driver of evolution of local genetic variation378

Species-wide and population-specific recombination suppression underlying distinct patterns379

of local genetic variation are probably not independent: reduction in recombination rates that380

initiates formation of haplotype blocks likely originates from one population and may spread381

to multiple populations. For example, local recombination rate may be initially reduced in382

one population in which a segregating inversion originates before it may spread in multiple383

populations by gene flow (Faria et al., 2019). In line with this view of recombination map as an384

evolvable trait diverging across populations according to subdivision, recent studies find that385

divergence in local recombination rate among populations is correlated with genetic divergence386

(Bascón-Cardozo et al., 2022a; Roesti et al., 2013; Spence & Song, 2019). Future work on the387

effects of transition from population-specific to species-wide suppression of recombination will388

fill the gap between the two states.389

Besides spread of recombination suppression across populations, there are other paths390

along which patterns of local genetic variation may change over time. First, change in391

frequency of one haplotypic variant by drift or gene flow and selection and accumulation392

of novel mutations may shift the distinct pattern of genetic variation (Rubin et al., 2022).393

Second, an increase in recombination rate in the region may resolve the distinct pattern of394

genetic variation and result in emergence of the population structure, because recombination395

breaks down discrete haplotypes and generates mixed types whereby reducing the variance396

of genetic variation (Hudson, 1983). These two types of shifts in distinct patterns of genetic397
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variation are not mutually exclusive. For example, fixation of an inversion results in elevated398

recombination rate (Smukowski Heil et al., 2015; Stevison et al., 2011) because there are399

no longer non-recombining heterozygotes in the population. Due to resumed recombination,400

patterns of local genetic variation in such regions are expected to reflect population structure401

eventually. The question of how long it takes for an outlier region with distinct patterns of402

genetic variation to disappear after these events should be focally studied in the future.403

In Fig. 6A, we illustrate a model for the evolution of local genetic variation that changes404

according primarily to the evolution of local recombination rates. Local genetic variation405

can become distinct from the population structure first by representing emerging haplotype406

structure associated with population-specific recombination suppression or other types of407

haplotype blocks (e.g. inversions) in one population. If this recombination suppression spreads408

throughout all populations, then local genetic variation will start to reflect species-wide409

haplotype structure. Once the relative contribution of haplotype structure on local genetic410

variation is reduced by differentiation or disappears by elevated recombination rates, then411

genetic variation returns to reflect the population structure and consequently the outlier412

region disappears. The effect of selection on local genetic variation may be overlaid on top413

(Supplementary Notes 1.2).414
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Figure 6: Evolutionary changes in local recombination rate influence evolution of local
genetic variation. A. Local genetic variation is shown in hypothetical PCA plots. Their underlying
genealogies are shown in simplified ancestral recombination graphs (ARGs,(Griffiths & Marjoram, 1997;
reviewed in Lewanski et al., 2024)), on which black dots represent ancestral recombination events
contributing to the sampled sequences. Points in PCA depict diploid individuals, while those on
the ARGs represent haploid sequences. Two colours of these points (blue and orange) indicate two
populations. (1) Local genetic variation concordant to population structure. Genetic variation shows
separation of individuals from two populations. ARG shows that recombination is suppressed in neither
population. (2) Population-specific recombination suppression in the blue population. ARG shows
that recombination is suppressed in the blue population. (3) Species-wide recombination suppression.
Top: A case in which there are few mutations representing the basal splits of the underlying genealogy
at species-wide low-recombining region. Middle: A case in which there are two haplotypic variants
at the species-wide low-recombining region. If this is due to presence of an inversion (right ARG),
recombination is suppressed between but not within the two clades representing two alleles. Bottom:
A case in which there are three haplotypic variants at the species-wide low-recombining region. B
Evolution of recombination map influences difference in genomic distributions of distinct patterns of
genetic variation between species/populations.
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Implications415

Finally, we discuss technical and biological implications of our study. The technical implication416

concerns interpretation of genome scans based on local genetic variation. A number of methods417

based on local genetic variation have been used to detect loci involved in different kinds of418

selective processes. For example, FST (differentiation), dXY (divergence), and other population419

parameters are inferred to detect genomic islands of speciation (Delmore et al., 2018; Hejase420

et al., 2020; Huang et al., 2020; Malinsky et al., 2015). Reduced diversity (π) is a signature of421

selection (Delmore et al., 2018; Irwin et al., 2018; Pracana et al., 2017), and by combining it422

with variation among populations, loci associated with population-specific selection can be also423

inferred (Yi et al., 2010). Targets of adaptive introgression have been identified by applying424

statistics based on ABBA-BABA test, which is related to genetic variation (Peter, 2016, 2022),425

in sliding windows (Kronforst et al., 2013; Martin et al., 2015; Patterson et al., 2012; Reich et426

al., 2009). However, there are confounding factors that affect inference of these statistics. For427

example, it has been shown that low diversity can cause elevation in some of these statistics428

(Cruickshank & Hahn, 2014; Noor & Bennett, 2009). In addition to reduced diversity, this429

study and others (Booker et al., 2020; Lotterhos, 2019; Renaut et al., 2013) show that reduced430

recombination rate also causes distinct patterns of genetic variation which can lead to erroneous431

identification of regions under influence of selective factors. Examining recombination rates432

at identified regions and comparing them to other regions are necessary to avoid this. For433

instance, apparent outliers in only few (pairs of) populations at a low-recombining region may434

reflect high variance, while high variance at low-recombining regions alone cannot explain435

signals occurring in many (quasi-) independent populations or species at a low-recombining436

region. Furthermore, corroborating methods based on different aspects of distinct patterns of437

variation, such as site frequency spectrum (DeGiorgio et al., 2016; Fay & Wu, 2000; Tajima,438

1989), LD (Sabeti et al., 2002, 2007; Voight et al., 2006), inferred genealogies (Hejase et al.,439

2020; Speidel et al., 2019; Stern et al., 2019), local landscape of variation (Setter et al., 2020),440

and sites of mutations in genes (Nei & Gojobori, 1986), as well as approaches with explicit441

simulation based on inferred demography (Hager et al., 2022), may be informative.442

The biological implication is about evolution of recombination rates and genetic variation443
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along the genome. Based on our findings of a link between these, we predict that organisms444

with more conserved recombination landscape along the genome may have more conserved445

genomic landscapes of distinct patterns of genetic variation (Fig. 6B). In other words, the446

more conserved recombination maps are, the more correlated genomic distribution of distinct447

genetic variation may be between species. In vertebrates including placental mammals (with448

some exceptions), recombination landscape along the genome evolves fast due to continuous449

turnovers of alleles of PRDM9 (the gene coding a protein that determines recombination hot450

spots) and its target DNA sequences (Baudat et al., 2010; Myers et al., 2008). For instance,451

in mammals that possess functional PRDM9, the genomic landscape of recombination rates is452

distinct between and even within species (Kong et al., 2010; Spence & Song, 2019; Stevison453

et al., 2016). Importantly, PRDM9 has been pseudogenised (Birtle & Ponting, 2006) or lost454

(Baker et al., 2017) independently in multiple vertebrate lineages. This shifted the determinants455

of recombination map from the PRDM9 allele and its target to genomic features such as CpG456

islands and transcription start sites, stabilising the recombination landscape (Auton et al.,457

2013; Baker et al., 2017; Singhal et al., 2015). Our results shown in birds, a group lacking458

PRDM9 (Birtle & Ponting, 2006; Singhal et al., 2015), raises a question whether the evolution459

of local recombination rates may play an even more important role in shaping local genetic460

variation in organisms with functional PRDM9. Comparative studies using taxa with and461

without functional PRDM9 will address this and may link the evolution of genomic landscape462

of distinct patterns of genetic variation and (in)stability of recombination maps.463

Materials and Methods464

Empirical analyses465

de novo genome assembly466

A chromosome-level blackcap reference genome was de novo assembled within the Vertebrate467

Genomes Project (VGP), following pipeline version 1.5 (Rhie et al., 2021). In brief, blood468

of a female blackcap from the resident Tarifa population in Spain was collected in 100%469

ethanol on ice and stored at -80 °C (NCBI BioSample accession SAMN12369542). The ethanol470
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supernatant was removed and the blood pellet was resuspended in Bionano Cell Buffer in471

a 1:2 dilution. Ultra-long high molecular weight (HMW) DNA was isolated using Bionano472

agarose plug method (Bionano Frozen Whole Nucleated Blood Stored in Ethanol – DNA473

Isolation Guidelines (document number 30033)) using the Bionano Prep Blood and Cell Culture474

DNA Isolation Kit. Four DNA extractions were performed yielding a total of 13.5 µg HMW475

DNA. About 6 µg of DNA was sheared using a 26G blunt end needle (PacBio protocol PN476

101-181-000 Version 05) to ~40 kb fragments. A large-insert PacBio library was prepared using477

the Pacific Biosciences Express Template Prep Kit v1.0 following the manufacturer protocol.478

The library was then size selected (>15 kb) using the Sage Science BluePippin Size-Selection479

System. The library was then sequenced on 8 PacBio 1M v3 smrtcells on the Sequel instrument480

with the sequencing kit 3.0 and 10 hours movie with 2 hours pre-extension time, yielding481

77.51 Gb of data (~66.29X coverage) with N50 read length averaging around 22,927 bp. We482

used the unfragmented HMW DNA to generate a linked-reads library on the 10X Genomics483

Chromium (Genome Library Kit & Gel Bead Kit v2 , Genome Chip Kit v2 , i7 Multiplex484

Kit PN-120262). We sequenced this 10X library on an Illumina Novaseq S4 150 bp PE lane485

to ~60X coverage. Unfragmented HMW DNA was also used for Bionano Genomics optical486

mapping. Briefly, DNA was labeled using the Bionano Prep Direct Label and Stain (DLS)487

Protocol (30206E) and run on one Saphyr instrument chip flowcell. 136.31 Gb of data was488

generated (N50 = 301.9kb with a label density = 16.91 labels/100kb). Optical maps were489

assembled using Bionano Access (N50 = 27.48 Mb and total length = 1.41 Gb). Hi-C libraries490

were generated by Arima Genomics and Dovetail Genomics and sequenced on HiSeq X at ~60X491

coverage following the manufacturer’s protocols. Proximally ligated DNA was produced using492

the Arima-HiC kit v1 , sheared and size selected (200 – 600 bp) with SRI beads, and fragments493

containing proximity-ligated DNA were enriched using streptavidin beads. A final Illumina494

library was prepared using the KAPA Hyper Prep kit following the manufacturer guidelines.495

FALCON v1.9.0 and FALCON unzip v1.0.6 were used to generate haplotype phased contigs,496

and purge_haplotigs v1.0.3 was used to further sort out haplotypes (Guan et al., 2020). The497

phased contigs were first scaffolded with 10X Genomics linked reads using scaff10X 4.1.0498

software, followed with Bionano Genomics optical maps using Bionano Solve single enzyme499

DLS 3.2.1, and Arima Genomics in-vitro cross-linked Hi-C maps using Salsa Hi-C 2.2 software500
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(Ghurye et al., 2019). Base call errors were polished with both PacBio long reads and Arrow501

short reads to achieve above Q40 accuracy (no more than 1 error every 10,000 bp). Manual502

curation was conducted using gEVAL software by the Sanger Institute Curation team (Howe503

et al., 2021). Curation identified 33 autosomes and Z and W chromosomes (plus 1 unlocalised504

W). Autosomes were named in decreasing order of size, and autosomes 1 through 30 and sex505

chromosomes had counterparts in the commonly used VGP reference zebra finch assembly506

(Sup. Table 2). The total length of the primary haplotype assembly was 1,066,786,587 bp,507

with 99.14% assigned to chromosomes. The final 1.1 Gb assembly consisted of 601 contigs in508

189 scaffolds, with a contig N50 of 7.4 Mb, and scaffold N50 of 73 Mb, indicating a high-quality509

assembly that fulfills the VGP standard metrics.510

Whole-genome resequencing511

We resequenced 69 blackcap samples from various populations across the species distribution512

range (Sup. Table 1) to complement an existing dataset of 110 blackcaps, 5 garden warblers,513

and 3 African hill babblers that had been sequenced previously (Delmore et al., 2020b).514

Blood samples from the additional 69 blackcaps were collected from the brachial vein and515

stored in 100% ethanol. High molecular weight genomic DNA was extracted with a standard516

salt extraction protocol or through the Nanobind CBB Big DNA Kit Beta following the517

manufacturer’s instructions. Libraries for short insert fragments between 300 and 500 bp were518

prepared and were then sequenced for short paired-end reads on either Illumina NextSeq 500,519

HiSeq 4000 or NovaSeq 5000 (Sup. Table 1).520

We performed quality control of the reads with FastQC version 0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).521

Reads from all samples were mapped against the blackcap reference genome following an522

adjusted pipeline of Genome Analysis Toolkit (GATK version 4.1.7.0, McKenna et al. (2010))523

and Picard version 2.21.9 (http://broadinstitute.github.io/picard/). After resetting the base524

quality of adapter bases in the sequenced reads to 2 with Picard MarkIlluminaAdapters,525

paired-end reads were mapped to the reference using BWA mem (Li, 2013). To ensure that both526

unmapped mates and secondary/supplementary reads were marked for duplicates, we ran527

Picard MarkDuplicates for sorted reads with the default pixel distance of 100 for reads528
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from Illumina NextSeq 500 or with a pixel distance of 2,500 for reads from HiSeq 4000 and529

NovaSeq 5000. Due to low coverage, 10 samples (Sup. Table 1) were sequenced multiple times.530

Alignment files for these samples (in BAM format) were merged with Picard MergeSamFiles.531

Per-sample quality control of BAM files were performed using QualiMap version 2.2.1532

(Okonechnikov et al., 2016), Picard CollectMultipleMetrics, CollectRawWgsMetrics533

and CollectWgsMetrics; and MultiQC version 1.8 (Ewels et al., 2016). The minimum and534

median depth were 7.8X and 20.1X, and the minimum and median coverage were 0.88535

and 0.97. We called bases at all positions per sample using GATK HaplotypeCaller. We536

combined gVCF files of 189 individuals into ten evenly sized subsets (to allow parallelisation537

of the following variant calling step) with GATK CombineGVCFs. We genotyped SNPs and538

INDELs using GATK GenotypeGVCFs, and the 10 subsets were concatenated using Picard539

GatherVcfs into one VCF file covering the entire genome. From the VCF file, SNPs were540

selected (i.e. indels were excluded) using GATK SelectVariants, after which we filtered SNPs541

with the following criteria: QD < 2.5; FS > 45.0; SOR > 3.0; MG < 40; MQRankSum <542

-12.5; ReadPosRankSum < -8.0. We removed garden warblers and African hill babblers543

from the multi-species VCF and kept only biallelic sites. We estimated blackcap haplotypes544

using SHAPEIT2 (r837) (Delaneau et al., 2013) with the blackcap recombination map545

(Bascón-Cardozo et al., 2022a), yielding 142,083,056 SNPs.546

Genome-wide PCA547

To characterise the population structure of blackcaps, we performed principal component548

analysis (PCA) using PLINK (Purcell et al., 2007).549

Local PCA550

To identify genomic regions with distinct patterns of genetic variation in blackcaps, we551

performed local PCA in sliding genomic windows of 1,000 SNPs and summarised dissimilarity552

of windows by multidimensional scaling using lostrct (Li & Ralph, 2019) in R version553

3.5.3. First, we prepared a genotype and a haplotype table for each chromosome in which554

rows and columns represented positions and individuals from the phased VCF file using555

BCFtools. Specifically, genotypes were encoded 0, 1, and 2 for the reference allele homozygotes,556
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heterozygotes, and non-reference allele homozygotes in the genotype table, and 0 and 2 for the557

reference and the non-reference allele in the haplotype table (encoding 0 and 1 instead of 0558

and 2 in haplotype-based analysis gives the same results). Chromosomes shorter than 10 Mb559

were concatenated to avoid misidentification of short chromosomal background as an outlier560

region. Distance matrices of windows were computed based on the coordinates (PC1 and PC2)561

of samples (individuals for genotype-based local PCA, and haplotype for haplotype-based562

local PCA) within R using lostruct. Multidimensional scaling (MDS) was performed to563

summarise similarities of local genetic variation patterns among windows into 20 axes (MDS1564

through MDS20).565

Using the lostruct output, we identified chromosomal intervals with distinct patterns566

of genetic variation. In each chromosome, windows with MDS value apart from the mode567

of the distribution by greater than 0.3 for any one of the 20 axes were defined as outlier568

windows. This threshold was determined by visualising the distribution of MDS values in each569

chromosome (Sup. Fig. 2). For each MDS axis, we defined genomic intervals with at least570

five outlier windows longer than 100 kb as “outlier regions” with distinct patterns of genetic571

variation. Overlapping intervals across different MDS axes as well as intervals identified based572

on genotypes and haplotypes were merged using BEDtools. To verify that the outliers show573

pattern of genetic variation distinct from the whole-genome PCA, we performed PCA using574

all SNPs within each outlier region using PLINK. Genomic regions showing similar pattern to575

the whole genome PCA were identified with visual inspection and discarded from the outliers.576

To assess consistency between the pipelines using genotypes and haplotypes, we compared577

MDS results of genotype- and haplotype-based lostruct. We calculated Euclidean distance of578

windows from the centre of the 20 dimensional space to enable comparison of the same window579

in genotype- and haplotype-based MDS. We measured this distance instead of comparing580

the coordinates directly to account for possible rotations of MDS patterns between genotype-581

and haplotype-based lostruct. Because dissimilarity of windows in terms of the pattern582

of genetic variation was computed per chromosome, we calculated correlation of the above583

distance between genotype- and haplotype-based methods per chromosome. The comparison584

of genotype-based and haplotype-based lostruct is in Sup. Fig. 4.585

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2021.12.22.473882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/


To assess whether lostruct can identify outliers irrespective of presence/absence of586

other outliers on the same chromosome as well as the chromosome length, we ran lostruct587

treating either one part of a blackcap chromosome (“split chromosomes”) or multiple blackcap588

chromosomes as a single chromosome (“joined chromosome”). If lostruct is robust to the589

chromosomal background, it is expected that the same regions should be detected as outliers590

with distinct patterns of genetic variation in both split and joined chromosomes compared591

to per-chromosome results. We prepared four split chromosomes by splitting chromosomes592

1 and 2 at the middle, and one joined chromosome by concatenating chromosomes 20, 21,593

and 28. We performed lostruct analysis based both on genotype and haplotype and merged594

the identified regions. The comparison of lostruct between using single chromosomes and595

split/joined chromosomes is in Sup. Fig. 5.596

LD and recombination landscape597

To calculate LD around outlier regions, we first extracted SNPs within and 30% length outside598

each outlier. We then thinned SNPs so that all neighbouring SNP positions were at least 10599

kb away from each other. Linkage disequilibrium (LD) between all pairs of thinned SNPs was600

calculated with VCFtools with the --geno-r2.601

We inferred recombination landscape along blackcap chromosomes using Pyrho (Spence &602

Song, 2019). Pyrho infers demography-aware recombination rates with a composite-likelihood603

approach from SNPs data of unrelated samples making use of likelihood lookup tables generated604

by simulations based on demography and sample size of each population. In all inferences,605

we used demography of focal populations inferred in Delmore et al. (2020b). Before the606

recombination inference, focal samples were filtered and singletons were removed. We ran607

Pyrho with mutation rate of 4.6 × 10−9 per site per generation (Smeds et al., 2016), block608

penalty of 20, and window size of 50 kb to infer population-level recombination landscape in609

Azores, Cape Verde, continental resident, and medium-long distance migrants (represented610

by medium distance south-west migrants). We computed mean recombination rate in 10 kb611

sliding windows for each population.612

We defined low-recombining regions and evaluated overlaps between outlier regions and613
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low-recombining regions in the following four steps. 1. define low-recombining regions for614

each population recombination map, 2. test for association between all outlier regions and the615

low-recombining regions for each population, 3. define species-wide and population-specific616

low-recombining regions, and 4. label outlier regions with species-wide or population-specific617

low-recombining regions or no overlap with any low-recombining region.618

1. For the recombination map of each of the four populations (med_sw, cont_res, Azores,619

Cape Verde), we defined low-recombining regions as the set of 10 kb windows with620

recombination rate lower than 20 percentile for each chromosome. This mild threshold621

was set to account for large variation in the recombination landscapes among chromosomes622

and to capture population-specific reduction in recombination rate which could be with623

weaker reduction in recombination rate than at species-wide low-recombining regions.624

2. For the set of low-recombining regions of each population, we performed a permutation625

test by shuffling observed outlier regions within the chromosome and counted the total626

length of overlap with (any) low-recombining regions (in bp) using BEDTools. We627

repeated this 1,000 times, and compared the empirical null distribution of the overlap628

length (in bp) with observed overlaps.629

3. To define species-wide and population-specific low-recombining regions, at all positions630

along the genome we counted the number of population recombination maps sharing low-631

recombining regions. If a region was labelled low-recombining in three or four populations632

at step 1, we defined it to be species-wide low-recombining region. If a region was labelled633

low-recombining in one or two populations, we defined it to be a population-specific634

low-recombining region, recording which populations were low-recombining.635

4. We first labelled outlier regions overlapping species-wide low-recombining regions. We636

intersected the species-wide low-recombining regions defined in step 3 and outlier regions.637

We labelled an outlier region with species-wide low-recombining if it had a coverage of638

species-wide low-recombining regions greater than 0.5. Two exceptions were outlier_12_3639

and outlier_30_1, which are putative inversions. They had coverage of species-wide640

low-recombining regions of 0.30 and 0.23 but this is largely due to heterokaryotype-641

specific recombination suppression and inclusion of homokaryotypes in recombination642
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rate inference. Because these putative inversions were segregated in most populations,643

we defined them to be species-wide low-recombining regions. We next labelled outlier644

regions overlapping population-specific low-recombining regions. We intersected the645

population-specific low-recombining region defined in step 3 with outlier regions excluding646

those overlapping with species-wide low-recombining regions. We labelled an outlier647

region overlapping with population-specific low-recombining regions if it had a coverage648

greater than 0.01 for any (pair of) population(s). Finally, the remaining outlier regions649

were labelled no reduction in recombination rate.650

To characterise genotype-specific LD and recombination landscape at the five outlier651

regions with three clusters of individuals in PCA, we applied vcftools --geno-r2 and Pyrho652

(Spence & Song, 2019) to our empirical data using each genotype (AA, AB, and BB in Sup.653

Fig. 11) separately. Validation of this procedure is described in “Simulation: Validation of654

LD-based inference of recombination landscape using non-randomly chosen samples”.655

Inversion breakpoints656

Three clusters of individuals observed in PCA with genotype-specific LD at two outlier regions657

on chromosomes 12 and 30 were indicative of polymorphic inversion (Ma & Amos, 2012; Ruiz-658

Arenas et al., 2019). To further characterise whether they represent polymorphic inversions,659

we intended to locate breakpoints by two independent approaches.660

Soft-clip reads We attempted to identify positions where presence of soft-clipping of mapped661

reads is associated with PCA-based genotype of the putative inversions. First, we extracted662

focal regions around boundaries of the outliers (Sup. Table 4) from read mapping file of663

all individuals using SAMtools (Danecek et al., 2021). Next, we identified soft clip reads in664

each extracted region using samextractclip (Lindenbaum, 2015), and obtained reference665

position corresponding to the position of soft clipping in mapped reads using a custom script.666

At all extracted soft-clip positions, we counted the number of reads that switch to soft-clip667

(“soft-clip depth”), as well as the depth of mapped reads, using SAMtools. At each of all668

positions with at least one read supporting soft-clip switch, we calculated proportion of reads669

with soft-clip switch relative to all mapped reads (depth of the position) for each individual670
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(“soft-clip proportion”). This resulted in “position-by-individual” matrix whose entry depicts671

the proportion of soft-clip in all reads mapped at the focal position for the focal individual.672

Using this matrix, we fit a linear model (soft-clip proportion ∼ PCA − basedgenotype) in R at673

each position treating genotypes AA, AB, and BB as 0, 1, and 2. Based on the significance of674

genotype and R2 of the linear models, we generated a list of 14 positions at which soft-clip675

proportion was significantly associated with genotype of the putative inversions. We visualised676

the distribution of the soft-clip proportion at these positions (Sup. Fig. 15) and selected six677

positions for which the soft-clip proportion of BB was high enough and that of AB was around a678

half of BB based on the assumption that soft clip reads covering an inversion breakpoint should679

originate from haplotype B and non-soft clip reads should originate from haplotype A (Sup.680

Table 5). To investigate whether some of these six positions represent inversion breakpoints,681

we asked whether the soft-clipped segments of the reads have homologous sequences at the682

other end of the outlier regions. We extracted soft-clipped segments of reads mapped at the683

focal six positions in AB and BB individuals using a custom script, and re-mapped these684

segments (instead of the entire reads) to the blackcap reference using BWA mem. We computed685

the depth of mapped segments in each position using SAMtools (Sup. Table 5).686

10x linked read We used an independent set of blackcap individuals (hereafter “10x687

individuals”) whose genomes were sequenced with the 10x linked-read technology (Delmore688

et al., 2023, NCBI BioProject PRJEB65115). We genotyped the 10x individuals at the two689

putative inversion loci (i.e. AA, AB, or BB) based on genotypes at diagnostic SNP positions.690

We started by determining diagnostic SNP positions using our Illumina short read-based691

resequence data. Because usable diagnostic SNP positions should have genotypes perfectly692

associated with PCA-based genotype, we focused on positions at which FST was 1 between693

AA and BB, and all AB were heterozygous, using VCFtools and BCFtools. We also recorded694

mapping between an allele at the diagnostic positions and a genotype of the putative inversion695

(“A- and B-diagnostic alleles”, e.g. G for haplotype A, T for haplotype B).696

We then counted the number of sites with A- and B-diagnostic allele in each of 10x697

samples. To convert coordinates of 10x assemblies to the reference coordinate, we mapped698

the 10x pseudo-haplotyped assemblies to the blackcap reference using minimap2 (Li, 2018).699
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To determine the putative inversion genotype in the 10x individuals, we counted the number700

of positions with A-diagnostic and B-diagnostic alleles for each 10x pseudo-haplotype, and701

calculated the proportion of sites with A-diagnostic and B-diagnostic sites. In principle, an702

AA and a BB individual respectively are expected to have proportion of 100% and 0% of703

A-diagnostic sites in both of two pseudo-haplotypes, while an AB individual is expected to704

have 100% of A-diagnostic sites in one pseudo-haplotype and 0% for the other. For genotyping,705

we set the following three thresholds.706

1. Missingness at the diagnostic positions is less than 10%, after removing positions with707

non-unique minimap2 mapping (i.e. at least 90% of all diagnostic positions should have708

depth of 1x).709

2. More than 90% of all diagnostic sites should agree per pseudo-haplotype.710

3. The second criterion should be fulfilled for both pseudo-haplotypes of an individual.711

We identified two BB individuals for each of the putative inversions on chromosomes 12712

and 30. There were no AB individuals passing the above threshold, indicating 10x pseudo-713

haplotyping is not accurate in separating two diverged non-recombining alleles at a long range714

in an individual that has both. To identify breakpoints, we aligned the pseudo-haplotype715

assemblies of these BB individuals as well as one AA individual for each putative inversion to716

the blackcap reference using Nucmer4 (Marçais et al., 2018), and generated dot plots (Sup.717

Fig. 16).718

Sequence analysis at breakpoint of putative inversion on chromosome 12 10x719

contigs of pseudo-haplotype B aligned next to the putative breakpoint position of blackcap720

reference chromosome 12 had an un-aligned flanking sequence. To characterise the DNA721

sequence of these flanking segments, we extracted the flanking sequences using SAMtools,722

aligned the sequences to themselves using minimap2, and generated self-dot plots (Sup. Fig.723

17), revealing presence of tandem repeats. To identify unit of tandem repeats within the724

flanking sequences, we ran TandemRepeatsFinder against these extracted sequences, resulting725

in four consensus unit sequences of 144 bp based on two contigs from two individuals. To726

confirm that the four consensus sequences represent the same tandem repeat (because the unit727
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of identical tandem repeat can have different phases), we ran BLASTn (version 2.10.1, Altschul728

et al., 1990) with each consensus as query against dimers of the consensus. To investigate729

whether the tandem repeat found at the putative breakpoint of chromosome 12 in haplotype730

B is present in chromosome 12 and other chromosomes of the reference and corresponding731

position of haplotype A, we ran BLASTn with the 144 bp consensus of the tandem repeat unit as732

the query against blackcap reference and a contig of an AA individual that spans the breakpoint733

position, and counted how many copies were found in each reference chromosome/scaffold and734

the 10x contig (Sup. Fig. 18).735

Selection in blackcaps736

To test for selection in different outlier regions and to compare them with the genome-wide737

base line, we computed nucleotide diversity (π) and Tajima’s D in 10 kb sliding windows738

per population using PopGenome (Pfeifer et al., 2014) and VCFtools (Danecek et al., 2011)739

respectively. The effects of the outlier regions on these statistics were tested using a linear740

mixed effects model (nlme::lme (Pinheiro et al., 2021)) and a generalised linear mixed effects741

model with a Gamma distribution (lme4::glmer (Bates et al., 2015)). To test for selection in742

genes dN/dS were computed following the counting method by Nei & Gojobori (1986). Gene743

annotation of the blackcap was obtained from Bascón-Cardozo et al. (2022b).744

Tandem repeats within and outside outlier regions745

To characterise correlation between outlier regions with distinct patterns of genetic variation746

and tandem repeats, we identified tandem repeats in the reference genome and compared the747

distribution of the tandem repeats with genomic regions with distinct patterns of genetic vari-748

ation. First, TandemRepeatsFinder (Benson, 1999) was run on the blackcap reference genome749

with the parameter set recommended on the documentation (trf </path/to/fasta> 2 7 7750

80 10 50 500 -f -d -m -h). The output was formatted and summarised for visualisation751

using custom scripts. Briefly, distribution of tandem repeats with a different unit size along752

the genome was summarised in 100 kb sliding windows in blocks of repeat unit sizes of 10 bp753

step (Sup. Fig. 33). Tandem repeats with the six longest repeat unit size were extracted per754

chromosome, and copy number for each tandem repeat was counted (Sup. Fig. 34).755
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Next, we tested whether the number of tandem repeats with long repeat unit were756

enriched in outlier regions at species-wide and population-specific low-recombining regions. We757

extracted tandem repeats with repeat unit size greater than or equal to 150 bp, and counted758

the number of tandem repeats (instead of total copy number) within and outside outlier759

regions. We performed Fisher’s exact tests to test independence between the number of long760

tandem repeats and the mode of recombination suppression (species-wide/population-specific)761

(Sup. Table 7) using fisher.test function in R.762

Simulation763

Validation of LD-based inference of recombination landscape using non-randomly764

chosen samples765

We asked whether LD-based recombination map inference using individuals chosen based on766

the karyotype instead of at random is informative of the underlying mode of recombination767

suppression. To this end, we simulated two 5 Mb-long chromosomes with neutral mutation rate768

of 4.6 × 10−8 in a population of 1,000 individuals in SLiM. The purpose of these simulations769

was to investigate the effect of an inversion and additional recombination suppression on770

recombination rate inference and LD in general, rather than investigating the effects specific to771

blackcap demography. As such, we kept the population size smaller than the blackcap effective772

population size and the mutation rate greater than assumed in order to minimise the time773

and computational resource for simulations. We introduced a mutation (inversion marker)774

on one chromosome at 1 Mb position at the 50th generation. We simulated an inversion on775

the chromosome by suppressing recombination in an interval from 1 Mb to 4 Mb position if776

the inversion marker site was heterozygous. We defined additional suppression according to777

different scenarios (models 1-6 in Sup. Table 6). We applied negative frequency-dependent778

selection (fitness of inversion is 1 − (pinv − 0.2) where pinv is the frequency of the inversion779

allele). 1,000 generations after the inversion event, we recorded the mutations in all samples,780

making a VCF file including all samples. Although 1,000 generations is relatively short given781

the population size of 1,000, the haplotype structure at the inversion locus was stable in test782

runs of model-1 (inversion frequency of 0.2 without additional recombination suppression).783

36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2024. ; https://doi.org/10.1101/2021.12.22.473882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/


Based on the genotype at 1 Mb position, we randomly chose 10 samples for each inversion784

genotype. Pyrho was run to estimate recombination rates using the chosen 10 samples, with785

the block penalty 50 and window size 50. The inferred recombination maps are in Sup. Fig.786

13.787

Effects of recombination suppression model on recombination rate inference at an788

inversion789

Three clusters of individuals observed in PCA at five outlier regions indicate presence of790

distinct haplotypes. Polymorphic inversions are known to show this pattern due to suppression791

of recombination between the normal and inverted alleles (Wellenreuther & Bernatchez, 2018).792

To test whether some of the five outlier regions represent polymorphic inversions, we intended793

to infer recombination rates using AA, AB, and BB individuals separately based on linkage794

disequilibrium (LD) patterns. Before addressing this in blackcaps empirically, we assessed795

how different types of recombination suppression at a haplotype block affect inference of796

recombination landscape using a set of individuals with a certain combination of haplotypes.797

To investigate the effect of a genotype-specific suppression of recombination on LD-based798

inference of recombination rate, we simulated different modes of recombination suppression799

using SLiM version 3.5 (Haller & Messer, 2019) under six scenarios listed in Sup. Table 6.800

Specifically, we performed 1,000 replicates of forward-time simulations of two 500 kb-long801

chromosomes with neutral mutation rate of 1×10−7 [per site per generation] and recombination802

rate of 1 × 10−6 [per site per generation] in a population of 1,000 diploid individuals under803

the Wright-Fisher model (We downscaled the population size and upscaled mutation rate to804

minimise the time and computational resource for simulation). We introduced a mutation805

(inversion marker) on one chromosome at 100 kb position at the 50th generation. We modelled806

an inversion by suppressing recombination in an interval from 100 kb to 400 kb position if807

the inversion marker site was heterozygous. We defined additional suppression according808

to different scenarios (models 1-6). To allow for the inversion to remain in the population,809

we applied negative frequency-dependent selection (fitness of inversion is 1 − (pinv − 0.2) for810

models 1-3 and 1 − (pinv − 0.8) for models 4-6 where pinv is the frequency of the inversion811

allele). 1,000 generations after the inversion event, we recorded the mutations in all samples,812
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making a VCF file including all individuals. Although 1,000 generations is relatively short813

given the population size of 1,000, the haplotype structure at the inversion locus was stable in814

test runs of model-1 (inversion frequency of 0.2 without additional recombination suppression).815

Based on the genotype at the marker, we randomly sampled 10 individuals for each inversion816

genotype. Pyrho was run to estimate recombination rates using the sampled 10 individuals,817

with the block penalty 50 and window size 50. The inferred recombination landscape is in818

Sup. Fig. 13.819

Coalescent simulation of species-wide reduction of recombination rate820

To discern the effect of reduced recombination rate, demographic history, and unequal sample821

sizes among population on outlier regions identified by lostruct, we performed neutral822

coalescent simulations using msprime version 1.2.0 (Baumdicker et al., 2022). We simulated a823

1-Mb long recombining chromosome with a mutation rate of 4.6×10−9 [per site per generation].824

We implemented 11 models differing in the recombination maps, population subdivision, and825

demographic history (Sup. Fig. 19). In models 1-3, the recombination rate was set to 4.6×10−9826

[per site per generation] throughout the entire chromosome, and they differ in population827

subdivision (model 1: panmictic, model 2, subdivision of five equal populations without gene828

flow, model 3: subdivision of equally-sized populations with gene flow between two pairs829

of populations (symmetric migration rate of 0.025 [per generation])). In models with five830

populations, we distributed the sample of 100 individuals unequally, as in our blackcap dataset831

(50, 20, 10, 10, 10 individuals for five populations). In models 4-7, we introduced reduced832

recombination rate in the middle of the chromosome (0.4 to 0.6 Mb) with the same demographic833

histories as models 2 and 3. In addition to the uniform recombination map, we prepared834

two recombination maps with reduced recombination rate: “low-rec” with one-hundreth the835

background recombination rate, and “no-rec” with recombination rate of 0. In models 8-11,836

we used the same two recombination maps with reduced recombination rate in the middle,837

with different demography: 10 times increase in effective population size in one population,838

and 10 times descrease in effective population size in three populations, which roughly reflects839

inferred demography of blackcap populations (Delmore et al., 2020b). For each model, we ran840

1,000 replicates of simulations and recorded SNPs in VCF format.841
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To identify outlier regions, we ran lostruct the same way as in the empirical analysis.842

To evaluate how reduced recombination rate affects the mean and variance of population843

genetic summary statistics, we computed nucleotide diversity (π), Tajima’s D, and FST, using844

VCFTools. The outliers detected by lostruct are in Sup. Fig. 20. The summary statistics845

are in Sup. Figs. 21, 22, 23.846

Forward simulation of species-wide reduction of recombination rate847

To investigate how species-wide low-recombining regions affect patterns of local genetic variation848

depicted in local PCA, we performed forward simulation with SLiM version 4.0.1 (Haller &849

Messer, 2022). We simulated 100 replicates of two 500 kb-long chromosomes with neutral850

mutation rate of 1 × 10−7 [per site per generation] and recombination rate of 1 × 10−6 [per851

site per generation] except for an interval from 100 to 400 [kb] of the first chromosome852

where recombination rate was set to 1 × 10−9, which is 1/1000 of the normally recombining853

chromosome. First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000854

diploids. After the burn-in, we made three populations of 1,000 diploids (pop1, pop2, and855

pop3) split from the ancestral population. We sampled 50 individuals per population every 20856

generations over 1,000 generations after the population split and recorded SNPs in VCF. For857

each time point of each of 100 simulation replicates, we performed PCA with PLINK, using858

SNPs either within 100 to 400 [kb] of the first chromosome (pop1-specific suppression) or the859

normally recombining chromosome.860

We investigated how reduced recombination rate affects representation of population861

subdivision in local PCA. To evaluate whether the individuals from different populations were862

distributed differently in local PCA at the low-recombining region, we performed Fasano-863

Franceschini test (Fasano & Franceschini, 1987), which is a multi-dimensional extension of864

Kolmogorov-Smirnov test, in three pairs of populations (pop1-pop2, pop1-pop3, pop2-pop3).865

We counted the number of significant pairs of populations (0, 1, 2, or 3) for each time point of866

each replicate. We compared between the low-recombining and normally recombining regions867

the number of pairs of populations with distinct distribution in PCA (Sup. Fig. 31).868
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Forward simulation of population-specific reduction of recombination rate869

To investigate how evolution of low-recombining regions in population(s) affect patterns of870

local genetic variation depicted in local PCA, we performed forward simulation with SLiM871

version 4.0.1. We simulated two 500kb-long chromosomes with neutral mutation rate and872

recombination rate of 1 × 10−7 [per site per generation] and 1 × 10−6 [per site per generation].873

First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000 diploids. After874

the burn-in, we made three populations of 1,000 diploids (pop1, pop2, and pop3) split from the875

ancestral population, after which gene flow between all pairs of populations were set to 0.0025.876

We introduced recombination suppression in pop1 from 100 to 400 [kb] of the first chromosome877

in two scenarios. In the first scenario, recombination suppression was introduced at the same878

time of the split. In the second scenario, recombination suppression was introduced 4,000879

generations after the population split event, allowing the three populations to differentiate880

before population-specific recombination suppression was introduced in pop1. We sampled 50881

individuals per population every 20 generations over 1,000 generations after the introduction of882

the population-specific suppression of recombination and recorded SNPs in VCF. For each time883

point of each of 1,000 simulation replicates, we performed PCA with PLINK, using SNPs either884

within 100 to 400 [kb] of the first chromosome (pop1-specific suppression) or the normally885

recombining chromosome.886

To characterise factors represented in the primary axes of distinct local PCA at population-887

specific low-recombining regions, we performed one replicate of SLiM simulation with the same888

scenarios of models 1 and 2 recording the full ancestry and mutations in tree sequence, with an889

increased duration of burn-in (40,000 generations) to make sure that all lineages at sampling890

time coalesce. We loaded the tree sequence with mutations in tskit (Kelleher et al., 2018)891

and sampled 50 diploids per population, and saved SNPs in VCF. Using the VCF files for892

each time point for each model, we performed PCA using PLINK at the population-specific893

low-recombining region, and determined one time point per model showing typical spread894

of individuals from the low-recombining population in PCA (Sup. Fig. 27A, E). For these895

PCAs we identified 5% SNPs with the highest loadings to the first two PC axes. We analysed896

these mutations on the underlying genealogies using tskit. Specifically, we investigated897
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whether mutations originating from the low-recombining population were enriched in the898

high-loading mutations (Sup. Fig. 27C, G) with a χ2 test. We also assessed whether multiple899

mutations originating in the low-recombining population occurring on the same genealogical900

branches (i.e. mutations on the same ancestral haplotypes) were enriched in the high-loading901

mutations (Sup. Fig. 27D, H). For this, we compared the number of mutations sharing902

the same genealogical branches among the high-loading mutations originating from the low-903

recombining population and the same number of randomly-selected mutations originating from904

the low-recombining population by a Kolmogorov-Smirnov test.905

Effects of linked selection on local PCA906

Background selection To investigate the linked effect of purifying selection at low-907

recombining regions (background selection) on patterns of local genetic variation represented908

in local PCA, we performed forward simulation with SLiM version 4.0.1. We simulated a909

species-wide low-recombining region in three populations as described above, except we changed910

the distribution of fitness effect of mutations with three different ratios between neutral (“n”,911

s = 0) and deleterious (“d”, s = −0.05 and h = 0.5) mutations of n/(n + d) = 0, 0.25, 0.5, 0.75.912

To evaluate whether individuals from different populations were distributed differently in the913

local PCA at the low-recombining region, we performed Fasano-Franceschini test between914

three pairs of populations (pop1-pop2, pop1-pop3, pop2-pop3). We counted the number of915

significant pairs of populations (0, 1, 2, or 3) for each sampled time point of each replicate916

(out of 100) for each DFE (Sup. Fig. 31).917

Positive selection To investigate the linked effect of positive selection at low-recombining918

regions on patterns of local genetic variation represented in local PCA, we performed forward919

simulation with SLiM version 4.0.1 under four scenarios: population-specific sweep and sweep920

before populations split, with and without reduced local recombination rate. We simulated921

10 replicates of one 500 kb-long chromosome with neutral mutation rate of 1 × 10−7 [per site922

per generation] and recombination rate of 1 × 10−6 [per site per generation]. In scenarios923

with reduced recombination rate, we introduced a reduced recombination rate within an924

interval from 100 to 400 [kb] of the chromosome where recombination rate was set to 1 × 10−9,925
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which is 1/1000 of the normally recombining regions. For all scenarios, we ran a burn-in926

of 4,000 generations for an ancestral population of 1,000 diploids. In the scenarios with927

population-specific sweep, we made three populations of 1,000 diploids (pop1, pop2, and928

pop3) split from the ancestral population at the 4000-th generation. We introduced a strongly929

beneficial mutation (s = 1 and h = 0.5) in the middle of a chromosome of one randomly930

selected sample of the first population at the 100-th generation after the populations split. In931

the scenarios with sweep before split, we introduced a strongly beneficial mutation (s = 1 and932

h = 0.5) in the middle of the chromosome of one randomly selected sample of the ancestral933

population, and made the three populations of 1,000 diploids split at the 100-th generation934

after the introduction of the beneficial mutation. We sampled 100 diploid individuals per935

population every 20 generations since the introduction of the beneficial mutation (scenarios of936

population-specific sweep) or the split (scenarios of ancestral sweep) and recorded the SNPs in937

VCF format. We performed PCA using PLINK.938
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