
Figure 1: Schematic of the experimental set-up. (A) A two-layer microfluidic device with embedded

single-cell traps, and syringes used for perfusion of the carrier oil phase and an aqueous suspension

containing live motile cells. (B) 3D rendering of a single trap in which a cell can be stably trapped

and imaged for hours. To demonstrate variability in swimming behaviour, we studied two species of

motile algae, images show respectively: (C) a single Chlamydomonas reinhardtii (CR) cell, and (D)

a single Pyramimonas octopus (PO) cell, in each case trapped within a 120 µm-diameter circular

well. (Cilia positions are highlighted by manual tracings.)
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exponential phase. For motility experiments, second- or third- generation cultures were harvested

in late-exponential phase (6-9 days after inoculation). Cell density was measured as 1 ⇥ 10 6 cells

per mL. Cells were centrifuged at 100g for 10 minutes, and then concentrated 10-fold. The cells

were then left in darkness for a minimum of 30 minutes to dark-adapt them before each experimental

run.

We prepared our PO cultures from axenic liquid cultures of the WT of the species P. octopus

(NIVA/NORCCA). 200 µL of axenic culture was transferred to 25 cm3 of TL30 media. Cells were

grown under continuous illumination at 21°C and 40% humidity, without shaking. For motility

experiments, cultures were harvested during the latter half of the exponential phase (20 - 30 days

after inoculation). Cell density was measured at 3 ⇥ 10 3 cells per ml. Cells were centrifuged at

100g for 10 minutes, and then concentrated 10-fold. The cells were then left in darkness for a

minimum of 30 minutes to dark-adapt them before each experimental run.

4.2 Microfluidic chip fabrication

The devices were designed with CAD software (DraftSight, Dassault Systems) and fabricated follow-

ing classical soft-lithography procedures by using a high-resolution acetate mask (Microlithography

Services Ltd.). Negative photoresist SU-8 3025 (MicroChem, Newton, MA) was spin-coated onto

clean silicon wafers to a thickness of 10 µm, patterned by exposure to UV light through the pho-

tomask (Xia and Whitesides, 1998) and hard bake at 95 �C for ⇠ 7 minutes.. Prior to development

through immersion in propylene glycol monomethyl ether acetate (PGMEA, Sigma-Aldrich), a sec-

ond layer of SU-8 3025 at 20 µm in height was spin-coated, UV exposed and hard baked (95 �C,

⇠ 7 minutes) for the development of the trapping arrays. Uncured polydimethylsiloxane (PDMS)

consisting of a 10:1 polymer to cross-linker mixture (Sylgard 184) was poured onto the master,

degassed, and baked at 70 �C for 4 hours. The PDMS mould was then cut and peeled from the

master, punched with a 1.5 mm biopsy punch (Kai Medical) to create inlet ports for tubing inser-

tion. A total of three holes were punched; two inlets for the continuous and aqueous phase and an

outlet for waste collection. For the time-lapse device, the PDMS mould was plasma bonded to thin

cover slips (22 x 50 mm, 0.13 – 0.17 mm thick). Hydrophobic surface treatment was performed

immediately after bonding by flushing with 1% (v/v) Trichloro (1H, 1H, 2H, 2H-perfluorooctyl)

silane (Aldrich) in HFE-7500, and placed in a 65 �C oven for 30 min.

4.3 Flow-focusing droplet generation

Microfluidic device fabrication was done using classical soft lithography techniques. A total of 4

devices were developed. All devices consisted of a flow-focusing junction for droplet generation

(1A) (height, 10 µm), and a second layer with a trapping array made up of circular wells (height,

20 µm). The trapping sizes developed were 40, 60, 120 and 200 µm. The dimensions of the flow-

focusing junction varied depending on trap size. We designed a range of dimensions for the flow

focusing junctions and matching trap sizes (i.e. circle diameter). Depending on the trapping size,

the total number of traps was between 78 (? 200 µm) to 840 (? 40 µm).
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Droplets were typically generated at rates approx ⇠ 50 per second. The flow rates were

controlled using syringe pumps (Nemesys, Cetoni), 1 mL plastic syringes (BD PlastipakTM; sterile

needles, 25G x 1” – NR. 18, 0.5 mm x 25 mm, BD MicrolanceTM 3), and portex tubing PE

(Scientific Laboratory Supplies, 0.38 x 0.355 mm). The flow rates for oil and cell suspension were

varied depending the size dimensions of each device. A 1:3 ratio was aimed for the continuous and

aqueous phase, respectively.

The carrier oil phase was prepared using fluorinated oil HFE-7500 (Fluorochem Ltd) contain-

ing 0.5% (w/v) 008-Fluorosurfactant (RAN Biotechnologies, Inc.). The aqueous phase consisted

of liquid cell cultures (see Cell culturing and maintenance). The droplets were generated at the

flow-focusing junction creating water-in-oil emulsions. A dilute suspension of algae was injected

through the inlet. Following trapping, droplets were stably confined to the microwell during imag-

ing acquisition. Once all the traps were filled, the aqueous phase flow was halted and the continuous

phase was flowing at a reduced (5x) rate to flush away excess droplets.

4.4 Live-cell high-speed imaging

Brightfield imaging was conducted with an inverted microscope (Leica Microsystems, DMi8),

equipped with a high-speed camera (Phantom Vision Research, V1212). We first scanned the

array of trapped cells to locate traps matching our criteria (droplet fitting exactly into the trap,

droplet containing only one cell). For the 40 µm, 60 µm and 120 µm trap sizes, as well as the cell

fusion experiments, we used a 20x long-working distance objective (HC PL/0.40). For the largest

200 µm traps, we lowered the magnification to 5x (NPLAN/0.12) equipped with a 1.6x tube lens, to

reduce file size. All traps were imaged with the same intensity and aperture settings, and at 500fps.

For the 1 hour confinement experiments, cells were imaged continuously but 5 minute recordings

taken at 5 minute intervals, to obtain a total of 6 timepoints per cell. Data from droplets that were

disrupted at any point during imaging was discarded.

4.5 Light-modulation experiments

For brightfield imaging in WL, we used a standard broad-spectrum LED source to illuminate

the specimen. Red light (RL) imaging was accomplished by insertion of an IR long-pass filter

(610nm, Chroma) to the light path. Spectra corresponding to the two possible illumination options

are compared in Figure8. For light-switching experiments, the red filter was removed or inserted

manually.

4.6 Bulk cell motility assay

We assayed the e↵ect of KCl on P. octopus behaviour via a simple open-air method. We first added

1 µL of a concentrated suspension of cells to a glass coverslip under red light in a dark room. We

waited 5s for flows from the placement of the droplet to subside, before imaging for 25s (at 10x,

100fps). We then added either a 1 µL droplet of culture media (for the control) or a 1 µL drop
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Figure 8: Illumination spectra recorded with a spectrometer (OceanInsight OceanHDX, 200µm-

fibre).

of 50mM KCl (for the KCl test), and after waiting another 5s for flows to subside we imaged for

another 25s.

4.7 Paired-droplet fusion assay

Droplet pairs were generated using a cross junction microfluidic device in which cells and KCl

solutions flowing in separate channels are encapsulated in alternation. We used a 25 degrees angle

previously reported to produce the most stable alternation function. When stable alternation was

achieved, droplets were suddenly halted by removal of the inlet tubings of KCl and cell solutions

followed by gentle removal of excess droplets at 3 µl/min for ⇠ 1 minute. We subsequently identified

droplet pairs of expected volumes with one containing a single cell. To ensure fusion with KCl and

the absence of mixing prior to fusion, the 10 mM KCl solution was spiked with 1 µM fluorescein

(Merck) which was imaged before triggering of fusion. A 15 minute video of the cells was acquired

displaying the entrapped droplets 7.5 minutes prior and 7.5 minutes post fusion. Fusion was induced

by surfactant replacement with 1H,1H,2H,2H-Perfluoro-1-octanol (Merck) (PFO). A solution of 40%

PFO in HFE was flown at 5 µl/min and run until fusion was achieved (⇠ 4 min). PFO competes

with the fluorosurfactant which destabilizes the droplet interface to induce rapid, reproducible

fusion. Control experiments without KCl were done to confirm the absence of confounding factors.

For the fusion experiments, the identification process consisted of two steps. Firstly we

located a trap that had two equal droplets in place, one containing a cell. Secondly, we took a

fluorescence image to verify that the droplet without the cell contained KCl. The fluorescence image

was taken in the LASX software, using a broad-spectrum LED source (CoolLED-pE300) equipped

with a triple-band filter set (including FITC, Ex: 475 nm, Em: 530 nm). The fluorescence intensity

was set to 60%, the exposure time was 600ms, and the gain was 2.0. The presence of fluorescence

covering the whole of the empty droplet was su�cient to prove the presence of KCl.
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Ion Pre-fusion Post-fusion (with KCl)

Na+ 136.3 68.2

K+ 3.0 6.5

Ca2+ 2.9 1.5

Mg2+ 13.8 6.9

Cl� 161.5 80.8

SO2�
4 4.8 2.4

NO�
3 1.1 0.6

HPO2�
4 0.1 negligible

Table 1: A comparison of the concentrations of key ions (in mM), before and after paired droplet

fusion.

4.8 Image processing and cell tracking

Raw video data was exported to 8-bit grayscale and enhanced by subtracting an average image in

MATLAB (Mathworks). Trap boundaries were identified manually to increase the fidelity of 2D

cell tracking, which was performed automatically using the Trackmate plugin in ImageJ [67]. A

Laplace of Gaussian detector was used for spot identification, with slightly di↵erent blob diameters

for CR and for PO (14 um and 21 um respectively). Single continuous tracks were obtained for

each experimental run (N=5 individuals per condition), and exported for further processing and

extraction of detailed track features/other statistics (see Appendix A). Video frames from the bulk

motility assays were processed and analysed similarly.
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Mazza, “Emergent probability fluxes in confined microbial navigation,” Proceedings of the

National Academy of Sciences, vol. 118, p. e2024752118, Sept. 2021.

[26] H. C. Berg, “The Rotary Motor of Bacterial Flagella,” Annual Review of Biochemistry, vol. 72,

pp. 19–54, June 2003.

[27] E. Perez Ipiña, S. Otte, R. Pontier-Bres, D. Czerucka, and F. Peruani, “Bacteria display

optimal transport near surfaces,” Nature Physics, vol. 15, pp. 610–615, June 2019.

[28] K. Son, D. R. Brumley, and R. Stocker, “Live from under the lens: exploring microbial motility

with dynamic imaging and microfluidics,” Nature Reviews Microbiology, vol. 13, pp. 761–775,

Dec. 2015.

[29] D. Cortese and K. Y. Wan, “Control of Helical Navigation by Three-Dimensional Flagellar

Beating,” Physical Review Letters, vol. 126, p. 088003, Feb. 2021.

[30] K. Inaba, “Calcium sensors of ciliary outer arm dynein: functions and phylogenetic consider-

ations for eukaryotic evolution.,” Cilia, vol. 4, p. 6, 2015.
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[58] U. Rü↵er and W. Nultsch, “Flagellar photoresponses of Chlamydomonas cells held on mi-

cropipettes: I. Change in flagellar beat frequency: Flagellar Beat Frequency Changes,” Cell

Motility and the Cytoskeleton, vol. 15, no. 3, pp. 162–167, 1990.

[59] C. T. Kreis, M. Le Blay, C. Linne, M. M. Makowski, and O. Bäumchen, “Adhesion of Chlamy-
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