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Abstract

T cells of the adaptive immune system provide effective protection to the human body
against numerous pathogenic challenges. Current labelling methods of detecting these
cells, such as flow cytometry or magnetic bead labelling, are time consuming and ex-
pensive. To overcome these limitations, the label-free method of digital holographic
microscopy (DHM) combined with deep learning has recently been introduced which
is both time and cost effective. In this study, we demonstrate the application of digital
holographic microscopy with deep learning to classify the key CD4+ and CD8+ T cell
subsets. We show that combining DHM of varying fields of view, with deep learning,
can potentially achieve a classification throughput rate of 78,000 cells per second with
an accuracy of 76.2% for these morphologically similar cells. This throughput rate is
100 times faster than the previous studies and proves to be an effective replacement for
labelling methods.
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1. Introduction1

The adaptive immune response comprises white blood cells including T and B cells2

that can recognise and respond in an antigen-specific manner to a vast array of potential3

human pathogens. Of great significance, residing within this same subset of cells is the4

ability to generate memory cells, which can produce faster and stronger secondary5

responses. Vaccination/immunisation relies almost exclusively on the generation of6

such memory T and B cells to protect both individuals and populations [1].7
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T cells at the most basic level of functionality are divided into two groups based8

upon their expression of CD4 and CD8 cell surface proteins [2]. Typically, CD4+ T9

cells coordinate both B cell antibody responses and other T cells by the secretion of10

various cytokines [3], coordinated through expression of HLA class II, whereas CD8+11

T cells are usually directly capable of elimination of virally infected or tumourigenic12

cells by the detection of specific viral or tumour antigenic peptides presented on HLA13

class I molecules [4]. The numbers of T cells can vary significantly during the course14

of diseases. For example, in HIV the numbers of CD4+ T cells can reduce to very low15

levels over time [5], and recent data for patients with COVID-19 has shown loss of16

both CD4+ and CD8+ population in many patients undergoing ICU-level care [6, 7, 8].17

The identification of these cells requires destructive fixation or chemical staining18

which is both time consuming and costly. To circumvent these issues, label-free optical19

methods of Raman spectroscopy [9], autofluorescence lifetime imaging [10] or digital20

holographic microscopy (DHM) have been employed [11]. These methods provide21

molecular or morphological data and require an additional step of statistical analysis.22

Methods such as support vector machines (SVMs), random forests (RFs) or artificial23

neural networks (ANNs) have been popularly employed for these purposes. However,24

due to the inherent linearity, the methods of SVM and RF have proven to be less ef-25

ficient for classification than deep learning based ANNs [12]. Hence deep learning is26

being ever more widely applied to solve the classification problem in biophotonics [13].27

Another aspect of the mentioned systems is their throughput rate. While Raman28

spectroscopy provides high molecular specificity, it is slow and lacks the aspect of29

throughput [14]. DHM when combined with convolutional neural networks, on the30

other hand, provides the capability to differentiate morphologically similar cells with31

a recent demonstration of throughput rate of more than 100 cells/s [15]. This through-32

put rate is still too low: the gold standard flow cytomtery may allow a throughput rate33

of 70,000 cells/s [16].The throughput rate of the DHM system can be enhanced by34

reducing the magnification and numerical aperture (NA) of the microscopic objective35

which may in-turn result in a lower resolution of images. These lower resolution im-36

ages system can be transformed into ones of higher resolution using the single image37

super resolution (SISR) method of deep learning [17]. Recently, deep learning has38

been widely applied more broadly in photonics to improve the resolution of bright field39

optical microscope [18], to enable cross-modality super resolution in fluorescence mi-40

croscopy [19], to facilitate pixel super-resolution in coherent imaging systems Liu et al.41

[20], and to enhance the resolution of scanning electron microscopy [21].42

Here, we address the use of DHM for rapid, high throughput classification of CD4+43

and CD8+ T cells. We present a method based upon particle swarm optimization44

(PSO) [22] to identify an optimal CNN geometry for a given dataset. Subsequently,45

we compare the classification performance of DHM-CNN combination for different46

optical magnifications. We also present a new method of SISR in microscopy based on47

cycle generative adversarial networks (GANs) for the enhancement in the resolution of48

images acquired from 20X optical magnification to images acquired from 100X optical49

magnification. Compared to previous studies [19, 20, 21], which require an additional50

step of co-registering the field of view (FOV), our semi-supervised method improves51

the resolution of unpaired phase images which were independent of FOV and do not52

require any additional analytical methods. Our approach demonstrates a possibility of53
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high throughput of 78,000 cells/s using a combination of DHM with CNNs, which is54

nearly two orders of magnitude in excess of previous reports [15]. Importantly, this55

result for the first time makes a label-free DHM approach comparable to the gold stan-56

dard of flow cytometry.57

2. Methods58

2.1. Cell Isolation59

This work was undertaken after ethical review from the School of Medicine at the60

University of St. Andrews, utilising buffy coats of six different healthy donors ob-61

tained from NHS UK. PBMC were isolated from the buffy coats by centrifugation at62

room temperature on Ficoll-Pacque at density 1.077 g/ml (Thermofisher, UK). CD4+63

and CD8+ T cell populations were isolated using a negative depletion method follow-64

ing the manufacturers instructions (Dynabeads CD4+ T cells, 11346D and Dynabeads65

CD8+ T cells, 11348D, Thermofisher UK). Following the isolation, the purified cells66

were cultured in RPMI 1640 supplemented with 5 % Foetal Bovine Serum (both Ther-67

mofisher, UK).68

Flow cytometry was employed to confirm the purity of the purified cell samples.69

Each cell type was stained with combinations of antibodies CD3-PE and -FITC, clone70

HIT3a, eBioscience UK, CD4-PE and -FITC, clone OKT4, eBioscience UK, CD8-71

PE and -AF488, clones SK1, eBioscience UK, and FAB1509G, R&D UK. Cells were72

analysed on a Guava 8HT cytometer (Merck Millipore, UK).73

For the optical analysis, the cells were resuspended in Phosphate Buffer Saline74

(PBS) with 0.5% FBS solution to avoid aggregation. 20 µl of cell suspension was75

transferred to the center of a clean quartz slide (25.4 mm × 25.4 mm × 1 mm) chamber76

- formed by a 100 µm thick vinyl spacer. This chamber was covered from the top using77

a thin quartz slide (25.4 mm × 25.4 mm, 0.11 mm - 0.15 mm thickness) and finally the78

whole assembly was inverted and left for ∼20 minutes to avoid cellular motion.79

2.2. Digital holographic microscopy80

We modified a previously employed off-axis digital holographic microscope to cap-81

ture the holographic images of the cells with three different optical configurations [15].82

As shown in Fig. 1, the optical configurations were varied by changing the microscopic83

objectives to ones with magnifications of 20X (NA = 0.4, Nikon Japan 130314), 60X84

(NA = 0.8, Nikon) and 100X (NA = 0.9, Nikon Japan 230538) respectively. The sam-85

ple was placed between the two objectives and the image was interfered with the light86

from the reference arm at the surface of the CCD camera (Ximea XiQ MQ013MG-E2).87

This camera was set to accumulate 16 bit images with a frame rate of 60 fps and an88

exposure time of 33.3 ms.89

We acquired the data for the two cell types separately for each optical configuration.90

The data acquired using the three objectives varied with the magnification. With an91

increase in magnification, the field of view (FOV) was reduced. For the 20X objective92

(lateral resolution: 0.66 µm; axial resolution: 6.65 µm), we achieved an FOV of 10093

µm × 130 µm; for the 60X objective (lateral resolution: 0.31 µm; axial resolution: 1.4794

µm), we achieved 68 µm × 64 µm for the FOV and 100X objective (lateral resolution:95
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Figure 1: Schematic of different optical configurations used with digital holographic microscope. The
three objectives with the magnifications of 20X, 60X and 100X were employed for data acquisition. The sub
figures indicate three bright field FOVs acquired for each objective. The scale bar indicates 10 µm for each
image.

0.29 µm; axial resolution: 1.31 µm) allowed for an FOV of 40 µm × 32 µm. Since96

these FOVs provide with cell images of different radii (in px), we implemented Haugh97

transform based method.98

2.3. k-means segmentation99

The phase images calculated using the three optical configurations demonstrate dif-100

ferent degrees of resolutions. Hence to identify and understand the degree of granular-101

ity discovered using each configuration, we implemented a method of k-means cluster-102

ing based image segmentation [23]. We considered the phase images corresponding to103

each configuration individually. To identify the number of segmentation classes across104

the cellular structure, we increased the number of segmentation classes in steps of unity105

until the algorithm returned a solution with discontinuous boundaries.106

In this specific case of DHM, as the phase images represent the refractive index107

variation across the image, the classes represent this distribution. This in turn demon-108

strates the variation of granularity analyzed using the phase images evaluated using109

each FOV.110

2.4. Optimization of the CNN geometry111

The phase images obtained using the three configurations were of different sizes,112

for the 20X objective the phase images were 52 × 52 pixels (px) whereas for the 60X113

objective, the phase images were of size 100 × 100 px and for 100X objective the phase114

images were acquired with a size of 200 × 200 px. We optimized a CNN geometry for115

each of the three configuration by implementing a PSO based approach. PSO is a type116

of swarm intelligence method for global optimization where each individual (called117

particle) of the population (called swarm) adjust their trajectory towards the previous118
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best position attained by any member of their topological neighborhood. This approach119

is used to minimize the error output of an objective function. In our case, we consider120

the objective function as the classification sensitivity and specificity achieved using a121

given network geometry (particle).122

To identify the best CNN geometries, we divided the complete dataset for each op-123

tical configuration into training, validation and test sets such that the training/validation124

set and testing set came from different donors. Details of segmentation of above125

datasets have been summarised in table 1.126

S.No. 20X 60X 100X
CD4 CD8 CD4 CD8 CD4 CD8

Train/Val 2385 2056 1066 971 704 704
Test 344 323 84 77 104 96

Table 1: Table summarizing the total number of single cells phase images considered
for different optical configurations.

We implemented the PSO algorithm by constructing an objective function in the127

form of a training instance. Each training instance was designed to develop a network128

geometry and providing the performance of the geometry on the validation dataset.129

For each training instance, we trained the CNNs using an Adam optimizer [24] with130

maximum epochs set at 100, initial learning at 1 × 10−3, L2 regularization at 5 × 10−6,131

validation frequency at 40 iterations and validation patience of 5 iterations with a mini132

batch size of 128 images. The network geometry was developed by the virtue of pa-133

rameters in the form of each particle in the PSO algorithm. These parameters dictated134

the number of layers, type of layers, number of filters in each layer, stride and padding135

for each layer. To conserve maximal input image information, the convolution layers136

were restricted with filter sizes between 1 and 5. To conserve the memory of system137

and avoid over estimation, number of convolution filters for any layer were restricted138

to a maximum of 50. The number of neurons in fully connected layer and the dropout139

ratio were restricted to be more than zero. To conserve the network geometry, the input140

layer was set as image input layer with the size of image in the dataset and the output141

layer was set with fully connected layer with 2 neurons (representing each class) fol-142

lowed by softmax layer and a classification layer. We evaluated the cost function for143

each training instance as:144

Sensitivity =
T P

T P + FN
(1a)

Specificity =
T N

T N + FP
(1b)

Cost = 1 −
Sensitivity + Specificity

2
(1c)

Here, in Eq. 1a and 1b, TP is true positive, TN is true negative, FP is false positive and145

FN is false negative.146

We considered a total of 40 particles and a single swarm (optimized from 2 to 60147

in the steps of one unit to avoid divergence) to find isolate an optimal architecture148
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of CNN for each image size. Each particle’s position and velocity were initialized149

randomly. After the calculation of cost for all the particles, the particle with least cost150

was considered as the reference such that the position and velocity of all the other151

particles were updated relatively to the reference.152

2.5. Cycle generative adversarial training for image transformation153

The phase images evaluated using the three optical configuration show variability154

in the resolution due to different resolving powers of the microscopic objectives. As155

mentioned in section 2.2, the phase images evaluated from the 20X objective show156

the least resolution whereas the images captured using 100X objective display high-157

est resolution. Hence to gather high resolution images with high throughput rate, we158

considered training a CNN to transform the images acquired using 20X objective into159

images acquired using 100X objective. In the current DHM system, it is very challeng-160

ing to identify same cells using two different configurations, hence we trained the deep161

networks on unpaired images using cycle-generative adversarial training [25, 26].162

Figure 2: Schematic of cycle GAN model applied for super-resolving the phase images.The genera-
tive models G20X→100X and G100X→20X are trained with in a cycle consistent manner such that the inverse
transformation of the images is conserved.

As shown in Fig. 2, we developed two CNNs such that the input image could be163

down-sampled and then up-sampled to a required size at the output. For the transfor-164

mation of phase images captured using 20X optical configuration to 100X optical con-165

figuration, we developed and optimized a 54 layered CNN (G20X→100X B Ga) whereas166

for the inverse translation, we developed a 34 layered CNN (G100X→20X B Gb). These167

networks were optimized by changing the network filters in the step of 8 units with168

respect to their performance on validation dataset. With respect to the training mod-169

ule requirement, we also developed and two discriminator networks with 23 layers170

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473983
http://creativecommons.org/licenses/by/4.0/


(D100X B Da) and 15 layers (D20X B Db) respectively. We trained these networks171

with 300 randomly selected phase images each of CD4+ and CD8+ T cells from both172

the 20X and 100X optical configurations. Out of these, we considered 225 images for173

training and 75 images for validation.174

For each training instance, we calculated a generative adversarial loss for both the175

generative networks. We also calculated a cycle consistency loss using the combination176

of two networks. The generative adversarial loss was evaluated as:177

LGAN(Gi,Di, X,Y) = IEy∼pdata(y)[logDi(y)] + IEx∼pdata(x)[log(1 −Di(Ga(x)))] (2)

Here, i ∈ {a, b}. The cycle consistency loss Lcyc(Ga,Gb) is computed, to satisfy the178

condition x→ Ga(x)→ Gb(Ga(x)) ≈ x, as:179

Lcyc(Ga,Gb) = IEx∼pdata(x)[||Gb(Ga(x)) − x||1] + IEy∼pdata(y)[||Ga(Gb(y)) − y||1] (3)

Here, the variables x and y represent the input and output images for the given network180

configuration. The combined loss was calculated as:181

L(Ga,Gb,Da,Db) = LGAN(Ga,Da, X,Y)
+LGAN(Gb,Db,Y, X)

+λLcyc(Ga,Gb)
(4)

Here, λ is a hyperparameter which we chose as 10 for this application. During the182

training, the objective is to minimize the combined loss for the generator networks183

while maximizing the loss for the discriminator networks:184

G∗a,G
∗
b = arg min

Ga,Gb

max
Da,Db

L(Ga,Gb,Da,Db) (5)

To achieve minimum training loss and avoid divergence during training, we consid-185

ered the training batch images in the mini-batches of 45 images. An Adam optimizer186

was considered with a learning rate of 2 × 10−4, gradient descent factor of 0.5 and a187

squared gradient descent factor of 0.99. We validated the network performance after 25188

iterations using 25 randomly sampled images for both the cell types from the validation189

set. The training was continued for a total of 5000 epochs.190

3. Results191

3.1. Cell isolation192

Untouched human blood CD4+ and CD8+ T cells were obtained by negative de-193

pletion, in which other cells not of interest were removed using cell-lineage specific194

antibodies. Flow cytometry (Fig. 3) confirmed the purity of the cell populations in line195

with our previous studies [27, 28] with CD4+ cells isolated at an average of 89% (n=3)196

and CD8+ cells at an average of 86% (n=3).197
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Figure 3: Representative flow cytometric plots of CD4 and CD8 T cells purified by negative depletion.
Purified cell samples were stained with anti-CD3, -CD4 or –CD8-FITC or AF488 coupled antibodies and
analysed by flow cytometry for (A) CD4 T cells and (B) CD8 T cells. Average purity of three separate
purifications is reported in the main text.

3.2. Automated detection of cells and phase image calculation198

We captured bright field and fringe images using all the three configurations de-199

scribed above. These images presented with variable radii of single cells, hence to200

automatically detect these cells, we implemented Haugh transform using a prewritten201

MATLAB script [29].202

We optimized the search parameters of radii, gradient threshold and radius of search203

filter with respect to the images acquired for each configuration. In order to opti-204

mize these parameters, we considered the size of cells, mean magnitude of gradient for205

empty space and the radius of cells for each configuration.206

The images accumulated using the three optical configuration exhibit varying FOVs207

and resolutions. Fig. 4 demonstrate the automatic cellular detection for various FOVs.208

As summarised in Table 2, the FOV achieved by using the 20X objective was greatest at209

100 µm × 130 µm (which may allow imaging a maximum of 1300 cells in one snapshot210

which potentially allowed a throughput rate of 78,000 cells per second), however, the211

resolution of the accumulated images was poor. For imaging using the 60X objective,212

a smaller FOV of 68 µm × 64 µm was achieved (allowing a maximum of 36 cells213

resulting in the highest possible throughput of 2,160 cells per second) with a reasonable214

resolution. Imaging using the 100X objective resulted in a much smaller FOV of 40 µm215

× 32 µm (enclosing a maximum of 12 cells and allowing a highest possible throughput216

of 720 cells per second) with the highest resolution.217

With respect to the numerical aperture of the microscopic objectives, the retrieved218

phase images show the differences in resolution. The phase image recovered using 20X219
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Figure 4: Automatic detection of cells using Haugh transform Subsection of Bright field images recovered
from (a) 20X Objective (100 µm × 130 µm) (b) 60X objective (68 µm × 64 µm) and (c) 100X objective (40
µm × 32 µm). Blue highlighted regions represent the automatic detection of cells for three FOV’s using
Haugh transform circular detection. Here the boxes show the cropped area of images for single cells.

Optical Configuration Field of View Realizable Throughput
20X 100 × 130 µm 78000 cells/s
60X 68 × 64 µm 2160 cells/s

100X 40 × 32 µm 720 cells/s

Table 2: Summary of field of views and maximum realizable throughput for the three
optical configurations.

objective with a numerical aperture (NA) of 0.4, displays the least resolution (lateral:220

0.66 µm; axial: 6.65 µm) for both the cell lines (Fig. 5 (a),(d)). The application of221

60X objective with the NA of 0.8 results in moderately resolved (lateral resolution:222

0.31 µm; axial resolution: 1.47 µm) phase images (Fig. 5 (b),(e)) and the phase images223

calculated from the fringe images captured using the 100X objective (with the NA of224

0.9) were highly resolved (lateral resolution: 0.29 µm; axial resolution: 1.31 µm).225

After the extraction of single cell phase images, we employed k-means clustering226

based segmentation to quantify the granularity achieved using different configurations.227

As anticipated, the phase images of the two cell types show a very similar variation228

in resolution with respect to the objectives. As shown in sub-figures of Fig. 5, the229

algorithm when applied over the phase images of the two cells for the 20X objective,230

saturated at 8 segments. For the phase images accumulated using 60X objective, the231

algorithm saturated at 9 segments for CD4 cells whereas it saturated at 10 segments for232

the CD8 cells. For its application on phase images evaluated using 100X objective, the233

algorithm presented a saturation at 11 segments for both the cell types.234

These results clearly demonstrate that the images acquired using the three objec-235

tives show a variability in resolution. It is also evident that with an increase in the236

numerical aperture of the objective, these images provide the information of a wider237

range of variations across the cellular structure.238

3.3. Classification of phase images239

The next step for the analysis of the single phase images was to classify them240

with respect to the cell types. This was achieved by employing the CNNs which were241
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Figure 5: Normalized phase images of T Cells. Single cell normalized phase images of the CD4 cells
retrieved using (a) 20X objective (b) 60X objective (c) 100 X objective; Single cell normalized phase images
of CD8 cells retrieved using (d) 20X objective (e) 60X objective (f) 100X objective. Colorbar represents
the normalized phase gain of the signal arm with respect to the reference arm. Here the sub figures are the
k-means based image segmentation of these images.

optimized by implementing PSO algorithm as explained before.242

The three optical configurations, resulted in different sizes of single cell phase im-243

ages as 52 × 52 px for 20 X objective, 100 × 100 px for 60 X objective and 200 × 200244

px for 100X objective. Hence the optimal CNN geometry also displayed a variation in245

size. For the 20X optical configuration, the optimal CNN geometry was identified with246

a total of six layers with 39,998 parameters. Using the validation set, the CNN returned247

a sensitivity of 63.13 % ± 2.23 % and specificity of 64.93% ± 5.65%, whereas when248

considered for the test dataset, the CNN resulted in a sensitivity of 64.07 % ± 2.64 %249

and a specificity of 56.83 % ± 2.36 %.250

For the 60X optical configuration, the optimal CNN geometry was identified as a251

slightly longer network. This geometry comprised a total of 16 layers with 226,707252

parameters. On the validation set, the classification efficiency of the CNN resulted in253

70.94 % ± 2.27 % sensitivity and 65.52 % ± 2.08% specificity, whereas on the test254

set the trained CNN resulted in a specificity of 69.92 % ± 3.91% and a sensitivity of255

69.59 % ± 3.10 %. Finally, the optimization routine was also implemented on the256

phase images acquired using the 100X optical configuration and this resulted in a CNN257

geometry of 24 layers with 1,603,327 parameters. This geometry when applied over258

the phase images from validation dataset resulted in the specificity of 80.28 % ± 1.17259

% and a sensitivity of 77.77 % ± 2.72 %. The specificity and sensitivity calculated260

using the test data were 82.5 % ± 3.96 % and 73.18 % ± 7.55 % respectively.261

The interesting aspect of this comparison is the trend of increasing classification262

accuracy (Fig. 6) and decreasing throughput rate with respect to the optical configu-263

ration. For the 20X configuration, the optimal CNN geometry resulted in a validation264

accuracy of 62.28 % ± 2.54 % and 59.43 % ± 1.99 % as the test accuracy with an265

allowed maximum throughput rate of 78,000 cells per second. For the optical config-266

uration with 60X magnification microscopic objective, the optimum CNN resulted in267
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Figure 6: Comparison between throughput rate and classification accuracy obtained using different
optical configurations. For the validation set, the values for classification accuracy range from 62.28 % ±
2.54 % for 20X objective, 69.31 % ± 2.04 % for 60X objective and 78.91 % ± 1.57 % for 100X objective.
For the test set, a classification accuracy of 59.43 % ± 1.99 % for 20X objective, 69.31 % ± 2.04 % for 60X
objective and 76.2 % ± 5.27 % for 100X objective was obtained. The three optical configurations allow for
78000 cells/s, 2160 cells/s and 720 cells/s as the throughput rate for 20X, 60X and 100X objective respec-
tively. Here the curve in blue represents classification accuracy for validation set, curve in red represents the
accuracy for test set and curve in black shows the variation in throughput rate for the three configurations.

67.98 % ± 0.27 % validation accuracy and 69.31 % ± 2.04 % test accuracy. While268

considering the dataset accumulated using the microscopic objective with 100X mag-269

nification, the optimal CNN geometry resulted in a maximum classification accuracy270

with 78.91 % ± 1.57 % for validation set and 76.2 % ± 5.27 % for the test set. These271

results confirm that by increasing the magnification of a holographic system, one may272

acquire an increasingly more precise classification of immune cells. However, with in-273

creasing magnification the throughput limit of the system deteriorates. Hence to keep274

an increased throughput limit and simultaneously improving the classification ability275

of the system, we trained another deep learning based model to transform the phase276

images acquired from 20X configuration to the phase images which may represent the277

acquisition from 100X optical configuration.278

3.4. Image transformation and classification279

The single image super resolution transformation was implemented on the phase280

images acquired using 20X configuration to convert them into the phase images ac-281

quired using 100X configuration. To achieve this the DL models were trained using282

the cycle GAN training method as explained before.283

The trained generative models resulted in astounding transformations of the phase284

images. As shown in Fig. 7, the trained deep generative model transformed the phase285

images with a high speed of 6.89 milliseconds per transformation (limited by the the286

processing power of the computer which can further be improved). In the mentioned287
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figure, (a) shows the transformation of CD4+ T cells from 20X configuration into 100X288

configuration; (b) demonstrates the same transformation of CD8+ T cells. An interest-289

ing aspect which is visible on the transformed images is that the deep models auto-290

matically learned to draw an outline around the periphery of the cells. Another aspect291

which is evidently visible from these transformations is the variation in the shape of the292

cells. This can be explained with respect to the cycle GAN type training module. The293

CNNs trained with this training module learn to transform and simultaneously inverse294

transform the images between the two domains. This learning process makes sure that295

the statistics and the functional relationship between the two domains are maintained.296

Figure 7: Demonstration of image transformation using the trained deep generative model. Transfor-
mation of phase images of (a) CD4+ and (b) CD8+ T cells acquired from 20X optical configuration into
100X optical configuration.

After the transformation of the phase images, we performed a classification using297

the pre-trained optimal CNN geometry. This resulted in the classification accuracy of298

45.93 % ± 2.46 % for the validation set and 47.91 % ± 2.05 % for the test set. These299

values were below the expectation and which may be explained due to the presence of300

boundaries and overall shape orientation of the cells. Hence, to overcome these prob-301

lems, we re-trained the previously trained networks on the transformed image dataset.302

This resulted in satisfactory results with sensitivity of 81.55 % ± 0.81 % and a speci-303

ficity of 84.72 % ± 1.16 % for the validation set and, the sensitivity and specificity of304

79.77 % ± 3.32 % and 81.77 % ± 1.51 % for test set respectively.305

These results display the increased capability in terms of classification accuracy for306

the 20X optical configuration. Hence, the application of cycle generative models would307

be beneficial for improving the resolution of system and simultaneously improving the308

throughput rate by up to two orders of magnitude.309

4. Conclusion310

In conclusion, we have presented a comparative study for the label free classifica-311

tion of T-cell subsets namely CD4+ and CD8+ T cells using a combination of digital312

holographic microscopy and convolutional neural networks. We compare the perfor-313

mance of DHM - CNN based classification by considering three different optical con-314

figurations. These configurations were considered by changing the optical magnifica-315

tion of the microscopic objectives between 20X, 60X and 100X. The T - cell subsets,316
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being morphologically very similar, makes it very challenging for classification using317

the CNNs. Hence we report a maximal classification accuracy of 76.2% by using a318

microscopic objective with 100X magnification. Additionally, we demonstrate that the319

application of cycle GAN type training may help in enhancing the throughput rate and320

resolution of a DHM based system by up to two orders of magnitude.321

Author Contributions322

KD and SJP developed the project. RKG performed the experiments and developed323

the numerical analysis procedures. RKG wrote the paper with contributions from SJP324

and KD which was approved by NH and GPAM. KD, SJP and NH supervised the325

project.326

References327

[1] B. Pulendran, R. Ahmed, Immunological mechanisms of vaccination, Nature328

immunology 12 (2011) 509.329

[2] W. Ellmeier, S. Sawada, D. R. Littman, The regulation of cd4 and cd8 coreceptor330

gene expression during t cell development, Annual review of immunology 17331

(1999) 523–554.332

[3] K. A. Read, M. D. Powell, B. K. Sreekumar, K. J. Oestreich, In vitro differentia-333

tion of effector cd4+ t helper cell subsets, in: Mouse Models of Innate Immunity,334

Springer, 2019, pp. 75–84.335

[4] A. M. Van der Leun, D. S. Thommen, T. N. Schumacher, Cd8+ t cell states in336

human cancer: insights from single-cell analysis, Nature Reviews Cancer (2020)337

1–15.338

[5] G. Doitsh, W. C. Greene, Dissecting how cd4 t cells are lost during hiv infection,339

Cell host & microbe 19 (2016) 280–291.340

[6] N. P. Restifo, M. E. Dudley, S. A. Rosenberg, Adoptive immunotherapy for341

cancer: harnessing the t cell response, Nature Reviews Immunology 12 (2012)342

269–281.343

[7] D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy,344

Nature Reviews Cancer 12 (2012) 252–264.345

[8] B. Diao, C. Wang, Y. Tan, X. Chen, Y. Liu, L. Ning, L. Chen, M. Li, Y. Liu,346

G. Wang, et al., Reduction and functional exhaustion of t cells in patients with347

coronavirus disease 2019 (covid-19), Frontiers in Immunology 11 (2020) 827.348

[9] M. Chen, N. McReynolds, E. C. Campbell, M. Mazilu, J. Barbosa, K. Dholakia,349

S. J. Powis, The use of wavelength modulated raman spectroscopy in label-350

free identification of t lymphocyte subsets, natural killer cells and dendritic cells,351

PLoS One 10 (2015) e0125158.352

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.23.473983doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.473983
http://creativecommons.org/licenses/by/4.0/


[10] A. J. Walsh, K. P. Mueller, K. Tweed, I. Jones, C. M. Walsh, N. J. Piscopo, N. M.353

Niemi, D. J. Pagliarini, K. Saha, M. C. Skala, Classification of t-cell activation354

via autofluorescence lifetime imaging, Nature Biomedical Engineering (2020)355

1–12.356

[11] N. McReynolds, F. G. Cooke, M. Chen, S. J. Powis, K. Dholakia, Multimodal357

discrimination of immune cells using a combination of raman spectroscopy and358

digital holographic microscopy, Scientific reports 7 (2017) 43631.359

[12] E. Raczko, B. Zagajewski, Comparison of support vector machine, random forest360

and neural network classifiers for tree species classification on airborne hyper-361

spectral apex images, European Journal of Remote Sensing 50 (2017) 144–154.362

[13] P. Pradhan, S. Guo, O. Ryabchykov, J. Popp, T. W. Bocklitz, Deep learning a363

boon for biophotonics?, Journal of Biophotonics 13 (2020) e201960186.364

[14] L. Woolford, M. Chen, K. Dholakia, C. S. Herrington, Towards automated cancer365

screening: label-free classification of fixed cell samples using wavelength modu-366

lated raman spectroscopy, Journal of biophotonics 11 (2018) e201700244.367

[15] R. K. Gupta, M. Chen, G. P. Malcolm, N. Hempler, K. Dholakia, S. J. Powis,368

Label-free optical hemogram of granulocytes enhanced by artificial neural net-369

works, Optics express 27 (2019) 13706–13720.370

[16] J. Picot, C. L. Guerin, C. Le Van Kim, C. M. Boulanger, Flow cytometry: ret-371

rospective, fundamentals and recent instrumentation, Cytotechnology 64 (2012)372

109–130.373

[17] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, Q. Liao, Deep learning for374

single image super-resolution: A brief review, IEEE Transactions on Multimedia375

21 (2019) 3106–3121.376
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