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Abstract 12 

Background: Amplicon sequencing is an established and cost-efficient method for profiling 13 
microbiomes. However, many available tools to process this data require both bioinformatics 14 
skills and high computational power to process big datasets. Furthermore, there are only few 15 
tools that allow for long read amplicon data analysis. To bridge this gap, we developed the 16 
LotuS2 (Less OTU Scripts 2) pipeline, enabling user-friendly, resource friendly, and versatile 17 
analysis of raw amplicon sequences.  18 
 19 
Results: In LotuS2, six different sequence clustering algorithms as well as extensive pre- and 20 
post-processing options allow for flexible data analysis by both experts, where parameters can 21 
be fully adjusted, and novices, where defaults are provided for different scenarios.  22 
We benchmarked three independent gut and soil datasets, where LotuS2 was on average 29 23 
times faster compared to other pipelines - yet could better reproduce the alpha- and beta-24 
diversity of technical replicate samples. Further benchmarking a mock community with known 25 
taxa composition showed that, compared to the other pipelines, LotuS2 recovered a higher 26 
fraction of correctly identified genera and species (98% and 57%, respectively). At ASV/OTU 27 
level, precision and F-score were highest for LotuS2, as was the fraction of correctly 28 
reconstructed 16S sequences. 29 
Conclusion: LotuS2 is a lightweight and user-friendly pipeline that is fast, precise and 30 
streamlined. High data usage rates and reliability enable high-throughput microbiome analysis 31 
in minutes. 32 
 33 
Availability: LotuS2 is available from GitHub, conda or via a Galaxy web interface, documented 34 
at http://lotus2.earlham.ac.uk/. 35 
 36 
Keywords: microbiome, short read sequencing, amplicon data analysis, 16S rRNA, ITS 37 

 38 

BACKGROUND:  39 

The field of microbiome research has been revolutionized in the last decade, owing to 40 

methodological advances in DNA-based microbial identification. Amplicon sequencing (also 41 

known as metabarcoding) is one of the most commonly used techniques to profile microbial 42 
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communities based on targeting and amplifying phylogenetically conserved genomic regions 43 

such as the 16S/18S ribosomal RNA (rRNA) or internal transcribed spacers (ITS) for 44 

identification of bacteria and eukaryotes (esp. Fungi), respectively [1,2]. The popularity of 45 

amplicon sequencing has been growing due to its broad applicability, ease-of-use, cost-46 

efficiency, streamlined analysis workflows as well as specialist applications such as low 47 

biomass sampling [3].   48 

 49 

Alas, amplicon sequencing comes with several technical challenges. These include primer 50 

biases [4], chimeras occurring in PCR amplifications [5], rDNA copy number variations [6] and 51 

sequencing errors that frequently inflate observed diversity [7]. Although modern read error 52 

corrections can significantly decrease artifacts of sequencing errors [8], the taxonomic 53 

resolution is limited to the genus or at best to species level [9,10]. To process amplicon 54 

sequencing data from raw reads to taxa abundance tables, several pipelines have been 55 

developed, such as mothur [11], QIIME 2 [12], DADA2 [8] or LotuS [13]. These pipelines differ in 56 

their data processing and sequence clustering strategies, reflected in differing execution speed 57 

and resulting amplicon interpretations [13,14].  58 

 59 

Here we introduce Lotus2, designed to improve reproducibility, accuracy and ease of amplicon 60 

sequencing analysis. LotuS2 offers a completely refactored installation, including a web 61 

interface that is freely deployable on Galaxy clusters.  During development, we focused on all 62 

steps of amplicon data analysis, including processing raw reads to abundance tables as well as 63 

improving taxonomic assignments and phylogenies of Operational Taxonomic Units (OTUs) or 64 

Amplicon Sequencing Variants (ASVs) at the highest quality with the latest strategies available.  65 

Pre- and post-processing steps were further improved compared to the predecessor “LotuS1”: 66 

the read filtering program sdm (simple demultiplexer) and taxonomy calculation program LCA 67 

(least common ancestor) were refactored and parallelized in C++. LotuS2 uses a ‘seed 68 
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extension’ algorithm that improves the quality and length of OTU/ASV representative DNA 69 

sequences. We integrated numerous features such as additional sequence clustering options 70 

(DADA2, UNOISE3, VSEARCH and CD-HIT), advanced read quality filters based on 71 

probabilistic and Poison binomial filtering and curated ASVs/OTUs diversity and abundances 72 

(LULU, UNCROSS2, ITSx, host DNA filters). LotuS2 can also be integrated in complete 73 

workflows, e.g. the microbiome visualization-centric pipeline CoMA [15] uses LotuS1/2 at its 74 

core to estimate taxa abundances. 75 

Here, we evaluated LotuS2 in reproducing microbiota profiles in comparison to contemporary 76 

amplicon sequencing pipelines. We found that LotuS2 consistently reproduces microbiota 77 

profiles more accurately, using three independent datasets, and reconstructs a mock community 78 

with the highest overall precision.  79 

 80 

MATERIALS AND METHODS: 81 

Design Philosophy of LotuS2 82 

Overestimating observed diversity is one of the central problems in amplicon sequencing, 83 

mainly due to sequencing errors [7,16]. The second read pair from Illumina paired-end 84 

sequencing is generally lower in quality [17] and can contain more errors than predicted from 85 

Phred quality scores alone [18,19]. Additionally, merging reads can introduce chimeras due to 86 

read pair mismatches [20]. The accumulation of errors over millions of read pairs can impact 87 

observed biodiversity, so essentially is a multiple testing problem. To avoid overestimating 88 

biodiversity, LotuS2 uses a relatively strict read filtering during the error-sensitive sequence 89 

clustering step. This is based on i) 21 quality filtering metrics (average quality, homonucleotide 90 

repeats, removal of reads without amplicon primers, etc), ii) probabilistic and Poisson binomial 91 

read filtering [17,21], iii) filtering reads that cannot be dereplicated (clustered at 100% nucleotide 92 

identity) either within or between samples and iv) using only the first read pair from paired-end 93 

Illumina sequencing platforms. These reads are termed “high-quality” reads in the pipeline 94 
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description and are clustered into OTUs/ASVs, using one of the sequence clustering programs 95 

(Figure 1B). 96 

However, filtered out “mid-quality” sequences are partly recovered later in the pipeline, during 97 

the seed extension step. LotuS2 will reintroduce reads failing dereplication thresholds or being 98 

of “mid-quality” by mapping these reads back onto high-quality OTUs/ASVs if matching at ≥ 99 

97% sequence identity. In the “seed extension” step, the optimal sequence representing each 100 

OTU/ASV is determined by comparing all (raw) reads clustered into each OTU/ASV. The best 101 

read (pair) is then selected based on the highest overall similarity to the consensus OTU/ASV, 102 

quality and length that, in the case of paired read data, can then be merged.  Thereby, the seed 103 

extension step enables more reads to be included in taxa abundance estimates, as well as 104 

enabling longer ASV/OTU representative sequences to be used during taxonomic classifications 105 

and the reconstruction of a phylogenetic tree.  106 

 107 

 108 

Implementation of LotuS2 109 

Installation - LotuS2 can be accessed either through major software repositories such as i) 110 

Bioconda, ii) as a Docker image or iii) GitHub (accessible through http://lotus2.earlham.ac.uk/) 111 

(Figure 1A). The GitHub version comes with an installer script that downloads the required 112 

databases and installs and configures LotuS2 with its dependencies. Alternatively, we provide 113 

iv) a wrapper for Galaxy [22] allowing installation of LotuS2 on any Galaxy server from the 114 

Galaxy ToolShed. LotuS2 is already available to use for free on the UseGalaxy.eu server 115 

(https://usegalaxy.eu/), where raw reads can be uploaded and analysed (Supp. Figure 1). 116 

While LotuS2 is natively programmed for Unix (Linux, macOS) systems, other operating 117 

systems are supported through the Docker image or the Galaxy web interface.  118 

Input - LotuS2 is designed to run with a single command, where the only essential flags are the 119 

path to input files (fastq(.gz), fna(.gz) format), output directory and mapping file. The mapping 120 
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file contains information on sample identifiers, demultiplexing barcodes or file paths to already 121 

demultiplexed files and can be either automatically generated or provided by the user. The 122 

sequence input is flexible, allowing simultaneous demultiplexing of read files and/or integration 123 

of already demultiplexed reads.  124 

LotuS2 is highly configurable, enabling user-specific needs beyond the well-defined defaults. 125 

There are 63 flags that can be user-modified, including dereplication filtering thresholds (-126 

derepMin), sequencing platform (-p), amplicon region (-amplicon_type), or OTU/ASV 127 

postprocessing (e.g. -LULU option to remove erroneous OTUs/ASVs [23]). In addition, read 128 

filtering criteria can be controlled in 32 detailed options via custom config files (defaults are 129 

provided for Illumina MiSeq, hiSeq, novaSeq, Roche 454, PacBio HiFi). 130 

 131 

Output - The primary output is a set of tab-delimited OTU/ASV count tables, the phylogeny of 132 

OTUs/ASVs, their taxonomic assignments and corresponding abundance tables at different 133 

taxonomic levels. These are summarized in .biom [24] and phyloseq objects [25], that can be 134 

loaded directly by other software for downstream analysis.  135 

Furthermore, a detailed report of each processing step can be found in the log files which 136 

contain commands of all used programs (including citations and versions) with relevant 137 

statistics. We support and encourage users to conduct further analysis in statistical 138 

programming languages such as R, Python or Matlab and using analysis packages such as 139 

phyloseq [25], documented in tutorials at http://lotus2.earlham.ac.uk/. .  140 

 141 

Pipeline workflow - Most of LotuS2 is implemented in PERL 5.1; computational or memory 142 

intensive components like simple demultiplexer (sdm) and LCA (least common ancestor) are 143 

implemented in C++ (see Figure 1B for pipeline workflow).  Demultiplexing, quality filtering and 144 
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dereplication of reads is implemented in sdm. Taxonomic postprocessing is implemented in 145 

LCA. Six sequence clustering methods are available: UPARSE [17], UNOISE3 [26], CD-HIT 146 

[27], SWARM [28], DADA2 [8] or VSEARCH [29].  147 

In the “seed extension” step, a unique representative read of a sequence cluster is chosen, 148 

based on quality and merging statistics. Each sequence cluster, termed ASVs in the case of 149 

DADA2, OTUs otherwise1, is represented by a high confidence DNA sequence (see Design 150 

Philosophy of LotuS2 for more information).  151 

OTUs/ASVs are further postprocessed to remove chimeras, either de novo and/or reference 152 

based using the program UCHIME3 [30] or VSEARCH-UCHIME [29]. By default, ITS sequences 153 

are extracted using ITSx [31]. Highly resolved OTUs/ASVs are then curated based on sequence 154 

similarity and co-occurrence patterns, using LULU [23]. False-positive OTU/ASV counts can be 155 

filtered using the UNCROSS2 algorithm [32]. OTUs/ASVs are by default aligned against the 156 

phiX genome, a synthetic genome often included in Illumina sequencing runs, using Minimap2 157 

[33]; these OTUs/ASVs are subsequently removed. Additionally, the user can filter for host 158 

contamination by providing custom genomes (e.g., human reference), as host genome reads 159 

are often misclassified as bacterial 16S by existing pipelines [3]. 160 

Each OTU/ASV is taxonomically classified, using either RDP classifier [34], SINTAX [35] or by 161 

alignments to reference database(s), using the custom “LCA” (least common ancestor) C++ 162 

program. Alignments of OTUs/ASVs with either Lambda [36], BLAST [37], VSEARCH [29], or 163 

USEARCH [38] are compared against a user-defined range of reference databases. These 164 

databases cover the 16S, 18S, 23S, 28S rRNA gene and ITS region, by default a Lambda 165 

alignment against the SILVA database is used [39]. Other databases bundled with LotuS2 166 

include Greengenes [40], HITdb [41], PR2 [42], beetax (bee gut-specific taxonomic annotation) 167 

[43], UNITE (fungal ITS database) [44], or users can provide reference databases (a fasta file 168 

 
1 Note that UNOISE3 uses the term zero-range OTUs (zOTUs); for brevity, this is omitted throughout the 
text. 
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and a tab-delimited taxonomy file). These databases can be used by themselves, or in 169 

conjunction. From mappings against one or several reference databases, the least common 170 

ancestor for each OTU/ASV is calculated using LCA.  Priority is given to deeply resolved 171 

taxonomies, sorted by the earlier listed reference databases.  For reconstructing phylogenetic 172 

trees, multiple sequence alignments for all OTUs/ASVs are calculated with either MAFFT [45] or 173 

Clustal Ω [46]; from these a maximum likelihood phylogeny is constructed using either fasttree2 174 

[47] or IQ-TREE 2 [48]. 175 

 176 

 177 

Benchmarking amplicon sequencing pipelines 178 

To benchmark the computational performance and reproducibility, we compared LotuS2’s 179 

performance to commonly used amplicon sequencing pipelines including mothur [11], DADA2 180 

[8], and QIIME 2 [12]. We relied, where possible, on default options or standard operating 181 

procedure (SOPs) provided by the respective developers (mothur: 182 

https://mothur.org/wiki/miseq_sop/; QIIME 2: https://docs.qiime2.org/2021.11/tutorials/moving-183 

pictures/ and DADA2: https://benjjneb.github.io/dada2/tutorial.html). DADA2 cannot demultiplex 184 

raw reads and in these cases, LotuS2 demultiplexed raw reads were used as DADA2 input.  185 

Our benchmarking scripts are available at https://github.com/ozkurt/lotus2_benchmarking (see 186 

Supp. Text). Several sequence cluster algorithms were benchmarked, for LotuS2: DADA2 [8], 187 

UPARSE [17], UNOISE3 [26], CD-HIT [27] and VSEARCH [29]; for QIIME 2: DADA2 and 188 

Deblur [49]; DADA2 supporting natively only DADA2 clustering; for mothur: OptiClust; and for 189 

LotuS1: UPARSE. For taxonomic classification, SILVA138.1 [39], was used in all pipelines.  190 

ITS amplicons are clustered with CD-HIT, UPARSE and VSEARCH and filtered by default using 191 

ITSx [31] in LotuS2. ITSx identifies likely ITS1, 5.8S and ITS2 and full-length ITS sequences, 192 
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and sequences not within the confidence interval are discarded in LotuS2. In analogy, QIIME 2-193 

DADA2 uses q2-ITSxpress [50] that also removes unlikely ITS sequences. 194 

 195 

Error profiles during ASV clustering were inferred separately for the samples sequenced in 196 

different MiSeq runs during DADA2 and Deblur clustering in all pipelines. We truncated the 197 

reads into the same length (200 bases, default by LotuS2) in all pipelines while analysing the 198 

datasets. Primers were removed from the reads, where supported by a pipeline. 199 

 200 

Measuring computational performance of amplicon sequencing pipelines  201 

When benchmarking pipelines, processing steps were separated into 5 categories in each 202 

tested pipeline: a) Pre-processing (demultiplexing if required, read filtering, primer removal and 203 

read merging for QIIME 2-Deblur), b) sequence clustering (clustering + refining of the clusters 204 

and denoising for QIIME 2-DADA2, c) OTU/ASV taxonomic assignment, d) construction of a 205 

phylogenetic tree (the option is available only in mothur, QIIME 2 and LotuS2) and e) removal of 206 

host genome (the option is available only in QIIME 2 and LotuS2). In mothur, sequence 207 

clustering and taxonomic assignment times were added since these pipeline commands are 208 

entangled (https://mothur.org/wiki/miseq_sop/). 209 

 210 

Data used in benchmarking pipeline performance 211 

Four datasets with different sample characteristics (e.g., compositional complexity, target gene 212 

and region, amplicon length) were analysed: i) Gut-16S dataset [13]: 16S rRNA gene amplicon 213 

sequencing of 40 human faecal samples in technical replicates that were sequenced in separate 214 

MiSeq runs, totalling 35,412,313 paired-end reads.  Technical replicates were created by 215 

extracting DNA twice from each faecal sample. Since the Illumina runs were not demultiplexed, 216 

pipelines had to demultiplex these sequences, if available. ii) Soil-16S dataset: 16S rRNA gene 217 

amplicon sequencing of two technical replicates (single DNA extraction per sample) from 50 soil 218 
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samples, that were sequenced in separate MiSeq runs, totalling 11,820,327 paired-end reads. 219 

PCR reactions were conducted using the 16S rRNA region primers 515F 220 

(GTGYCAGCMGCCGCGGTAA) and 926R (GGCCGYCAATTYMTTTRAGTTT).  The soil-16S 221 

dataset was already demultiplexed, requiring pipelines to work with paired FASTQ files per 222 

sample. iii) Soil-ITS dataset: ITS amplicon sequencing of 50 technical replicates of soil samples 223 

(single DNA extraction per sample), sequenced in two independent Illumina MiSeq runs, 224 

totalling 6,006,089 paired-end reads. ITS region primers gITS7ngs_201 225 

(GGGTGARTCATCRARTYTTTG) and ITS4ngsUni_201 (CCTSCSCTTANTDATATGC) [51] 226 

were used to amplify DNA extracted from soil samples. The soil-ITS dataset was already 227 

demultiplexed. 228 

iv) Mock dataset [52]: A microbial mock community with known species composition, mock-16 229 

[52]. The mock dataset comprised a total of 59 strains of Bacteria and Archaea, representing 35 230 

bacterial and 8 archaeal genera. The mock community was sequenced on an Illumina MiSeq 231 

(paired-end) by targeting the V4 region of the 16S rRNA gene using the primers 515F 232 

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT)  [52]. This dataset 233 

was demultiplexed and contained 593,868 paired reads. 234 

Benchmarking the computational performance of amplicon sequencing pipelines 235 

To evaluate the computational performance of LotuS2 in comparison to QIIME 2 [12], DADA2 236 

[8], and the last released version of LotuS [13] (v1.62 from Jan 2020; called LotuS1 here), all 237 

pipelines were run with 12 threads on a single computer free of other workloads (CPU: Intel(R) 238 

Xeon(R) Gold 6130 CPU @ 2.10 GHz, 32 cores, 375 GB RAM). To reduce the influence of 239 

network latencies on pipeline execution, all temporary, input, and output data were stored on a 240 

local SSD. Each pipeline was run three times consecutively to account for pre-cached data and 241 

to obtain average execution time and maximum memory usage. To calculate the fold 242 

differences in execution speed between pipelines, the average time of all LotuS2 runs was 243 
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divided by average QIIME 2, mothur and DADA2, where used in each of the three non-mock 244 

datasets. The average of these numbers was used to estimate the average speed advantage of 245 

LotuS2. 246 

 247 

Benchmarking reproducibility of amplicon sequencing pipelines 248 

Technical replicates of the soil and gut samples were used to estimate the reproducibility of the 249 

microbial community composition between replicates. This was measured by calculating beta 250 

and alpha diversity differences between technical replicate samples. To calculate beta diversity, 251 

either Jaccard (measuring presence/absence of OTUs/ASVs) or Bray-Curtis dissimilarity 252 

(measuring both presence/absence and abundances of OTUs/ASVs) were computed between 253 

technical replicate samples. Before computing Bray-Curtis distances, abundance matrices were 254 

normalized. Jaccard distances between samples were calculated by first rarefying abundance 255 

matrices to an equal number of reads (to the size of the first sample having > 1000 read counts) 256 

per sample using RTK [53]. Significance of pairwise comparisons of the pipelines in beta 257 

diversity differences was calculated using the ANOVA test where Tukey’s HSD (honest 258 

significant differences) test was used as a post hoc test in R.  259 

To calculate alpha diversity, abundance data were first rarefied to an equal number of reads per 260 

sample. Significance of each pairwise comparison in alpha diversity was calculated based on a 261 

paired Wilcoxon test, pairing technical replicates. 262 

 263 

Analysis of the mock community 264 

We used an already sequenced mock community [52] of known relative composition and with 265 

sequenced reference genomes available. Firstly, taxonomic abundance tables (taxonomic 266 

assignments based on SILVA 138.1 [39] in all pipelines) were compared to the expected 267 

taxonomic composition of the sequenced mock community. Precision was calculated as 268 

(TP/(TP+FP)), recall as (TP/(TP+FN)) and F-score as (2*precision*recall/(precision+recall)), TP 269 
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(true positive) being taxa present in the mock and correctly identified as present, FN (false 270 

negative) being taxa present in the mock but not identified as present and FP (false positive) 271 

being taxa absent in the mock but identified as present. The fraction of read counts assigned to 272 

true positive taxa was calculated based on the sum of the relative abundance of all true positive 273 

taxa. These scores were calculated at different taxonomic levels. 274 

Secondly, we investigated the precision of reconstructed 16S rRNA nucleotide sequences, 275 

representing each OTU or ASV, by calculating the nucleotide similarity between ASVs/OTUs 276 

and the known reference 16S rRNA sequences. To obtain the nucleotide similarity, we aligned 277 

ASV/OTU DNA sequences from tested pipelines via BLAST to a custom reference database 278 

that contained the 16S rRNA gene sequences from the mock community 279 

(https://github.com/caporaso-lab/mockrobiota/blob/master/data/mock-16/source/expected-280 

sequences.fasta), using the –taxOnly option from LotuS2. The BLAST % nucleotide identity was 281 

subsequently used to calculate the best matching 16S rRNA sequence per ASV/OTU. 282 

 283 

 284 

RESULTS 285 

We analysed four datasets to benchmark the computational performance and reliability of the 286 

pipelines. The datasets consisted either of technical replicates (gut-16S, soil-16S, soil-ITS) or a 287 

mock community. Technical replicates were used to evaluate the reproducibility of community 288 

structures and were chosen to represent different biomes (gut, soil), using different 16S rRNA 289 

amplicon primers (gut-16S, soil-16S) or ITS sequences (soil-ITS) as well as a synthetic mock 290 

community of known composition.  291 

 292 

Computational performance and data usage 293 

The complete analysis of the gut-16S dataset was fastest in LotuS2 (on average 35, 12, 9 and 294 

3.8 times faster than mothur, QIIME 2-DADA2, QIIME 2-DEBLUR and native DADA2, 295 
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respectively, Figure 2A). Note that DADA2 could not demultiplex the dataset, the average of 296 

LotuS2 and QIIME2 demultiplexing times were used instead. LotuS2 was also faster in the 297 

analysis of the soil-16S dataset compared to the other tested pipelines (5.7, 3.5, 3.5 times faster 298 

than DADA2, QIIME 2-DADA2 and QIIME 2-DEBLUR, respectively, Figure 2B). The difference 299 

in speed between LotuS2 and QIIME 2 was more pronounced in the analysis of the soil-ITS 300 

dataset, where LotuS2 was on average 69 times faster than QIIME 2 and DADA2 (Figure 2C). 301 

LotuS2 also outperformed other pipelines in the case of the gut-16S dataset (on average 302 

LotuS2 was 15 times faster) compared to the soil dataset (average 4.2). This difference stems 303 

mainly from the demultiplexing step, where LotuS2 is significantly faster. The sequence 304 

clustering step was fastest using the UPARSE algorithm, i.e. an average 60-fold faster than 305 

sequence clustering in other pipelines. Averaged over these three datasets, LotuS2 was 29 306 

times faster than other pipelines. 307 

Taxonomic classification of OTUs/ASVs was also faster in LotuS2 (~5 times faster for gut-16S, 308 

2 times for soil-16S). However, this strongly depends on the total number of OTUs/ASVs for all 309 

pipelines. For example, the default naïve-Bayes classifier [54] in QIIME 2 is faster relative to the 310 

number of OTUs/ASVs, compared to LotuS2 taxonomic assignments in this benchmark. 311 

Nevertheless, the LotuS2 default taxonomic classification is via RDP classifier [34], and 312 

alternatively, the SINTAX [35] classifier could be used, both of which are significantly faster than 313 

the here presented Lambda LCA against the Silva reference database.  314 

Compared to LotuS1, LotuS2 was on average 3.2 times faster, likely related to refactored C++ 315 

programs that can take advantage of multiple CPU threads (Figure 2A-B). 316 

In its fastest configuration (using “UPARSE” option in clustering, “RDP” to assign taxonomy), the 317 

gut and soil 16S rRNA datasets can be processed with LotuS2 in under 20 mins and 12 mins, 318 

using < 10 GB of memory and 4 CPU cores. 319 

Despite using similar clustering algorithms (e.g. DADA2 is used in DADA2, QIIME 2 and 320 

LotuS2), the tested pipelines apply different pre- and post-processing algorithms to raw 321 
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sequence reads and clustered ASVs and OTUs, leading to differing ASV/OTU numbers and 322 

retrieved reads (the total read count in the ASV/OTU abundance matrix) (Supp. Table 1 and 323 

Figure 2D-F).  DADA2 typically estimated the highest number of ASVs, but the number of 324 

retrieved reads varied strongly between datasets. QIIME 2-DADA2 estimated fewer ASVs than 325 

DADA2, but more ASVs than LotuS2-DADA2, although mapping fewer reads than LotuS2.  326 

Although retrieving a smaller number of reads, QIIME 2-Deblur reported comparable numbers of 327 

ASVs to LotuS2, despite the differences in clustering algorithms. mothur performed differently in 328 

the gut-16S and soil-16S datasets, where it estimated either the highest number of OTUs or 329 

could not complete the analysis since all the reads being filtered out, respectively.  Overall, 330 

LotuS2 often reported the fewest ASVs/OTUs, while including more sequence reads in 331 

abundance tables. This indicates that LotuS2 has a more efficient usage of input data while 332 

covering a larger sequence space per ASV/OTU. 333 

 334 

Benchmarking the reproducibility of community compositions 335 

Next, we assessed the reproducibility of community compositions, using gut-16S, soil-16S and 336 

soil-ITS datasets comparing beta diversity between technical replicates (Bray Curtis distance, 337 

BCd and Jaccard distance, Jd). We found that Jd and BCd were the lowest in LotuS2, largely 338 

independent of the chosen sequence clustering algorithms and dataset. This indicates a greater 339 

reproducibility of community compositions generated by LotuS2 (Figure 3A-B and Supp. 340 

Figure 2). The lowest BCd and Jd were observed for UPARSE (Figure 3A-B and Supp. Figure 341 

2) in both gut- and soil-16S datasets, though this was not always significant between different 342 

LotuS2 runs (Supp. Table 2). 343 

Even using the same clustering algorithm, LotuS2-DADA2 compositions were more 344 

reproducible, compared to both QIIME 2-DADA2 and DADA2 (significant only on soil data). 345 

LotuS2-DADA2 denoises by default all reads (per sequencing run) together, while in the default 346 

DADA2 setup each sample is separately denoised; the latter strategy has a reduced 347 
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computational burden but can potentially miss sequence information from rare bacteria. mothur 348 

showed poorer performance compared to other pipelines on the gut-16S dataset and did not 349 

complete on the soil data.  350 

We then calculated the fraction of samples being closest in BCd distance to its technical 351 

replicate for each pipeline (Figure 3D-E), simulating the process of identifying technical 352 

replicates without prior knowledge. LotuS2 with UNOISE3 clustering resulted in the highest 353 

fraction of samples being closest to its replicate among all samples, in both gut- and soil-16S 354 

datasets while in the mothur result, technical replicates were the most unlikely to be closest to 355 

their technical replicate.  356 

When this comparison was made with the non-default options in LotuS2 (using different 357 

dereplication parameters, deactivating LULU, using UNCROSS2 or retaining taxonomically 358 

unclassified reads), BCd between the technical replicates remained largely unchanged (Supp. 359 

Figure 2, Supp. Figure 3A-B and Supp. Text). However, retaining unclassified reads could 360 

significantly reduce the reproducibility of LotuS2 results on the gut-16S dataset. Furthermore, 361 

even starting the analysis with different read truncation lengths, LotuS2 still had the highest 362 

reproducibility in both gut- and soil-16S datasets (Supp. Figure 4, Supp. Figure 5 and Supp. 363 

Text). 364 

Lastly, we calculated the reproducibility of reported alpha diversity between technical replicate 365 

samples in both gut-16S and soil-16S datasets (Supp. Figure 6A-B). In both datasets, LotuS2 366 

alpha diversity was not significantly different between technical replicates, as expected (5 of 8 367 

comparisons, Wilcoxon signed-rank test), whereas, in 6 of 6 cases, QIIME 2, mothur and 368 

DADA2 had significant differences in the alpha diversity between technical replicates.  369 

Thus, LotuS2 showed in our benchmarks a higher data usage efficiency and higher 370 

reproducibility of community compositions than QIIME 2, DADA2 and mothur. These 371 

benchmarks also showed the importance of pre- and postprocessing raw reads and 372 
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OTUs/ASVs, since LotuS2-DADA2 and QIIME 2-DADA2 performed better than and DADA2, 373 

despite using the same clustering algorithm. 374 

 375 

Benchmarking soil-ITS dataset 376 

Unlike 16S rRNA gene amplicons, ITS amplicons typically vary greatly in length [4], requiring a 377 

different sequence clustering workflow; therefore, LotuS2 uses by default CD-HIT to cluster ITS 378 

sequences, and ITSx to identify plausible ITS1/2 sequences. 379 

In terms of data usage, both LotuS2 and QIIME 2-DADA2 retrieved similar numbers of reads, 380 

but for QIIME 2 these read counts were distributed across twice the number of ASVs (Figure 381 

2F). QIIME 2-DADA2 reproduced the fungal composition significantly worse in replicate 382 

samples, compared to LotuS2-UPARSE, having higher pairwise BCd (Figure 3C) and Jd 383 

(Supp. Figure 2H-I). However, it spanned the highest fraction of samples closest to its technical 384 

replicate, although this fraction was overall very high for all the pipelines (0.978-1) (Figure 3F). 385 

DADA2 performed relatively worse, yielding the highest number of ASV, lowest retrieved read 386 

counts (Figure 2F), significantly the highest BCd (Figure 3C, Suppl. Table 2) between replicate 387 

samples. LotuS2 had overall the lowest BCd and Jd between replicates, using both UPARSE 388 

and CD-HIT clustering (Figure 3C, Supp. Figure 2H-I). Usage of CD-HIT in combination with 389 

ITSx led to an increase in OTU diversity (from 947 to 1008) although read counts remained 390 

mostly the same in the final output matrix and BCd was largely similar (Supp. Figure 3C). Here, 391 

deactivating LULU slightly decreased reproducibility (Supp. Figure 3C). 392 

Finally, we calculated the reproducibility of alpha diversity between the technical replicate 393 

samples in the soil-ITS dataset (Supp. Figure 6C). All pipelines resulted in no significant 394 

difference between the technical replicate samples, thus alpha diversity was highly reproducible 395 

independent of the pipeline. 396 

 397 

Benchmarking the dataset from the mock microbial community 398 
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To assess how well a known community can be reconstructed in LotuS2, we used a previously 399 

sequenced 16S mock community [52] containing 43 genera and 59 microbial strains, where 400 

complete reference genomes were available.   401 

All pipelines performed poorly at reconstructing the community composition (Pearson R=0.43-402 

0.67, Spearman Rho=0.54-0.80, Supp. Table 3 and Supp. Figure 7), possibly related to PCR 403 

biases and rRNA gene copy number variation. Therefore, we focused on the number of 404 

correctly identified taxa. For this, we calculated the number of reads assigned to true taxa as 405 

well as precision, recall and F-score at genus level.  LotuS2-VSEARCH and LotuS2-UPARSE 406 

had the highest precision, F-score and fraction of reads assigned true positive taxa, (Figure 4A 407 

and Supp. Figure 8). LotuS1 had the highest recall, but low precision. When applying the same 408 

tests at species level, LotuS2-DADA2 had overall the highest precision and F-score (Supp. 409 

Figure 9). QIIME 2-DEBLUR had often competitive, but slightly lower, precision, recall and F-410 

scores compared to LotuS2, while mothur, QIIME 2-DADA2 and DADA2 scores were lower 411 

(Figure 4A). 412 

Next, we investigated which software could best reconstruct the correct OTU/ASV sequences.  413 

For this, we calculated the fraction of TP OTUs/ASVs (i.e., OTUs/ASVs which are assigned to a 414 

species based on the custom mock reference taxonomy) with 97%-100% nucleotide identity to 415 

16S rRNA sequences from reference genomes in each pipeline (Figure 4B). Here, LotuS2-416 

VSEARCH and LotuS2-UPARSE reconstructed OTU sequences were most often identical to 417 

the expected sequences, having 82.2% of the OTU sequences reconstructed at 100% 418 

nucleotide identity to reference sequences. QIIME 2-Deblur ASV sequences were of similar 419 

quality, but slightly less often at 100% nucleotide identity (78.2%). DADA2 and QIIME 2-DADA2 420 

ASV sequences were often more dissimilar to the expected reference sequences. It is 421 

noteworthy that LotuS2-DADA2 did outperform these two pipelines based on the same 422 

sequence clustering algorithm, likely related to the stringent read filtering and seed extension 423 

step in LotuS2.  424 
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The mock community consisted of 49 bacteria and 10 archaea [52], with 128 16S rRNA gene 425 

copies included in their genomes. If multiple 16S copies occur within a single genome, these 426 

can diverge but are mostly highly similar or even identical to each other [55].  Thus, 59 OTUs 427 

would be the expected biodiversity, and ≤128 ASVs. Notably, the number of mothur and QIIME 428 

2-Deblur TP ASVs/OTUs exceeded this threshold (N=370, 198, respectively), both pipelines 429 

overestimate known biodiversity. DADA2 and QIIME 2-DADA2 generated more ASVs than 430 

expected per species (N=94, 122 respectively), but this might account for divergent within-431 

genome 16S rRNA gene copies. LotuS2 was notably at the lower end in predicted biodiversity, 432 

predicting between 53-61 OTUs or ASVs in different clustering algorithms (Supp. Table 4). 433 

However, these seemed to mostly represent single species, covering the present species best 434 

among pipelines, as the precision at species level was highest for LotuS2 (Supp. Figure 9), 435 

thus capturing species level biodiversity most accurately. 436 

Based on the mock community data LotuS2 was more precise in reconstructing 16S rRNA gene 437 

sequences, assigning the correct taxonomy, detecting biodiversity, and within-genome 16S 438 

copies were less likely to be clustered separately using LotuS2. 439 

 440 

DISCUSSION 441 

LotuS2 offers a fast, accurate and streamlined amplicon data analysis with new features and 442 

substantial improvements since LotuS1.  Software and workflow optimizations make LotuS2 443 

substantially faster than either QIIME 2, DADA2 and mothur. On large datasets, this advantage 444 

becomes crucial for users: for example, we processed a highly diverse soil dataset consisting of 445 

>11 million non-demultiplexed PacBio HiFi amplicons (26 Sequel II libraries) in 2.5 days on 16 446 

CPU cores, using a single command (unpublished data). Besides being more resource and 447 

user-friendly, compositional matrices from LotuS2 were more reproducible and accurate across 448 

all tested datasets (gut 16S, soil 16S, soil ITS, mock community 16S).  449 
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LotuS2 owes high reproducibility and accuracy to the efficient use of reads based on their 450 

quality tiers in different steps of the pipeline. Low-quality reads introduce noise and can 451 

artificially inflate observed biodiversity, i.e., the number of OTUs/ASVs [56]. Conversely, an 452 

overly strict read filter will decrease sensitivity for low-abundant members of a community by 453 

artificially reducing sequencing depth. To find a trade-off, LotuS2 uses only truncated, high-454 

quality reads for sequence clustering (except ITS amplicons), while the read backmapping and 455 

seed extension steps restore some of the discarded sequence data.  456 

Notably, OTU/ASV reconstructed with LotuS2 were the most similar (at >99% identity) to the 457 

reference, compared to other pipelines (Figure 4B). This was mostly independent of clustering 458 

algorithms used, a combination of both selecting high-quality reads for sequence clustering and 459 

the seed extension step, that selects a high-quality read (pair) best representing each OTU or 460 

ASV. Seed extension also decouples read clustering and read merging, avoiding the use of the 461 

error-prone 3’ read end or second read pair during the error sensitive sequence clustering step 462 

[17]. Thereby, potential length restrictions during the clustering step will not carry over to 463 

computational steps benefitting from longer sequences, such as taxonomic assignments or 464 

phylogeny reconstructions. 465 

In conclusion, LotuS2 is a major improvement over LotuS1, representing pipeline updates that 466 

accumulated over the past eight years. It offers superior computational performance, accuracy 467 

and reproducibility of results, compared to the other tested pipelines. Importantly, it is 468 

straightforward to install, and programmed to reduce required user time and knowledge, 469 

following the idea that less is more with LotuS2.  470 

 471 

Availability and Requirements: 472 

Availability of LotuS2: Documentation, tutorials: lotus2.earlham.ac.uk, Installation via 473 

bioconda: https://anaconda.org/bioconda/lotus2 474 
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Galaxy wrapper (MIT licensed): https://github.com/TGAC/earlham-475 

galaxytools/tree/master/tools/lotus2 and https://toolshed.g2.bx.psu.edu/view/earlhaminst/lotus2/ 476 

Galaxy server: https://usegalaxy.eu/ 477 

Programs (GPLv3 licensed): https://github.com/hildebra/lotus2, https://github.com/hildebra/sdm, 478 

https://github.com/hildebra/LCA 479 

All the commands used for the benchmarking are available in 480 

https://github.com/okurt/lotus2_benchmarking 481 

Availability of the data: 482 

Accession numbers for the datasets used for benchmarking in this study are: PRJEB49356 483 

Mock-16 community is downloaded from the mockrobiota repository [52]:  484 

https://s3-us-west-2.amazonaws.com/mockrobiota/latest/mock-16/mock-forward-read.fastq.gz 485 

https://s3-us-west-2.amazonaws.com/mockrobiota/latest/mock-16/mock-reverse-read.fastq.gz 486 

 487 

List of abbreviations: 488 

OTU: Operational taxonomic unit; ASV: Amplicon sequence variant; ITS: Internal transcribed 489 

spacer; TP: True positive; FN: False negative; FP: False positive; LotuS: Less OTU Scripts; 490 

sdm: simple demultiplexer; LCA: least common ancestor; DADA: The Divisive Amplicon 491 

Denoising Algorithm; QIIME: Quantitative Insights Into Microbial Ecology 492 

 493 
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Figures: 713 

 714 

 715 

 716 

Figure 1- Workflow of the LotuS2 Pipeline 717 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474111
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

29 
 

a) LotuS2 can be installed either through i) Bioconda, ii) GitHub with the provided autoInstaller 718 

script or iii) using a Docker image. Alternatively, iv) Galaxy web servers can also run LotuS2 719 

(e.g. https://usegalaxy.eu/) b) LotuS2 accepts amplicon reads from different sequencing 720 

platforms, along with a map file that describes barcodes, file locations, sample IDs and other 721 

information. After demultiplexing and quality filtering, high-quality reads are clustered into either 722 

ASVs or OTUs. The optimal sequence representing each OTU/ASV is calculated in the seed 723 

extension step, where read pairs are also merged. Mid-quality reads are subsequently mapped 724 

onto these sequence clusters, to increase cluster representation in abundance matrices. From 725 

OTU/ASV sequences, a phylogenetic tree is constructed, and each cluster is taxonomically 726 

assigned. These results are made available in multiple standard formats, such as tab-delimited 727 

files, .biom or phyloseq objects, to enable downstream analysis. New options in LotuS2 for each 728 

step are denoted with black colour whereas options in grey font were already available in LotuS. 729 

 730 

 731 

 732 
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 733 

Figure 2: Computational performance of amplicon sequencing pipelines 734 

16S rRNA amplicon MiSeq data from A) gut-16S and B) soil-16S and C) soil-ITS samples were 735 

processed to benchmark resource usage of each pipeline, run on the same system under equal 736 

conditions (12 cores, max 150Gb memory). In all pipelines, OTUs/ASVs were classified by 737 

similarity comparisons to SILVA 138.1. In LotuS2, LAMBDA was used to align sequences for all 738 

clustering algorithms. 739 

Pipeline runs were separated by common steps (pre-processing, sequence clustering, 740 

taxonomic classification and phylogenetic tree construction and/or off-target removal). Because 741 

native DADA2 cannot demultiplex reads, we used the average demultiplexing time of QIIME 2 742 

and LotuS2 (LotuS2 demultiplexed, unfiltered reads were provided to DADA2). LotuS2 pipelines 743 

are labelled with red colour. 744 
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D, E, F) Data usage efficiency of each tested pipeline, by comparing the number of sequence 745 

clusters (OTUs or ASVs) to retrieved read counts in the final output matrix of each pipeline. 746 

Note that mothur results on soil-16S are not shown, because the pipeline rejected with default 747 

parameters all sequences.  748 

 749 

 750 

 751 

Figure 3- Reproducibility from different amplicons sequence data analysis pipelines. 752 

Three independent datasets were used to represent different biomes and amplicon 753 

technologies, using A, D) human faecal samples (16S rRNA gene, N=40 replicates). B, E) soil 754 

samples (16S rRNA gene, N=50 replicates) and C, F) soil samples (ITS 2, N=50 replicates). 755 

A-C) Bray-Curtis distances among technical replicate samples are used to assess the 756 

reproducibility of community compositions by different pipelines. The pipeline with the lowest 757 

BCd in each subfigure is denoted with a star (*). The significance of pairwise comparisons of 758 

each pipeline is calculated using the Tukey’s HSD test (Supp. Table 2). 759 

D-F) Further, the fraction of technical replicates being closest to each other (BCd) was 760 

calculated to simulate identifying technical replicates without additional knowledge. Numbers 761 

above bars are the ordered pipelines performing best. 762 

Lower Bray-Curtis distances between technical replicates and a higher fraction of correct 763 

technical replicates indicate better reproducibility.  LotuS2 pipelines are labelled with red colour. 764 
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 765 

 766 

 767 
Figure 4- Benchmarking of amplicon sequence data analysis pipeline’s performance 768 

using a mock community with known species composition  769 

A) Accuracy of each pipeline in predicting the mock community composition at genus level. For 770 

benchmarking we compared the fraction of reads assigned to true genera and both correctly 771 

and erroneously recovered genera. Precision, Recall and F-score were calculated based on the 772 

true positive, false positive and false negative taxa identified. At species level, LotuS2 excelled 773 

as well in these statistics (Supp. Figure 9). 774 

B) Percentage of true positive ASVs/OTUs having a nucleotide identity ≥ indicated thresholds to 775 

16S rRNA gene sequences of genomes from the mock community. 776 

Pipeline(s) showing the highest performance in each comparison is denoted with a star (*). TP, 777 

true positive; ASV, amplicon sequencing variant; OTU, operational taxonomic unit. 778 

 779 
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Supp. Figures and Tables: 780 

 781 

 782 
Supp. Figure 1: Galaxy web interface of LotuS2 783 

Raw reads can be uploaded into the LotuS2 via the Galaxy web interface and analysed 784 

(accessible on https://usegalaxy.eu/). 785 

 786 

 787 
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 788 
Supp. Figure 2- Reproducibility and data usage efficiency respective to dereplication 789 

filtering. 790 

A, D and G) Data usage efficiency of each tested pipeline at different dereplication parameters 791 

of LotuS2 (from strictest to least strict dereplication: 20:1,12:3,6:2; 15:1,9:3,12:2; 10:1,6:3,8:2; 792 

8:1,4:2,3:3 (default); 4:1; 2:1 and 1:1) using DADA2 or CD-HIT clustering for 16S and ITS 793 

dataset, respectively, by comparing the number of sequence clusters (OTUs/ASVs) to retrieved 794 

read counts in final output matrix.  795 

The dereplication can be fine controlled through a syntax. For example, 8:1,4:2,3:3 means that 796 

a read is accepted, if it occurs >=8 times in >= 1 samples or >4 times total in >= 2 samples or 797 

>=3 times in >= 3 samples. 798 

 799 

 800 
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 801 
 802 

Supp. Figure 3- Reproducibility of the technical replicates respective to different LotuS2 803 

non-default parameters  804 

Bray-Curtis distances between technical replicates of A) gut-16S B) soil-16S and C) soil-ITS 805 

datasets using default and non-default parameters (LotuS2 flags: -lulu 0, -xtalk 1, -806 

keepUnclassified 1, -ITSx 0, where 1 means the option is activated; 0 means deactivated). 807 

When activated, -lulu option uses LULU R package [23] to merge OTUs/ASVs based on their 808 

co-occurrences; -xtalk option checks for cross-talk [32], -keepUnclassified includes unclassified 809 

(i.e. not matching to any taxon in the taxonomy database) OTUs/ASVs in the final matrix and –810 

ITSx activates the ITSx program [31] to only retain OTUs fitting to ITS1/ITS2 hmm models. 811 

 812 

 813 
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 814 

Supp. Figure 4- Data usage efficiency of different amplicon sequence data analysis 815 

pipelines.  816 

 817 

Data usage efficiency on gut 16S rRNA (gut- 16S), soil 16S rRNA (soil-16S) and Soil ITS (soil-818 

ITS) amplicons, tested with different pipelines at different read truncation lengths (170, 200, 230 819 

& 170, 200, 220 bases for the gut and soil datasets, respectively), by comparing the number of 820 

sequence clusters (ASVs /OTUs) to retrieved read counts in the final output matrix of each 821 

pipeline. In all other analysis, default values were used for LotuS2 (200 bases). 822 

 823 

 824 
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 825 

Supp. Figure 5- Reproducibility of beta diversity at different read truncation lengths  826 

Reproducibility of sequenced technical replicates, by measuring the Bray-Curtis (A and C) and 827 

Jaccard distances (B and D) of the microbiome composition among technical replicate samples. 828 

Two datasets were used to represent different biomes and amplicon technologies, using (A, B) 829 

and human faecal samples (16S rRNA primer, N=40 replicates) and (C, D) soil samples (16S 830 

rRNA, V4-V5 region primers, N=50 replicates). Lower Bray-Curtis or Jaccard distances between 831 

technical replicates indicate better reproducibility of community compositions.  832 

Default pipeline parameters and recommended settings for each dataset were used (Please see 833 

the Supp. Text for further information). 834 

 835 

 836 
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 837 
 838 

Supp. Figure 6: Reproducibility of alpha diversity between technical replicates. 839 

OTU/ASV Richness was calculated for A) gut-16S B) soil-16S and C) soil-ITS datasets. 840 

Samples were rarefied to an equal number of reads per sample before calculating richness, and 841 

any samples whose replicate pair was removed after rarefaction (because of having lower 842 

number of reads than the rarefaction depth) were excluded from further analysis. LotuS1 results 843 

for soil-16S were removed due to too many samples being removed in rarefactions. Significance 844 

of differences in richness between the sets were calculated based on the paired samples 845 

Wilcoxon test (***, **, * and “ns” denotes p<0.0005, p<0.005, p<0.05 and p> 0.05 (i.e. not 846 

significant), respectively). 847 

  848 

 849 

 850 

Supp. Figure 7: Observed composition of the mock community compared to the 851 

composition predicted by each pipeline 852 

A) Relative abundances of the 16 orders having the highest abundance. 853 

B) Bray-Curtis distance based PCoA of the observed composition of the mock sample and 854 

composition predicted by each pipeline 855 
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 856 

Supp. Figure 8: Number of reads and OTUs/ASVs and those assigned true taxa at genus 857 

level by each pipeline in the analysis of the mock community 858 

Total number of A) reads retrieved by each pipeline and those assigned to true taxa at genus 859 

level B) OTUs/ASVs generated by each pipeline and those assigned to true taxa at genus level. 860 

Blue and red line indicates number of 16S gene copies and species, respectively, in the mock 861 

community. 862 

 863 

 864 
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 865 
 866 

Supp. Figure 9: Accuracy of each pipeline in predicting the mock community 867 

composition at species level.  868 

For benchmarking we compared the fraction of reads assigned to true taxa and both correctly 869 

and erroneously recovered taxa at the species level from the mock community. 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 
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  Gut-16S   

 Number of reads Number of OTUs/ASVs 

mothur 11855762 23736 

QIIME 2-Deblur 9995254 950 

QIIME 2-DADA2 11510552 2539 

DADA2 12048048 2591 

LotuS2-DADA2 12935664 999 

LotuS2-UNOISE3 3698064 766 

LotuS2-UPARSE 12995784 742 

LotuS2-VSEARCH 2778696 1464 

LotuS1-UPARSE 1305288 514 

   

  Soil-16S   

 Number of reads Number of OTUs/ASVs 

QIIME 2-Deblur 1157357 19641 

QIIME 2-DADA2 2278731 25229 

DADA2 4526920 49111 

LotuS2-DADA2 2710629 19568 

LotuS2-UNOISE3 2448475 19217 

LotuS2-UPARSE 2637572 8789 

LotuS2-VSEARCH 2678716 9250 

LotuS1-UPARSE 749449 5987 

   

  Soil-ITS   

 Number of reads Number of OTUs/ASVs 

QIIME 2-DADA2 4962260 2203 

DADA2 1742895 3368 

LotuS2-UPARSE 4805387 1046 

LotuS2-VSEARCH 4829288 920 

LotuS2-CDHIT 2678716 1008 

 883 

Supp. Table 1: Read counts and number of OTUs/ASVs in the OTU/ASV matrix of each 884 

pipeline. 885 

 886 

Supp. Table 2: Significance of differences between each pipeline in the reproducibility of 887 

beta diversity between the technical replicates 888 

Significance of differences in Bray-Curtis distance between the pipelines were calculated based 889 

on the Tukey’s HSD test. 890 

 891 

 892 

 893 

 894 

 895 
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Spearman Correlation 

 p.value correlation coefficient  
mothur 1.83E-07 0.544018417  
QIIME 2-Deblur 1.57E-15 0.747912391  
QIIME 2-DADA2 3.76E-12 0.680648974  
DADA2 6.77E-12 0.674725632  
LotuS2-DADA2 3.26E-12 0.682064113  
LotuS2-VSEARCH 2.80E-17 0.776030912  
LotuS2-UNOISE3 4.99E-14 0.720369663  
LotuS2-UPARSE 2.80E-17 0.776030912  
LotuS2-UPARSE 1.32E-19 0.808037907  
        

Pearson Correlation 

 p.value correlation coefficient  
mothur 3.99E-07 0.531185654  
QIIME 2-Deblur 1.99E-11 0.663501229  
QIIME 2-DADA2 3.91E-09 0.600486282  
DADA2 7.72E-12 0.673389135  
LotuS2-DADA2 6.62E-05 0.43083946  
LotuS2-VSEARCH 2.68E-09 0.605505625  
LotuS2-UNOISE3 1.22E-08 0.584843731  
LotuS2-UPARSE 2.68E-09 0.605505625  
LotuS1-UPARSE 1.63E-09 0.611973422  
        

BCd to the mock community 

 BCd   
mothur 0.430087   

QIIME 2-Deblur 0.340823   

QIIME 2-DADA2 0.373356   

DADA2 0.327616   

LotuS2-DADA2 0.35983   

LotuS2-VSEARCH 0.324378   

LotuS2-UNOISE3 0.34578   

LotuS2-UPARSE 0.324378   

LotuS1-UPARSE 0.324448     

 896 

Supp. Table 3: Correlation and beta distance between the mock community and re-897 

constructed mock community by each pipeline 898 

A-B) Spearman and Pearson correlation between the expected abundances in the mock 899 

community and the observed abundances by each pipeline. C) Bray-Curtis dissimilarity between 900 

the known mock community and re-constructed mock community composition by each pipeline. 901 

 902 

 903 
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 904 
 905 

Supp. Table 4: Accuracy of each pipeline in re-constructing the mock community at 906 

genus level 907 

 908 

 909 

Supplementary Information: 910 

Influence of dereplication thresholds, non-default parameters and read truncation 911 

Dereplication is the pre-clustering of sequencing reads at 100% nucleotide identity, a commonly 912 

used strategy to reduce the computational complexity of sequence clustering [17]. Further, 913 

dereplication can be used to filter out sparsely occurring reads that could represent technical 914 

artifacts, unlikely to represent true biodiversity. Therefore, LotuS2 uses a “dereplication” filter, 915 

that can be user defined. 916 

Overall, this filter does not mostly change the number of OTU/ASV counts, with more 917 

OTUs/ASVs being recovered when the filter is more relaxed (Supp. Figure 2A,D,G). This is 918 

expected because this filter is designed to remove sparse OTUs/ASVs that could both represent 919 

technical replicates as well as extremely rare microbes. However, this did not affect the overall 920 

community reproducibility of either gut- or soil-16S samples. However, in soil-ITS samples, we 921 

noted a dramatic decrease in BCd between technical replicates at stricter dereplication cut-offs 922 

(Supp. Figure 2H-I). 923 

The number of retrieved reads remained very stable independent of filtering stringency; this is 924 

expected because the backmapping of mid-quality reads will re-introduce reads not passing the 925 

dereplication filter. 926 
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LotuS2 uses several default options (-lulu 1, -xtalk 0, -keepUnclassified 0 and -ITSX 1; where 927 

“1” means the option is “activated” and “0” means “deactivated”). When activated, -lulu option 928 

uses LULU R package [23] to merge OTUs/ASVs based on their co-occurrences; -xtalk option 929 

checks for cross-talk [32], -keepUnclassified includes unclassified (i.e. not matching to any 930 

taxon in the taxonomy database) OTUs/ASVs in the final matrix and –ITSx activates the ITSx 931 

program [31] to only retain OTUs fitting to ITS1/ITS2 hmm models. The impact of these 932 

parameters on the reproducibility of LotuS2 was tested (Supp. Figure 3). Overall, non-default 933 

options did not change the BCd between the technical replicates except  -keepUnclassified 1 934 

notably increasing BCd in gut-16S, while -lulu 0 slightly increased BCd in soil-ITS. 935 

 936 

Read length truncation is frequently used to remove the typically low quality 3’ end of reads 937 

[8,17]. This is impacting the retrieved read counts as well as observed OTU/ASV diversity. For 938 

example, at 170 bp read truncation, mothur, DADA2 and QIIME 2-DADA2 were severely 939 

impacted in merging read pairs, failing or only integrating a fraction of read pairs in gut and soil-940 

16S datasets Supp. Figure 4). While LotuS2 also had slightly different read and cluster 941 

numbers with changing truncation lengths, it was more stable, because reads are merged in the 942 

seed extension step after sequence clustering on truncated, high-quality reads are completed 943 

(Supp. Figure 4). In shorter or longer read truncations, LotuS2 was still performing the best with 944 

the lowest BCd (Supp. Figure 5A,C) and Jd (Supp. Figure 5B,D) between technical replicates 945 

in both gut- and soil-16S datasets. 946 

Taken together, the higher performance of LotuS2 in reproducibility of the dataset was 947 

independent of the dereplication parameters and read truncation length.  948 
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