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Abstract: The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2
variants on a daily basis. While most variants do not impact the course of the pandemic, some variants pose
significantly increased risk when the acquired mutations allow better evasion of antibody neutralisation in
previously infected or vaccinated subjects, or increased transmissibility. Early detection of such high risk
variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to
determine immune evasion and transmissibility characteristics of new variants are resource-intensive and
time-consuming, potentially leading to delayed appropriate responses by decision makers. Here we present a
novel in silico approach combining Spike protein structure modelling and large protein transformer language
models on Spike protein sequences, to accurately rank SARS-CoV-2 variants for immune escape and fitness
potential. We validate our immune escape and fitness metrics with in vitro pVNT and binding assays. These
metrics can be combined into an automated Early Warning System (EWS) capable of evaluating new variants in
minutes and risk monitoring variant lineages in near real-time. The EWS flagged 12 out of 13 variants,
designated by the World Health Organisation (WHO, Alpha-Omicron) as potentially dangerous, on average two
months ahead of them being designated as such, demonstrating its ability to help increase preparedness against
future variants. Omicron was flagged by the EWS on the day its sequence was made available, with immune
evasion and binding metrics subsequently confirmed through our in vitro experiments.

One-Sentence Summary: A COVID-19 Early Warning System combining structural modelling with AI to
detect and monitor high risk SARS-CoV-2 variants, identifying >90% of WHO designated variants on average
two months in advance.

Main Text:

Main: Despite a relatively slow mutation rate in the human coronaviruses, since the emergence of the human
coronavirus SARS-CoV-2 in Wuhan in December 2019, over 250,000 different missense variants (as of
November 25, 2021) have been identified in the protein-coding viral sequences deposited in the GISAID (Global
Initiative on Sharing All Influenza Data) database and associated with multiple lineages. Of these, over 12,750
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individual missense mutations (including indels) have been observed in the Spike protein, the key target for
antibody neutralisation (While most mutations either reduce the overall fitness of the virus, or bear no
consequences to its features, some individual or combinations of mutations lead to high risk variants (HRVs),
with modified immune evasion capabilities, and/or improved transmissibility. For example, the Alpha (B.1.1.7)
variant of concern (VOC) spread widely through higher transmissibility compared with the Wuhan strain, while
the Beta (B.1.351) VOC has been shown to be less effectively neutralised by both convalescent sera and
antibodies elicited by approved COVID-19 vaccines1. The Delta (B.1.617.2) variant characterised by a high
transmissibility led to increased mortality and triggered a renewed growth in cases in countries with both high
and low vaccination rates (such as the United Kingdom2 and India3). Most recently, the more heavily mutated
Omicron (B.1.1.529) variant was amongst the quickest variants to be designated as a VOC by the WHO, due to a
combination of widespread dissemination and several concerning mutations in the Spike protein as well as in
other proteins4.

Hundreds of new variants are sequenced daily, some of which are added to the GISAID and other databases5,6.
As new sequences continue to naturally emerge, the potential for the generation of variants that are both fit and
highly immune resistant creates a significant challenge for public health authorities. The transmissibility and
immune escape potential of a given variant could be assessed experimentally: evaluating one aspect of the fitness
of variants requires experimental measurements of their binding affinity with its human receptor,
angiotensin-converting enzyme 2 (ACE2), which is necessary for host cell infection; assessing immune escape
potential requires in vitro neutralisation tests involving serum from vaccinated subjects or serum from patients
previously infected with other variants of SARS-CoV-2. Both methods are resource-intensive and
time-consuming, and cannot be scaled to properly address the multitude of emergent variants.

In this work, we present a new method to evaluate SARS-CoV-2 variants based on in silico structural modelling
and artificial intelligence (AI) language modelling and demonstrate that it captures features of a given variant's
fitness as well as its immune escape properties (Fig. 1). This approach is used here to build an Early Warning
System (EWS) that trains on the complete (up to a chosen time point) GISAID SARS-CoV-2 sequence database
in less than a day and can score novel variants within minutes. It is a non-trivial task, as newly emerging High
Risk Variants most often comprise new sets of mutations, and not all combinations of mutations present in
previously identified concerning variants actually lead to enhanced immune evasion or transmissibility. In
particular, accomplishing this by standard ML methods results in poorer predictive performance (see
Supplementary Material, “Detecting HRVs by standard ML methods”). The EWS is fully scalable as new variant
data become available, allowing for the continuous risk monitoring of variant lineages. We show that it can flag
HRVs months earlier than their designation as such by the WHO, providing an opportunity to shorten the
response time of health authorities.
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Fig. 1. A schematic of the Early Warning System (EWS): structural modelling methods and natural
language processing techniques to enable risk level estimation of SARS-CoV-2 variants in real-time. (A)
Structural modelling is used to predict the binding affinity of SARS-CoV-2 Spike protein to host ACE2, and to
score the mutated epitope regarding its impact on immune escape. (B) Machine Learning modelling is used to
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extract implicit information from unlabeled data for the hundreds of thousands of registered variants in the
GISAID database. (C) EWS relies on the information from A and B to compute an immune escape score and a
fitness prior score, which taken together, present a more comprehensive view of the SARS-CoV-2 variant
landscape. Both scores can be combined to obtain a single score, based on the notion of Pareto optimality and
dubbed Pareto score, that represents a variant’s risk. The higher the Pareto score, the fewer variants with higher
immune escape and fitness prior scores. (D) Schematic of AI model structure for assessing semantic change and
log-likelihood. Once trained (Fig. S.1.A), the model receives as input a variant Spike protein sequence, and
returns an embedding vector of the Spike protein sequence as well as probabilities over amino-acids for each
residue (Fig. S.1.B). The embedding vector is used to calculate semantic change from the Wuhan and D614G
variants while the probabilities are used to compute the log-likelihood.

Results :

In silico prediction of immune escape potential.

Mutations in the Spike (S) protein, especially the receptor-binding domain (RBD), are key to the heightened
resistance to antibody-mediated neutralisation of new SARS-CoV-2 variants7. To evaluate the impact of said
mutations on humoral immune evasion, the 336 binding epitopes observed in 310 previously resolved structures
of neutralising antibodies (nAbs)8–11 were mapped onto the S protein based on publicly available resolved 3D
structures (Table S.1). An overlay of all nAb:S protein interaction interfaces was used to generate a colour-coded
heatmap, indicating which surface-exposed amino acids are located in high epitope density regions (Fig. 2.A).
The number of known nAbs whose binding epitope is affected by distinct SARS-CoV-2 variants’ mutations was
defined as the epitope alteration score (Table S.2).

While this score can be used as a first proxy to evaluate escape from humoral immunity, it is limited by its
dependence on the quantity of available antibody structure data. By using deep learning language models, we
were able to leverage the information from hundreds of thousands of SARS-CoV-2 S protein sequences
deposited to the GISAID database. It was recently demonstrated that these algorithms have the ability to capture
the biological properties of proteins through unsupervised learning on large amounts of biological data12–14. At
inference time, a language model returns the predicted probability distribution of the 20 natural amino acids for
each position in the protein, thus leveraging the underlying biology of the large number of sequences seen during
training from an evolutionary point of view. Hie et al.15 showed that language models trained on a dataset of
proteins can be used to assess the risk of a viral variant. This risk was measured through two proxies named
grammaticality as a measure for fitness and semantic change to assess antigenic variation. In this work, the
recurrent neural networks were replaced with attention-based models, namely transformers16, hence replacing the
auto-regressive way of training the model used in15 with the Bidirectional Encoder Representations from
Transformers (BERT) protocol, which has been shown to give better results in many applications17. Even though
the GISAID dataset contains hundreds of thousands of Spike protein sequences, it is limited in scope to
SARS-CoV-2. To learn more general features of protein sequences and address currently unseen viral variants,
one would need to use more comprehensive protein sequence resources, such as the UniProtKB database that
includes hundreds of millions of protein sequences18. To benefit from this large volume of available data, the
model was first pre-trained over the large collection of varied proteins included in UniRef100 (non-redundant
sequence clusters of UniProtKB and selected UniParc records) and then fine-tuned over S protein sequences
(Fig. S.1.A). The transformer model has been re-trained every month on the variants registered in GISAID (up to
250,000 unique S sequences vs. 4,172 S sequences in Hie et al.15). Our semantic change calculation differed in
that it was computed to estimate the change with respect to the wild type and from the D614G mutation to take
into account this mutant that largely replaced the Wuhan strain (Fig. 2.A).
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In order to validate the immune escape in silico metrics - semantic change and epitope alteration score - in vitro
pseudovirus neutralisation test (pVNT) assays were conducted. The cross-neutralizing effect of n≥12
BNT162b2-immune sera was assessed against vesicular stomatitis virus (VSV)-SARS-CoV-2-S pseudoviruses
bearing the Spike protein of 19 selected High Risk Variants, including Omicron (B.1.1.529) (Fig. 2.B, Fig. S.2,
Table S.3)19,20. The SARS-CoV-2 Omicron pseudovirus was by far the most immune escaping with >20-fold
reduction of the 50% pseudovirus neutralisation titer (pVNT50) compared with the geometric mean titer (GMT)
against the Wuhan reference spike–pseudotyped VSV (Fig. S.2.B). The calculated geometric mean ratio with
95% confidence interval (CI) of the Omicron pseudotype and the Wuhan pseudotype GMTs was 0.025 (95% CI;
0.017 to 0.037), indicating another 10-fold drop of the neutralising activity against Omicron compared to the
second most immune escaping B.1.1.7+E484K pseudovirus with a geometric mean ratio of 0.253 (95% CI;
0.196 to 0.328) (Fig. S.2.C). This result is in absolute concordance with the in silico immune escape score for
Omicron which is the highest amongst observed, circulating variants. Across all HRV pseudoviruses tested, both
the epitope alteration score and the semantic change score correlate positively with the calculated pVNT50

reduction (Fig. 2.B; Pearson r=0.79 and 0.74, respectively). Of note, an average of both in silico scores
(summarised as the 'immune escape score') exhibits a stronger correlation with the observed reduction in
neutralising titers (Pearson r=0.85).

In silico estimation of fitness.

The immune escape score predicts if a given viral variant may evade neutralisation by the immune system, but it
does not capture protein changes that either enhance the efficacy of viral cell entry, or negatively impact its
structure or function. Capturing the full transmissibility potential of the virus (fitness) is beyond the scope of this
work as it comprises many complex dynamics, however, we can propose three informative priors contributing
toward it: ACE2 binding score, conditional log-likelihood score and growth.

A key determinant of viral spread is the effectiveness with which virus particles can attach to and invade target
host cells. This characteristic is especially important when considering individuals without pre-existing
immunity or viral variants which are able to better evade immune responses. In order to infect the human host
cell, the RBD of the viral S protein associates with ACE2, the cellular receptor for SARS-CoV-2. Therefore, we
assessed the fitness prior based on the predicted impact of sets of mutations on the binding affinity of the variant
S protein to the human ACE2 receptor, here referred to as the ACE2 binding score. The interaction between a
variant S protein and the ACE2 protein was computed through repeated, fully flexible, in silico docking
experiments, allowing for an unbiased sampling of the binding landscape. In order to reduce the required
computational resources, the Spike protein modelling was restricted to its RBD domain, i.e. the domain known
to be directly binding to the ACE2 receptor. To calculate the ACE2 binding score, we used the median binding
energy (that is the difference estimated Gibbs free energy δG between bound and unbound states), which acts as
a proxy for global complex affinity (Fig. S.3).

In order to assess the validity of the ACE2 binding score, the simulation results were compared with in vitro
results. Surface plasmon resonance (SPR) kinetic analysis was performed to determine the affinity (KD,
dissociation constant) of 19 RBD variants to the ACE-2 receptor. Notably, the assay measures observable
association rates, which are a result of a dynamic process, while simulations measure aggregated, static binding
affinity, thus marginalising the contribution of mutations toward the flexibility and kinetics of the spike protein.
Despite this, the ACE2 binding score used herein shows meaningful correlation with the KD values with a
Pearson correlation coefficient of 0.45 (Fig. 2.C).
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Another aspect that partially models the fitness of a variant, is how similar a given variant is to the other variants
which have been known to grow rapidly. This is not achievable by simple sequence comparison, due to epistatic
interactions between sites of polymorphism, in which certain mutation combinations enhance fitness while being
deleterious when they occur separately. The same trained transformer model described previously was leveraged
to calculate the log-likelihood of the input sequence. From a language model perspective, the higher the
log-likelihood of a variant, the more probable is the variant to occur. In particular, the log-likelihood metric
supports substitutions, insertions, and deletions without requiring a reference sequence to measure against,
unlike the grammaticality of Hie et al.15 that requires a reference sequence. Our language model was not
provided with explicit sequence count data in the training phase, yet on average assigned higher log-likelihood
values to sequences with higher actual observed count. High log-likelihood may indicate features common in the
general variant population, which are likely to be fitness-related, thus allowing strains harbouring these to sustain
additional such mutations.

However, the values of log-likelihood tend to diminish with the increasing number of mutations, which is
expected given the definition of this metric; this over-emphasizes variants with low mutation counts.
Considering that all the samples used for training have been detected in patients, and as such have likely satisfied
a minimal fitness criteria, we introduced the conditional log-likelihood score, measuring how the log-likelihood
of the variant in question compares to other variants with similar mutational loads, as opposed to the entire
population. This metric sheds more light on highly mutated, potentially concerning variants like B.1.1.529
(Omicron). Due to its high mutational load, this variant might be perceived by raw log-likelihood as highly
unlikely. However, relative to other variant sequences with a similar number of mutations, it becomes clear that
it stands out, leading to a high conditional log-likelihood score (Fig. S.4).

None of the metrics discussed above capture the entirety of factors affecting the frequency of viral variants.
Additionally, conditional log-likelihood is a metric measuring similarity to already known, rapidly increasing
samples. By its nature, it cannot fully assess the variants which exhibit completely new sequence features, until
these features are observed more often. Therefore, the fitness prior metric includes growth, an empirical term of
the quantified change in the fraction of the sequences in the database that a variant in question comprises. This
addresses the intuitive notion that variants which are increasing in prevalence are more imminently interesting
than those which are not. The growth metric also reflects the overall fitness of a given variant, implicitly taking
into account the impact of mutations beyond the RBD domain and Spike protein. It complements the ACE2
binding score which models the RBD domain only.
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A

B                                                                                   C

Fig. 2. In silico predicted scores for immune escape and fitness prior correlate with in vitro data. (A) The
surface of a SARS-CoV-2 Spike protein in ‘one RBD up’ conformation (PDB id: 7kdl), in top colored by the
frequency of contact of surface residues with neutralising antibodies (brighter. warmer colour corresponds to
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more antibody binding). Middle and bottom row depict the number of evaded epitopes in a Beta (B.1.351) and
Omicron (B.1.1.529). Left column: side view. Right column: top view. (B) Validation of the immune escape
metric with pseudovirus neutralisation test (pVNT) results. Relationships of the epitope alteration score,
semantic change score, and combined immune escape score with the observed 50% pseudovirus neutralisation
titer (pVNT50) reduction are shown across n=19 selected SARS-CoV-2 variants of interest, including Omicron
(B.1.1.529). Cross-neutralization of n=12-40 BNT162b2-immune sera was assessed against vesicular stomatitis
virus (VSV)-SARS-CoV-2-S pseudoviruses. pVNT50 reduction compared to wild-type SARS-CoV-2 (Wuhan
strain) Spike pseudotyped VSV is given in percent. Variants for which experimentally measured geometric mean
pVNT50 increased compared to the Wuhan strain have been assigned a pVNT50 reduction of 0 (equal to wild
type). Epitope alteration score (based on structural modelling) indicates the number of known neutralising
antibodies (max. n=310) whose binding epitope is affected by the SARS-CoV-2 variants’ mutations. Semantic
change score (based on machine learning) indicates the predicted variation in the biological function between a
variant and wild-type SARS-CoV-2. For the semantic change score, the distance in embedding space between the
sequence in question and a reference (WT+D614G Spike protein) is compared. Sequences have then been ranked
with respect to this distance and the resultant rank has been scaled in the range of [0, 100]. The immune escape
score is calculated as the average of the scaled epitope alteration score and the scaled semantic change score.
Dashed lines represent the linear regression. (C) Validation of a component of the fitness prior metric, capturing
the ACE2 binding propensity. Relationships of the ACE2 binding score with the experimentally determined
ACE-2 binding affinity (KD, dissociation constant) are shown across n=19 RBD variants, along with a linear
regression dash line. The ACE2 binding score is ranked and scaled analogously to fitness prior components, such
that variants with the lowest energy are assigned a score of 100, highest - 0.

Combining fitness prior and immune escape scores to continuously monitor high risk variants.

Different selective pressures on the virus evolution lead to variants with high immune escape and fitness, since a
virus must remain evolutionarily competent to successfully spread. We hypothesise that a system that keeps track
of immune escape and fitness factors (as depicted in Fig. 3.A-B), could potentially continuously monitor HRVs
on a near real-time basis, since new sequences get evaluated and added to the data pool in minutes. The ranking
of any sequence, and consequently - lineage, depends on other circulating sequences.

As seen in Fig. 3C, variants of concern start off relatively far into the upper-right corner (i.e. are comparatively
highly immune escaping and have satisfactory fitness prior score for their immune escape value). Newly
emerging variants diversify over time, as there are more circulating sequences observed. Their aggregated
immune escape score decreases, while fitness prior score (based partially on prior observations) - increases for
truly fit variants (Alpha: B.1.1.7 and Q lineages, and Delta: B.1.617.2 and AY lineages). Lineages such as Beta
progressively decrease in aggregated fitness, closely recapitulating their lack of global growth, despite continued
prevalence. The effect of perceptible global growth of B.1.351 (Beta) in April 2021, as well as its drop in
prevalence and acquisition of further diversifying mutations, are all visible in the plot. The case of B.1.351
(Beta) illustrates a variant that is - according to the data and statistical models - unlikely to regain global
significance. Simultaneously, we notice the effects of fitness-enhancing events (either mutations or emergence of
evolutionary niche), such as the increase in metrics for Alpha lineages in Summer 2021, which was possibly due
to the competitive effect of B.1.617.2 emergence. This evolutionary pressure could have been one of the factors
behind the near eradication of B.1.1.7. The remaining sequences are under evolutionary pressure to adapt to the
changing circumstances, and while currently not significant globally, still pose a tangible threat.
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To jointly score the relative risks of variants using immune escape potential and fitness prior, an optimality score,
termed Pareto score, was used to assess variants. The Pareto score is a mathematically robust way to identify
lineages that are both immune escaping and infectious, and captures the relative evolutionary advantage of a
given strain (see Methods section for calculation details). For each lineage, as defined by the Pango
nomenclature system 21, scores were calculated by averaging the scores of the individual sequences belonging to
a given lineage. A high Pareto score at a given time for a specific lineage indicates that only a few other lineages
have higher scores for fitness and immune escape at that time.

In order to validate that the Pareto score separates WHO designated variants from non-designated variants,
Welch's t-tests were conducted over the registered variants population every week from January 2021 to
November 2021 (Table S.5). The null hypothesis can be rejected with a p-value < 0.05, for all 50 weeks, thus
demonstrating that the Pareto score can separate designated from non-designated variants continuously through
time. For visualisation purposes, a focus was made on three dates of interest: the 17th of January 2021, the 1st of
September 2021 and the 23rd of November 2021. At these dates, p-values = 2E-143, 6E-4 and 4E-4 were
reported. Density contour estimates conducted on January 17th, 2021, September 1st, 2021 and November 23rd,
2021 also demonstrate clear separability between WHO designated variants and non-designated ones (per
lineage: Fig. 3.B and per sequence: Fig. S.5). Importantly, they suggest that immune escape significantly
contributes to this separability, more so than the fitness prior score.
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Fig. 3. Combining immune escape and fitness prior for continuous monitoring. (A) Snapshot of lineages in
terms of fitness prior and immune escape score on respectively from left to right January 17th, 2021, September
1st 2021 and November 23rd 2021. Marker size indicates the number of submissions of each lineage. (B) Given
a large number of lineages, we used densities instead of points clouds for visualisation. Densities of
non-designated and designated variants on January 17th, 2021, September 1st 2021 and November 23rd 2021 are
represented. The density contour plot is computed by grouping points specified by their coordinates into bins and
calculating contours using counts. (C) Progression of the fitness prior and immune escape scores of main
lineages designated by WHO through time from the early snapshot (January 2021) to the later snapshot
(September 2021). Each dot represents the position of the centre of mass of a given lineage on each month. The
left and centre plot demonstrates the progression using fitness prior score with and without growth respectively.
The right plot shows the progression using only growth.

Detection of potentially high risk variants prior to substantial spread in the population.

Experimental assays aiming to determine a given variant’s immune evasion and fitness are time and
resource-intensive. Available data show that approximately thousands of new variants are emerging every week
at an increasing rate (on average ~250 per week in September 2020, 7,000 in August 2021 and 10,000 in October
2021). Moreover, this number is likely an underestimate given limited viral sequencing and data deposition in
many countries. It is therefore not feasible for health authorities to perform preventative experimental
assessments whenever a new variant is identified, despite the benefits of a proactive stance detecting HRVs
before their spread.

As seen in the previous section, our EWS immune escape score does help separate WHO designated variants
from non-designated variants and has demonstrated a significant correlation to in vitro neutralisation test results.

In addition, our immune escape score is computed from sequence alone and unlike our fitness prior score does
not require growth metrics, which are not available when a novel variant is sequenced. This means that an early
detection version of our system, operating based on immune escape score alone, could potentially spot HRVs.

Moreover, it was recently proposed that viral evolution in immunocompromised patients generates intrapatient
viral variants with increased immune evasion, rather than increased fitness and constitutes a significant factor
contributing to variant spread22,23. Some of the new variants reside on long branches of phylogenetic tree, which
suggests they could have undergone an extensive intrapatient evolution enabled by the immunocompromised
status of the host. These results, together with increased vaccination rates worldwide, put an added emphasis on
immune evasion as a key risk factor in newly emerging variants, which further motivated our approach to use
only immune escape for early HRV detection.

A systematic analysis was conducted where for every week between September 16th, 2020 and November 23rd
2021 the EWS ranked all new sequences on immune escape to compile a weekly flagged HRV watch-list. The
models were only trained on variants up to the previous month’s start date and any other data used were prior to
the analysis date. To assess the system’s sensitivity, we focused on the detection of the 13 variants designated by
WHO (Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron).

When using a weekly watch-list with a size of 20 variants (less than 0.5% of the weekly average of new variant
sequences), EWS flagged 12 WHO designated variants out of 13 (Fig. 4.A), with an average of 58 days of lead
time (i.e two months) before these were designated as such by the WHO (Table S.4). For variants Alpha to Mu
for which we have sufficient data, on average only 0.5% of cases of that variant were already recorded at the
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time of their detection by the EWS (25 sequences on average), to be contrasted with the WHO announcements
that happened on average when 18% of cases for that variant were already recorded (1,593 sequences on
average). Different watch-list sizes ranging from 1 up to 200 variants were assessed to evaluate detection
sensitivity (Fig. 4.B). The number of named variants detected remained stable when varying the weekly watch
list size between 10 and 200. While a longer list compromises specificity, it leads to an increase in the detection
lead time (the number of days ahead of WHO designation) (Fig. S.6).

Our system however does not accurately pinpoint the emergence of the B.1.617.2 Delta family of variants. Delta
is known to be neutralised by vaccines24 and its global prevalence can be attributed to other fitness-enhancing
factors. These factors, such as P681R mutation, which abrogates O-glycosylation, thus further enabling furin
cleavage, are outside of the scope of our approach. Delta variants also first emerged in India, a vast country with
a diverse population and relatively limited sequencing capabilities, hence available samples may have been
insufficient to fully describe the epidemiological landscape in time. Government regulations prohibiting the
export of biological data out of the country may have also further restricted sequence data from reaching global
databases like GISAID.

Strikingly, WHO-designated variants Alpha, Beta, Gamma, Theta, and Omicron are detected by the EWS on the
same week they are first reported, even in the extreme case where the weekly watch-list allows only one variant,
meaning they were the top-scoring sequences among all emerging variants that week (Fig. 4.B). Using a larger
weekly watch-list of 20 variants, Epsilon, Zeta, Eta and Lambda are also detected in the same week they are first
reported, on top of the previously mentioned WHO-designated variants (9 in total detected the first week).

Specifically, the EWS identified Omicron as the highest immune escaping variant over more than 70,000
variants discovered between early October and late November 2021. This variant combines frequent RBD
mutations (K417N, S477N, N501Y), with less frequent ones (G339D, S371L, S373P, S375F, Q498R) to
potentially evade RBD-targeting antibodies. The NTD indels in positions 69-70, 143-145, 211-214 alter known
antibody recognition sites as well. These mutations, together with over 20 others, led to an exceptional epitope
alteration score, the highest recorded since the beginning of the pandemic and a high semantic change score,
which combined rank Omicron in the top 0.005% of variants on immune escape since the pandemic started.

One can consider the growth score alone as a plausible metric that requires neither AI nor simulation to early
detect HRVs with yet better than random results. However, the immune escape score implemented in the EWS
outperforms the growth score across the variants where a comparison is available, in terms of lead time ahead of
WHO designation. The growth score also fails to detect Delta ahead of time despite the established fitness of this
variant, which may be another consequence of incomplete or delayed sequencing data (Fig. 4.C).

The immune escape score used by the EWS to early detect HRVs combines the epitope alteration score and
semantic change score (Fig.1. A, B, C). We evaluated the early detection performance of each one of these two
components separately and combined: while the Epitope Alteration Score detects 11 out of 13 WHO designated
variants ahead of time, the Semantic Change score detects only 8 out of 13. Their combination, however, flags
12 out of 13 WHO designated variants (Fig. 4.D). We have also applied standard machine learning techniques,
both supervised and unsupervised, denoted respectively “GLM with mutations” and “UMAP with mutations”,
corresponding conceptually to Epitope Alteration Score and Semantic Change score (see Supplementary
Material section “Detecting HRVs by standard ML methods”) . These standard machine learning techniques do
not reach the same predictive performance as the methods proposed in this work. This validates our approach
associating protein structure modelling and transformer language models on protein sequence to accurately rank
SARS-CoV-2 variants.
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B                                                                                       C

D

Fig. 4. EWS flags High Risk Variants ahead of their WHO designation. (A) Cumulative sum of all cases of a
given variant lineage (in log scale) over time. Vertical lines indicate the date of WHO designation of a given
variant (green dot-dashed) vs. date of flagging by the EWS (red dashed, using a weekly watch-list size of 20
variants). (B). Lead time of EWS detection ahead of WHO designation vs. minimum weekly watch-list size
required (in log scale). (C). Detection results (measured in days of lead time vs. WHO designation) from
selecting 20 variants per week at random (repeated 100 times) compared with selecting top 20 variants by
growth score (light-green cross) and immune escape score (green circle). Boxplots borders indicate 25th and
75th percentiles, horizontal lines indicate median, and whiskers indicate minimal and maximal values. If a
variant cannot be detected with growth or immune escape score, the marker is not displayed. (D) Variants
detected when using Epitope Alteration Score, Semantic Score and Immune Escape Score components of the
EWS. The left bar chart displays the number of variants detected by EWS using different scores. The right part
visualises whether a WHO designated variant is detected in advance using different scores, where green dots
indicate early detections and grey dots mean the variants are not detected in advance.
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Discussion

Through validation of our immune escape and fitness prior scores using published and newly generated data, we
show that the combination of structural simulations, AI, and genomic sequencing of SARS-CoV-2 variants
allows for continuous risk monitoring and sensitive early detection of HRVs.

Importantly, EWS flags Omicron on the day it is uploaded to GISAID (November 23rd, 2021) based on its
sequence alone, as one of the highest immune escaping variants ever documented for SARS-CoV-2 sequence
variants. Moreover, EWS assigns Omicron a high fitness prior score based on the combination of predicted
ACE2 binding and a substantial conditional log-likelihood score. However, we would like to point out that a
limitation for the calculation of the latter score for Omicron is the relatively small number of variants that have
such a high number of mutations.

The Early Warning System can sensitively detect HRVs months ahead of the official WHO designation,
sometimes within the same week a sequenced variant enters the database. The only variant with delayed flagging
by the EWS compared with WHO designation, the Delta variant, suffers from significant underrepresentation of
the lineage in GISAID. This partial and delayed representation of the lineage in the database prevents even
growth-based detection, emphasising the importance of extensive, robust, and timely sequencing of
SARS-CoV-2 genomic samples globally.

Combining comprehensive sequencing with structural modelling and AI can provide unprecedented insights into
the COVID-19 pandemic which could be harnessed by public health authorities and governments worldwide to
increase their preparedness to HRVs and potentially alleviate the associated human and economic costs. Future
development of our approach could be extended to further functionalities such as assessment of known and
predicted T cell epitopes, as well as the projection of prospective variant evolution scenarios.
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Figure S.1. Machine learning modelling. (A) A transformer language model is pre-trained on all the protein
sequences registered in the UniRef100 dataset. Every week, the model is fine-tuned over all the Spike protein
sequences registered at least twice, so far by the GISAID initiative. Both the pre-training and fine-tuning use the
same protocol. Amino acids of a protein sequence are randomly masked. The model predicts probabilities over
amino-acids at each residue position, both for residues that were masked and not masked. A loss function
evaluates the sum over the masked residues of the log-probability of the correct predictions. A gradient of this
loss is computed and used to update the model's parameters so as to increase the loss function. (B) Once
fine-tuned, the model is used to compute the semantic change and the log-likelihood to characterise a Spike
protein sequence. The output of the last transformer layer is averaged over the residues to obtain an embedding z
of the protein sequence. The embedding of the Wuhan strain zwuhan and the embedding of the D614G variant
zD614G are computed once for all. The semantic change is computed as the sum of the L1 distance between the z
and and zwuhan the L1 distance between z and zD614G. The log-likelihood is computed from the probabilities over
the residues returned by the model. It is calculated as the sum of the log-probabilities over all the positions of the
Spike protein amino acids.
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Figure S.2. Cross-neutralization of BNT162b2-immune sera against VSV-SARS-CoV-2-S pseudoviruses
bearing the Spike protein of selected SARS-CoV-2 variants. Serum samples were obtained from participants
in the BNT162b2 vaccine phase-I/II trial on day 28 or day 43 (7 or 21 days after Dose 2). A recombinant
vesicular stomatitis virus (VSV)-based SARS-CoV-2 pseudovirus neutralisation assay was used to measure
neutralisation. The pseudoviruses tested incorporated the ancestral SARS-CoV-2 Wuhan Hu-1 Spike or Spikes
with substitutions present in B.1.1.7+E484K (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), AY.1
(Delta), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota), B.1.617 (Kappa), C.37 (Lambda), C.37* (Lambda),
A.VOI.V2, B.1.517, B.1.258, B.1.160, and B.1.1.529 (Omicron) (Table S.3). (A) Pseudovirus 50% neutralisation
titers (pVNT50) are shown. Dots represent results from individual serum samples. Lines connect paired
neutralisation analyses performed within one experiment. In total 8 experiments were performed covering the
listed SARS-CoV-2 variants always referencing variant-specific neutralisation to the Wuhan reference. (B)
pVNT50 against B.1.1.529 (Omicron) are shown. Dots represent results from individual serum samples. Lines
connect paired neutralisation analyses performed within one experiment. (C) Ratio of pVNT50 between
SARS-CoV-2 variant and Wuhan reference strain Spike-pseudotyped VSV. Dots represent results from
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individual serum samples. Horizontal bars represent geometric mean ratios, error bars represent 95% confidence
intervals.

A

B

Figure S.3. Results of molecular simulations of RBD binding. The efficiency of Spike protein RBD binding
to the ACE2 receptor is dictated by the combination of binding energy (A; the lower the better) and size of the
interface (B). Both boxen plots depict distribution of these values across performed RBD binding simulations for
circulating spike protein variants. Note, that while larger interfaces may be difficult to form, they are also more
difficult to break. Strikingly, Omicron, despite its heavily mutated RBD has a relatively large interface and a
binding affinity around the 25th percentile of the background distribution (‘Other’).
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Figure S.4. Log-likelihood score corrects for large mutation count. (Left) Snapshot of lineages in terms of
log-likelihood ranked without correction for large mutation count and immune escape score on November 23rd
2021. Marker size indicates the number of submissions of each lineage. (Right) Same plot where the
log-likelihood ranked without correction has been replaced by its corrected version. Note, that both plots are
nearly identical, as highly mutated sequences comprise less than 1% of the entire data set. We observe nearly no
change between the plots, with concerning lineages residing on the second Pareto front, except for the emergence
of B.1.1.529 (Omicron) as a clear outlier, practically alone in the first Pareto front, due to its high immune
escape and extraordinary log-likelihood, given its high number of mutations. Additionally, the conditional
log-likelihood score is nearly collinear with expected prevalence of sequence in population (see Fig. S.8)

Figure S.5. Combining immune escape and fitness prior for continuous monitoring. (Left) Density contour
plot of sequences on January 17th, 2021. Sequences are split into two groups: WHO designated ones and other
non-designated ones. (Centre) Density contour plot on September 1st, 2021. (Right) Density contour plot on
November 23rd, 2021.
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Figure S.6. The maximum lead time of EWS detection ahead of WHO designation vs. required weekly
watch-list size. With a weekly watch list of 200 sequences, all WHO designated variants are detected, including
Delta.

Figure S.7. Metrics of anticipated reduction of the immune response. Semantic change and Epitope alteration
score accurately segment the variant landscape, allowing to discriminate between variants that do not have
immune escape propensity (B.1.429, WT), highly mutated, but neutralizable variants (P.1, B.1.160), and those
with high potential for evading immune response (B.1.1.7, AY.1, B.1.351).
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Figure S.8. Validation of the conditional log-likelihood score. Sequences are grouped into bins based on their
submission count and the conditional log-likelihood scores and number of submissions were averaged per bin.
The first ten bins correspond to count 1 to 10. The next 10 bins are equally split between counts 11 and 1000
such that each bin has a similar number of sequences. The last two bin contains all sequences having a
submission count from 1000 to 10,000 and sequences having more than 10,000 submissions. This shows that the
mean conditional log-likelihood of sequences that are observed frequently in circulation is much higher than that
of outlier, infrequent sequences.
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Table S.1. N=310 nAbs Resolved 3D Structures PDB Identifiers.

Code Accession Date Code Accession
Date

Code Accession Date Code Accession Date Code Accession Date

6W41 2020-03-09 7MMO 2021-04-30 7KXJ 2020-12-04 7E5Y 2021-02-21 7CH4 2020-07-05

6WPS 2020-04-27 7MY2 2021-05-20 7KXK 2020-12-04 7E7X 2021-02-28 7CH5 2020-07-05

6WPT 2020-04-27 7MY3 2021-05-20 7KZB 2020-12-10 7E7Y 2021-02-28 7CHB 2020-07-05

6XC2 2020-06-08 7N0G 2021-05-25 7L02 2020-12-10 7E86 2021-03-01 7CHC 2020-07-05

6XC3 2020-06-08 7N0H 2021-05-25 7L06 2020-12-11 7E88 2021-03-01 7CHE 2020-07-05

6XC4 2020-06-08 7N0I 2021-05-25 7L09 2020-12-11 7E8C 2021-03-01 7CHF 2020-07-05

6XC7 2020-06-08 7N0R 2021-05-25 7L0N 2020-12-11 7E8F 2021-03-01 7CHH 2020-07-05

6XCM 2020-06-08 7N3C 2021-05-31 7L2C 2020-12-16 7E8M 2021-03-02 7CHO 2020-07-06

6XCN 2020-06-08 7N3D 2021-05-31 7L2D 2020-12-16 7EAM 2021-03-07 7CHP 2020-07-06

6XDG 2020-06-10 7N3I 2021-06-01 7L2E 2020-12-16 7EAN 2021-03-07 7CHS 2020-07-06

6XE1 2020-06-11 7N62 2021-06-07 7L2F 2020-12-16 7EJ4 2021-04-01 7CJF 2020-07-10

6XEY 2020-06-14 7N64 2021-06-07 7L3N 2020-12-18 7EJ5 2021-04-01 7CM4 2020-07-24

6XKP 2020-06-26 7N8H 2021-06-14 7L56 2020-12-21 7F62 2021-06-24 7CR5 2020-08-12

6XKQ 2020-06-26 7N8I 2021-06-14 7L57 2020-12-21 7F63 2021-06-24 7CWL 2020-08-29

6YLA 2020-04-06 7N9A 2021-06-17 7L58 2020-12-21 7JMO 2020-08-02 7CWM 2020-08-29

6YM0 2020-04-07 7N9B 2021-06-17 7L5B 2020-12-21 7JMP 2020-08-02 7CWN 2020-08-29

6YZ5 2020-05-06 7N9C 2021-06-17 7LAA 2021-01-06 7JMW 2020-08-03 7CWO 2020-08-29

6YZ7 2020-05-06 7N9E 2021-06-17 7LAB 2021-01-06 7JV2 2020-08-20 7CWS 2020-08-31

6Z2M 2020-05-17 7N9T 2021-06-18 7LCN 2021-01-11 7JV4 2020-08-20 7CWT 2020-08-31

6Z43 2020-05-22 7ND4 2021-01-30 7LD1 2021-01-12 7JV6 2020-08-20 7CWU 2020-08-31

6ZBP 2020-06-08 7ND5 2021-01-30 7LDJ 2021-01-13 7JVA 2020-08-20 7CYH 2020-09-03

6ZCZ 2020-06-12 7ND6 2021-01-30 7LJR 2021-01-30 7JVB 2020-08-20 7CYP 2020-09-04

6ZDG 2020-06-14 7ND7 2021-01-30 7LM8 2021-02-05 7JVC 2020-08-20 7CZP 2020-09-09

6ZDH 2020-06-14 7ND8 2021-01-30 7LOP 2021-02-10 7JW0 2020-08-24 7CZQ 2020-09-09

6ZER 2020-06-16 7ND9 2021-01-30 7LQV 2021-02-15 7JX3 2020-08-26 7CZR 2020-09-09
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6ZFO 2020-06-17 7NDA 2021-01-30 7LQW 2021-02-15 7K43 2020-09-14 7CZS 2020-09-09

6ZH9 2020-06-21 7NDB 2021-01-30 7LRS 2021-02-17 7K45 2020-09-14 7CZT 2020-09-09

6ZHD 2020-06-22 7NDC 2021-01-30 7LRT 2021-02-17 7K4N 2020-09-15 7CZU 2020-09-09

6ZLR 2020-07-01 7NDD 2021-01-30 7LS9 2021-02-17 7K8M 2020-09-27 7CZV 2020-09-09

6ZXN 2020-07-30 7NEG 2021-02-04 7LSS 2021-02-18 7K8S 2020-09-27 7CZW 2020-09-09

7A25 2020-08-16 7NEH 2021-02-04 7LX5 2021-03-03 7K8T 2020-09-27 7CZX 2020-09-09

7A29 2020-08-16 7NKT 2021-02-18 7LXW 2021-03-05 7K8U 2020-09-27 7CZY 2020-09-09

7A5R 2020-08-21 7NTC 2021-03-09 7LXX 2021-03-05 7K8V 2020-09-27 7CZZ 2020-09-09

7A5S 2020-08-21 7NX6 2021-03-17 7LXY 2021-03-05 7K8W 2020-09-27 7D00 2020-09-09

7AKD 2020-09-30 7NX7 2021-03-17 7LXZ 2021-03-05 7K8X 2020-09-27 7D03 2020-09-09

7B14 2020-11-23 7NX8 2021-03-17 7LY0 2021-03-05 7K8Y 2020-09-27 7D0B 2020-09-09

7B17 2020-11-23 7NX9 2021-03-17 7LY2 2021-03-05 7K8Z 2020-09-27 7D0C 2020-09-09

7B18 2020-11-24 7NXA 2021-03-17 7LY3 2021-03-05 7K90 2020-09-27 7D0D 2020-09-09

7B27 2020-11-26 7NXB 2021-03-17 7M3I 2021-03-18 7K9Z 2020-09-29 7D2Z 2020-09-17

7B3O 2020-12-01 7OAN 2021-04-19 7M42 2021-03-19 7KFV 2020-10-15 7D30 2020-09-17

7BEH 2020-12-23 7OAO 2021-04-19 7M6D 2021-03-25 7KFW 2020-10-15 7D4G 2020-09-23

7BEI 2020-12-23 7OAP 2021-04-19 7M6E 2021-03-25 7KFX 2020-10-15 7DCC 2020-10-24

7BEJ 2020-12-23 7OAQ 2021-04-20 7M6F 2021-03-25 7KFY 2020-10-15 7DCX 2020-10-27

7BEK 2020-12-23 7OAU 2021-04-20 7M6G 2021-03-25 7KGJ 2020-10-16 7DD2 2020-10-27

7BEL 2020-12-23 7OAY 2021-04-20 7M6H 2021-03-25 7KGK 2020-10-16 7DD8 2020-10-28

7BEM 2020-12-24 7OLZ 2021-05-20 7M6I 2021-03-25 7KKK 2020-10-27 7DEO 2020-11-04

7BEN 2020-12-24 7OR9 2021-06-04 7M71 2021-03-26 7KKL 2020-10-27 7DET 2020-11-05

7BEO 2020-12-24 7ORA 2021-06-04 7M7B 2021-03-27 7KLG 2020-10-30 7DEU 2020-11-05

7BEP 2020-12-24 7ORB 2021-06-04 7M7W 2021-03-29 7KLH 2020-10-30 7DJZ 2020-11-22

7BWJ 2020-04-14 7P77 2021-07-19 7M8J 2021-03-29 7KLW 2020-11-01 7DK0 2020-11-22

7BYR 2020-04-24 7P78 2021-07-19 7MDW 2021-04-06 7KM5 2020-11-02 7DK4 2020-11-23

7BZ5 2020-04-26 7P79 2021-07-19 7ME7 2021-04-06 7KMG 2020-11-02 7DK5 2020-11-23

7C01 2020-04-29 7P7A 2021-07-19 7MEJ 2021-04-06 7KMH 2020-11-02 7DK6 2020-11-23
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7C2L 2020-05-08 7R6W 2021-06-23 7MF1 2021-04-08 7KMI 2020-11-02 7DK7 2020-11-23

7C8V 2020-06-03 7R6X 2021-06-23 7MFU 2021-04-11 7KMK 2020-11-03 7DPM 2020-12-20

7C8W 2020-06-03 7R7N 2021-06-25 7MJI 2021-04-20 7KML 2020-11-03 7DZX 2021-01-26

7CAC 2020-06-08 7R8L 2021-06-26 7MJJ 2021-04-20 7KN5 2020-11-04 7DZY 2021-01-26

7CAH 2020-06-08 7R8M 2021-06-26 7MJK 2021-04-20 7KN6 2020-11-04 7E23 2021-02-04

7CAI 2020-06-08 7R8N 2021-06-26 7MJL 2021-04-20 7KN7 2020-11-04 7KSG 2020-11-22

7CAK 2020-06-08 7R8O 2021-06-26 7MKL 2021-04-24 7KQB 2020-11-14 7MM0 2021-04-29

7CAN 2020-06-09 7R98 2021-06-28 7MKM 2021-04-24 7KQE 2020-11-15 7RAL 2021-07-01

7CDI 2020-06-19 7RA8 2021-06-30 7MLZ 2021-04-29 7KS9 2020-11-21 7CDJ 2020-06-19
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Table S.2. EWS Scores. EWS has in total five sub-scores grouped into immune escape and fitness prior scores.
Each sub-score is normalised ranks that range between 0 and 100%. The average of the sub-scores in each score
category is computed to define immune escape and fitness prior scores.

Score Name Score Category Description

Epitope Alteration Immune Escape Measures the alteration of the Spike protein at epitope positions by
counting the number of antibodies potentially escaped.

Semantic Change Immune Escape Measures the functional change of the Spike protein using
Transformer-derived embedding differences with respect to the
wild type and D614G.

ACE2 Binding Fitness Prior Approximates the binding affinity using binding energies estimated
from in-silico simulations.

Conditional
Log-Likelihood

Fitness Prior Measures the relative rank of the measured existence probability of
the Spike protein using Transformer-derived log-likelihoods with
reference to other sequences with similar mutation count.

Growth Fitness Prior Calculated lineage-level growth using deposited sequence
metadata (retrospective data).

Table S.3. Spike mutations in SARS-CoV-2 Spike pseudoviruses and observed reduction of neutralising
antibody response in pseudovirus neutralisation assay.
Lineage WHO Nomenclature Mutation Reduction

B.1.1.7 Alpha H69- V70- Y144- N501Y A570D D614G P681H T716I S982A D1118H 22.92%

B.1.1.7+E484K Alpha H69- V70- Y144- E484K N501Y A570D D614G P681H T716I S982A D1118H 74.65%

B.1.351 Beta L18F D80A D215G L242- A243- L244- R246I K417N E484K N501Y D614G A701V 80.04%

B.1.351* Beta D80A D215G L242H K417N E484K N501Y D614G A701V 47.19%

B.1.351** Beta D80A D215G L242- A243- L244- K417N E484K N501Y D614G A701V 77.45%

P.1 Gamma L18F T20N P26S D138Y R190S K417T E484K N501Y H655Y T1027I V1176F 47.66%

B.1.617.2 Delta T19R G142D E156G F157- R158- K417N L452R T478K D614G P681R D950N 49.43%

AY.1 Delta T19R T95I G142D E156G F157- R158- W258L K417N L452R T478K K558N D614G
P681R D950N

48.09%

B.1.427/B.1.429 Epsilon S13I W152C L452R D614G 52.57%
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B.1.526 Iota L5F T95I D253G E484K D614G A701V 10.94%

B.1.617.1 Kappa L452R E484Q D614G P681R 18.34%

C.37 Lambda G75V T76I R246- S247- Y248- L249- T250- P251- G252- D253N L452Q F490S D614G
T859N

34.22%

C.37* Lambda G75V T76I L452Q F490S D614G T859N 16.88%

B.1.1.529 Omicron A67V H69- V70- T95I G142D V143- Y144- Y145- N211I L212V ins214EPE G339D
S371L S373P S375F K417N N440K G446S S477N T478K E484A Q493R G496S
Q498R N501Y Y505H T547K D614G H655Y N679K P681H N764K D796Y N856K
Q954H N969K L981F

97.52%

A.VOI.V2 D80Y Y144- I210- D215G R246- S247- Y248- L249M W258L R346K T478R E484K
H655Y P681H Q957H

64.54%

B.1.1.298 Y453F D614G I692V M1229I 5.42%

B.1.160 S477N S494P D614G K1191N 3.81%

B.1.258 H69- V70- L189F N439K D614G V772I -9.28%

B.1.517 G181V G252V N501T D614G P812L -7.87%

Table S.4. Early detection of variants of concerns. The summary table shows that the EWS can detect WHO
designated variants months before the WHO official designation date. The average lead time for early detection
across is 58 days.

WHO Label Lineage EWS
Detection
Date

WHO
Designation
Date

First
Submission
Date

Lead
Time
(Days)

Number of registered
sequences upon WHO
Detection

Number of registered
sequences upon EWS
Designation

Alpha B.1.1.7 2020-10-14 2020-12-18 2020-10-14 65 1881 1

Beta B.1.351 2020-11-27 2020-12-18 2020-11-26 21 218 15

Gamma P.1 2021-01-10 2021-01-11 2021-01-10 1 29 4

Delta B.1.617.2 2021-04-04 2021-03-23 5

Epsilon B.1.429 2020-11-21 2021-03-05 2020-11-21 104 9957 1

Zeta P.2 2020-12-04 2021-03-17 2020-12-02 103 1450 3

Eta B.1.525 2021-01-04 2021-04-04 2021-01-04 90 1377 6

Theta P.3 2021-02-25 2021-03-24 2021-02-25 27 102 1

Iota B.1.526 2021-01-04 2021-03-24 2020-12-09 79 1120 2

Kappa B.1.617.1 2021-03-31 2021-04-04 2021-03-05 4 167 167

Lambda C.37 2021-02-26 2021-05-14 2021-02-26 77 719 4

Mu B.1.621 2021-04-30 2021-08-30 2021-03-11 122 3671 88

Omicron B.1.1.529 2021-11-23 2021-11-26 2021-11-23 3 11 10
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Table S.5. Welch's t-test p-values. Every week, all registered variants are scored with the Pareto score. Welch's
t-tests are conducted to assess if respectively WHO designated variants and VOCs can be separated from others.
p-values are reported every week between January 2020 and November 2021 .

Week

Welch t-test p-values

Week

Welch t-test p-values

Week

Welch t-test p-values

WHO Designated
Variants VOC

WHO Designated
Variants VOC

WHO Designated
Variants VOC

2020-12-13 8E-118 8E-118 2021-04-11 3E-05 4E-18 2021-08-08 7E-06 5E-09

2020-12-20 7E-07 7E-07 2021-04-18 5E-06 2E-20 2021-08-15 2E-05 9E-06

2020-12-27 5E-128 5E-128 2021-04-25 6E-06 4E-08 2021-08-22 4E-07 3E-21

2021-01-03 7E-06 7E-06 2021-05-02 2E-12 5E-07 2021-08-29 3E-05 4E-05

2021-01-10 5E-140 5E-140 2021-05-09 3E-08 5E-06 2021-09-05 1E-04 5E-04

2021-01-17 2E-07 2E-07 2021-05-16 4E-09 8E-06 2021-09-12 5E-05 1E-04

2021-01-24 4E-06 4E-06 2021-05-23 1E-06 4E-04 2021-09-19 1E-04 2E-04

2021-01-31 5E-144 5E-144 2021-05-30 6E-07 4E-04 2021-09-26 2E-06 9E-06

2021-02-07 2E-06 2E-06 2021-06-06 2E-04 2E-04 2021-10-03 1E-04 1E-05

2021-02-14 6E-28 4E-19 2021-06-13 4E-05 2E-05 2021-10-10 2E-06 7E-06

2021-02-21 7E-21 9E-08 2021-06-20 8E-06 2E-04 2021-10-17 1E-07 4E-07

2021-02-28 1E-16 2E-08 2021-06-27 3E-05 3E-05 2021-10-24 7E-07 3E-08

2021-03-07 8E-07 2E-19 2021-07-04 1E-04 2E-03 2021-10-31 2E-05 2E-05

2021-03-14 2E-05 2E-07 2021-07-11 1E-05 1E-05 2021-11-07 2E-04 3E-04

2021-03-21 1E-05 1E-20 2021-07-18 1E-04 3E-04 2021-11-14 4E-03 3E-04

2021-03-28 1E-05 1E-22 2021-07-25 1E-03 1E-07 2021-11-21 5E-05 7E-06

2021-04-04 4E-06 2E-19 2021-08-01 2E-04 6E-09

Table S.6. Comparison between EWS detection capabilities and three baselines. Two baselines are based on
unsupervised learning (UMAP) and one baseline is supervised (GLM).

HRV Number Days Ahead
UMAP

Number Days Ahead
GLM

Number Days Ahead
EWS Semantic Change
only

Number Days Ahead
EWS

Alpha -47 -38 65 65

Beta - -46 21 21

Gamma - 1 -121 1

Delta -58 -25 -78 -

Epsilon 64 -27 66 104
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Zeta - 75 - 103

Eta - 90 90 90

Theta - -68 13 27

Iota -96 79 -49 79

Kappa - -25 -29 4

Lambda -77 -5 77 77

Mu - -8 12 122

Omicron - - 3 3

Materials and Methods.
We describe the proposed methodologies in detail in the following sections.

Variant Notations
We refer to a variant as a protein sequence of a coronavirus' Spike protein that differs from the original Wuhan
Spike protein that we refer to as wild type. We represent a variant in terms of its mutations with respect to the
Wuhan strain. For instance, the notation N501Y represents a substitution in position 501, replacing N with Y; the
notation ins214AR represents inserting AR after position 213; and notation H69- V70- represents a deletion of H
and V at positions 69 and 70.

VSV-SARS-CoV-2 S pseudovirus neutralisation assay
A recombinant replication-deficient VSV vector that encodes green fluorescent protein (GFP) and luciferase
(Luc) instead of the VSV-glycoprotein (VSV-G) was pseudotyped with SARS-CoV-2 Spike (S) protein derived
from either the Wuhan reference strain (NCBI Ref: 43740568) or variants of interest according to published
pseudotyping protocols1. The mutations found in S of the VOCs are listed in Table S.3. In brief, HEK293T/17
monolayers transfected to express SARS-CoV-2 S with the C-terminal cytoplasmic 19 amino acids truncated
(SARS-CoV-2-S[CΔ19]) were inoculated with the VSVΔG-GFP/Luc vector. After incubation for 1 hour at 37
°C, the inoculum was removed, and cells were washed with PBS before medium supplemented with anti-VSV-G
antibody (clone 8G5F11, Kerafast) was added to neutralise residual input virus. VSV-SARS-CoV-2
pseudovirus-containing medium was collected 20 hours after inoculation, 0.2 μm filtered and stored at −80 °C.

For pseudovirus neutralisation assays, 40,000 Vero 76 cells were seeded per 96-well. Sera were serially diluted
1:2 in culture medium starting with a 1:15 dilution (dilution range of 1:15 to 1:7,680). VSV-SARS-CoV-2-S
pseudoparticles were diluted in culture medium to obtain either ~1,000 or ~200 transducing units (TU) in the
assay. Same input virus amounts for all pseudoviruses were used within an individual experiment. In total 8
experiments were performed covering the SARS-CoV-2 variants listed in Table S.3 always taking Wuhan S
pseudovirus as reference. Serum dilutions were mixed 1:1 with pseudovirus for 30 minutes at room temperature
prior to addition to Vero 76 cell monolayers and incubation at 37 °C for 24 hours. Supernatants were removed,
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and the cells were lysed with luciferase reagent (Promega). Luminescence was recorded, and neutralisation titres
were calculated by generating a four-parameter logistic fit of the percent neutralisation at each serial serum
dilution. The pVNT50 is reported as the interpolated reciprocal of the dilution yielding a 50% reduction in
luminescence. If no neutralisation yielding a 50% reduction in luminescence was observed, an arbitrary titer
value of 7.5, half of the limit of detection (LO), was reported.

Binding kinetics of RBD variants to ACE2 using surface plasmon resonance spectroscopy

Binding kinetics of RBD variants was determined using a Biacore T200 device (Cytiva) with HBS-EP+ running
buffer (BR100669, Cytiva) at 25 °C. Carboxyl groups on the CM5 sensor chip matrix were activated with a
mixture of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide
(NHS) to form active esters for the reaction with amine groups. anti-mouse-Fc-antibody (BR100838, Cytiva)
was diluted in 10 mM sodium acetate buffer pH 5 (30 µg/mL) for covalent coupling to immobilisation level of
~6,000 response units (RU). Free N-hydroxysuccinimide esters on the sensor surface were deactivated with
ethanolamine-HCl.

Human ACE2-mFc (10108-H05H, Sino Biological Inc.) was diluted to 5 µg/mL with HBS-EP+ buffer and
applied at 10 µL/min for 15 seconds to the active flow cell for capture by immobilised antibody, while the
reference flow cell was treated with buffer. Binding analysis of captured hACE2-mFc to RBD variants
(40592-V08B, 40592-V08H113, 40592-V08H115, 40592-V08H82, 40592-V08H59, 40592-V08H84,
40592-V08H85, 40592-V08H112, 40592-V08H28, 40592-V08H81, 40592-V08H90, 40592-V08H91,
40592-V08H88, 40592-V08H86, 40592-V08H111, 40592-V08H80, 40592-V08H1, 40592-V08H14,
40592-V08H46, 40592-V08H121 40592-V08H121, Sinobiological Inc.) was performed using a multi-cycle
kinetic method with concentrations ranging from 3.125 to 50 nM. An association period of 120 seconds was
followed by a dissociation period of 300 seconds with a constant flow rate of 30 μL/min and a final regeneration
step. Binding kinetics were calculated using a global kinetic fit model (1:1 Langmuir, Biacore T200 Evaluation
Software Version 3.1, Cytiva).

Data
The genomic sequences and Spike protein sequences were collected from GISAID. For each Spike protein
sequence, the missing amino acids were filled using the next known amino acid and the lineage assignment was
performed using PANGOLIN2. Mutations with respect to the wild type were calculated using Clustal Omega3

and HH-suite4.

The GISAID dataset is imbalanced towards some lineages that have been more prevalent and because certain
regions have performed more sequencing than others. To mitigate this bias in the dataset during training, we
weighed the importance of each sequence differently in the loss calculation. The importance of a sequence is
defined as
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where the values and are the numbers of occurrences in the dataset of the sequence and the𝑠
sequence-laboratory pair (s, l), respectively. The value corresponds to the number of laboratories having
reported sequence , which measure the prevalence across regions of the variant.𝑠

The model excludes from training all the sequences which have been observed only once in the data set. In this
way it eliminates spurious changes, due to sequencing errors, as well as samples of viruses of subpar
evolutionary fitness, which do not spread between patients.

Language modelling

The domain of Natural Language Processing (NLP) has experienced several breakthroughs in the past years. The
emergence of recurrent and attention-based deep neural networks led to impressive results for text generation
and translation. Recently, this technology has been leveraged to learn the language of biology5,6. It works with a
simple analogy where protein sequences are considered as sentences and the amino acids as words. The models
are trained on large datasets of known protein sequences in an unsupervised manner. In other words, there is no
need to label the data and any newly registered protein sequence can be exploited.

Information about protein properties is stored at two positions inside the model once it is trained. On one side,
the probabilities returned by the model indicate how likely this sequence is to be natural/viable/feasible. On the
other hand, the outputs of the model's layers and notably the last layer provide a high dimensional representation
for each sequence, which we call embedding of the protein. The embedding of the protein contains information
about the protein properties and can be used either directly or to train a classification or regression model.
Recently, (Meier et al.) demonstrated that these models also capture the effects of mutations on protein function
7.

Model architecture
In this work, the input of the model consists of the sequence characters corresponding to the amino acids forming
the protein. Each amino acid is first tokenized, i.e. mapped to their index in the vocabulary containing the 20
natural amino acids and then projected to an embedding space. The sequence of embeddings is then fed to the
transformer model8 consisting of a series of blocks, each composed of a self-attention operation followed by a
position-wise multi-layer network (Fig. S.1).

Self-attention modules explicitly construct pairwise interactions between all positions in the sequence which
enable them to build complex representations that incorporate context from across the sequence. Because the
self-attention operation is permutation-equivariant, a positional encoding must be added to the embedding of
each token to distinguish its position in the sequence.

Self-supervised Training
Given a large database of protein sequences, the model can be trained using the masked language modelling
objective presented in [31]. Each input sequence is corrupted by replacing a fraction of the amino acids with a
special mask token. The network is then trained to predict the missing tokens from the corrupted sequence. In
practice, for each sequence , we randomly sample a set of indices , for which the amino acid tokens are
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replaced by a mask token, resulting in a corrupted sequence . During pre-training, the set M is defined such
that 15% of the amino acids in the sequence get corrupted. When corrupted an amino acid has 10% to be
replaced by another randomly selected amino acid and 80% being masked. During fine-tuning these probabilities
do not change, however, only 2.5% of the amino acids in the sequence get corrupted. This probability was
selected in order to enable the model to become more accurate for Spike protein sequences while keeping its
performance on diverse sequences from UniRef100. The training objective corresponds to the negative
log-likelihood of the true sequence at the corrupted positions.

To minimise this loss, the model must learn to identify dependencies between the corrupted and uncorrupted
elements of the sequence. Consequently, the learned representations of the proteins, taken as the average of the
embeddings of each amino acid (Fig. S.1), must successfully extract generic features of the biological language
of proteins. These features can then be used to fine-tune the model on downstream tasks.

In this work, we used the transformer model from (Rives et al, 2021) (esm1_t34_670M_UR100) which was
trained using the aforementioned procedure on the UniRef100 dataset9, containing >277M representative
sequences. The pre-trained model was then fine-tuned every month on all the Spike protein sequences registered
in the GISAID data bank at the training date.

Gradient descent is used to minimise the loss function. We relied on the Adam optimizer10 and used a learning
rate schedule. Batch size is 1. The fine-tuning started with a warm-up period of 100 mini-batches where the
learning rate increased linearly from 10-7 to 10-5. After the warm-up period, the learning rate decreased following

where represents the number of mini-batches.

Inference and ML Scores Calculations
Once fine-tuned, the model is used to compute the semantic change and the log-likelihood to characterise a Spike
protein sequence.

Formally, an input sequence is represented by a sequence of tokens defined as where is the
number of tokens and where is a finite alphabet that contains the amino-acids and other
tokens such as class and mask tokens. In this work, a class token is appended to all sequences before feeding
them to the network, as such represents the class token, while represents the amino-acids, or
masked amino-acids, in the spike protein sequence. The sequence is passed through attention layers. We note

the output of the last attention layer where is the sequence embedding vector at position .

Please note that in our architecture, embedding vector is a function of all input tokens . In
opposition, in Bi-LSTM architectures11, would be a function of all inputs tokens except the one at the position
, .

In order to represent a protein sequence through a single embedding vector, which size does not depend on the
protein sequence length, we consider

,
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that we call embedding vector of the variant represented by sequence . Note that the summation starts at the
second position to ensure that the class token’s embedding, which is at the first position, does not contribute to
the sequence embedding.

The embedding of the Wuhan strain and the embedding of the D614G variant are computed
once for all. In this work, the semantic change of a variant is computed as:

where is the L1 norm.

The last attention layer output is transformed by a feed-forward layer and a softmax activation into a vector of
probabilities over tokens at each positions where is a vector of probabilities at position ,

.

The log-likelihood of a variant is computed from these probabilities. It is calculated as the sum of the log
probabilities over all the positions of the Spike protein amino acids. Formally,

This quantity measures the likelihood of observing a variant sequence according to the model. Therefore, the
more sequences in the training data that are similar to a considered variant, the higher the log-likelihood of this
variant will be. The proposed log-likelihood metric supports substitution, insertion, and deletion without the
requirement of a reference.

Implementation Details
The method is implemented using the Pytorch12 deep learning framework. Model training and inferences are
performed on InstaDeep’s high performance computing infrastructure. The average training and inference time is
<4 GPU days and <12 GPU hours, respectively, using Nvidia A100-SXM4-40GB GPUs.

Epitope Alteration Score
Epitope alteration score attempts to capture the impact of mutations in the variant in question on recognition by
experimentally assessed antibodies. To compute this score, we enumerate the number of unique epitopes
involving altered positions, as measured across all the antibody-Spike complex structures deposited in Protein
Data Bank.

This score, by design, highly emphasises the effect of mutations on highly antigenic sites, such as the
receptor-binding domain (RBD). This allows to approximate the expected weight of mutations, and to ascribe
importance to non-RBD mutations, if and only if sufficient escape potential with regard to RBD-targeting
antibodies is achieved.
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ACE2 Binding Score
We selected 279 receptor-binding domain (RBD) differentiated variants, including the wide type, for in-silico
simulation. For each variant, we generated a putative structure from which we generated at least 500 structures
through a conformational sampling algorithm. These structures were further optimised with a probabilistic
optimization algorithm, a variant of simulated annealing, aiming to overcome local energy barriers and follow a
kinetically accessible path toward an attainable deep energy minimum with respect to a knowledge-based,
protein-oriented potential. This results in 214,142 structures in total. For each structure, we calculated the change
of binding energy when the interface forming chains are separated, versus when they are complexed. These
measurements were aggregated per RBD variant using medians. Each metric is normalised by the metric on wild
type, corresponding to no mutation on RBDs, such that the metrics for the wild type are all ones. Sequences
having other RBD mutation combinations, representing very rare RBDS, corresponding to <9% of all known
sequences, were excluded from this analysis, due to reasons of computational efficiency.

Growth Score
The growth score is computed from the GISAID metadata. At a given date, we considered only sequences that
have been submitted within the last eight weeks. For each lineage, its proportion among all submissions was
calculated for the eight-week window and for the last week, denoted by rwin and rlast correspondingly. The growth
of the lineage is defined by their ratio, rlast / rwin, measuring the change of the proportion. Having values larger
than one means that the lineage is rising and smaller than one indicates declining.

Scores scaling and merging
The semantic change, log-likelihood, epitope alteration score, ACE2 binding score, and growth have all different
scales and units. Thus, they can not be compared directly. To make comparisons possible, a scaling strategy is
introduced. For a given metric m, all the variants considered are ranked according to this metric. In the ranking
system used, the higher rank the better. Variants with the same value will get the same rank. The ranks are then
transformed into values between 0 and 100 through a linear projection to obtain the values for the scaled metric.
All reported scores, except for log-likelihood, have been scaled according to this strategy.

Log-likelihood was observed to strongly penalise variants with a large number of mutations. An increased
number of mutations may strongly affect fitness, thus explaining decreased log-likelihood. However, as the
variants that are scored by EWS have been registered, which implies that they managed to infect hosts and
replicate sufficiently to be detected, we hypothesise that they have at least minimal fitness. A variant with two
mutations, whose log-likelihood is in the bottom 20th percentile globally, is less likely to survive the evolutionary
competition. A variant, with analogous log-likelihood, but with twenty mutations is more likely among others,
similarly mutated ones. Thus, we introduced a group-based ranking strategy where each variant is ranked only
among variants with a similar number of mutations. For each variant, having N mutations, its conditional
log-likelihood score is ranked among all variants having at least M mutations, with M = min(max(0, N-10), 50).
Deletions at N-terminal or C-terminal are considered as one single mutation for grouping. In each group, as for
the other ranking technique, the ranks are then transformed into values between 0 and 100 through a linear
projection to obtain the values for the scaled metric. Although this work uses all the samples that have no less
than ten mutations fewer than the query, results are largely robust to the choice of a threshold.
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The immune escape score is computed as the average of the scaled semantic change and of the scaled epitope
alteration score. The fitness prior score is computed as the average of the scaled conditional log-likelihood, the
scaled ACE2 binding score, and the scaled growth.

Pareto Score
Pareto optimality is defined over a set of lineages. Lineages are Pareto optimal within that set if there are no
lineages in the set with both higher immune escape and higher fitness prior scores. The Pareto score is a measure
of the degree of Pareto optimality. Lineages with the highest Pareto score are Pareto optimal. Lineages with the
second-best Pareto score would be Pareto optimal, if the Pareto optimal lineages were removed from the set, and
so on.

To compute the Pareto score, we first compute all the Pareto fronts that exist in the considered set of lineages.
The first Pareto front corresponds to the set of lineages for which there does not exist any other lineage with both
higher immune escape and fitness prior score. The second Pareto front is computed as the Pareto front over the
set of lineages remaining when removing the ones from the first Pareto front. Successive Pareto fronts are
computed until all the lineages are assigned to a front. Then, a linear projection is used so that the lineages from
the first front obtain a Pareto score of 100 and the ones from the last front get a Pareto score of 0.

Semantic Change vs Epitope Alteration Score
Semantic change is a measure of how different is the variant in question with regard to the underlying statistical
model (large ML model fine-tuned on Spike protein sequences observed until a given time point). This value
depends on the observations. Epitope alteration score is a measure of how many distinct epitopes are evaded by
the variant in question in comparison to wild type. This score, on the other hand, is computed purely based on
known binding sites of antibodies, as reported in Protein Data Bank. It too changes with time with new
discoveries of anti-Spike antibodies, but to a lesser extent and is expected to converge to a stable value.

We observe that these scores, while intuitively correlated, are not collinear. In particular, we see that most of
HRVs regarded as immune escaping (and denoted as VoCs, VoIs etc.) indeed exhibit high semantic change, but
are rather diverse in terms of Epitope Alteration Score (Fig. S.7).

Detection
During retrospective early detection analysis, each week EWS considers only the new sequences reported during
that week. Therefore, each sequence is considered only once at the time of its first report. Furthermore, to
prevent consistently detecting sequences of prevalent lineages such as Alpha, EWS does not consider sequences
of the Variants of Concern that were designated as such at the time of evaluation.

Detecting HRVs by standard ML methods
In this section, we compare the capabilities detection of EWS to standard ML methods to highlight both the
difficulty of the task and the need for deep learning representations.
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For all the baselines we consider protein sequences are represented by a vector of N binary components. To
compute the representation for a protein sequence S deposited at time t, we calculate the N most prevalent
mutations in all deposited sequences up to time t, inclusive. Each binary component of the representation equals
1 if the mutation is present in S and 0 otherwise. We consider N=1280 for all the baselines, to permit for a direct
comparison with the methods proposed in the paper..

As our method learns from unlabeled data, we first consider the unsupervised learning baseline: Uniform
Manifold Approximation and Projection (UMAP). This is an intuitive approach, as it has been successfully
applied to analogous problems in biology, as well as it is known to render meaningful insights when applied in
life science settings 13. It is performed each week over the representations of all sequences available up to this
week. A metric equivalent to the semantic change is computed as amean L1 distance between the sequence
projection and the projections of the Wuhuan and D614G strains in UMAP spaces. The same detection technique
as performed by EWS is then used to flag every week a set of 20 variants suspected to be dangerous. We report
that only 5 out of 13 variants detected with an average lead time of -43 days, see Table S.6. In comparison,
analogous techniques applied in EWS detect 12 out of 13 variants (8 ahead of time), with a mean lead time of 6
days. Both results highlight the need for more involved representations, such as the ones learned by
Transformers models, especially in tasks like this one, where significance of the novel findings is difficult to
approximate a priori.

Second, a supervised learning baseline was considered. Each week, we label all protein sequences that have been
registered by 1 if it has been named as HRV anytime before or during the week considered and 0 otherwise. A
Generalised Linear Model (GLM) is built over the same 1280-dimensional representations of the sequences. The
probability of belonging to the HRV class returned by the GLM is then used to rank sequences. Subsequently, the
same detection technique performed by EWS is used to flag every week a set of 20 variants suspected to be
dangerous. We report that 12 over 13 variants are eventually detected, with only 4 over 13 being detected before
WHO naming, with an average lead time of 0.3 days, see Table S.6. We advise the reader that not only is this
approach less performing, it is also less generic than the one proposed herein. This makes it implicitly not fully
applicable for pandemics that would attract less worldwide attention and thus less or no labelled data. In
addition, this approach cannot be used early in a pandemics as there are no labels available and hallmark
mutations are unlikely to be among the most common ones in population early on.
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