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Abstract

Motivation: The analysis of spatially-resolved transcriptome enables the understanding of the
spatial interactions between the cellular environment and transcriptional regulation. In particular, the
characterization of the gene-gene co-expression at distinct spatial locations or cell types in the tissue
enables delineation of spatial co-regulatory patterns as opposed to standard differential single gene
analyses. To enhance the ability and potential of spatial transcriptomics technologies to drive biological
discovery, we develop a statistical framework to detect gene co-expression patterns in a spatially
structured tissue consisting of different clusters in the form of cell classes or tissue domains.
Results: We develop SpaceX (spatially dependent gene co-expression network), a Bayesian methodology
to identify both shared and cluster-specific co-expression network across genes. SpaceX uses an over-
dispersed spatial Poisson model coupled with a high-dimensional factor model which is based on a
dimension reduction technique for computational efficiency. We show via simulations, accuracy gains
in co-expression network estimation and structure by accounting for (increasing) spatial correlation
and appropriate noise distributions. In-depth analysis of two spatial transcriptomics datasets in mouse
hypothalamus and human breast cancer using SpaceX, detected multiple hub genes which are related
to cognitive abilities for the hypothalamus data and multiple cancer genes (e.g. collagen family) from the
tumor region for the breast cancer data.
Availability and implementation: The SpaceX R-package is available at github.com/bayesrx/SpaceX.
Contact: xzhousph@umich.edu, veerab@umich.edu
Supplementary information: Supplementary data are available at bookdown.org/satwik91/SpaceX_supplementary/.

1 Introduction
Recent technological advances in spatial transcriptomics have facilitated
acquisition of high-throughput RNA sequencing data in biological tissues
while also taking into account the spatial information (Vickovic et al.,
2019; Marx, 2021). To decipher the spatial cytoarchitectures within tissues,
spatial transcriptomic technologies such as the 10X Genomics Visium
(Ståhl et al., 2016) and Slide-seq (Rodriques et al., 2019), use spatially
indexed barcodes with RNA sequencing that allow quantitative analysis
of the transcriptome with spatial information in individual tissue sections.
These new technologies can help understand the spatial organization of
many biological systems including developmental brain tissues (Moffitt
et al., 2018) and tumor microenvironments (Ståhl et al., 2016) and help
characterize the spatial interaction between cellular environment and gene
expression and depict tissue organizational differences between healthy
and diseased tissues (Saviano et al., 2020). A major point of interest

in spatial transcriptomics is to study the spatial variation of intercellular
signaling in tissues, which may underlie disease etiology as well as the
psychological or behavioral patterns (Navarro et al., 2020).

An important aspect of transcriptome analysis focuses on gene co-
expression patterns, as genes tend to be naturally interconnected with
each other through biological networks (Mason et al., 2009). Network-
based models provide a simple and interpretable framework to characterize
the complex gene interaction patterns in various biological systems (Goh
et al., 2007; Barabási et al., 2011; Marbach et al., 2016; Santolini and
Barabási, 2018). A gene co-expression networks, is often characterized
using a graph-based representation, where-in the nodes represent genes
and the edges depict the associative or regulatory interactions between the
genes. Several network methods have been developed to detect gene co-
expression networks and identify gene regulatory communities or modules,
in order to generate biological insights plausibly related to underlying
biological and regulatory pathways (Platig et al., 2016), understanding the
causal tissue or cell types (Shang et al., 2020), and potentially influence
disease risks and outcomes (Menche et al., 2015). Identification of changes
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Fig. 1. Workflow of the SpaceX model in alphabetical order. A) There is an image of tissue section from the region of interest. B) Spatial gene expression and biomarkers are recorded
from that tissue section with the help of single cell-sequencing techniques. C) We obtain the gene expression matrix forG genes andN locations where locations are divided intoC clusters.
We apply the SpaceX model on the gene expression matrix to obtain the shared co-expression network (D) and cluster-specific co-expression networks (E) and followed by hub gene analysis
and community detection. For all the network plots, node sizes and edge widths are proportional to the number of connected genes and gene co-expression level respectively. Finally, we
detect the communities (F) and hub genes (G) which are biologically conserved across the shared and cluster-specific networks. Tissue section (A) and spatial gene expression (B) Figures
are adapted by Loupe Browser from 10x genomics website. (H) Detailed workflow of the SpaceX algorithm.

in network structure between conditions such as cases and controls can
reveal important complementary information with respect to a specific
disease as compared to a standard differential expression analysis that
measures only the individual gene expression modifications (Gill et al.,
2010; Tesson et al., 2010; Ideker and Krogan, 2012; Ha et al., 2015;
Van Landeghem et al., 2016).

Majority of existing computational methodologies to construct gene
co-expression networks in standard single-cell studies (Crow et al., 2016;
Wang et al., 2016; García-Ruiz et al., 2021), intrinsically involve a
dimension reduction step which achieves two goals: one is to avoid curse
of dimensionality and aid computational feasibility; second is to preserve
the intrinsic dimensionality while reducing the noise. The existing network
methods, however, do not incorporate spatial information which are critical
in spatial transcriptomics. Only a limited number of works have been
proposed to study gene interactions or co-expression patterns in spatial
transcriptomics. Specifically, a recent work by Salamon et al. (2018)
provides visualization of the spatial co-expression network, the Graph
Convolutional Neural networks for Genes method (Yuan and Bar-Joseph,
2020) and the Giotto (Dries et al., 2021) method, specifically focuses
on ligand and receptors interactions. Furthermore, all of these methods
assume a common gene network across a given sample. However, one
may not expect a common network to capture all the spatial dependencies
since the genomic features could exhibit region-specific heterogeneity
based specific spatial locations within the sample. For example, these
regions can be pathologically different regions (e.g. tumor vs. normal in

cancer) or based on diverse cell-types (e.g. Sun et al. (2020)) and thus
these regions can manifest vastly different co-expression patterns. This
motivates the need for a network-based model which takes into account
the spatial information along with an underlying hypothesis that there is
shared (global) co-expression network which is common across the whole
space as well as locally-varying networks in different spatial regions.

To this end, we propose: spatially dependent gene co-expression
(SpaceX) network model to infer the gene co-expression networks for
spatial transcriptomic data with shared and region-specific components.
Figure 1 shows the overall conceptual flow of our pipeline. An image
of a given tissue section (Figure 1A) assayed for spatial gene expression
overlaid on the tissue section with (known) cluster annotations on the
spatial locations (Figure 1B). The resulting data matrix of the gene
expression matrix along with the spatial localization and cluster annotation
information for each spatial location on the tissue (Figure 1C) serves as
input for the SpaceX model. SpaceX uses an over-dispersed spatial Poisson
model paired with a high-dimensional factor model (Panel H) to infer
the shared and cluster specific co-expression networks (Figure 1D & 1E).
Finally, these networks are used for downstream network analyses to detect
gene modules and hub genes across spatial regions (Figure 1F & 1G) for
biological interpretation.

Briefly, SpaceX employs a Bayesian model to infer spatially varying
co-expression networks via incorporation of spatial information in
determining network topology. The probabilistic model (further detailed
in Section 2) is able to quantify the uncertainty and based on a coherent
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dimension reduction technique for computational efficiency. Through
rigorous simulations (Section 3), we demonstrate that our model is able
to accurately recover the network structure and increased estimation
accuracy at different spatial correlation structures. We apply the SpaceX
model to mouse brain imaging and breast cancer datasets to determine
region specific networks (Section 4). Further downstream analysis detected
multiple communities of gene modules and relevant hub genes. We are
able to identify multiple genes related to behavioral patterns and cognitive
abilities for the mouse hypothalamus data. Analogously, we detect multiple
collagen and cancer-specific genes from tumor regions in breast cancer.

2 SpaceX model

2.1 Method overview

In terms of input data structure, we denote the observed gene expression
data from G (g = 1, . . . G) genes, along with spatially-indexed clusters,
C (c = 1, . . . , C) with sizes Nc (i = 1, . . . Nc). These clusters can
be cell-type specific annotating distinct cell types or spatially contiguous
clusters annotating distinct spatial domains. We build a G dimensional
network where the dependencies between G genes can be depicted by an
undirected graph with a set of vertices V = {1, . . . , G} and a set of edges
E ∈ V ×V . The edge (E) between two nodes denotes the co-expression
level between them, which is defined using similarity measure which in
our case is the correlation coefficient. In the SpaceX model, we construct
networks consisting of following two hierarchical components:

• A “shared" component representing the global co-expression network
among genes across the spatial domain;

• A “cluster" specific component representing the local or cluster-
specific gene co-expression network for a given (c-th) cluster.

This decomposition accomplishes two goals. First, it enables the precise
depiction of co-expression network components that are conserved as well
as modified across spatial clusters, allowing more coherent interpretations.
Second, this facilitates a dimension reduction technique which makes the
whole methodology scalable for large networks. As shown in the graphical
workflow in Figure (1)H, the SpaceX algorithm takes gene expression
matrix, spatial locations and cluster annotations as input. In the first
step, the algorithm estimates the latent gene expression level using a
Poisson mixed model while adjusting for covariates and spatial localization
information. In the next step, it utilizes a sparse hierarchical factor model
on the latent gene expressions to obtain shared and cluster specific co-
expression networks. A detailed construction of the model is discussed
next in Section 2.2 followed by joint estimation and implementation of the
model in Section 2.3.

2.2 Model construction

In line with the above goals, one can infer gene co-expression networks
from the gene expression data collected by using several spatial
transcriptomics techniques (10X Genomics, Ståhl et al. (2016), Rodriques
et al. (2019)). The gene expression data are often collected in the form
of counts which represent the number of barcoded mRNAs for a given
transcript imaged in a single cell or the number of sequencing reads mapped
to a given gene on a spatial location. The expression count measurements
vary over spatial locations, whose spatial coordinates are recorded during
the experiment across N (=

∑C
c=1Nc) different spatial locations on

the sample. We denote ycg(si) the gth gene expression for lth cluster at
si(= (si1, si2) ∈ R2) location. We use a Poisson log-linear framework
to directly model the gene expression data in the form of counts. Based on
prior studies (Sun et al., 2020; Zhu et al., 2021), the count data is over-
dispersed with a higher variance than the mean for every gene. Therefore,

we introduce a random effect term to take into consideration of extra
variability that is not accounted for by a simple Poisson model.

To this end, we model the gene expressions data as:

ycg(si) ∼ Poi{Mc(si)λ
c
g(si)},

where λcg(si) is an unknown (spatial) rate parameter for g-th gene at i-th
location of c-th cluster andMc(si) is the normalizing factor. We consider
cluster specific summation of the counts over all genes to beMc(si). Λ is a
G×N matrix denoting the rate parameters for all genes and locations. The
cluster specific and spatially dependent rate parameter Λ is then modeled
with an additive log-linear equation i.e.

log(Λ) = BX + S + ΦF + ΨCDC + E. (1)

The context-specific interpretations of the five terms in model (1) are
as follows: (I) B = [(βcmg )] is a G × CM matrix containing cluster
and gene specific vector of coefficients including an intercept. Here βcmg
denotes the coefficient for cth cluster gth gene and mth covariate and
the X (CM × N) is matrix with covariates. The possible covariates
could include batch size, cell-cycle information or any other covariate
related to the experiment. In the additive model (1), BX explains the
covariate effect. (II)S accounts for the cluster-specific spatial effects where
each row of S is being modeled with multi-variate normal distribution
with mean 0 and spatially resolved Gaussian kernel as covariance i.e.
Ωc(s1, s2) = exp(− || s1 − s2 ||2 /2ρ2c), c = 1, . . . , C. Here ρc
accounts for cluster specific spatial correlation which allows the flexibility
to model heterogeneous degrees of spatial correlation within the clusters.
(III) ΦF is the shared structure which consists of shared loading matrix
Φ (G × K) and shared factor matrix F (K × N). (IV) Analogously,
ΨCDC is the cluster specific structure where ΨC (G ×Kc) is cluster
specific loading matrix and DC (Kc ×N) cluster specific latent factors.
(V) Finally, E is an idiosyncratic error matrix which implies that each
elements follow a normal distribution.

In the model (1) formulation, we effectively exploit dimension
reduction techniques to ensure scalable construction of gene co-expression
networks. Our approach is based on latent factor models which leverage
a low-dimension structure, especially for multi-view data (Gaynanova
and Li, 2019; Lock et al., 2013), while identifying the shared co-
expression network and isolating the cluster specific networks (Zhao et al.,
2016). Through the correspondence between factor models and covariance
matrices, this allows us to infer two important and hierarchical components
of gene co-expression networks:

• “Shared" component is represented by Gs = ΦΦT which is a
covariance matrix of shared factors and the (i,j)-th element of Gs

denotes the co-expression between i-th gene and j-th gene in the shared
structure.

• Analogously, “Cluster" specific gene co-expression level is represented

by Gc = ΦΦT + ΨcΨcT where ΨcΨcT is covariance matrix of
cluster specific factors. The (i,j)-th element denotes cluster specific
co-expressions between i-th gene and j-th gene.

2.3 Bayesian estimation algorithm

To fit model (1), we use a tractable Bayesian estimation procedure along
with a computationally efficient and scalable algorithm, as outlined below.
As opposed to full-scale Markov chain Monte Carlo (MCMC) algorithm
which tends to be computationally intensive (Sun et al., 2018), we decouple
the whole model estimation into two key components (I) Spatial Poisson
mixed model and (II) hierarchical factor analyses models, and the two
components are linked in a sequential manner in our algorithm:
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Fig. 2. Accuracy comparison of different approaches in estimating gene co-expression network in Simulation study. A) The shared and cluster-specific networks are denoted by
Gs = ΦΦT and Gc , c = 1, . . . , C. The RV coefficient measures the distance between the true and estimated networks under varying degree of spatial correlations. In the left panel,
we have boxplot of RV coefficients across 50 replicates for shared and cluster-specific networks. We compare the RV coefficients for 5 different methods based on spatial correlation (I)
SHigh (ρ = 0.2), (II) SMed (ρ = 0.15), (III) SLow (ρ = 0.1), (IV) NSP (ρ = 0) and (V) NSG (the PMM and spatial informations are not taken under consideration). B) In the right
panel, we have ROC curves for shared and cluster-specific networks w.r.t. the 5 settings discussed for Figure 2A except for NSG .

• Spatial Poisson mixed models (sPMM) is an additive structure that
connects log-scaled Λ with covariate effect, spatial effect, and
remaining gene-specific effects. We fit the sPMM and carry forward the
unexplained variability and latent gene expressions to the hierarchical
factor analyses models.

• The shared and cluster-specific gene co-expression networks are then
inferred using hierarchical factor analyses models.

For the estimation procedure, we use the PQLseq algorithm which is a
scalable penalized quasi-likelihood algorithm for sPMM with Gaussian
priors using (Sun et al., 2018) to obtain the latent gene expressions. For
fitting the hierarchical factor analyses model, following the algorithm
of Vito et al. (2021), we place multiplicative gamma shrinkage prior
(Bhattacharya and Dunson, 2011) prior on the shared and cluster specific
loading matrices i.e. Φ and Ψc, c = 1, . . . , C. The shared and cluster
specific latent factors (K and Kc respectively) are automatically chosen
de-novo by the methodology described in Vito et al. (2021). Additional
details about the estimation procedure are provided in the Section A of the
Supplementary Materials.

2.4 Co-expression network construction and inference

Construction of co-expression networks: Using the SpaceX algorithm, we
obtain the posterior samples of the shared (Gs = Φ̂Φ̂T) and cluster-
specific (Gc = Φ̂Φ̂T + Ψ̂cΨ̂cT ) covariances. The posterior mean
estimates of Gs and Gc are used to construct the co-expression networks
as shown in Figures 1D and 1E respectively. These covariances are
transformed to correlation matrices for inference and interpretation. For
example, the (i,j)th element of the shared correlation matrix (RΦ) is rφi,j
which denotes the shared correlation between i-th gene and j-th gene.
Inferential summaries of co-expression networks: A significant edge

between two genes in the co-expression network is defined as | rφi,j |> δ

where δ is a false discovery rate (FDR) based cut-off as has been done
in (Baladandayuthapani et al., 2014; Ni et al., 2019). An analogous

interpretation can also be provided for the cluster-specific networks. An
edge is deemed conserved between i-th and j-th gene if there are co-
expression between those two genes across all the clusters. In real data
analysis top edges are detected and discussed about the edges which are
conserved across clusters (Section 4). We use the co-expression networks
for downstream analysis to detect hub genes (Figure 1G) and communities
with gene modules (Figure 1F) by optimizing modularity over partitions
in a network structure (Brandes et al., 2007). Hub genes from shared
and cluster-specific networks are detected based on the number of edges
linked to each gene. We refer a hub gene to be biologically conserved if a
particular gene is a hub gene across clusters.

3 Simulation studies
We evaluate the performance of the SpaceX model in synthetic datasets
mimicking our real data applications (Section 4) under a range of spatial
dependencies. Our core hypothesis is that, by accounting for spatial
correlations, should enable better estimation and co-expression network
recovery (both shared and cluster-specific) with sequential increase in
spatial correlations.
Simulation design: We consider C = 7 clusters of spatial locations with
cluster sizes (Nc). We set the dimension of shared factor loading to be
K = 8 and denote cluster specific loading dimensions kc, c = 1, . . . , C.
To mimic the sparse and zero-inflated nature of single cell RNA profiles,
we randomly allocate zeros on the column of shared and common loading
matrices i.e. Φ and Ψc, c = (1, . . . , C) and generate rest of the elements
from U(-1,1) distribution. The cluster specific settings are provided
as triplets (Nc, kc,% of 0’s): (700, 5, 70), (500, 4, 75), (300, 3, 67),
(1000, 6, 55), (1700, 7, 60), (200, 2, 65), (600, 3, 75) where the first
one correspond to the first cluster followed by the settings of rest of the
6 clusters. For each of the total N = 5000 locations, we simulated
expressions level from G = 160 genes using the SpaceX model (1).

We consider three levels of spatial dependency: (I) high (ρ = 0.2,
denoted with SHigh) (II) medium (ρ = 0.15, denoted with SMed) and (III)
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Fig. 3. Analysis of the mouse hypothalamus data with 160 genes and 4812 spatial locations. A) Spatial distribution of all cell types and all major cell types separately. Cell type colors
are provided in the legend along with the information of the cell type. Spots in each cell type are shown with colored dots while the remaining spots are shown as gray dots. B) Shared and
cell type-specific networks are obtained from the SpaceX model. The Figure in the center shows the shared network where marker genes are color-coded for different cell types based on
their differential expressions. Cell type-specific networks are provided around the shared network Figure. C) Circular heatmap of connection of each gene in each of the cell type-specific
networks. The dendrograms of genes and cell types are provided inside and on the right hand side of the plot respectively. Color represents the gene connection levels (red, high; blue,
medium; white low). D) Analysis for hub gene detection with upset plot and multi-layered Venn diagram. Cell-type specific multi-layered Venn diagram of top 5 hub genes. Numbers inside
the Venn diagram show the cardinality of genes controlled by the hub genes individually or jointly. The upset plot shows different hub genes for each of the cell types and different spatial
intersections.

low (ρ = 0.1, denoted with SLow) spatial correlation. Based on the real
data explorations, the corresponding induced spatial correlations for all cell
types are 0.88, 0.80, 0.61 for SHigh, SMed, SLow respectively at given
distance of 0.01; Additional details and spatial correlation decay plots
are provided in Section B.1 of the Supplementary Materials. As baseline
comparators, we take two non-spatial settings: (IV) Spatial information is
completely ignored at Poisson mixed model (denoted with NSP) i.e. each
row of S follows a multivariate Gaussian distribution with mean 0 and
covariance matrix identity and (V) the PMM and spatial information are
not taken under consideration. This setting is denoted with NSG. All the
simulation results are summarized over 50 replicated datasets.
Co-expression estimation: As a metric of co-expression estimation
accuracy, we use RV coefficient (Robert and Escoufier, 1976) to quantify
the similarity between true and estimated covariance (co-expression)
matrices with RV values close to 1 (0) implying higher (lower) level
of similarity. In Figure 2A, we show the boxplot of RV coefficients
for shared (Gs) and cluster-specific (Gc, c = 1, . . . , C) covariance
matrices across 5 previously proposed settings. As can be seen, the

spatial settings are estimating the co-expression values better than the
non-spatial settings w.r.t. RV coefficients. Among the spatial settings,
the estimation accuracy of co-expression level increases with increasing
levels of spatial correlation. For example, the median estimation accuracy
measured through RV coefficient for method (V)–(I) for shared network
are 0.83, 0.88, 0.91 0.92, 0.96 respectively. Pairwise t-tests between
the spatial and non-spatial settings show a significant (p-value < 0.05)
improvement in network estimation accuracy. We observe the similar
pattern with different norm measures (Euclidean, log-Euclidean, root-
Euclidean, Riemannian) and such detailed discussion is given in Section
B.2 of the Supplementary Materials. Performance accuracy of shared
and cluster specific loadings (k and kc) are described in Section B.3
(Figure B.6 and B.7) of the Supplementary Materials. To summarize, we
observe that the estimation accuracy increases with incorporation of spatial
information and higher level of induced spatial dependency.
Network structure: To compare network structure recovery, we constructed
the receiver operating characteristic (ROC) curves to compare each
simulation setting’s capability to detect significant edges from the truth.
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The sensitivity (true positive rate) and 1-specificity (false positive rate) for
each simulation setting are computed at each threshold parameter value
[α ∈ (0, 0.1)] with the area under the ROC curve (AUC) to compare
the structural recovery in each simulation setting (higher values implying
better recovery). In Figure 2B, we provide the ROC curves along with the
AUCs for the first 4 methods w.r.t. shared and cluster-specific networks.
The AUC values for NSG method are below 0.5 which means the method
was performing even worse than a random selection. Analogous to the
network estimation results, from an AUC-based comparative analysis for
shared and cluster-specific networks in Figure 2B, we observe that higher
spatial correlation leads to a high AUC value implying better network
structure recovery. For shared network in Figure 2B, the AUC values are
0.57, 0.68, 0.72, 0.83 w.r.t method (IV)–(I) respectively which leads to
19%, 6% and 15% of improvements in accuracy among the comparative
methods.

In summary, we see the SpaceX model significantly improves network
estimation and structure recovery across a range of spatial dependencies.
The highest gain is when spatial correlations are high (e.g. 0.88).
This shows that profitably accounting for spatial correlations as well
as appropriate noise distributions (i.e. Poisson models) can increase the
efficiency of co-expression estimation.

4 Gene co-expression networks using spatial
transcriptomics data

We illustrate the SpaceX model using two spatial transcriptomics datasets
in mouse hypothalamus (Moffitt et al., 2018) and human breast cancer
(Ståhl et al., 2016) detailed in Sections 4.1 and 4.2 respectively. The mouse
hypothalamus dataset is of single cell resolution, with the spatial locations
representing cells and the location clusters representing cell types. The
breast cancer dataset is of regional resolution, with each spatial location
consisting of multiple single cells and the location clusters representing
three tissue domains (tumor, intermediate and normal).

4.1 Hypothalamus data

The MERFISH dataset is collected from the preoptic region of the mouse
hypothalamus, which regulates many social behaviors (Moffitt et al.,
2018). The MERFISH technique measures gene expression on single cells
of different cell types, providing insights into the spatial organization of
cells in the tissue (Moffitt et al., 2018). The dataset consists of 160 genes
and the corresponding gene expressions are measured across 4812 spatial
locations. These cells have been annotated into 7 different cell types (size)
namely astrocyte (724), endothelial cells (503), ependymal cells (314),
excitatory neurons (1024), inhibitory neurons (1694), immature neurons
(168), and mature neurons (385) (Moffitt et al., 2018).

The spatial distributions of all cell-types are shown in Figure 3A. We
obtain the shared and cell type specific network (Figure 3B) using SpaceX.
The shared network is shown in the center, where the genes are grouped
and color-coded based on their differential expression for the particular
cell type. We use the Wilcoxon test to detect if a gene is deferentially
expressed for a particular cell type. Following all the network Figures in
3B, we observe substantially more gene-gene co-expression edges within
cell type rather than between cell-type, which is along expected lines. To
summarize the level of connectivity, we provide a circular heatmap (Figure
3C) of a matrix with each entry being the number of gene connections for a
gene with respect to a specific cell type. The dendrogram of cell types on the
right shows that the connections between genes are different in immature
cell-type than others. Based on the number of connections of each gene, we
identify the hub genes for each cell type. Figure 3D, shows the hub genes
for each cell type and spatial intersections through the upset plot which is a
concise way to visualize the intersection of multiple sets (Lex et al., 2014).
The multi-layered Venn diagram represents the top 5 hub genes with inside

numbers indicating the cardinality of genes controlled by the hub genes.
A detailed list of hub genes and top edges is provided in Section C of the
Supplementary Materials. The findings related to community detection
for MERFISH data (Figure C.2) and exploratory analysis (Figure C.1) are
discussed in Section C of the Supplementary Materials.

From Figure 3D, we find that transmembrane protein 108 (Tmem108)
is a hub gene for all the cell types except endothelial. Tmem 108 portine is
a major gene for psychiatric disorders such as bipolar disorder and major
depression (Yu et al., 2019). Another two detected hub genes CCKAR and
CCKBR serve as a receptor for cholecystokinin (CCK) and these genes
are associated with gastrointestinal diseases (Huppi et al., 1995). Loss
of CCK receptor can lead to abnormalities of cortical development and
cortical interneuron migration (Nishimura et al., 2015). In both healthy
and injured mouse brains, sema4D (another hub gene in endothelial,
immature and excitatory) deficiency causes an increase in the number of
oligodendrocytes (Taniguchi et al., 2009). TAC1 regulates adiposity level
in response to the ghrelin administration and variation in gonadal functions
(Trivedi et al., 2015). Along this line, overexpression of another hub gene
SLN or sarcolipin is a regulator of muscle energy and reduces exhaustion
(Sopariwala et al., 2015). TAC1 and SLN are highly associated in shared
and cell type specific networks. This association is conserved across all
the cell types and both genes are an important factor in terms of regulating
obesity and fatigue.

4.2 Breast cancer data

The human breast cancer data was collected by biopsy of a tissue sectioned
at a thickness of 16µm (Ståhl et al., 2016). The Hematoxylin and Eosin
(H&E) staining image (Sun et al., 2020) is shown in the left of Figure
4A where the dark staining represents a potential tumor region and the
remaining part can be classified into intermediate and normal regions. We
manually segregate the locations based on the H&E staining image into
three spatially contiguous clusters, including tumor, intermediate, and
normal with the following cluster sizes 114, 67, and 69 spots respectively.
We provide the spatial distribution of contiguous clusters in Figure 4A.
The expression levels are measured from 5262 genes at 250 spot locations
and we used the SPARK method (Sun et al., 2020) with 5% FDR cut-off
on p-values to detect 290 spatially expressed genes for this analysis.

We apply the SpaceX method to detect shared and cluster-specific co-
expression networks in Figure 4B. In the shared network, we use a different
color scheme if a gene is deferentially expressed for a specific cluster and
carry forward the same color for the cluster-specific network. We observe
that the shared network is much denser than the cluster-specific network.
By definition, there will be some degree of association between two genes
in the shared structure if they are associated in a cluster-specific network,
but not vice-versa. Figure 4(C) shows the degree (number of connected
nodes) of each gene for each cluster and the dendrogram between clusters
(on the right side) shows that the gene co-expression is different in the
normal cluster than in tumor and intermediate clusters, which is along
expected lines. Gene-specific hierarchical clustering is provided inside
the corresponding circos plot. Next, we detect the hub genes for each
cluster and identify if there is a commonality among hub genes across
all the clusters. Cluster-specific multi-layered Venn diagram of top 5 hub
genes shows the dependence among other genes. The corresponding upset
plot in Figure 4(D) detects the common hub genes across clusters. A
detailed list of hub genes and top edges for breast cancer data analysis
is provided in Section C of the Supplementary Material. Figure C.3 in the
Supplementary Materials shows the detected gene modules for shared and
cell-type specific co-expression networks.

From our analyses, multiple collagen genes are detected as hub genes
in tumor clusters such as COL6A2, COL3A1 which control the tumor
migration involving metastasis (Li et al., 2020). Transcription factors,
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Fig. 4. Human Breast cancer data Analysis with 290 genes and 250 spatial locations. A) The hematoxylin and eosin staining image is on the left and the spatial distribution of manually
classified contiguous clusters is on the right. The H&E image is adapted from Ståhl et al. (2016) with permission. B) Network structure for shared, tumor, intermediate and normal arranged
in a clockwise way. Different color schemes have been used to represent differentially expressed genes for a particular cluster. The positive and negative associations between genes are
denoted with different line types or colors whereas the level of association between genes is proportional to edge width. C) Circular heatmap of a matrix with each entry representing the
number of connections of a gene for a particular spatial region. Color represents the gene connection levels (red, high; blue, medium; white low). Dendrogram of genes and spatial regions
are given inside and right side of the heatmap. D) Multi-layered Venn diagram shows the top 5 hub genes for each spatial region. The upset plot lists all the hub genes for each spatial region
and intersection.

signaling pathways, and receptors related to cancer can all be modulated
by collagen biosynthesis (Xu et al., 2019). Another hub gene, CD24 is an
immune-related gene that is usually overexpressed in human tumors and
it regulates cell migration (Altevogt et al., 2021). VIM genes (a hub gene
between the intersection of tumor and intermediate region in Figure 4D)
can be used as a biomarker for the early detection of cancer as this gene
is transcriptionally inactive in normal regions (Mohebi et al., 2020). Note,
our method does not detect VIM as a hub gene for the normal. In Figure
4B, we provide the shared network between genes where genes are marked
with different colors based on their differential expression in each region.
The gene XBP1 is a normal biomarker gene which is negatively associated
with the genes which are a biomarker for the tumor region. For the tumor
network, we observe that the LUM gene is associated with collagen genes
since the LUM gene effectively regulates estrogen receptors and associated
function properties of breast cancer cells (Karamanou et al., 2017).

5 Discussion
We propose a novel network modeling approach, SpaceX that allows
joint estimation of the shared and cluster-specific network from spatial
transcriptomic data with different cell types or regions which enables
delineation of spatial heterogeneity of co-expression networks, either cell-
type or region. We show via simulations accuracy gains in co-expression
network estimation and structure by accounting for (increasing) spatial
correlation and appropriate noise distributions. Using two case studies in
mouse hypothalamus and human breast cancer datasets SpaceX allows
detection of top co-expressed and hub genes that are conserved or unique
across different cell types and tumor regions, which have important
biological relevance. In particular, for mouse hypothalamus data we
identify two high co-expressed genes: TAC1 and SLN which directly
associated in regulating physical exhaustion and body weight. Similarly,
we identify multiple collagen genes and LUM gene as hub genes for the
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breast cancer dataset and these genes are connected with key functional
properties of cancer cells such as tumor migration.

Our core SpaceX methodology can be generalized in several directions.
Our model can be adapted to other noise distributions such as negative
binomial or other robust distributions to infer spatial co-expression
networks for different platforms. Furthermore, multiple spatial kernels can
be accommodated for modeling stationary and non-stationary correlation
structures, to enrich the inference. The proposed methodology is based
on supervised clusters which can be extended to unsupervised clustering
techniques (Zhao et al., 2021) in future. The proposed method has the
potential to be extended to study dependencies in different biological
systems such as binding between proteins or disease specific gene co-
expressions. SpaceX employs efficient dimension reduction techniques
and takes around 1.5 and 5 hours to run on the breast cancer and mouse
hypothalamus datasets in a high-computing cluster with single CPU core.
Currently, our method is limited to hundreds of genes and we aim
to extend our scalable methods for number of genes and spots in the
order of thousands, as technology matures. The SpaceX package and the
Supplementary Materials are available at github.com/bayesrx/SpaceX and
bookdown.org/satwik91/SpaceX_supplementary/ respectively.
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