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Abstract 

Population genetics seeks to illuminate the forces shaping genetic variation, often based 

on a single snapshot of genomic variation. However, utilizing multiple sampling times to study 

changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces 

on short time scales. This study compares whole-genome sequence variation of recently collected 

natural population samples of Drosophila melanogaster against a collection made approximately 35 

years prior from the same locality – encompassing roughly 500 generations of evolution. The 

allele frequency changes between these time points would suggest a relatively small local effective 

population size on the order of 10,000, significantly smaller than the global effective population 

size of the species. Some loci display stronger allele frequency changes than would be expected 

anywhere in the genome under neutrality – most notably the tandem paralogs Cyp6a17 and 

Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid 

insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old 

and new samples, but a larger number of adaptation targets may have affected SNP-level 

differentiation versus window differentiation. We also find evidence for strengthening latitudinal 

allele frequency clines: northern-associated alleles have increased in frequency by an average of 

nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at 

random SNPs. This project underscores the scientific potential of using multiple sampling time 

points to investigate how evolution operates in natural populations, by quantifying how genetic 

variation has changed over ecologically relevant timescales.  
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Introduction 

A central goal in population genetics is to understand the relative contributions of neutral 

and non-neutral forces on genetic variation. Typical genome-wide analyses of genetic variation 

examine these forces across a wide interval of evolutionary time by examining a single snapshot 

of genetic variation, reflecting events from roughly the last 4Ne generations (where Ne is the 

effective population). Adaptation, however, can occur over much shorter ecological timescales in 

natural populations (Daborn et al. 2001, Colosimo et al. 2005, Hoekstra et al. 2006, Campbell-

Staton et al. 2017, Pélissié et al. 2018). While researchers have long sought to understand short-

term adaptation, decreasing sequencing costs in recent years have sparked a renewed interest in 

short-term adaptation studies.  

Utilizing multiple sampling times to study temporal changes in allele frequencies can 

clarify the relative roles of neutral and non-neutral forces on very short time scales. This 

technique helps minimize neutral genetic differences when comparing genomic variation 

between time points. For example, evolve and resequence (E&R) studies use a multiple sampling 

time technique by evolving laboratory populations in controlled environments and observing 

changes in genetic variation over perhaps dozens of generations. E&R studies have been 

conducted on multiple species including E. coli (Barrick et al. 2009), influenza (Foll et al. 2014), S. 

cerevisiae (Parts et al. 2011), and D. melanogaster (Turner et al. 2011) to uncover important dynamics 

and targets of natural selection. One disadvantage of E&R studies is that they may not always 

reveal how selection works in nature because they are typically derived from laboratory 

populations. Laboratory populations generally contain only a subset of natural genetic diversity, 

and are kept in environments free of natural enemies, and are typically exposed to only specific 

controlled environmental stresses (potentially minimizing the pleiotropic consequences of 

laboratory adaptation). 
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There have now been a multitude of temporal population genomic studies in humans 

(Burger et al. 2007, Mathieson et al. 2015, Hofmanová et al. 2016) and other mammals (Noonan et 

al. 2005, Lindqvist et al. 2010, Castañeda-Rico et al. 2020). Short-lived organisms such as 

Drosophila melanogaster, which goes through hundreds of generations within a single human 

generation (about 15 generations per year; Turelli and Hoffmann 1995; Pool 2015), allow the 

study of substantially more evolution over shorter time scales. A study by Bergland et al. (2014) 

found evidence for dozens of genomic loci showing seasonal allele frequency changes in D. 

melanogaster that could not be explained by drift alone. Subsequent studies have expanded on 

those findings by leveraging seasonal population genomic data across multiple years from dozens 

of locations (Kapun et al. 2020; Machado et al. 2021). Researchers have also sequenced museum 

specimens of the North American honeybee to study genomic changes in response to the 

introduction of a parasitic mite across roughly 50 generations (Mikheyev et al. 2015). Feder et al. 

(2016) used multiple sampling time points in humans to examine the roles of hard and soft 

selective sweeps in HIV over short time scales. More recently, Chen et al. (2019) examined a 

natural pedigreed population of 3984 Florida scrub jays over a period of 24 years (~5 

generations). The authors discovered several SNPs under directional selection during this brief 

interval, suggesting the importance of rapid adaptation in natural populations.  

In D. melanogaster, a few studies have examined long-term frequency changes in specific 

polymorphisms (e.g. Umina et al. 2005; Kapun et al. 2016).  However, none have examined 

changes in genome-wide genetic variation across multiple decades in this population genetics 

model. The research described here compares genomic variation of a recently collected sample of 

D. melanogaster to samples from the same locality collected approximately 35 years ago (~500 

generations ago). The collection of flies from 35 years ago has been maintained in a lab as 65 

independent isofemale strains since their collection. Because it is prohibitively unlikely that the 
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same mutation has occurred in many individual strains, and because selection on the limited 

variation present at sampling is inefficient in these small lab cultures, the genetic variation we 

observe across these 65 strains should represent an accurate representation of genetic diversity in 

this population 35 years ago. This study gives us an unusually direct way of quantifying change in 

genomic variation across decades, allowing us to ask important questions about how evolution 

works in nature in a populous insect species. Because we can focus on a much narrower time 

scale than typical population genomic analyses, we can begin to examine how much selection has 

occurred over the last ~35 years. We also investigate regions of the genome that may have 

undergone very recent selection, which could inform more precise investigations into genes 

associated with, for example, insecticide resistance or climate adaptation.  

 

Results 

Genome Sequencing and Quality Control 

 Whole genome sequences were extracted from 65 wild-derived isofemale strains of 

Drosophila melanogaster originally collected from Providence, Rhode Island (USA) between 1975 

and 1983. Mean sequencing depth per individual genome ranged from 5.3X to 72X, with an 

average of 24X (Table S1). We returned to Providence in Fall 2014 and Spring 2015 to collect 

two distinct seasonal samples. Pooled sequencing was used to maximize the number of flies that 

could be included and hence the precision of allele frequency estimates. From each wild-collected 

female, we included one F1 daughter in the pool if morphological examination of that same 

female’s sons confirmed species identity. 247 flies divided into 6 pools were sequenced in the fall 

sample (with a total mean depth of 384X) and 408 flies divided into 18 pools were sampled in the 

spring sample (with a total mean depth of 194X; Table S2).  
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 We applied two quality control approaches to confirm the expected genetic composition 

of the old isofemale lines. First, we performed a pairwise analysis of identity-by-descent (IBD). 

One pair of genomes was found to be essentially identical, apparently reflecting an accidental 

stock duplication, and one member of this pair was therefore excluded from subsequent analysis. 

Other minor instances of apparent relatedness were also noted and masked (Table S3). As a 

further check for contamination, we checked IBD was found between Providence strain genomes 

and the common laboratory genetic background represented by the D. melanogaster reference 

strain. No large-scale IBD was found outside regions of known recurrent IBD; the largest blocks 

spanned the chromosome 3 centromere, which often shows prominent IBD between 

independent strains from the same region (Lack et al. 2015).  

We also performed Principle Components Analysis (PCA) to test for any genetic outliers 

among the old strains and confirm their expected relationships to other populations. All of the 

old Providence genomes clustered with other northeast US genomes (New York), and between 

those from North Carolina and those from France (Figure 1), as anticipated based on a known 

latitudinal cline of African versus European ancestry (Kao et al. 2015; Bergland et al. 2016). We 

further investigated whether the old Providence population sample showed any unusual pattern 

of variance among individuals with regard to the PCA results. We initially focused on the within-

population standard deviations of principle components PC1 and PC2, because their weightings 

corresponded to 7.3% and 1.6% of the variation among individuals, respectively, whereas PC3 

through PC32 only explained 0.4 – 0.6% each (Table S4). We found that the Providence sample 

had SD(PC1) and SD(PC2) values intermediate to the other analyzed population samples (Figure 

S1). Focusing on the other two larger samples, the European FR sample from France and the 

North Carolina RAL population with somewhat greater African ancestry than Providence, we 

find that Providence had significantly lower SD(PC1) than France but significantly higher 
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SD(PC1) than RAL; whereas for SD(PC2) we find that Providence had modestly but significantly 

lower SD(PC2) than either FR or RAL (bootstrap-resampled P < 0.0001 in each case). Similar 

results were obtained when assessing the proportion of PC outliers for Providence compared with 

FR or RAL (the samples with adequate sizes for this analysis), with outliers defined as the 

proportion of individuals more than two population SDs from the population mean. For both 

PC1 and PC2, Providence’s outlier proportion was intermediate to FR and RAL (Figure S1), and 

none of the differences were statistically significant (z test P > 0.5 in each case). These results 

suggest that the old Providence genomes show levels of genetic heterogeneity consistent with 

those expected for a geographically uniform North American population sample of D. 

melanogaster. 

 

Inversion Analysis 

Because chromosomal inversions suppress recombination in a heterozygous state 

(Sturtevant and Beadle 1936), they have long been believed to play important roles in 

evolutionary processes. Indeed, research has established that inversions can play roles in natural 

selection (Kirkpatrick and Barton 2006; Kapun et al. 2016) and reproductive isolation (Noor et al. 

2001). D. melanogaster inversions are also known to affect genetic diversity over broad 

chromosomal scales (Corbett-Detig et al. 2012; Pool et al. 2012). We therefore wanted to measure 

common inversion frequencies in both the old and new samples.  

As a reference point, we note that Mettler et al. (1977) assayed inversion frequencies from 

wild-collected flies including from Portland, Maine and Niagara Falls, New York. In these two 

populations, they found the fraction of autosomal chromosome arms carrying an inversion to be 

3.98% and 0.0125%, respectively. In contrast, our old Providence strains had 12.1% inverted 

autosomal arms. While geographic variation in inversion frequencies is possible, another 
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possibility for our lab-maintained strains is associative overdominance – that because inversion 

polymorphism can keep large chromosomal regions heterozygous, it may be selectively 

maintained in small lab cultures by buffering against recessive deleterious variants, which are 

common on randomly sampled chromosomes from wild populations (Greenberg and Crow 

1964). By comparison, our new fall and spring samples had 9.06% and 8.72% inverted 

autosomal arms, respectively. Although these frequencies are slightly lower than our old sample, 

we can not rule out the possibility that inversions have actually increased in frequency through 

time, in light of the Mettler et al. (1977) data and the associative overdominance hypothesis 

described above.  

Seasonal change in Drosophila inversion frequencies is a long-standing topic of study (e.g. 

Dobzhansky 1943). We therefore asked whether inversion frequencies varied seasonally between 

our fall and spring samples (Table S5). Here, we simulated sampling of individuals and reads 

based on empirical SNP frequencies and empirical depth of coverage at inversion-associated 

SNPs and asked how often we observed inversion frequency differences between seasons as large 

as what we observed in the real data (see Materials and Methods). We found that sampling 

variation could not explain seasonal inversion frequency differences for three inversions: 

In(2R)NS, In(3R)Mo, and In(3R)P. The observed frequency of In(2R)NS decreased from 0.068 in 

the fall to 0.029 in the spring, a shift that our resampling simulation indicated was unlikely to be 

due to sampling variance (p=0.0033 based on simulations; see Materials and Methods). In 

contrast, In(3R)P rose in frequency from 0.0394 in fall to 0.0887 in spring, with an associated P 

value of 0.0016. A second inversion on the same chromosome arm, In(3R)Mo, also increased, 

from 0.055 in fall to 0.0895 in spring, for an associated P value of 0.0301. The frequency 

differences we observed in other common inversions (In(2L)t, In(3L)P, In(3R)C, and In(3R)K) 

could all be explained by sampling variance. Our results are mostly in line with Kapun et al. 
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(2016), who also described significant seasonal differences in In(2R)NS and In(3R)P, but not 

In(3R)Mo, from eastern US populations. Whereas, Machado et al. (2021) analyzed the association 

between seasonally-variable SNPs and inversion breakpoint regions, finding significant 

associations for In(2L)t and for a set of three inversions on arm 3R, but not for In(2R)NS.  

Although we appear to have observed real frequency changes at these three inversions, it 

is unclear why. One hypothesis is that there was drift caused by seasonally reduced winter 

population size. Under such a model, one could expect inversion frequency differences between 

sampling locations in the spring sample, since local population sizes should be lower leading up 

to the spring samples than for the fall samples. We thus asked whether inversions differed in 

frequency between our five sampling locations (which are all within 1.7 km of each other) within 

each season. Here, we employed a similar simulation-based sampling strategy as for the seasonal 

inversion analysis above. Instead of asking how often we observed seasonal differences as large as 

we observed empirically, we asked how often we observed inversion frequency differences 

between sampling locations as large as what we observed in the real data (see Materials and 

Methods). We did not find evidence of inversion frequency differences between sampling 

locations in the fall sample; all differences could be explained by sampling variance. This was not 

the case for the spring data (Figure 2B). All three inversions where we found significant seasonal 

differences (In(2R)NS, In(3R)Mo, and In(3R)P), also showed significant frequency differences 

between sampling locations. Additionally, In(3R)C also showed significant differences between 

sampling locations, although its seasonal difference could be explained by sampling variation 

(p=0.703). Our observed seasonal and spatial differences in inversion frequencies could 

potentially be explained by genetic drift, due to low population sizes coming out of a cold winter 

season. This explanation is consistent with the higher genome-wide genetic differentiation 

observed between spring sample locations (mean FST = 0.046) than between fall samples (mean 
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FST = 0.009; Table S6). However, it remains plausible that some inversions may have seasonally-

variable fitness consequences, in line with the parallel findings from our study and Kapun et al. 

(2016) for In(2R)NS and In(3R)P, and between our study and Machado et al. (2021) for arm 3R 

inversions, although the specific patterns observed may depend on geography and other factors. 

 

Genome-wide Ancestry may have Slightly Shifted Toward European Alleles 

North American populations of D. melanogaster were founded roughly 150 years ago 

(Keller 2007) and involve an admixture event between a majority European-like gene pool and a 

minority African-like gene pool (Caracristi and Schlötterer 2003; Duchen et al. 2013; Pool 2015). 

This admixture may have resulted from secondary contact between African migrants introduced 

to the Caribbean (or neighboring regions) and European migrants potentially introduced to the 

northeast US (Keller 2007), ultimately generating an ancestry cline along the east coast of North 

America (Kao et al. 2015; Bergland et al. 2016). Such admixture can have evolutionary 

consequences by, for example, introducing novel adaptive variants (e.g. Racimo et al. 2015) or 

generating epistatic interactions between alleles of different ancestry (e.g. Pool 2015). It is 

therefore important to estimate proportions of African and European ancestry in this population 

at the two time points. A significant change in genome-wide ancestry over the 35-year time 

period could signal a shift in the east coast ancestry cline, potentially due to demographic effects 

such as asymmetric migration. 

Overall, we estimated a genome-wide median of 17.26% African ancestry across tested 

SNPs in the old genomes. We found little variability in ancestry proportion from one genome to 

the next in the old samples, with a standard deviation of 2.30% on chromosome 2, 3.98% on 

chromosome 3, and 4.04% on chromosome X. This variability from genome to genome is 

similar to previous estimates from inversion-free chromosomes from the Drosophila Genetic 
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Reference Panel (DGRP) population that originates from North Carolina (Pool 2015), if we 

account for the slightly higher mean African ancestry among DGRP genomes.  

We estimated somewhat lower genome-wide levels of African ancestry in the newer 

samples, with a median of 13.43% in the 18 seasonal pools. The ancestry estimate in the old 

samples may be skewed if inversion frequencies shifted within the isofemale lines since the 

original collection, as suggested above. We observed a decrease in frequency in 6 of 7 tested 

inversions. If the higher inversion frequencies in our old strains can be attributed to associative 

overdominance (as suggested above), instead of a true decrease of inversion frequencies between 

time points, then the African ancestry we measure in the old samples may also be overestimated 

because of the association between African ancestry and inversions (Corbett-Detig & Hartl 2012; 

Pool 2015). To help control for differences in ancestry between time points, we weighted 

individual samples in the old samples to match inversion frequencies in the pooled sequences. 

Using this approach, we observed a slightly lower African ancestry in the old samples (15.94%, 

Figure 3). Thus, after controlling for inversion frequencies, we still estimate a decline in genome-

wide African ancestry between time points: roughly 2.5% in absolute terms, or in relative terms, 

a loss of 15.7% of the African ancestry that was present in the old sample. Explanations for this 

genomic ancestry shift could include directional selection (e.g. an advantage of European alleles in 

this temperate environment), epistatic selection (against incompatible African variants), and 

population history (e.g. asymmetric migration). 

We can complement this genome-wide examination of the ancestry cline by looking for 

SNP frequency changes at highly clinal outlier SNPs that may reflect the action of spatially-

varying selection. Using the data set provided from Machado et al. (2016), we examined the 

temporal dynamics of all SNPs with a clinal P value below 0.001. By cross-referencing these 

SNPs with the data set provided in Bergland et al. (2014), we were able to identify “northern-
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associated” and “southern-associated” alleles and ask whether there was an appreciable change 

between the two time points. To help reduce the role of linkage between sites, we further pared 

down SNPs so that no two SNPs were within 10kb of one another. This left 1671 examined 

SNPs. Notably, the northern-associated alleles increased in frequency by an average of 2.44%. 

Of the 1671 clinal SNPs examined, 62% of them (1036) had northern-associated alleles increase 

in frequency (binomial P < 0.00001 assuming a 50% null expectation). This pattern is in contrast 

to a random sample of non-clinal SNPs showing an average northern allele frequency shift of  

-0.11% (Figure 4). Based on this non-clinal SNP pattern, the observed genome-wide shift toward 

European ancestry between time points that we documented above does not seem to account for 

the imbalance of frequency changes at clinal SNPs. Instead, we hypothesize that outlier SNP 

ancestry clines have steepened in the last 35 years due to continued local adaptation at many of 

these clinal outlier loci. 

 

Estimated Local Population Size is Relatively Small 

Under neutralist assumptions, the long-term effective population size of D. melanogaster has 

been estimated to be on the order of 1,500,000 to 2,500,000 (Duchen 2013; Sprengelmeyer et al. 

2020). However, one study suggested a much larger recent effective population size on the order 

of 108 (Karasov et al. 2010). These population-scale sizes are likely much larger than local deme 

sizes, especially in a temperate environment with seasonal population size fluctuations. Smaller 

local census sizes have been estimated on the order of 1,000-10,000 (McInnis et al. 1982). It is 

important to have an accurate (or at least conservative) estimate of local population size to 

identify regions of recent directional selection that deviate from the predictions of genetic drift. 

To estimate local population size, we simulated allele frequency trajectories of SNPs based on a 

simple Wright-Fisher model and fit the distribution of observed genome-wide frequency changes 
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to distributions of simulated frequency changes corresponding to a given population size, while 

accounting for both individual and read sampling. Here we assumed that the bulk of the 

empirical distribution reflected neutral evolution over this short time period. We found that a 

population size of 9,500 individuals best recapitulated the empirical distribution of SNP 

frequency differences between the old and new population samples. Here, the empirical average 

magnitude shift in allele frequency was 0.0781 and the simulated standard deviation, with a 

population size of 9,500, was 0.0782.  

Although the amount of genetic variation observed in D. melanogaster reveals that the long-

term effective population size of the species is very large, our results suggest that a single local 

population may have distinct demographic dynamics. However, if natural selection is sufficiently 

widespread in the genome on short time-scales, it could bias our local Ne estimate downward. 

Such a bias would lead us to overestimate the strength of genetic drift, which is conservative with 

regard to identifying potential targets of recent natural selection. 

 

Potential Adaptive Differences Between Sampling Points 

It has been shown that dozens of loci in the D. melanogaster genome exhibit evidence of 

seasonally-varying selection, with one allele becoming more common by spring and the alternate 

allele rising in frequency by fall (e.g. Bergland et al. 2014; Machado et al. 2021). We therefore 

wanted to separate seasonal allele frequency change from directional evolution across these ~35 

years. The latter signal can be isolated by the Population Branch Statistic (PBS; Yi et al. 2010), 

which uses three population samples to quantify genetic differentiation on one population’s 

lineage. Here, we applied PBS to a single old population sample (our focal population), the recent 

spring sample, and the recent fall population sample. PBS will therefore focus on genetic 

differentiation that separates the old population sample from both of the new samples, and the 
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presence of two contrasting seasonal samples should serve to separate seasonal allele frequency 

evolution from the focal PBS lineage. In other words, at seasonally-oscillating SNPs where our 

new fall and spring samples show frequency differences, the old sample will have no branch-

specific differentiation to inflate PBS unless its own frequency falls outside the range of the new 

fall and spring samples. We also accounted for inversion frequency differences between old and 

new population samples as described in the Materials and Methods. 

We applied PBS to ~5 kilobase windows (full results are provided in Table S7) and 

individual polymorphic sites along the genome (Figure 5A). We ran a Gene Ontology (GO) 

enrichment analysis on PBS outliers (the top 1% of windows) to identify functional categories that 

may hold adaptive differences between the sampling times (Figure 5B; Table S8). One of the top 

categories in this analysis was response to insecticide, which we discuss in more detail below. 

Three other top categories were related to the nervous system. Nervous system GO categories 

have been enriched in other genomic scans for positive selection in D. melanogaster (e.g. Langley et 

al. 2012), including a study of parallel adaptation to cold climates (Pool et al. 2017). 

 

Insecticide Resistance as a Likely Target of Selection 

We used simulation to assign a P value to every empirical window PBS and also to the 

highest SNP value of PBS within the window (max-SNP PBS). Empirical windows were divided 

into five bins based on recombination rates (Comeron et al. 2012), and 2.5 million simulations 

were run for each bin. Briefly, we simulated the species demography from Sprengelmeyer et al. 

(2020). This demography consists of 9 populations sampled throughout Africa and Europe. To 

include the North American Rhode Island population, we added a 10th population consisting of 

an admixed population of Cameroon and France migrants. The simulated admixture 

proportions reflected our estimated genome-wide African and European ancestry levels from our 
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old sample. Each window was then assigned a raw P value based on the proportion of neutral 

simulated replicates from its recombination rate bin that yielded a greater window or max-SNP 

PBS value.   

In Table 1, we display our top outlier regions. Our strongest genome-wide outlier region 

had a window-PBS value of 0.278 and spanned 78 windows. The P value associated with the top 

window in this region was below a Bonferroni-corrected genome-wide significance threshold (i.e. 

0.05 divided by the total number of windows). Notably, this window contained a pair of 

cytochrome P450 genes, Cyp6a17 and Cyp6a23. Previous research has identified derived alleles in 

which only one chimeric gene is present, and these chimeric (primarily Cyp6a23-derived) alleles 

were found to segregate at high frequency in the DGRP population (Good et al. 2014). Later 

research showed that disruption of Cyp6a17 confers resistance to the deltamethrin class of 

insecticides in D. melanogaster (Battlay et al. 2018), and that this locus shows the strongest 

association with deltamethrin resistance among DGRP strains genome-wide (Battlay et al. 2018; 

Duneau et al. 2018).  

Given the clear signal of genetic differentiation we observed at this locus, we estimated 

the frequency of the intact Cyp6a17 + Cyp6a23 allele in both our old and new samples. On 

average, we observed this “intact allele” at 23.53% frequency in the old data versus 51.08% in 

the new data. We also examined the frequency of the intact allele in each of the sampling years of 

the old data, which revealed a striking result. We found that the frequency of the intact allele 

increased over the 8 year period in which the older population sample was collected, rising from 

0% in 1975 to >50% in 1983 (Figure 6A), possibly revealing a selective sweep in action. This 

case curiously mirrors that of the olfactory receptors Or22a and Or22b, in which selection also 

appears to have recently acted in favor of an ancestral two-paralog haplotype in some 
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populations, at the expense of a derived deletion variant carrying a single chimeric gene (Aguadé 

2009; Mansourian et al. 2018). 

By examining coverage at Cyp6a17 in our seasonal samples, we estimated that the intact 

allele is still only around 50% frequency in modern Providence populations. Thus, after its rapid 

rise, it appears that the frequency of an intact Cyp6a17 did not meaningfully change between 

1983 and 2014. These patterns might reflect changes in insecticide usage with time, or might 

potentially represent the impact of balancing selection due to fitness costs associated with 

insecticide resistance, a well-studied phenomenon in insects (Kliot and Ghanim 2012). It is not 

clear that any cost of resistance should be dramatic enough to impact fixation probabilities in 

small laboratory cultures (and hence frequency estimates in our old population sample), but we 

can not formally exclude this possibility. 

We performed approximate Bayesian computation to investigate the strength of natural 

selection required to observe the empirical frequency shift over eight years. We simulated a 

simple Wright-Fisher sampling over an eight-year period, assuming 15 generations per year 

(Turelli and Hoffmann 1995; Pool 2015), and sampled to match our empirical counts. We varied 

the starting allele frequency and the selection strength, and rejected any simulation that did not 

exactly match empirical counts of the sampled allele. We obtained maximum a posteriori (MAP) 

estimates (univariate modes of 0.1% bin sizes) of 6.75% for selection strength (95% CI 2.10% to 

19.02%) and 4.55% for initial frequency (95% CI 1.49% to 8.47%), as further depicted in Figure 

6B. Although the details of natural selection at this locus may have departed from the constant 

additive advantage simulated here (as discussed above), it does seem clear that strong selection 

and an appreciable starting frequency are required to explain the observed results. A relatively 

high initial frequency of this beneficial allele is perhaps not surprising since it appears to reflect 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.23.474033doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.474033
http://creativecommons.org/licenses/by-nc/4.0/


the ancestral arrangement (Good et al. 2014) as opposed to a derived variant entering the 

population at very low frequency. 

Another known insecticide resistance gene, Cyp6g1, was contained within our third-

highest outlier region.  This gene has been shown to confer resistance to 

dichlorodiphenyltrichloroethane (DDT) and other insecticides via the insertion of a transposon 

upstream of the transcription start site (Daborn et al. 2002; Chung 2007; Battlay et al. 2016). It 

has also been shown that ongoing selection at this locus is caused by a duplication and additional 

transposable element insertions at this locus (Schmidt et al. 2010). Our outlier region spanned 42 

windows, and the top window had a PBS value of 0.102. The P value assigned to this window 

(p=3.64E-5) was just above the Bonferroni-corrected significance threshold. This window was not 

directly over Cyp6g1, instead lying about 27 kb downstream, and 10 kb upstream of the closely 

related gene Cyp6g2, which has also been shown to confer insecticide resistance (Daborn et al. 

2007).   

A third well-known locus that confers resistance to insecticides was also amongst our top 

20 regions genome-wide. This region spanned 10 windows, and the top window included 

Cyp12d1-p and Cyp12d1-d. The PBS value at this window was 0.0677 and its P value was 

0.00096. When mapped reads were viewed with IGV (Thorvaldsdóttir et al. 2013), few to no 

reads mapped uniquely to the Cyp12d1-p and Cyp12d1-d locus at either time point, potentially due 

to high sequence identity between them. Instead, we observed high PBS SNPs flanking the locus. 

Gene copy number variation at this locus is known to remain polymorphic in natural 

populations, and it has been linked to resistance to xenobiotics including caffeine (Najarro et al. 

2015), although it was not found to correlate with DDT resistance (Schmidt et al. 2010). 

However, Cyp12d1 is inducible by DDT and its overexpression confers DDT resistance (Daborn 

et al. 2007). Cyp12d1 expression level was also found to correlate with malathion resistance among 
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DGRP strains (Battlay et al. 2018). Notably, a deletion spanning both Cyp12d1 genes was found to 

show parallel frequency clines with latitude in North American and Australia, with the intact 

alleles more common in higher latitude populations (Schrider et al. 2016). Hence, our high PBS 

SNPs may be tracking linked copy number changes at this locus. 

Another well-known insecticide resistance gene, Acetylcholine esterase (Ace), offers resistance 

to organophosphates and carbamate insecticides (Mutero et al. 1994). Windows associated with 

this gene had a PBS value in the top 1% genome-wide. Known insecticide resistance mutations 

in this gene have been previously reported (Mutero et al. 1994, Menozzi et al. 2004, Karasov et al. 

2010). A set of three mutations within twenty base pairs of each other make up a resistant 

haplotype. All three of these resistance alleles segregated at low frequency in the old samples 

(F330Y at 0%, G265A at 2.08%, and I161 at 16%) and segregated at 29%, 29%, and 41% 

respectively in the new, seasonal samples. Thus, over this relatively short time period, these three 

mutations associated with insecticide resistance increased by an average of 26.97%. 

Our data suggest that insecticides have been a major driver of evolution in the D. 

melanogaster genome in North America over the last 35 years. Interestingly, all four insecticide loci 

described here have recently been identified as candidate regions of recent adaptive introgression 

into African D. melanogaster populations from non-African sources (Svedberg et al. 2020), 

underscoring the likely importance of insecticide evolution in admixed populations. Additionally, 

the temporal nature of our data can reveal important information about the trajectory of an 

allele and its underlying selection coefficient, allowing researchers to more accurately model the 

genetic basis of adaptation in human-associated insect species including crop pests and invasive 

species.   

 

Male Reproduction as a Potential Target of Natural Selection 
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It is possible that male reproductive performance may have also been an important 

evolutionary target between our time points. At least three genes in our top 20 PBS outliers may 

play important roles in male mating success. Our second highest PBS outlier region was on 

chromosome X and covered 26 windows. The top window in this region had a window PBS of 

0.144 and a P value of 1.2E-6, which was below the Bonferroni-corrected significance threshold. 

This window contained two pseudogenes as well as Hexosaminidase 2 (Hexo2). Zooming in to the 

SNP level of this region, we observed a collection of high PBS SNPs as well as a modest PBS 

peak in the intergenic regions between Hexo2 and the pseudogenes (Figure S2A). The gene 

product of Hexo2 is found in the plasma membrane of sperm in D. melanogaster (Cattaneo et al. 

2006) and has a possible role in fertilization and sperm-egg interactions (Intra et al. 2017). 

Two other genes in our top 20 regions have possible effects on reproduction as well. The 

first, Darkener of apricot (Doa), was within the top window of our fifth highest outlier region. The 

PBS at this window was 0.101 and had a P value of 4.68E-5. Doa spanned four windows, though 

the PBS signal appeared to localize toward the end of the gene (Figure S2B). Researchers have 

used artificial selection experiments to show that this gene affects aggression in flies (Edwards et 

al. 2006, Zwarts et al. 2011). A subsequent study demonstrated that mutations at Doa disrupt sex-

specific splicing of doublesex pre-mRNA, resulting in the feminization of male cuticular 

hydrocarbon profiles and the masculinization of female cuticular hydrocarbon profiles, along 

with disruption of associated courtship behavior (Fumey and Thomas 2017). A third gene that 

affects fertility was also within our top outlier regions. Growth arrest specific protein 8 (gas8) spanned 

the top two windows in our fifth highest outlier region. This gene has been associated with sperm 

fertility in mice (Yeh et al. 2002). In D. melanogaster, knockdown of this gene causes infertility in 

males (Zur Lage et al. 2019). However, male reproduction functions were not enriched in our GO 

analysis cited above, and further studies are needed to determine whether the recent evolution of 
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genes with roles in male reproduction is associated with ongoing male-male reproductive 

competition, male-female reproductive coevolution, or the optimization of male reproductive 

success in local or changing environments. 

 

Other Targets of Interest 

 A region on chromosome X was our 7th highest PBS outlier (PBS=0.0849, P value 

0.000156). Zooming in on the window revealed a SNP pattern that localized over two genes, 

CG4991 and CG16700 (Figure S2C). This region has previously been identified as a target of 

positive selection between African and non-African populations (Svetec et al. 2011), likely due to 

cold tolerance adaptations (Ayroles et al. 2009, Wilches et al. 2014).  

 

A Complementary Scan to Confirm Window Outliers and Identify SNP-level Outliers 

 Because we were comparing two distinct types of sequencing data (individual sequences 

and pool sequences), we wanted to complement our original scan with a scan where all datasets 

went through the same pipeline. We down-sampled raw reads from our 64 old isofemale line 

genomes so that they all had the same number of reads. We then combined the reads to emulate 

a pooled set of sequences and performed a PBS scan with this “pseudo-pool” set. The PBS 

outliers at the window level were highly consistent across the two scans. All outliers in Table 1 

were also outliers in the “pseudo-pool” scan. Hence, the results described above seem robust to 

differences in sequencing strategy between samples. 

Especially in the case of soft sweeps, it is possible that some positive selection signals 

spanned less than a full window and were missed by the window scan described above. However, 

when we examined top outliers for maximum SNP PBS (the highest SNP PBS value within a 

given window) from our primary scan that were not also window PBS outliers, we found that 
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these SNP-specific outliers were not well-replicated in our pseudo-pool analysis (results not 

shown). Because these outliers could reflect artifacts driven by differences in data processing 

between pool and individual genomes, we did not examine them individually. Instead, we 

focused our SNP-oriented analysis solely on the pseudo-pool scan outliers for max-SNP PBS, 

since these are not impacted by any differences in data processing. 

In Table 2, we present 14 windows where the maximum SNP PBS value was in the top 

1% genome-wide in our initial scan, and also in the top 2.5% genome-wide in the 

complementary pseudo-pool scan, while the window PBS value was a non-outlier (in the bottom 

95% genome-wide) in the original scan. The top SNP PBS signal in this group was from the gene 

heavyweight (hwt) (Figure S3A). Variation at this gene is associated with body mass among DGRP 

strains (Nelson et al. 2016). Both Neurospecific receptor kinase (Nrk; associated with the second-highest 

SNP PBS signal; Figure S3B) and Dystrophin (Dys; Figure S3C) also contained a high SNP PBS but 

lacked a window signal. These two genes interact genetically to control neuron behavior in the 

eye (Marrone et al. 2011), and echo the potential nervous system evolution suggested by our GO 

enrichment analysis of window PBS outliers. Panels D-F in Figure S3 display SNP patterns at 

three other regions where there is a relatively strong SNP signal but weak window signal. 

 

Genome-wide Enrichment of PBS Outliers 

Above, we described the generation of a P value for every window and max-SNP PBS 

value based on demographic simulations. Under this null hypothesis, we would expect our 

neutral simulations to recapitulate our empirical distributions of window PBS and max-SNP 

PBS, yielding a uniform distribution of P values. Instead, we saw a slight enrichment of low P 

values for the window PBS statistic, and a similar enrichment for the max-SNP PBS statistic 

(even when focusing only on outliers confirmed by the pseudo-pool scan; Figure 7). Based on 
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these observed outlier enrichments, we asked how many inclusively-delimited outlier regions 

would need to be removed before the enrichment disappeared (see Materials and Methods).   

For window PBS, we found that only the top 4 regions needed to be removed to account 

for the observed enrichment of outlier PBS values compared to the neutral model. In contrast, 

for max-SNP PBS 20 regions were removed with this deterministic approach, accounting for 

4.83% of the genome. We complemented this max-SNP PBS analysis with a random outlier 

region removal approach, in which an average of 17 regions were removed, accounting for 

3.87% of the genome. These results suggest that roughly 20 loci experienced strong enough 

selection between our time points to contribute to the observed genome-wide excess of PBS 

outliers, and that relatively more targets of strong selection may affect genetic differentiation at 

the SNP level than the window level.  

 

Discussion 

 In this study, we have compared genomic variation of recently collected samples 

of Drosophila melanogaster to collections made approximately 35 years prior. This unique dataset 

has given us insight into a range of population genetic phenomena, including local effective 

population sizes, inversion frequency dynamics, and the potential targets and apparent 

prevalence of relatively strong natural selection.  

 Our results point to aspects of fine-scale demography that remain poorly understood, 

even in this population genetics model system. We obtained an estimate of local effective 

population size (9,500) that is more than two orders of magnitude lower than long term 

population genetic estimates (e.g. Sprengelmeyer et al. 2020), and at least four orders of magnitude 

lower than suggested from a study of recurrent adaptive mutations (Karasov et al. 2010). While 

these estimates are not necessarily in conflict, and the potential contribution of natural selection 
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to differences among them is unclear, their contrasting magnitudes nevertheless highlight the 

need for further study of local population dynamics in this species. Seasonal bottlenecks likely 

play some role in this finding, especially given that effective population size across time is equal to 

the harmonic mean of generation-specific population sizes. Further, our findings regarding 

inversion frequencies differing among spring but not fall sampling sites may point to the interplay 

between seasonal bottlenecks and gene flow that may later homogenize such local effects. More 

detailed models of local deme size, seasonal population size fluctuations, and connectivity among 

demes would enhance the null models that temporal population genomic data sets such as ours 

can be compared against. Hence, we suggest that a clearer understanding of local population 

dynamics across diverse environments in this species should be pursued. 

 When the results of a population genomic scan for natural selection are compared against 

a demographic model at all, it is rare for any outlier to show a stronger departure from the null 

model than would be expected at any locus in the genome by chance. In our study, 3 outlier 

regions met this rather conservative threshold. Among these extreme outliers was the 

Cyp6a17/Cyp6a23 locus, for which we were able to estimate parameters of positive selection with 

greater precision than typically obtained from a single snapshot of genetic variation. These results 

highlight the potential of temporal samples from natural populations to strengthen population 

genetic inferences. 

The notably stronger enrichment of max-SNP PBS outliers versus window PBS mirrors 

the results of Pool et al. (2017) that SNP-level differentiation was more sensitive in detecting 

evidence of parallel adaptation to cold environments. Soft sweeps, in which a selected variant was 

already present on multiple haplotypes, might be expected to produce stronger SNP than 

window patterns of genetic differentiation. Selection on standing genetic variation is highly 

plausible in light of this species’ high genetic diversity and relatively recent worldwide expansion 
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(e.g. Sprengelmeyer et al. 2020), and recurrent mutation may be relevant to its ongoing adaptation 

as well (Karasov et al. 2010). Further work is needed to formally identify the evolutionary 

scenarios in which SNP-level analyses of genetic differentiation are critical. 

 Our results also suggest that the integration of temporal and spatial population genomic 

data may be especially fruitful. A key example is our finding that for SNPs previously shown to 

show unusually strong latitude clines in allele frequency, the “northern” allele has tended to 

increase over the past ~35 years in the relatively cool environment of this northeast US 

population. Notably, this increased frequency of “northern” alleles has occurred in spite of a 

roughly 1°C local temperature increase during this period (Lenssen et al. 2019; GISTEMP Team 

2021). These results suggest that local adaptation along the Atlantic coast of the US may be an 

ongoing process. Our finding of a genome-wide increase in the frequencies of alleles with 

European as opposed to African origin is compatible with that hypothesis as well, but further 

data and analysis are needed to more fully understand the contributions of directional selection, 

epistatic selection, and population history in admixed North American populations of D. 

melanogaster. Expanded spatiotemporal population genomic sampling, including that already 

being conducted on shorter time scales (Kapun et al. 2020, 2021; Machado et al. 2021), may 

further leverage the complementary spatial and temporal signals of population genetic processes. 

 The increasing availability of temporal population genomic data may motivate further 

studies developing novel methodology to estimate the relative roles of neutral and non-neutral 

processes in shaping genomic variation. As an example, Buffalo and Coop (2020) developed a 

method to investigate the genome-wide influence of natural selection based the on temporal 

covariance of allele frequency changes (i.e. a consistent direction of change across multiple 

sampling time points), and applied it to experimental evolution data. Given the data we have 
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already collected from this Rhode Island Drosophila population, collecting additional genomic 

data in future years may allow such a method to be applied to this natural population. 

 Extending the temporal scale of population genomics in natural populations should hold 

increasing importance in evolutionary biology. Such studies may not always be limited to 

contemporary sampling efforts: previously collected and sequenced population samples may be 

potential targets for resampling from current populations, and even museum collections may be 

potential sources of population genomic data (Mikheyev et al. 2015). Our study provides one 

example of an analysis framework that allows allele frequency change within a specific time 

interval to be isolated. Especially in rapidly reproducing organisms like insects, temporal 

population genomic studies may play increasingly important roles in monitoring adaptation to 

climate change, pesticide use, and other environmental alterations, with important implications 

for agriculture and conservation in addition to basic science. 

 

Materials and Methods 

 

Fly Collection 

The 65 isofemale lines collected between 1975 and 1983 were originally collected by Dr. 

Margaret Kidwell and had been maintained at the University of Wisconsin by Dr. Rayla Temin. 

These strains had been maintained in vials, in a separate tray from other stocks. Although it is 

possible for contamination to occur in fly stocks over time (e.g. Frochaux et al. 2020), and we can 

not be certain that none has occurred in our strains, it seems clear that contamination would 

need to affect a large fraction of our strains in order to meaningfully impact analyses such as the 

frequency-based outlier scan described below. No phenotypes consistent with common 

laboratory mutant stocks (e.g. eye color, body color, wing morphology) were observed in any of 
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them. Additional evidence against contamination of these stocks was obtained from the IBD and 

PCA analyses described below. 

We note that the small population sizes of laboratory fly cultures are not conducive to 

natural selection unless it is extremely strong. There is also a limited and diminishing amount of 

genetic variation that goes into an isofemale line, and the population mutation rate in a lab 

culture is also low, such that parallel mutations across multiple lines are very unlikely. If we 

assume that the rate of mutation to a specific nucleotide is 1.7e-9 (Huang et al. 2016), and that 

there were 910 generations between collection and sequencing (conservatively assuming a 

generation every two weeks in the lab across 35 years), then the binomial probabililty that a given 

new mutation from one of our 64 lines is also sampled from even one additional line is only 1%. 

New mutations should therefore have little effect on allele frequencies across the full population 

sample. Hence, we consider these living strains to be a good proxy for genetic variation in the 

source population at the time of sampling, with particularly little opportunity for sample-wide 

shifts in allele frequency between collection and present.  

For the newer collections, flies were collected from 5 trap locations in Providence, Rhode 

Island in Fall 2014 and Spring 2015. These locations (Weymouth Street, Brown Street Park 

Community Garden, Center for Environmental Studies Garden, Student Garden, and Fox Point 

Community Garden at Gano Park) centered around the original sampling location (Weymouth 

Street) and none were more than 1.7 km apart. In the fall samples, the first four pools contained 

41 flies each from the Brown Street, Environmental Studies, Student Gardent, and Fox Point 

sites. The fifth pool contained 41 flies from mixed locations. A sixth pool contained 42 F1 female 

offspring from 6 wild-caught females from the Weymouth Street site. When analyzing allele 

frequencies, each pool was weighted based on effective pool size as described below. The spring 

samples consisted of 12 total pools, each with 34 flies.  
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Genomic Sequence Data Collection  

A separate library was prepared for each of the 65 old individual strains (from 30 adult 

females of each strain) and from the 18 new fall and spring pools. Mean sequencing depth per 

individual genome ranged from 5.26X to 71.79X. 100 base pair reads were aligned as described 

in Lack et al. (2015), except with a single round of mapping to the D. melanogaster (v5.57) reference 

genome instead of a second round of mapping to a genome-specific reference genome. We chose 

a single round of mapping to more closely align with the single round of mapping that the pooled 

sequences necessarily will go through. Briefly, reads were aligned using BWA aln v0.5.9 (Li and 

Durbin 2010), and unaligned reads were then mapped with Stampy v1.0.20 (Lunter and 

Goodson 2011). All reads with a mapping quality score below 20 were discarded. We then used 

Picard version v1.79 (http://picard.sourceforge.net/) to sort the alignment by coordinates and 

remove optical duplicates. Assemblies were improved around InDels using the GATK v3.2 InDel 

Realigner (Depristo et al. 2010, McKenna et al. 2010;). Consensus sequences for homozygous 

heterozygous regions (see below) were generated using GATK haploid and diploid consensus 

sequence calling, respectively, as described in Lack et al. (2015). This pipeline was used to 

maximize the comparability of our new individual strain genomes to data from the Drosophila 

Genome Nexus (Lack et al. 2015, 2016). 

To generate the “pseudo-pool” dataset, we down-sampled each of the 64 bam files from 

the individual sequences dataset so that each strain had an equal number of aligned reads. We 

did the downsampling with the command line “samtools view -s fraction -b data.bam > 

downsampled_data.bam” where “fraction” was the proportion of aligned reads kept. We then 

merged all 64 downsampled bam files using samtools and generated a pileup and subsequent 

sync file as we did with our other pool sequences. 
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Mean sequencing depth for the pools are provided in Table S2. Reads were aligned using 

the same pipeline as the individual genomes up through InDel realignment. Following InDel 

realignment, pileup files were then generated using Samtools v1.3.1, and sync files were 

generated using PoPoolation2 v1.201 (Kofler et al. 2011), requiring a minimum quality score of 

20. 

 

Heterozygosity 

 Residual heterozygosity often persists in fly stocks even after many generations of full-

sibling mating. It is important to identify such regions of heterozygosity, since a putatively 

heterozygous region constitutes two random allele draws from a population. We thus sought to 

identify such regions of heterozygosity in order to identify correct sample sizes at any given site in 

the genome. We applied a hidden Markov model 

(https://github.com/russcd/Heterozygosity_HMM) to annotate inbred and outbred regions in 

the partially inbred old samples. On average, 32.6% of the the old isofemale line genomes were 

called as heterozygous (compared to 13% for the strongly inbred DGRP; Lack et al. 2016). Full 

results are provided in Table S9.  

 

Quality Assurance Checks (IBD, PCA) 

Relatedness between sampled individuals violates assumptions of many population 

genomic models. Such relatedness could result from initial sampling of related individuals or 

from mishandling or mislabeling of lab samples in the last 35 years. To identify such instances of 

identity by descent (IBD), all pairwise comparisons between old samples were made. We also 

included the reference genome sequence in this analysis to guard against contamination from a 

common laboratory background. Chromosomes were compared in 500 kb windows sliding in 
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100 kb increments. Any window with fewer than 0.0005 pairwise differences per site was 

considered putatively IBD. Some genomic intervals (e.g., centromeric regions) exhibit large scale 

IBD across populations, suggesting explanations other than relatedness. These regions of 

recurrent sequence identity were not permitted to seed new IBD regions, but neighboring IBD 

regions were allowed to extend through them. We identified instances of “relatedness IBD” 

between two genomes when genome-wide IBD tracts exceeded 5 Mb. Such instances were 

masked to ‘N’ for one of the two genomes. This IBD threshold will limit our detection to pairwise 

comparisons of homozygous regions, and hence some IBD may persist elsewhere.  However, 

given the relative rarity of IBD between pairwise homozygous regions, any residual IBD should 

have limited impact on our analyses. 

 We applied principal components analysis (PCA) to each major chromosome arm of the 

old samples to identify any strain with aberrant divergence. We also included several African 

populations (10 Cameroon strains, 10 Gabon, 6 Nigeria, 5 Guinea), 98 France strains, and two 

North American populations (19 from Ithaca, New York, 131 from Raleigh, North Carolina). 

Putatively heterozygous regions in all strains were masked for this PCA analysis. See methods of 

Lack et al. (2015) for masking heterozygosity in the non-Rhode Island genomes, and see the 

“Heterozygosity” subsection above regarding identifying heterozygosity in the old Rhode Island 

strain genomes. We used SNPRelate release 3.9 (Zheng et al. 2012) for the PCA analysis.  

 

Effective Numbers of Sampled Individuals and Alleles from Pool-seq Data 

One of the major drawbacks of utilizing pooled sequencing is that we cannot assume that 

every read is a random draw from a population, due to the dual binomial sampling processes of 

individual and read sampling. Though allele frequency estimates are accurate in a large enough 

sample (Gautier et al. 2013), nominal sample sizes may be misleading if individuals contribute 
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DNA unequally to a genomic library. Because sample size is an important parameter when 

estimating !"#, we must take measures to obtain an unbiased estimate of the effective pool size, 

ne.  

We applied the method introduced in Gautier et al. (2013) to estimate the effective pool 

size, defined as the number of equally contributing diploid individuals in a pool. Our fall data 

contains 5 pools of 41 individuals from 5 distinct sampling locations and a 6th pool containing 42 

flies (which had 7 F1 offspring from each of 6 wild-caught females). Here, we are treating pools 

from the same season as replicates, and while they might have some structure between them, any 

true allele frequency differentiation would downwardly bias our estimates of effective pool size, 

which is conservative for our analyses. 

The effective pool size method estimated no error in the first 5 pools ($% = 41 for all 

pools) and an $% = 10 for the 6th pool. The 6th pool offered a good control of the method, as we 

expected this pool to have a lower $% due to the relatedness of individuals in the pool. The 

method suggested a lower effective pool size number in the spring data. Here, each pool 

consisted of 34 flies. The effective pool size ranged from $% = 23 to $% = 34 with a median of  

$% = 31.  

We could then use the method of Ferretti et al. (2013) to estimate sample size at a given 

site. Here, we wish to explicitly estimate the number of j unique lineages sampled at a site given 

$, reads and $- equally contributing chromosomes in a pool. Ferretti et al. (2013) showed that 

.(0|$,, $%) =
45!"(47,8)
(4598)!45

:7, where ;($,, 0) are the Stirling numbers of the second kind, defined as 

the number of ways to partition $, reads into j nonempty sets. For our diploid data, we set $- =

2$%. We used the above formula to generate a lookup table giving the expected number of 

lineages for each potential number of sampled reads and effective pool size, by applying the 
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expectation formula < 0.(0|$,, $%)
=
8>?

, using the R package GMP v0.5-13.6. This procedure 

thus provided estimates of the expected chromosomal sample size for each site (i.e. the estimated 

number of natural alleles sampled).  

 

Ancestry 

We implemented a hidden Markov model (Corbett-Detig and Nielsen 2017) to estimate 

the proportion of African versus European ancestry. This method is general and can be used on 

individual genomes or on high ploidy data (i.e., pooled data). It utilizes short read pileup data to 

model ancestry across the genome as a function of sample allele frequencies within an admixed 

population. The maximum likelihood probability of each ancestry state at each panel SNP is 

output. For a diploid genome, for example, maximum likelihood states for homozygous 

European, heterozygous European and African, and homozygous African are output. This 

method also allows for variable ploidy across the genome to account for partially inbred 

chromosomes, allowing us to model inbred segments as a single haploid chromosome and 

outbred segments as a diploid chromosome individually in each old genome. We generated 

ploidy maps as described above. For the high ploidy datasets (pooled data), maximum likelihood 

probabilities are output for each of ploidy + 1 states. 

 

Identification of Common Inversions 

 We implemented the method introduced in Kapun et al. (2014) to estimate inversion 

frequencies in each of the 18 pooled samples. For each studied inversion, this method required a 

set of fixed differences between inverted and non-inverted karyotypes. We used the inversion-

specific markers given in Table S4 in Kapun et al. (2014). To estimate the inversion frequency in 
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an individual pool, we calculated the average frequency across all inversion-associated SNPs 

whose coverage exceeded a minimum of 10 reads. Seasonal inversion estimates were made by 

weighting pools by the estimated effective pool size (ne), such that @ABCD%EDF4EG =

∑ @IFFGJ ∗
IGFLMNOPPQJ
IGFLMNRPRSQ

4OPPQT
L>?  . Here, $IFFGD is the total number of pools in a given season, @IFFGJ is 

the average frequency across inversion-associated SNPs in the UVW pool, XYZU[\IFFGJ is the 

effective pool size in the UVW pool, and XYZU[\VFVEG is the sum of effective pool sizes across all 

pools.  

To determine inversion status of the individual genomes in the old sample, we examined 

the diploid calls at each inversion-associated SNP described above. These diploid calls fell into 

two classes: most of the SNPs were homozygous for the non-inversion SNPs or most of the SNPs 

were heterozygous for the inversion SNPs. The former we classified as free of inversion and the 

latter we classified as heterozygous for the inversion. The inversion frequencies in the old 

genomes were calculated as the number of inversion heterozygotes divided by twice the total 

number of genomes in the dataset.  

 

Frequency Differences in Common Inversions 

There is some evidence to suggest that inversion frequencies differ seasonally in Drosophila 

melanogaster. Our dataset provided a unique opportunity to evaluate whether seasonal differences 

in inversion frequencies that we observed in our data could be explained by sampling variance. 

We simulated a sampling scheme that emulated the empirical data to determine how often we 

observed seasonal differences in some inversion I as large as we observed empirically. To 

accomplish this, we resampled inversion-associated SNP frequencies based on the empirical 

coverage in each pool. For each pool, we assumed the true inversion frequency, @L4], is the 
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midpoint of the seasonal point estimates. Using this assumed inversion frequency, we sampled 

the number of inversion-bearing chromosomes in a simulated pool as ^ℎAL4]~aU$Zb($%cc, @L4]) 

where $% is the effective pool size (as described above) of the simulated pool. For each inversion-

associated SNP j in the empirical dataset, we simulated inversion-bearing reads based on the 

empirical coverage in the pool. Thus, ABd[eL4]~aU$Zb(^Zf8,
-W,J:g
4h

) where ^Zf8 is the coverage 

observed empirically at the 0VW SNP. Just as we had in the empirical data, we then had a vector of 

simulated inversion-associated SNP frequencies. The mean of this vector was the simulated 

estimated inversion frequency of the resampled pool for inversion i, and the resampled seasonal 

estimate was calculated by weighting each resampled pool by effective ploidy. The P values 

shown in Table S5 are defined as the proportion of resampled seasonal differences that were 

greater than what we observed empirically. Essentially, we asked whether seasonal differences in 

inversion frequencies could be explained by sampling variance. We also used this sampling 

scheme to determine whether sampling variance could explain differences in inversion estimates 

by sampling location. Here, we noted the largest estimated inversion frequency difference and 

asked how often this difference was larger than what was observed empirically.  

 

Effective Population Size Estimate 

In order to draw conclusions about frequency changes over the ~35 year time period, we 

first needed to determine how much frequency change could be expected due to genetic drift. 

This expectation depends on the local size of the Rhode Island population, where a smaller 

population size would lead to a higher variance in the temporal frequency shift. To estimate this 

local population size, we simulated allele frequency trajectories of SNPs based on a simple 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.23.474033doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.23.474033
http://creativecommons.org/licenses/by-nc/4.0/


Wright-Fisher model and fit the distribution of observed frequency changes to distributions of 

differing population sizes. The Wright-Fisher simulation emulated the empirical observations.  

The site frequency spectrum of the old samples matched the simulated site frequency 

spectrum at the first time point. We then simulated 465 generations between the temporal 

samplings, corresponding to 15 generations per year (Turelli and Hoffmann 1995; Pool 2015) for 

31 years. The SNP frequency at each generation, @Li? =
jJkl
mnh

, was drawn from a binomial 

distribution where oLi?~aU$Zb(2p%, @L)  i+1 is the number of individuals in the next generation 

bearing the allele, p% is the effective population size in the simulation, and @L is the allele 

frequency in generation U.  

The sampling at the latter two time points emulated the sampling observed in the real 

data. For each SNP, the number of chromosomes in pool 0 that bear the allele (q) is drawn from 

a binomial distribution. Here, ψ~aU$Zb(2$%ccs, @L) where $%ccs is the effective pool size of pool 

0. To further emulate the real data, coverage for all simulated pools is drawn from the empirical 

distribution of coverage. We then sampled reads bearing the allele, t, based the coverage and 

$%ccs such that ϕ~aU$Zb(^Zf8,
v

m4hwws
). Simulated SNP frequency in pool 0 is then calculated as 

x

-F]s
 and the overall seasonal frequency is weighted by ploidy.   

 

Identification of Candidate Regions for Recent Directional Selection 

The PBS statistic was used to quantify genetic differentiation specific to the newly 

collected seasonal samples when compared against the old population samples. Because 

differences in inversion frequencies between the sampling points can bias estimates of allele 

frequency differences, we weighted the old samples to match inversion frequencies of the pooled 
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samples and corrected for sample size using Kish’s effective sample size (Kish 1965). PBS was 

applied in diversity-scaled genomic windows containing 200 nonsingleton SNPs in the Zambia 

sample of the Drosophila Genome Nexus. Simulations were run for autosomal and X chromosome 

data based on the model from Sprengelmeyer et al. (2020) and adding a North American arm 

with admixture (both proportion and timing) based on empirical data. This North American arm 

was admixed from the France and Cameroon arms of the model. We ran 2.5 million ms 

simulations (Hudson 2002) for each of 5 recombination bins corresponding to 0.5-1, 1-1.5, 1.5-2, 

2-3, and greater than 3 cM/Mb. Regions of less than 0.5 cM/Mb were not included in our 

analysis due to limited resolution in localizing signals of elevated differentiation. For each 

simulation, we randomly chose a locus length from the distribution of empirical windows. 

Recombination rate for each window was based on estimates from Comeron et al. (2012). The 

mutation rate for the autosomal model was 5.21e-9 and the X chromosome model was 5.07e-9 

(Huang et al. 2016). Number of sampled chromosomes was also based on empirical data. To 

emulate pooled sequencing, we resampled simulated chromosomes based on coverage in the 

empirical data. With these simulations, we were able to assign a genome-wide P value for each 

window PBS by asking how many times simulated PBS values were greater than the observed 

PBS value. We assigned significance to any P value below the Bonferroni corrected critical value 

of 0.05/(number of genome-wide windows).     

 

Genome-wide Enrichment of PBS Outliers 

In light of observed enrichments of window PBS and max-SNP PBS, we asked how many 

regions could be removed before the enrichment disappeared. We defined a region starting at a 

window with a low P value for window or max-SNP PBS and extending in each direction until 

hitting a string of 10 consecutive windows with a P value greater than 0.1. Windows were 
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removed until the bin containing P values between 0 and 0.05 held no more windows than the 

bin containing P values between 0.05 and 0.1. For max-SNP PBS, because some SNP frequency 

estimates could be affected by differences in data types, we conservatively required the focal 

window of a region to also be an outlier (top 5%) in our “pseudo-pool” PBS scan (as described 

above) in order to be counted toward the number of removed regions. To ensure accuracy and 

minimize unaccounted for bias, we utilized two different approaches to removing regions, and 

they yielded similar results. In a deterministic approach, we iteratively removed the lowest P 

value region until no P value enrichment remained. In a random approach, we randomly chose a 

window whose P value was less than 0.05 and defined a region to remove around that window. 

This process was repeated 1,000 times and the average number of removed regions was noted. 

 

Gene Ontology Enrichment 

The top 1% of PBS quantiles were considered outliers for GO enrichment analysis under 

the hypothesis that these outliers will be enriched for genuine targets of adaptation. GO 

enrichment was assessed as previously described in Pool et al. (2012). Two or more outlier 

windows were merged into the same outlier window region if they were separated by no more 

than four nonoutlier windows (to conservatively avoid counting the same selective sweep more 

than once). Locations of outlier regions were then randomly permuted, while maintaining their 

lengths, to properly account for the arrangement and lengths of genes in each functional 

category. Each outlier region was only allowed to count for a given GO category one time (from 

both the empirical and permuted outlier regions), to avoid spurious results from clusters of 

functionally linked paralogs. For each GO term, a raw P value was defined by the proportion of 

1,000,000 randomized data sets in which a greater or equal number of outliers from that 

category was obtained. Then, by comparing across these randomized data sets, the lowest raw P 
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value for each of them was obtained, and a threshold for analysis-wide significance was defined 

based on a minimum raw P value observed in 5% or fewer randomized data sets. 

 

Analysis of Frequency Change at the Cyp6a17/Cyp6a23 Locus 

 The Cyp6a17/Cyp6a23 locus, a top resut from our genome-wide PBS scan, is known to 

have segregating structural variation involving a derived fusion of these paralogs into a single 

chimeric gene (Good et al. 2014). Identifying intact versus deleted alleles among the old isofemale 

strains was straightforward based on a roughly 20-fold difference in depth of coverage relative to 

genome-wide averages (Table S9). For the merged pooled data, we first calculated the ratio (rpool) 

of depth of coverage in the deletion region (Dpool_focal) over the genome-wide average (Dpool_genome), as 

well as the ratios of average depths seen in isofemale genomes inferred to have intact (rintact = 1.2) 

or deleted (rdeleted = 0.0676) haplotypes. We then estimated the intact alelle frequency of the 

pooled data as (rpool – rdeleted) / (rintact – rdeleted), obtaining (0.646 - 0.0676)/(1.2 - 0.0676)=0.5108.

 We used approximate Bayesian computation to estimate the strength of selection and the 

initial frequency of the intact Cyp6a17 + Cyp6a23 haplotype during the 1975 – 1983 sampling 

period (during which samples were taken during six years). We employed a very simple Wright-

Fisher simulator and simulated 120 generations (15 generations over 8 years). For each 

simulation, we randomly selected a selection strength from a uniform distribution between 0 and 

0.3 and an initial frequency from a uniform distribution between 0 and 0.2. We only accepted a 

simulation that exactly matched our empirical counts of an intact Cyp6a17 gene. We stopped our 

simulation after 500,000 successes, which was around 100 billion simulations.  

 

Data Accessibility 
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All sequence data generated for this project is available from the NIH Short Read Archive under 

project SRX9688492, with specific sample numbers given in Table S1. All novel scripts used in 

this study have been uploaded to https://github.com/jeremy-lange/temporal. 
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FIGURE LEGENDS 
 
Figure 1. Principle Components Analysis reflects expected relationships between old Providence 
genomes and other sequenced genomes, with no obvious outlier individuals. X chromosome SNP 
data from 7 additional North American, European, and African populations were used in this 
analysis. 
 
Figure 2 Inversion frequencies have shifted across time and space. (A) Inversion frequencies at 8 
well-studied chromosomal inversions. The asterisks underneath In(2R)Ns, In(3R)Mo, and In(3R)P 
indicate statistically significant frequencies between seasons. (B) Four inversions showed 
significant frequency differences between sampling locations (x-axis) in the spring, as detailed in 
Table S2. No inversions displayed significant frequency differences between locations in the fall 
samples. 
 
Figure 3 Population ancestry appears to have not shifted appreciably between time points. 
African versus European ancestry was estimated along chromosomes using the hidden Markov 
model of Corbett-Detig & Nielsen (2017). African ancestry proportion was averaged across 
inversion-free strains in the original samples (black line), averaged across 6 pools in the fall 
sample (blue), and 12 pools in the spring sample (yellow). Because inversions can affect ancestry, 
and we observed shifts in inversions frequencies between time points, we weighted ancestry in the 
old samples to match inversion frequencies between the time points. This weighted ancestry 
along the genome is shown here. 
 
Figure 4 Northern-associated alleles at clinal outlier SNPs have tended to increase in frequency 
over time. The top histogram depicts 1,671 frequency differences of northern-associated alleles at 
clinal outlier SNPs. The bottom histogram depicts the frequency difference at 1671 SNPs chosen 
at random across the genome. 
 
Figure 5: Population Branch Statistic and Gene Ontology Enrichment. (A) PBS at each window 
genome-wide. Gene names are discussed in the text. (B) The top 10 categories in our window 
PBS GO enrichment analysis. 
 
Figure 6: The frequency of the intact Cyp6a17 + Cyp6a23 allele shifted rapidly under strong 
selection. (A) The frequencies of the intact allele in each of the 6 sampling years and an estimate 
of the frequency in modern populations are shown. (B) Results of an ABC analysis to infer the 
selection strength and starting frequency of the intact allele that best recapitulate our empirical 
sampling results between 1975 and 1983. 
 
Figure 7: A genome-wide enrichment of elevated genetic differentiation between old and new 
population samples was observed. The enrichment of low raw P values, indicating higher PBS 
values than expected under the neutral demographic model, is depicted for (A) window PBS, and 
(B) maximum SNP PBS per window. As noted in the main text, the window enrichment can be 
accounted for by just a few broad outlier regions, whereas ~20 SNP PBS outlier regions must be 
removed to account for the latter enrichment. 
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Table 1.  Outlier regions containing the top Population Branch Statistic values genome-wide, indicating candidates for temporal 
evolution. Regions were defined as described in the Materials and Methods. Raw P values based on demographic simulations are also 
provided. Coordinates reflect release 5 of the D. melanogaster reference genome. 
 

Chr. 
Arm Start Stop Windows 

Top 
window 
PBS 

Top 
window P 
value Genes within 10 kb of peak 

2R 10450311 11002594 78 0.2077 4.0E-07 Inr-a, Cyp6a22, Cyp6a17, Cyp6a23, Cyp6a19, Cyp6a9, Cyp6a20, Cyp6a21, Cyp6a8 
X 8549577 8715140 26 0.1440 1.2E-06 CR44507, CR44508, Hexo2, CG2004, CG1785, l(1)G0020 
2R 7935691 8252784 42 0.1019 3.6E-05 Cyp6g2, Cyp6t3, CG8858, RpS11, Sr-CII, CG13171 
3R 24459660 25160620 88 0.1015 4.7E-05 Doa, CG11828, DIP-gamma 
X 3159369 3404026 35 0.0837 8.9E-05 CG10802, CG14270, CG10803, Gas8, DIP-alpha, CG13021 
3R 19412432 19432122 4 0.0872 1.4E-04 CG10182, CG33337, CG16723, CG10183, CG10184, CG31145 
X 16919722 17013929 14 0.0849 1.6E-04 CG4991, CG16700, Arpc3B, CG5004 
3R 8856384 8882684 3 0.0848 2.2E-04 ry, CG11668, snk, CG11670, Hsc70-2, CG31157, CG7966, pic, sim 
X 18020585 18110534 14 0.0782 2.3E-04 CG32553, mir-369, mir-210, CG34133, ari-1, CG43229 
X 9526895 9557458 4 0.0712 3.6E-04 Ptpmeg2, CG3106, nej 
3L 10456489 10564065 20 0.0732 4.1E-04 A2bp1 
2L 22212037 22940523 16 0.0742 6.2E-04 IR40a, CR12628 
2R 6988767 7043417 10 0.0677 9.6E-04 Cyp12d1-p, Cyp12d1-d, BBS4 
X 18302387 18449417 21 0.0647 9.7E-04 CG32548, CG6290, CG32551, CG34841, CG32547 
2R 9169961 9219512 7 0.0688 1.1E-03 Dh31-R, CG4734, CG17047 
X 10212150 10403274 22 0.0585 1.2E-03 CG32681, CG17841, Psf3, flw 
X 12025462 12179467 23 0.0569 1.5E-03 Ten-a, CG1924 
2R 6448156 6451900 1 0.0657 1.5E-03 psq 
X 12439233 12514400 10 0.0557 1.7E-03 Sec16, CG1463, Fpgs, CG11085, CR44568 
3L 4892820 4920140 4 0.0643 1.7E-03 Dnah3, CG13705, CG13704, Rh50 
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Table 2. Windows containing the highest SNP PBS values genome-wide are shown, excluding those associated with window PBS 

outlier regions, based on our "pseudo-pool" treatment of the old sample data. Coordinates reflect release 5 of the D. melanogaster 

reference genome. 

 

Chr
. 
Arm 

Window 
Start 

Window 
Stop 

Windo
w PBS 

Max 
SNP 
PBS 

Max SNP 
position 

Freq. 
Old 

Freq. 
Fall 

Freq. 
Spring Location of top SNP 

X  12427571 12433229 0.0240 0.4909 12428485 0.3545 0.0063 0.0584 Intron of hwt 
2R 9039862 9049014 0.0322 0.4554 9047945 0.2071 0.0000 0.0000 Exon of Nrk 
2L 11494112 11498367 0.0115 0.4334 11497953 0.3383 0.0267 0.0380 Intron of Cog8 
2R 9022225 9039861 0.0268 0.4101 9038358 0.1857 0.0000 0.0000 Intron of Ack-like 
2R 11997670 12004051 0.0105 0.4004 12000155 0.1949 0.0032 0.0040 Exon of Asph 
3R 15348249 15355833 0.0172 0.3973 15353076 0.4902 0.1768 0.0430 Intron of Dys 
2L   6009244 6014164 0.0184 0.3871 6011436 0.3515 0.0662 0.0311 Intron of CG9098 
X  17218725 17225201 0.0200 0.3792 17221539 0.4603 0.1121 0.1054 Intergenic, close to B-H2 
2L 12722716 12729408 0.0289 0.3491 12725414 0.6217 0.2521 0.1833 Intron of MRP1 
2R  11931245 11941772 0.0180 0.3457 11935869 0.1558 0.0000 0.0000 Exon of CG8405 
2R 6608168 6617713 0.0176 0.3419 6616156 0.3338 0.0729 0.0370 5' UTR ofr Rab3 
X  19627456 19638362 0.0179 0.3370 19629237 0.7745 0.1975 0.4863 Intergenic, between AP-1-2beta and CG14234 
X  10416049 10430412 0.0232 0.3342 10418289 0.3500 0.0634 0.0344 Intron of spri 
2L 16801631 16808037 0.0300 0.3276 16801968 0.3699 0.0961 0.0328 Exon of CG13280 
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Figure 1 Principle Components Analysis reflects expected relationships between old Providence 
genomes and other sequenced genomes, with no obvious outlier individuals. X chromosome SNP 
data from 7 additional North American, European, and African populations were used in this 
analysis. 
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Figure 2 Inversion frequencies have shifted across time and space. (A) Inversion frequencies at 8 
well-studied chromosomal inversions. The asterisks underneath In(2R)Ns, In(3R)Mo, and In(3R)P 
indicate statistically significant frequencies between seasons. (B) Four inversions showed 
significant frequency differences between sampling locations (x-axis) in the spring, as detailed in 
Table S2. No inversions displayed significant frequency differences between locations in the fall 
samples.  
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Figure 3 Population ancestry appears to have not shifted appreciably between time points. 
African versus European ancestry was estimated along chromosomes using the hidden Markov 
model of Corbett-Detig & Nielsen (2017). African ancestry proportion was averaged across 
inversion-free strains in the original samples (black line), averaged across 6 pools in the fall 
sample (blue), and 12 pools in the spring sample (yellow). Because inversions can affect ancestry, 
and we observed shifts in inversions frequencies between time points, we weighted ancestry in the 
old samples to match inversion frequencies between the time points. This weighted ancestry 
along the genome is shown here. 
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Figure 4 Northern-associated alleles at clinal outlier SNPs have tended to increase in frequency 
over time. The top histogram depicts 1,671 frequency differences of northern-associated alleles at 
clinal outlier SNPs. The bottom histogram depicts the frequency difference at 1671 SNPs chosen 
at random across the genome.  
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Figure 5: Population Branch Statistic and Gene Ontology Enrichment. (A) PBS at each window 
genome-wide. Gene names are discussed in the text. (B) The top 10 categories in our window 
PBS GO enrichment analysis. 
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Figure 6: The frequency of the intact Cyp6a17 + Cyp6a23 allele shifted rapidly under strong 
selection. (A) The frequencies of the intact allele in each of the 6 sampling years and an estimate 
of the frequency in modern populations are shown. (B) Results of an ABC analysis to infer the 
selection strength and starting frequency of the intact allele that best recapitulate our empirical 
sampling results between 1975 and 1983. 
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Figure 7: A genome-wide enrichment of elevated genetic differentiation between old and new 
population samples was observed. The enrichment of low raw P values, indicating higher PBS 
values than expected under the neutral demographic model, is depicted for (A) window PBS, and 
(B) maximum SNP PBS per window. As noted in the main text, the window enrichment can be 
accounted for by just a few broad outlier regions, whereas ~20 SNP PBS outlier regions must be 
removed to account for the latter enrichment. 
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