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ABSTRACT 14 

Fast and accurately characterizing animal behaviors is crucial for neuroscience research. 15 

Deep learning models are efficiently used in laboratories for behavior analysis. 16 

However, it has not been achieved to use a fully unsupervised method to extract 17 

comprehensive and discriminative features directly from raw behavior video frames for 18 

annotation and analysis purposes. Here, we report a self-supervised feature extraction 19 

(Selfee) convolutional neural network with multiple downstream applications to 20 

process video frames of animal behavior in an end-to-end way. Visualization and 21 

classification of the extracted features (Meta-representations) validate that Selfee 22 

processes animal behaviors in a comparable way of human understanding. We 23 

demonstrate that Meta-representations can be efficiently used to detect anomalous 24 

behaviors that are indiscernible to human observation and hint in-depth analysis. 25 

Furthermore, time-series analyses of Meta-representations reveal the temporal 26 

dynamics of animal behaviors. In conclusion, we present a self-supervised learning 27 

approach to extract comprehensive and discriminative features directly from raw video 28 

recordings of animal behaviors and demonstrate its potential usage for various 29 

downstream applications. 30 

  31 
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INTRODUCTION  32 

Extracting representative features of animal behaviors has long been an important 33 

strategy to study the relationship between genes, neural circuits, and behaviors. 34 

Traditionally, human observations and descriptions are the primary solutions for animal 35 

behavior analysis1. Well-trained researchers would define a set of behavior patterns and 36 

compare their intensity or proportion between experimental and control groups. With 37 

the emergence and thrive of machine learning methodology, supervised learning has 38 

been assisting human annotations and achieved impressive results2-4. Nevertheless, 39 

supervised learning is limited by prior knowledge and manually assigned labels, thus 40 

could not identify behavioral features that are not annotated. 41 

Other machine learning methods were then introduced to the field which were designed 42 

to extract representative features beyond human-defined labels. These methods can be 43 

generally divided into two major categories: one estimates animal postures with a group 44 

of pre-defined key points of the body parts, and the other directly transforms raw images. 45 

The former category marks representative key points of animal bodies, including limbs, 46 

joints, trunks, and/or other body parts of interest5-7. Those features are usually sufficient 47 

to represent animal behaviors. However, it has been demonstrated that the key points 48 

generated by pose estimation are less efficient for direct behavior classification or two-49 

dimensional visualization8,9. Sophisticated post-processing like recurrent neural 50 

networks (RNNs)8, non-locomotor movement decomposition10, or feature 51 

engineerings9 can be applied to transform the key points into higher-level 52 
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discriminative features. Additionally, neglected body parts could be catastrophic. For 53 

example, the position of the proboscis of a fly is commonly neglected in behavior 54 

studies9,11. Still, it is crucial for feeding12, licking behavior during courtship13, and 55 

hardness detection for a substrate14. Finally, best to our knowledge, there is no 56 

demonstration of these pose-estimation methods applied to multiple animals of the 57 

same color with intensive interactions. Thus, the application of pose-estimation to 58 

mating behaviors of two black mice, a broadly adopted behavior pradigm15-17, could be 59 

limited because labeling body parts during mice mounting is challenging even for 60 

humans (see Discussion for more details). Therefore, using these feature extraction 61 

methods requires rigorously controlled experimental settings, additional feature 62 

engineering, and considerable prior knowledge of particular behaviors.  63 

In contrast, the other category transforms pixel-level information, thus retaining more 64 

details and requiring less prior knowledge. Feature extraction of images could be 65 

achieved by wavelet transforms18 or Radon transforms19 followed by principal 66 

component analysis (PCA), and these transforms can be applied to either 2D images or 67 

depth images. However, preprocessing such as segmentation and/or registration of the 68 

images is usually required to achieve spatial invariance, a task that is particularly 69 

difficult for multi-agent videos. Additionally, these methods usually use fixed 70 

transforms and could not be adapted to different behaviors. Flourished deep learning 71 

methods, especially convolutional neural networks20 (CNNs), could be adaptive to 72 

extract features from diversified datasets. Also, they have been proven more potent than 73 
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classic computer vision algorithms like wavelet transforms21 and Radon transforms22 74 

on a famous grayscale dataset MNIST, even without supervising23. Therefore, we 75 

attempt to adopt CNNs to achieve end-to-end feature extractions animal behaviors that 76 

are comprehensive and discriminative.   77 

The cutting-edge self-supervised deep learning methods aim to extract representative 78 

features for downstream missions by comparing different augmentations of the same 79 

image and/or different images24-28. Compared with previous techniques, these methods 80 

have three major advantages. Firstly, self-supervised or unsupervised methods could 81 

completely avoid human biases. Secondly, the augmentations used to create positive 82 

samples promise invariance of the neural networks to object sizes, spatial orientations, 83 

and ambient laminations so that registration or other preprocessing is not required. 84 

Finally, the networks are optimized to export similar results for positive samples and 85 

separate negative ones, such that the extracted features are inherently discriminative. 86 

Even without negative samples, the networks can utilize differential information within 87 

batches to obtain remarkable results on downstream missions like classification or 88 

image segmentation27,29,30. These advances in self-supervised learning provide a 89 

promising way to analyze animal behaviors. 90 

In this work, we develop Selfee (Self-supervised Features Extraction) that adopts 91 

cutting-edge self-supervised learning algorithms and CNNs to analyze animal 92 

behaviors. Selfee is trained on massive unlabeled behavior video frames to avoid human 93 

bias on annotating animal behaviors, and it could capture a global character of animal 94 
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behaviors even when detailed postures are hard to see, just like human observation. 95 

During the training process, Selfee learns to project images to a low-dimensional space 96 

without being affected by shooting conditions, image translation, and rotation, where 97 

cosine distance is proper to measure the similarities of original pictures. Selfee also 98 

provides potentials for various downstream analyses. We demonstrate that the extracted 99 

features are suitable for t-SNE visualization, k-NN-based classification, k-NN-based 100 

anomaly detection, and dynamic time warping (DTW). We also show that further 101 

integrated modeling, like the autoregressive hidden Markov model (AR-HMM), is 102 

compatible with Selfee extracted Meta-representations. After downstream analyses, 103 

Selfee provides comparable results with manual annotations on fly behavior like 104 

courtship index. We apply Selfee to fruit flies, mice, and rats, three widely used model 105 

animals, and validate our results with manual annotations. Discoveries of behavioral 106 

phenotypes in mutant flies by Selfee are proven to have biological significance. The 107 

performance of Selfee on these model species indicates its potential usage for 108 

behavioral studies of non-model animals as well as other tasks. We also provide an 109 

open-source Python package and pre-trained models of flies and mice to the community 110 

(see more in Code Availability). 111 

 112 
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RESULTS  113 

Workflow of Selfee and its downstream analyses  114 

Selfee is trained to generate Meta-representations at the frame level, which are then 115 

analyzed at different time scales. First, grayscale videos are decomposed into single 116 

frames, and three tandem frames are stacked into a live-frame to generate a motion-117 

colored RGB picture (Figure 1A). These live-frames preserve not only spatial 118 

information (e.g., postures of each individual or relative distances and angles between 119 

individuals) within each channel but also temporal information across different 120 

channels. Live-frames are used to train Selfee to produce comprehensive and 121 

discriminative representations at the frame level (Figure 1B). These representations can 122 

be later used in numerous applications. For example, anomalous detection on mutant 123 

animals can discover new phenotypes compared with their genetic controls (Figure 1C). 124 

Also, the AR-HMM could be applied to model the micro-dynamics of behaviors, such 125 

as the duration of states or the probabilities of state transitions18. The AR-HMM splits 126 

videos into modules and yields behavioral state usages that visualize differences 127 

between genotypes (Figure 1D). In contrast, DTW could compare the long-term 128 

dynamics of animal behaviors and capture global differences at the video level31 by 129 

aligning pairs of time series and calculating their similarities (Figure 1E). These three 130 

demonstrations cover different time scales from frame to video level, and other 131 

downstream analyses could also be incorporated into the workflow of Selfee. 132 

Compared with previous machine learning frameworks for animal behavior analysis, 133 
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Selfee has three major advantages. First, Selfee and the Meta-representations could be 134 

used for various tasks. The contrastive learning process of Selfee would allow output 135 

features to be appropriately compared by cosine similarity. Therefore, distance-based 136 

applications, including classification, clustering, and anomaly detection, would be 137 

easily realized. It was also reported that with some adjustment of backbones, self-138 

supervised learning would facilitate tasks such as pose estimation32 and object 139 

segmentation28,33. Those findings indicate that Selfee could be generalized, modified, 140 

and finetuned for animal pose estimation or segmentation tasks. Second, Selfee is a 141 

fully unsupervised method developed to annotate animal behaviors. Although some 142 

other techniques also adopt semi-supervised or unsupervised learning, they usually 143 

require manually labeled pre-defined key points of the images 8,10; some methods also 144 

require expert-defined programs for better performance9. Key point selection and 145 

program incorporation require a significant amount of prior knowledge and are subject 146 

to human bias. In contrast, Selfee does not need any prior knowledge. Finally, Selfee is 147 

relatively hardware-inexpensive. Training Selfee only takes eight hours on a single 148 

RTX 3090, and the inference speed could reach 800 frames per second. Selfee could 149 

accept top-view 2D greyscale video frames as inputs so that neither depth cameras18 150 

nor fine-calibrated multi-view camera arrays10 is required. Therefore, Selfee can be 151 

trained and used with routinely collected behavior videos on ordinary desktop 152 

workstations, warranting its accessibility by biology laboratories.  153 

 154 
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Siamese convolutional neural networks capture discriminative representations of 155 

animal posture.  156 

Selfee contains a pair of Siamese CNNs trained to generate discriminative 157 

representations for live-frames. ResNet-5034 is chosen as the backbone whose classifier 158 

layer is replaced by a three-layer multi-layer perceptron (MLP). These MLPs are called 159 

projectors which yield final representations during the inference stage. There are two 160 

branches in Selfee. The main branch is equipped with an additional predictor, while the 161 

reference branch is a copy of the main branch (the SimSiam style29). Both branches 162 

contain group discriminators after projectors and perform dimension reduction on 163 

extracted features for online clustering (Figure 2B).  164 

During the training stage, batches of live-frames are randomly transformed twice and 165 

fed into the main branch and reference branch, respectively. Augmentations applied to 166 

live-frames include crop, rotation, flip, and application of the Turbo lookup table35 167 

followed by color jitters (Figure 2A, Figure 2—figure supplement 1). The reference 168 

branch yields a representation of received frames, while the main branch predicts the 169 

outcome of the reference branch. At the same time, they both produce clustering results 170 

of the current batch. The main branch is optimized for similar predictions and clustering 171 

results as the reference branch, and the reference branch will not receive gradient 172 

information to prevent mode collapse27,29 (Figure 2C). In this way, Selfee is trained to 173 

be invariant to those transforms and focus on critical information to yield discriminative 174 

representations.        175 
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After the training stage, we evaluated the performance of Selfee with t-SNE 176 

visualization and k-NN classification. To investigate whether our model captures 177 

human-interpretable features, we manually labeled one clip of Drosophila courtship 178 

video and visualized those representations with t-SNE dimension reduction. On the t-179 

SNE map, human-annotated courtship behaviors, including chasing, wing extension, 180 

copulation attempt, copulation, and non-interactive behaviors (“others”), separated 181 

from each other distinctively (Figure 2D).  182 

Meta-representations can also be used for behavior classification. We manually labeled 183 

seven 10,000-frame videos (around five minutes each) as a pilot dataset. A weighed k-184 

NN classifier was then constructed as previously reported24. Seven-fold cross-185 

validation was performed on the dataset with the k-NN classifier, which achieved a 186 

mean F1 score of 72.4% and achieved a similar classification result as human 187 

annotations (Figure 2E, F). The classifier had the worst recall score on wing extension 188 

behaviors (67% recall), likely because of the ambiguous intermediate states between 189 

chasing and wing extension (Figure 2—figure supplement 2A). The precisions also 190 

showed that this k-NN classifier tended to have strict criteria with wing extension and 191 

copulation and relatively loose criteria with chasing and copulation attempts (Figure 192 

2—figure supplement 2B). It was reported that independent human experts could only 193 

reach agreements on around 70% of wing extension frames36, comparable to the 194 

performance of our k-NN classifier. 195 

We then asked whether Selfee can be generalized to analyze behaviors of other species. 196 
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We finetuned fly video pre-trained Selfee with mice mating behavior data. The mating 197 

behavior of mice can be defined mainly into five categories37, including social interest, 198 

mounting, intromission, ejaculation, and others (see Methods for detailed definitions). 199 

With t-SNE visualization, we found that five types of behaviors could be separated by 200 

Selfee, although mounting behaviors were rare and not concentrated (Figure 2G). We 201 

then used eight human-annotated videos to test the k-NN classification performance of 202 

Selfee-generated features. We achieved an F1 score of 59.0% (Figure 2—figure 203 

supplement 3). Mounting, intromission, and ejaculation share similar static 204 

characteristics but are different in temporal dynamics. Therefore, we asked if more 205 

temporal information would assist the classification. Using the LightGBM classifier, 206 

we achieved a much higher classification performance by incorporating slide moving 207 

average and standard division of 81-frame time windows, the main frequencies, and 208 

their energy within 81-frame time windows. The average F1 score of eight-fold cross-209 

validation could reach 67.4%, and the classification results of the ensembled classifier 210 

(see Methods) were closed to human observations (Figure 2H, I). Nevertheless, it was 211 

still difficult to distinguish between mounting, intromission, and ejaculation because 212 

mounting and ejaculation are much rarer than social body contact or intromission. 213 

Selfee is more robust than the vanilla SimSiam networks when applied to the behavioral 214 

data. Behavioral data often suffer from catastrophic imbalance. For example, copulation 215 

attempts are around six-fold rarer than wing extension during fly courtship (Figure 2—216 

figure supplement 5A). Therefore, we added group discriminators to vanilla SimSiam 217 
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networks which were reported to fight against the long-tail effect proficiently38. Aside 218 

from overcoming the long-tail effect, we also found group discriminators helpful for 219 

preventing mode collapse during ablation studies (Figure 2—figure supplement 5B, C, 220 

D, and Supplementary Table 1). Additionally, the convergence can be easily reached on 221 

grayscale images of similar objects (two flies), by which CNNs may not be well trained 222 

to extract good representations. Applying the Turbo lookup table on grayscale frames 223 

brought more complexity and made color jitters more powerful on grayscale images. 224 

Selfee would capture more useful features with this Turbo augmentation (Figure 2—225 

figure supplement 5E, F, and Figure 2—figure supplement 6).  226 

 227 

Anomaly detection at the frame level identifies rare behaviors at the sub-second 228 

time scale.  229 

The representations produced by Selfee could be directedly used for anomaly detection 230 

without further post-processing. During the training step, Selfee learns to compare 231 

Meta-representations of frames with cosine distance which is also used for anomaly 232 

detection. When given two groups of videos, namely the query group and the reference 233 

group, the anomaly score of each live-frame in the query group is calculated by two 234 

steps (Figure 3A). First, distances between the query live-frame and all reference live-235 

frames are measured, and the k-nearest distance is referred to as its inter-group score 236 

(IES). Without further specification, k equals 1 in all anomaly detections in this work. 237 

Some false positives occurred when only the IES was used as the anomaly score (Figure 238 
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3—figure supplement 1A). The reason could be that two flies in a chamber could be in 239 

mathematically infinite relative positions and form a vast event space. However, each 240 

group usually only contains several videos, and each video is only recorded for several 241 

minutes. For some rare postures, even though the probability of observing them is 242 

similar in both the query and reference group, they might only occur in the query group 243 

but not in the reference group. Therefore, an intra-group score (IAS) is introduced in 244 

the second step to eliminate these false-positive effects. We assume that those rare 245 

events should not be sampled frequently in the query groups either. Thus, the IAS is 246 

defined as the k-nearest distance of the query frame against all other frames within its 247 

group, except those within the time window of ±50 frames (Figure 3—figure 248 

supplement 1B). The final anomaly score is defined as the IES minus the IAS.       249 

To test whether our methods could detect anomalous behavior in real-world data, we 250 

performed genetic screenings within fifteen neurotransmitter-related mutant alleles or 251 

neuron-silenced lines (with UAS-Kir2.139) (Figure 3B). Their male-male interaction 252 

videos were inferred by Selfee trained on male-female courtship videos. Since we 253 

aimed to find interactions distinct from male-male courtship behaviors, a baseline of 254 

ppk23>Kir2.1 flies was established because this line exhibit strong male-male courtship 255 

behaviors40. We compared the top-100 anomaly scores from sets of videos from 256 

experimental groups and wild-type control flies. The results revealed that one line, 257 

CCHa2-R-RB>Kir2.1, showed a significantly high anomaly score. By manually going 258 

through all anomalous live-frames, we further identified its phenotype as a brief tussle 259 
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behavior mixed with copulation attempts (Figure 3C, Video 1, 0.2x play speed). This 260 

behavior was ultra-fast and lasts for less than a quarter second (Figure 3D), making it 261 

difficult to be detected by human observers. Up to this point, we have demonstrated 262 

that the frame-level anomaly detection could capture sub-second behavior episode that 263 

human observers tend to neglect. 264 

Selfee also revealed that Trh knock-out flies had an unusual close body contact during 265 

the screening. Trh is the crucial enzyme for serotonin biosynthesis, and its mutant flies 266 

showed a statistically significantly higher anomaly score (Figure 3B) than the wild-type 267 

control. Selfee identified 60 frames of abnormal behaviors within 42,000 input frames, 268 

occupying less than 0.15% of the total recording time. By manually going through all 269 

these frames, we concluded most of them as short-range body interactions (Figure 3E 270 

and Video 2, 0.2x play speed), and these social interactions could last for around half 271 

to one second on average (Figure 3F). Despite that serotonin signals were well-studied 272 

for controlling aggression behavior in flies41, to the best of our knowledge, the close 273 

body contact of flies and serotonergic neurons’ role in this behavior has not been 274 

reported yet. A possible reason is that this behavior has no unique posture compared 275 

with other behaviors, like wing extension, and this behavior is too scarce to be noticed 276 

by human experts. 277 

To further ask whether these close body contacts have biological significance, we 278 

performed corresponded behavior assays on mutant flies. Based on the fact that the Trh 279 

mutant male flies have a higher tolerance to body touch, we hypothesized that they 280 
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would have a decreased defensive behavior. As previously reported, fruit flies show 281 

robust defensive behavior to mechanical stimuli on their wings42,43. Decapitated flies 282 

would kick with their hind legs when a thin probe stimulates their wings. This 283 

stimulation mimics the invasion of parasitic mites and could be used to test its defensive 284 

behavior. Our results showed that Trh knock-out flies had a significantly lower kicking 285 

rate than control flies (Figure 3G), indicating a reduction of self-defensive intensity. 286 

Next, we performed social behavior assay44,45 on the mutant flies because the close 287 

body contact can also be explained by reduced social repulsion. We measured the 288 

nearest distance, median distance, and average distance of each male flies in a forty-289 

individual group placed in a vertical triangular chamber. By comparing median values 290 

of these distances of each replication, Trh knock-out flies kept significantly shorter 291 

distances from others than the control group (Figure 3H, I). The probability density 292 

function of their median distances also showed that knock-out flies had a closer social 293 

distance than control flies (Figure 3J). Therefore, we concluded that Trh knock-out flies 294 

had reduced social repulsion. Taken together, Selfee is capable of discovering novel 295 

features of animal behaviors with biological relevance when a proper baseline is 296 

defined.  297 

 298 

Modeling motion structure of Drosophila courtship behaviors. 299 

Animal behaviors have long-term structures beyond single-frame postures. The 300 

duration and proportions of each bout and transition probabilities of different behaviors 301 
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have been proven to have biological significance18,46. To better understand those long-302 

term characteristics, we introduce AR-HMM and DTW analyses to model the temporal 303 

structure of Drosophila courtship behavior. AR-HMM is a powerful method to analyze 304 

stereotyped behavioral data18,47,48. It discovers modules of behaviors and describes the 305 

modules with auto-regressive matrixes. The transition probability of each state is 306 

defined by the transition matrix of the HMM (Figure 4A). In this way, AR-HMM could 307 

capture local structures of animal behaviors as well as syntaxes.  308 

We asked if we could detect the dynamic changes of courtship behaviors of male flies 309 

by disturbing their chemosensation. Ir76b is an extensively studied (co)receptor that is 310 

known to mediate female pheromones detection49-52. We used an AR-HMM model with 311 

ten modules (No.1 to 10) to analyze the courtship of Ir76b mutant flies and their control 312 

group and focused on state usages. PCA of state usages revealed an apparent difference 313 

between mutant flies and control flies (Figure 4B). Module No.6 showed a statistically 314 

significant difference among ten discovered modules (Figure 4C). By manually going 315 

through all the frames of module No.6, we found that it mainly contained non-316 

interactive behaviors with minor contaminations of courtship behaviors (Video 3, 1x 317 

play speed). To validate this result, we compared it with human annotations. Although 318 

this module did not cover all non-interactive behaviors that human experts would label, 319 

they showed a similar trend between the experimental and control group (Figure 4D). 320 

We also performed AR-HMM analysis with a much larger module number. The PCA 321 

result was also distinct, and the previous module No.6 was split into five smaller 322 
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modules (No.2, 15, 24, 32, 34) containing non-interactive behaviors (Figure 4—figure 323 

supplement 1, Video 4-8, 1x play speed). This tuning indicated that AR-HMM analysis 324 

is robust regardless of the number of modules, same as a previous report18. Our results 325 

indicated that Ir76b mutation might affect male files’ detection of female pheromones 326 

and consequentially the temporal structure of their courtship behaviors. These findings 327 

prove that Selfee with AR-HMM could discover the differences in proportions of 328 

behaviors, similar to what was achieved with classic manual analysis such as the 329 

courtship index.    330 

The AR-HMM modeling does not necessarily capture the difference of long-term 331 

dynamics intuitively, such as the latency of certain behaviors. To solve this problem, 332 

we introduce DTW analysis. DTW is a well-known algorithm to align time series, 333 

which returns the best-matched path and the matching similarity (Figure 4E). The 334 

alignment can be simplified as follows. When given the same start state and end state, 335 

it optimally maps all indices from the query series to the reference series monotonically. 336 

Pairs of mapped indices form a path to visualize the dynamic difference. The points 337 

upper than the diagonal line indicate that the current time point in the query group is 338 

matched to a future time point in the reference group so that the query group has faster 339 

dynamics and vice versa. In our experiments, cosine similarities of Selfee extracted 340 

representations are used to calculate warping paths.  341 

Previously, DTW was widely applied to numerical measures of animal behaviors, 342 

including trajectory53, audios54, and acceleration55. For the first time, we applied DTW 343 
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to image data, with the aid of Selfee, to study the prolonged dynamic of animal 344 

behaviors. We analyzed whether the vision is essential for a male fly’s copulation 345 

completion. Visual cues are essential for male flies to locate female flies during 346 

courtship56, and mutant flies of NorpA, which have defective visual transduction57, have 347 

a prolonged courtship latency in our experiments (Figure 4F), similar to previously 348 

findings58. When wild-type flies were used as the reference for the DTW, the group of 349 

NorpA mutant flies yielded a curve lower than the diagonal line, indicating a delay of 350 

their courtship behaviors (Figure 4G). In this way, our experiments confirm that Selfee 351 

and DTW could capture differences in long-term dynamics such as behavior latency. In 352 

conclusion, DTW and AR-HMM could capture temporal differences between control 353 

and experimental groups beyond single-frame postures, making Selfee a competent 354 

unsupervised method for traditional analyses like courtship index or copulation latency.         355 

 356 

DISCUSSION  357 

Here we use cutting-edge self-supervised learning methods and convolutional neural 358 

networks to extract Meta-representations from animal behavior videos. Siamese CNNs 359 

have proven their capability to learn comprehensive representations29. The cosine 360 

similarity, part of its loss function used for training, is rational and well-suited to 361 

measure similarities between the raw images. Besides, convolutional neural networks 362 

are trained end-to-end so that preprocessing steps like segmentation or key points 363 

extraction is unnecessary. By incorporating Selfee with different post-processing 364 
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methods, we can identify phenotypes of animal behaviors at different time scales. In 365 

the current work, we demonstrate that the extracted representations could be used not 366 

only for straightforward distance-based analyses such as t-SNE visualization or k-NN 367 

anomaly detection but also for sophisticated post-processing methods like AR-HMM. 368 

These validations confirm that the extracted Meta-representations are meaningful and 369 

valuable.  370 

By applying our method to mice mating behavior, we show that our Selfee out-371 

performed some of the widely used pose-estimation methods in multi-animal behavior 372 

analysis. The famous DeepLabCut and similar methods could identify human-defined 373 

key points on animals. However, when animals of the same color are recorded at a 374 

compromised resolution and their body contacts are intensive, the current version of 375 

DeepLabCut could hardly extract useful features (Figure 1—figure supplement 1, 376 

Video 9). The reason is that it is extremely difficult to unambiguously label body parts 377 

like nose, ears and hips when two mice are close enough, a task challenging even for 378 

human experts. By contrast, Selfee could readily identify the frame as “intromission” 379 

(Figure 1—figure supplement 1) as human experts would do. These results show that 380 

our methods could capture global characteristics of behaviors like human experts, 381 

making it well-suited for processing multi-animal behavior videos, compared with 382 

pose-estimation methods.  383 

We also demonstrate that the cutting-edge self-supervised learning model is accessible 384 

to biology labs. Our model can be trained on only one RTX 3090 GPU with a batch size 385 
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of 256 within only 8 hours with the help of the newly proposed CLD loss function38 386 

and other improvements (see Methods for further details). Furthermore, when the model 387 

pre-trained with mice videos was applied to rat behaviors, we were able to achieve a 388 

zero-shot classification of five major types of social behaviors (Figure 2—figure 389 

supplement 4). Although the F1 score was only 49.6%, it still captured the major 390 

differences between similar behaviors, such as allogrooming and social nose contact. 391 

Thus, we have demonstrated that self-supervised learning could be easily achieved with 392 

limited computation resources and a much shorter time and could be transferred to 393 

datasets that share similar visual characteristics.  394 

Despite those advantages, there are some limitations of Selfee. First, because each live-395 

frame only contains three raw frames, our model could not capture much information 396 

on the animal motion. It becomes more evident when Selfee is applied to highly 397 

dynamic behaviors such as mice mating behaviors. This can be overcome by increasing 398 

the computation because commonly used 3D convolution59 or spatial-temporal 399 

attention60 is good at dynamic information extraction but requires much more 400 

computational resources. Second, as previously reported, CNNs are highly vulnerable 401 

to image texture61. We observed that certain types of beddings of the behavior chamber 402 

could profoundly affect the performance of our neural networks (Figure 1—figure 403 

supplement 2), so in some cases, background removal is necessary (see Methods for 404 

further details). Lastly, Selfee could only use discriminative features within each batch, 405 

without any negative samples provided, so minor irrelevant differences could be 406 
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amplified and cause inconsistent results (named mode-split). This mode split may 407 

increase variations of downstream analyses. 408 

We can envision at least two possible future directions for Selfee. One is to optimize 409 

the backbone of neural networks to extract better features. Advanced self-supervised 410 

learning methods like DINO33 (with visual transformers, ViTs) could separate objects 411 

from the background and extract more explainable representations. Besides, by using 412 

ViTs, the neural network could be more robust against distractive textures62. At the same 413 

time, more temporal information can also be incorporated for a better understanding of 414 

motions. Combining these two, equipping ViTs with spatial-temporal attention could 415 

capture more temporal information.  416 

Another direction will be explainable behavior forecasting for a deeper understanding 417 

of animal behaviors. For a long time, behavior forecasting has been a field with 418 

extensive investigations in which RNNs, LSTMs, or transformers are usually applied 419 

9,60,63. However, most of these works use coordinates of key points as inputs. Therefore, 420 

the trained model might predominantly focus on spatial movement information and 421 

discover fewer behavioral syntaxes. By representation learning, spatial information is 422 

essentially condensed so that more syntaxes might be highlighted. Transformer models 423 

for forecasting could capture correlations between sub-series as well as long-term 424 

trends like seasonality64. These deep learning methods would provide behavioral 425 

neuroscientists powerful tools to identify behavior motifs and syntaxes that organize 426 

stereotyped motifs beyond the Markov property.   427 
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FIGURE LEGENDS 642 

Figure 1 | The framework of Selfee and its downstream applications.  643 

(A) One live-frame is composed of three tandem frames in R, G, and B channels, 644 

respectively.  645 

(B) Live-frames are used to train Selfee, which adopts a backbone of ResNet-50.  646 

(C, D, and E) Representations produced by Selfee could be used for anomaly detection 647 

that could identify unusual animal postures in the query video compared with the 648 

reference videos (C) AR-HMM (autoregressive hidden Markov model) that models the 649 

local temporal characteristics of behaviors and clusters frames into modules (states) and 650 

calculates stages usages of different genotypes (D) DTW (dynamic time warping) that 651 

aligns behavior videos to reveal differences of long-term dynamics (E) and other 652 

potential tasks including behavior classification, forecasting, or even image 653 

segmentation and pose estimation after properly modifying and finetuning of the neural 654 

networks. 655 

 656 

Figure 2 | The network structure of Selfee and validation of Selfee with human 657 

annotations.  658 

(A) The architecture of Selfee networks. Each live-frame is randomly transformed 659 

twice before being fed into Selfee.  660 

(B) Selfee adopts a SimSiam-style network structure with additional group 661 

discriminators. Loss 1 is canonical negative cosine loss, and loss 2 is the newly 662 

proposed CLD loss.  663 

(C) The reference branch of Selfee is not involved in backward propagation.  664 

(D) Visualization of fly courtship live-frames with t-SNE dimension reduction. Each 665 

dot was colored based on human annotations.  666 

(E) The confusion matrix of the k-NN classifier for fly courtship behavior, normalized 667 

by the numbers of each behavior in the ground truth. The average F1 score of the nine-668 

fold cross-validation was 72.4%, and mAP was 75.8%.  669 

(F) A visualized comparison of labels produced by the k-NN classifier and human 670 

annotations of fly courtship behaviors.  671 

(G) Visualization of live-frames of mice mating behaviors with t-SNE dimension 672 

reduction. Each dot is colored based on human annotations.  673 

(H) The confusion matrix of the LightGBM classifier for mice mating behaviors, 674 

normalized by the numbers of each behavior in the ground truth. For the LightGBM 675 

classifier, the average F1 score of the nine-fold cross-validation was 67.4%, and mAP 676 

was 69.1%.  677 
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(I) A visualized comparison of labels produced by the LightGBM classifier and human 678 

annotations of mice mating behaviors. 679 

 680 

Figure 3 | Anomalous posture detection using Selfee-produced features.  681 

(A) The calculation process of anomaly scores. Each query frame is compared with 682 

every reference frame, and the nearest distance was named IES (the thickness of lines 683 

indicates distances). Each query frame is also compared with every query frame, and 684 

the nearest distance is called IAS. The final anomaly score of each frame equals IES 685 

minus IAS.  686 

(B) Genetic screening of fifteen fly lines with mutations in neurotransmitter genes or 687 

with specific neurons silenced (n≥6 for each genotype). RA is short for CCHa2-R-RA, 688 

and RB is short for CCHa2-R-RB. CCHa2-R-RBGal4 > Kir2.1, q < 0.0001; TrhGal4, q = 689 

0.0432; one-way ANOVA with Benjamini and Hochberg correction.  690 

(C) Examples of mixed tussles and copulation attempts identified in CCHa2-R-RBGal4 > 691 

Kir2.1 flies.  692 

(D) The temporal dynamic of anomaly scores during the mixed behavior, centralized at 693 

1.67 s. SEM is indicated with the light color region.  694 

(E) Examples of close body contact behaviors identified in TrhGal4 flies.  695 

(F) The cosine similarity between the center frame of the close body contact behaviors 696 

(1.67s) and their local frames. SEM is indicated with the light color region.  697 

(G) The kicking index of TrhGal4 flies (n=30) was significantly lower than w1118 flies 698 

(n=27), p = 0.0034, Mann Whitney test.  699 

(H) Examples of social aggregation behaviors of TrhGal4 flies and w1118 flies.  700 

(I) Social distances of TrhGal4 flies (n=6) and w1118 flies (n=6). TrhGal4 flies had much 701 

closer social distances with each other compared with w1118 flies; nearest, p = 0.0043; 702 

median, p = 0.002; average, p = 0.0087; all Mann Whitney test.  703 

(J) Distributions of the median social distance of TrhGal4 flies and w1118 flies. 704 

Distributions were calculated within each replication. Average distributions are 705 

indicated with solid lines, and SEMs are indicated with light color regions. 706 

 707 

Figure 4 | Time-series analyses using Selfee produced features.  708 

(A) A brief illustration of the AR-HMM model. The local autoregressive property is 709 

determined by βt, the autoregressive matrix, which is yield based on the current hidden 710 

state of the HMM. The transition between each hidden state is described by the 711 

transition matrix (pij).  712 

(B) PCA visualization of state usages of wild-type flies (n=7) and Ir76b1 mutant flies 713 

(n=7).  714 

(C) State usages of ten modules. Module No. 6 showed significantly different usages in 715 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474120
http://creativecommons.org/licenses/by/4.0/


 31 / 50 

 

wild-type and mutant flies; q = 0.022, Mann Whitney test with Benjamini and Hochberg 716 

correction.  717 

(D) Module No.6 showed similar statistic results as manually labeled non-interactive 718 

behaviors. Module No.6, p = 0.0006; manually labeled non-interactive behaviors, p = 719 

0.0006; Both were Mann Whitney test.  720 

(E) A brief illustration of the DTW model. The transformation from a rounded rectangle 721 

to an ellipse could contain six steps (grey reference shapes). The query transformation 722 

lags at step 2 but surpasses at step 4. The dynamic is visualized on the right panel.  723 

(F) NorpA36 flies (n=6) showed a significantly longer copulation latency than wild-type 724 

flies (n=7), p = 0.0495, Mann Whitney test.  725 

(G) NorpA36 flies had delayed courtship dynamics than wild-type flies with DTW 726 

visualization. 727 

 728 

Figure 1—figure supplement 1 | A comparison between Selfee and DeepLabCut on 729 

animals of the same color. 730 

(A) Selfee is more robust when applied to intensive social behaviors of animals of the 731 

same color, like mating behaviors of two black mice. The image is from the 732 

intromission behavior which could be identified by Selfee equipped with the trained 733 

LightGBM classifier. In contrast, a trained DeepLabCut model identified it as a single 734 

mouse.  735 

 736 

Figure 1—figure supplement 2 | Beddings and backgrounds that affect training 737 

and inference of Selfee. 738 

(A) Textures on the damped filter paper would mislead Selfee to output features similar 739 

with copulation but not wing extension (ground truth).  740 

(B) Background inconsistency would affect the training process when Selfee was 741 

applied to mice behavior data. Therefore, backgrounds were removed from all frames 742 

to avoid potential defects. 743 

 744 

Figure 2—figure supplement 1 | Different augmentations used for Selfee training.  745 

(A) Visualization of each augmentation. Detailed descriptions of each augmentation 746 

could be found in Methods and source codes. 747 

 748 
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Figure 2—figure supplement 2 | Difficulties on fly courtship behavior classification.  749 

(A) Some wing extension frames are hard to distinguish from chasing behaviors. Blue 750 

indicators point at slightly extended wings.  751 

(B) The confusion matrix of the k-NN classifier, normalized by the numbers of each 752 

behavior in inferred labels.  753 

 754 

Figure 2—figure supplement 3 | Classification of mice mating behaviors with 755 

Selfee extracted features. 756 

(A) For the k-NN classifier, the average F1 score of the nine-fold cross-validation was 757 

59.0%, and mAP was 53.0%. The confusion matrix of the k-NN classifier, normalized 758 

by the numbers of each behavior in the ground truth.  759 

(B) The confusion matrix of the k-NN classifier, normalized by the numbers of each 760 

behavior in inferred labels.  761 

(C) The confusion matrix of the LightGBM classifier, normalized by the numbers of 762 

each behavior in inferred labels. The LightGBM classifier had a much better 763 

performance compared with the k-NN classifier. 764 

 765 

Figure 2—figure supplement 4 | k-NN classification of rat behaviors with Selfee 766 

trained on mice datasets. 767 

(A) The average F1 score of the nine-fold cross-validation was 49.6%, and mAP was 768 

46.6%. The confusion matrix of the k-NN classifier, normalized by the numbers of each 769 

behavior in the ground truth.  770 

(B) The confusion matrix of the k-NN classifier, normalized by the numbers of each 771 

behavior in inferred labels. 772 

 773 

Figure 2—figure supplement 5 | Ablation test of Selfee training process on fly 774 

datasets.  775 

(A) The distribution of different behaviors in wild-type flies courtship videos.  776 

(B) Visualization of the same live-frames as Figure 2D with t-SNE dimension reduction. 777 

Used representations were extracted by models trained without CLD loss. Each dot is 778 

colored based on human annotations. The legend is shared with panel A.  779 

(C) The confusion matrix of the k-NN classifier, normalized by the numbers of each 780 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2021. ; https://doi.org/10.1101/2021.12.24.474120doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474120
http://creativecommons.org/licenses/by/4.0/


 33 / 50 

 

behavior in the ground truth. Used representations were extracted by models trained 781 

without CLD loss.  782 

(D) Collapse levels during the training process. Without CLD loss, Selfee suffered from 783 

catastrophic mode collapse. Details for collapse level calculation could be found in 784 

Methods.  785 

(E) Visualization of the same live-frames as Figure 2D with t-SNE dimension reduction. 786 

Used representations were extracted by models trained without Turbo transformation. 787 

Each dot is colored based on human annotations. The legend is shared with panel A.  788 

(F) The confusion matrix of the k-NN classifier, normalized by the numbers of each 789 

behavior in the ground truth. Used representations were extracted by models trained 790 

without Turbo transformation. 791 

 792 

Figure 3—figure supplement 1 | Using intra-group score (IAS) to eliminate false-793 

positive results in anomaly detections.  794 

(A) Anomaly scores without IAS of wild-type male-male interactions with the same 795 

genotype as references. The blue region indicates the max anomaly score when using 796 

IAS; blue dots indicate anomaly scores without IAS that fall into the blue region; red 797 

dots indicate false-positive anomaly scores. 798 

(B) The cosine similarity between the center frame of wild-type courtship behaviors 799 

(1.67s) and their local frames. SEM is indicated with the light color region. Seven 800 

videos containing 70,000 frames were split into non-overlapping 100-frame fragments 801 

for calculations. Beyond ±50 frames, the cosine similarity droped to a much lower 802 

level, not affecting anomaly detection.  803 

 804 

Figure 4—figure supplement 1 | AR-HMM produced features with 40 modules 805 

using Selfee.  806 

(A) PCA visualization of state usages of wild-type flies and Ir76b1 mutant flies. 807 

(B) State usages of forty modules. Module No. 2, 15, 24, 32, 34 showed significantly 808 

different usages in wild-type and mutant flies; q = 0.029, 0.029, 0.049, 0.049, 0.029 809 

respectively, Mann Whitney test with Benjamini and Hochberg correction.  810 

(C) The collection of modules No. 2, 15, 24, 32, 34 showed similar statistic results as 811 

manually labeled non-interactive behaviors. AR-HMM module collection, p = 0.0006; 812 

manually labeled non-interactive behaviors, p = 0.0006; all Mann Whitney test.  813 

 814 
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MATERIALS AND METHODS 815 

Fly stocks  816 

All fly strains were maintained under a 12 h/12 h light/dark cycle at 25℃ and 60% 817 

humidity (PERCIVAL incubator). The following fly lines were acquired from 818 

Bloomington Drosophila Stock Center: CCHa1attP (84458), CCHa1-RattP (84459), 819 

CCHa2attP (84460), CCHa2-RattP (84461), CCHa2-R-RAGal4 (84603), CCHa2-R-820 

RBGal4 (84604), CNMaattP (84485), OambattP (84555), Dop2RKO (84720), DopEcRGal4 821 

(84717), SerTattP (84572), TrhGal4 (86146), TKattP (84579), Ir76b1 (51309), NorpA36 822 

(9048), UAS-Kir2.1 (6596). Tdc2RO54 was a gift from Dr. Yufeng Pan at Southeast 823 

University, China. Taotie-Gal4 was a gift from Dr. Yan Zhu at Institute of Biophysics, 824 

Chinese Academy of Sciences, China. 825 

 826 

Fly courtship behavior and male-male interaction 827 

Virgin female flies were raised for 4~6 days in fifteen-fly groups, and naïve male flies 828 

were kept in isolated vials for 8~12 days. All behavioral experiments were done under 829 

25 °C and 45%~50% humidity. Flies were transferred into a customized chamber of 830 

3 mm height and 10 mm diameter by a homemade aspirator. Fly behaviors were 831 

recorded using a stereoscopic microscope-mounted with a CCD camera (Basler ORBIS 832 

OY-A622f-DC) at the resolution of 1000×500 (for two chambers at the same time), or 833 

640×480 (for individual chambers) and a frame rate of 30 Hz. Five types of behaviors 834 

were annotated manually, including “chasing” (a male fly follows a female fly), “wing 835 

extension” (a male fly extends unilateral wing and orientates to the female to sing 836 

courtship son, “copulation attempt” (a male fly bends its abdomen toward the genitalia 837 

of the female or the unstable state that male fly mounts on a female with its wings open), 838 

and “copulation” (male fly mounts on a female in a stable posture for several minutes). 839 

 840 

Fly defensive behavior assay 841 

The kicking behavior was tested based on previously reported paradigms1,2. Briefly, 842 

flies were raised in groups for 3~5 days. Flies were anesthetized on ice, and then male 843 

flies were decapitalized and transferred to 35 mm Petri dishes with damped filter paper 844 

on the bottom to keep the moisture. Flies were allowed to recover for around 30 minutes 845 

in the dishes. The probe for stimulation was homemade from a heat-melt yellow pipette 846 

tip, and the probe's tip was 0.3 mm. Each side of flies’ wing margin was gently touched 847 

5 times, and the kicking behavior was recorded manually. The statistical analysis was 848 
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performed with the Mann Whitney test with GraphPad Prism Software. 849 

Social behavior assay for flies 850 

The social distance was tested based on the previously reported method3. Briefly, flies 851 

were raised in groups for 3 days. Flies were anesthetized paralyzed on ice, and male 852 

flies were picked and transferred to new vials (around 40 flies per vial). Flies were 853 

allowed to recover for one day. The vertical triangular chambers were cleaned with 75% 854 

ethanol and dried with paper towels. After assembly, flies were transferred into the 855 

chambers by a homemade aspirator. The photos were taken after 20 min, and the 856 

positions of each fly were manually marked in ImageJ. The social distances were 857 

measured with the lateral sides of the chambers (16.72 cm) as references, and the 858 

median values of the nearest, median, and average distance of each replication are 859 

calculated. The statistical analysis was performed with the Mann Whitney test in 860 

GraphPad Prism Software. 861 

 862 

Mice mating behavior assay 863 

Wild-type mice of C57BL/6J were purchased from Slac Laboratory Animal (Shanghai). 864 

Adult (8-24 weeks old) male mice were used for sexual behavior analysis. All animals 865 

were housed under a reversed 12 h/12 h light-dark cycle with water and food ad libitum 866 

in the animal facility at the Institute of Neuroscience, Shanghai, China. All experiments 867 

were approved by the Animal Care and Use Committee of the Institute of Neuroscience, 868 

Chinese Academy of Sciences, Shanghai, China (IACUC No. NA-016-2016). 869 

Male mice were singly housed for at least 3 days prior to sexual behavioral tests. All 870 

tests were initiated at least 1 hr after lights were switched off. Behavioral assays were 871 

recorded using infrared cameras at the frame rate of 30 Hz. Female mice were surgically 872 

ovariectomized and supplemented with hormones to induce receptivity. Hormones were 873 

suspended in sterile sunflower Selfee oil (Sigma-Aldrich, S5007) and injected 10 mg 874 

(in 50 mL oil) and 5 mg (in 50 mL oil) of 17b-estradiol benzoate (Sigma-Aldrich, E8875) 875 

48 h and 24 h preceding the test, respectively. On the day of the test, 50 mg of 876 

progesterone (Sigma-Aldrich, P0130; in 50 mL oil) was injected 4–6 h prior to the test. 877 

Male animals were adapted 10 min to behavioral testing rooms where a recording 878 

chamber equipped with video acquisition systems was located. A hormonal primed 879 

ovariectomized C57BL/6J female (OVX) was introduced to the home cage of male 880 

mice and videotaped for 30 min. Mating behavior tests were repeated three times with 881 

different OVX at least three days apart. Videos were manually scored using a custom-882 

written MATLAB program. The following criteria were used for behavioral annotation: 883 

active nose contacts initiated by male mouse towards the female’s genitals, body area, 884 

faces were defined collectively as “social interest”; male mouse climbs the back of the 885 

female and moves the pelvis were defined as “mount”; Rhythmic pelvic movements 886 
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after mount were defined as “intromission”; a body rigidity posture after final deep 887 

thrust were defined as “ejaculation”. 888 

Data preprocessing, augmentation and sampling 889 

Fly behavior videos were decomposed into frames by FFmpeg, and only the first 10,000 890 

frames of each video were preserved and resized into images with a resolution of 891 

224×224. For model training of Drosophila courtship behavior, each video was 892 

manually checked to ensure successful copulations within 10,000 frames. 893 

Mice behavior videos were decomposed into frames by FFmpeg, and only frames of 894 

the first 30 min of each video were preserved. Frames were then preprocessed with 895 

OpenCV4 in Python. Behavior chambers in each video were manually marked, 896 

segmented, and resized into images of a resolution of 256×192. For background 897 

removal, the average frame of each video was subtracted from each frame, and noises 898 

were removed by a threshold of 25 and the median filter with a kernel size of 5. Finally, 899 

the contrast was adjusted with histogram equalization. 900 

For data augmentations, crop, rotation, flip, Turbo, and color jitter were applied. For a 901 

given frame, it formed a live-frame with its preceding and succeeding frames. For flies’ 902 

behavior video, three frames were successive, and for mice, the preceding or succeeding 903 

frame is one frame away from the current frame due to their slower dynamics5. Each 904 

live-frame was randomly cropped into a smaller version containing more than 49% 905 

(70%×70%) of the original image; then the image was randomly (clockwise or 906 

anticlockwise) rotated for an angle smaller than the acute angle formed by the diagonal 907 

line and the vertical line, then the image would be vertically flipped, horizontally 908 

flipped, and/or applied the Turbo lookup table6 at the probability of 50%, respectively; 909 

and finally, the brightness, contrast, saturation, and hue were randomly adjusted within 910 

10% variation. Notably, since the Turbo transformation is designed for grayscale 911 

images, for a motion-colored RGB image, each channel was transformed individually. 912 

After Turbo transformation, their corresponded channels were composited to form a 913 

new image.     914 

For fly data sampling, all images of all videos were randomly ranked, and each batch 915 

contained 256 images from different videos. For mice data sampling, all images of each 916 

video were randomly ranked, and each batch contained 256 images from the same video. 917 

This strategy was designed to eliminate the inconsistency of recording conditions of 918 

mice that was more severe than flies. 919 

 920 

Selfee neural network and its training 921 

All training and inference were accomplished on a workstation with 128GB RAM, 922 

AMD Ryzen 7 5800x, and one NVIDIA GeForce RTX 3090. Selfee neural network was 923 

constructed based on publications and source codes of BYOL7, SimSiam8, and CLD9 924 
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with PyTorch10. In brief, the last layer of ResNet-50 was removed, and a 3-layer 2048-925 

dimension MLP was added as the projector. Hidden layers of the projector were 926 

followed by batch normalization (BN) and ReLU activation, and the output layer only 927 

had BN. The predictor was constructed with a 2-layer bottleneck MLP with a 512-928 

dimension hidden layer and a 2048-dimension output layer. The hidden layer but not 929 

the output layer of the predictor had BN and ReLU. As for the group discriminator for 930 

CLD loss, it had only one normalized fully connected layer that projected 2048-931 

dimension output to 1024 dimensions, followed by a customized normalization layer 932 

that was described in the paper of CLD9.    933 

The loss function of Selfee had two major parts. The first part was the negative cosine 934 

loss7,8, and the second part was the CLD loss9. For a batch of n samples, Z, P, V 935 

represented the output of projector, predictor, and group discriminator of the main 936 

branch, respectively; Z’, P’, V’ represented the output of the reference branch; and sg 937 

as the stop-gradient operator. After k-means clustering of V, the centroids of k classes 938 

were given by M, and labels of each sample were provided in the one-hot form as L. 939 

The hyperparameter θ was 0.07, and λ was 2. The loss function was given by the 940 

following equations: 941 

 942 
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CrossEntropyLoss(𝑥, 𝑙) =  −𝑥 · 𝑙 + log (||exp (𝑥)||1) 947 
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𝑣𝑖

𝜃
·  𝑀′𝑇

, 𝑙𝑖) +
1

2
 CrossEntropyLoss(

𝑣′𝑖

𝜃
·  𝑀𝑇 , 𝑙′𝑖) 949 

 950 

𝐿𝑜𝑠𝑠 =  𝐿𝑜𝑠𝑠1  +  𝜆 𝐿𝑜𝑠𝑠2 951 

 952 

For all training processes, the Selfee network was trained for 20,000 steps with the SDG 953 

optimizer with a momentum of 0.9 and a weight decay of 1e-4. The learning rate was 954 

adjusted in the one-cycle learning rate policy11 with base learning rates and a pct start 955 

of 0.025. The model for Drosophila courtship behavior was initialized with ResNet-50 956 

pre-trained on the ImageNet, and the base learning rate was 0.025 per batch size of 256. 957 

As for the mating behaviors of mice, the model was initialized with weights trained on 958 

the fly dataset, and the base learning rate was 0.05 per batch size of 256.  959 

 960 
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t-SNE visualization 961 

Video frames for t-SNE visualization were all processed by Selfee. Embeddings of three 962 

tandem frames were averaged to eliminate potential noises. All embeddings were 963 

transformed using t-SNE provided in the scikit-learn12 package in Python without 964 

further turning of parameters. Results were visualized with the Matplotlib13 package in 965 

Python, and their colors were assigned based on human annotations of video frames. 966 

 967 

Classification 968 

Two kinds of classification methods were implemented, including the k-NN classifier 969 

and the LightGBM (Light Gradient Boosting Machine) classifier. The weighed k-NN 970 

classifier was constructed based on the previous reports8,14. LightGBM classifier15 was 971 

provided by its official package in Python. The F1 score and mAP were calculated with 972 

the scikit-learn12 package in Python. 973 

For fly behavior classification, seven 10,000-frame videos were annotated manually. 974 

Seven-fold cross-validation was performed using embeddings generated by Selfee and 975 

the k-NN classifier. Inferred labels were forced to be continuous through time by using 976 

inferred labels of 21 neighbor frames to determine the final result. Then, a video 977 

independent of the cross-validation was annotated and inferred by a k-NN classifier 978 

using all 70,000 samples, and the last 3,000 frames were used for the raster plot. 979 

For rat behavior classification, the RatSI dataset16 (a kind gift from Noldus Information 980 

Technology bv) contains nine manually annotated videos. We neglected three rarest 981 

annotated behaviors: moving away, nape attacking, and pinning, and we combined 982 

approaching and following into a larger category. Therefore, we used five kinds of 983 

behaviors, including allogrooming, approaching or following, social nose contact, 984 

solitary, and others. Nine-fold cross-validation was performed using embeddings 985 

generated by Selfee and the k-NN classifier. Inferred labels were forced to be 986 

continuous through time by using inferred labels of 81 neighbor frames to determine 987 

the final result. 988 

For mice behavior classification, eight videos were annotated manually. Eight-fold 989 

cross-validation was performed using embeddings generated by Selfee and the k-NN 990 

classifier. To incorporate more temporal information, the LightGBM classifier and 991 

additional features were also used. Additional features include slide moving average 992 

and standard division of 81-frame time windows, the main frequencies, and their energy 993 

(using short-time Fourier transform in SciPy17) within 81-frame time windows. Early-994 

stop was used to prevent over-fitting. Inferred labels were forced to be continuous 995 

through time by using inferred labels of 81 neighbor frames to determine the final result. 996 

Then, a video independent of the cross-validation was annotated and inferred by an 997 

ensemble classifier of eight previously constructed classifiers, and all frames were used 998 

for the raster plot. 999 
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 1000 

Anomaly detection 1001 

For a group of query embeddings of sequential frames q1, q2, q3, … , qn, and a group of 1002 

reference embeddings of sequential frames r1, r2, r3, … , rm, the anomaly score of each 1003 

query frame was given by the following equation: 1004 

 1005 

AnomalyScore(𝑞𝑖) =  min𝑗=1
𝑚 (CosineDistance(𝑞𝑖 , 𝑟𝑗)) − min|𝑗−𝑖|<50(CosineDistance(𝑞𝑖 , 𝑞𝑗)) 1006 

 1007 

A PyTorch implementation of cosine similarity18 was used for accelerated calculations. 1008 

The anomaly score of each video was the average anomaly score of the top 100 1009 

anomalous frames. The statistical analysis of the genetic screening was performed with 1010 

one-way ANOVA with Benjamini and Hochberg correction in GraphPad Prism 1011 

Software. 1012 

If negative controls are provided, anomalous frames are defined as frames with higher 1013 

anomaly scores than the maximum anomaly score of frames in negative control videos. 1014 

 1015 

Autoregressive hidden Markov model (AR-HMM) 1016 

All AR-HMM models were built with the implementation of MoSeq5 1017 

(https://github.com/mattjj/pyhsmm-autoregressive). A principal component analysis 1018 

(PCA) model that could explain 95% of variance of the control group was built and 1019 

used to transform both control and experiment groups. The max module number was 1020 

set as 10 for all experiments unless indicated otherwise. Each model was sampled for 1021 

1000 iterations. We kept other hyperparameters the same as the examples provided by 1022 

this package. State usages of each module in control and experimental groups were 1023 

analyzed by Mann Whitney test with SciPy17 followed with Benjamini and Hochberg 1024 

correction. The state usages were also visualized after PCA dimensional reduction with 1025 

scikit-learn12 and Matplotlib13. 1026 

 1027 

Dynamic time warping (DTW) 1028 

Dynamic time warping was modified from the Python implemention19 1029 

(https://dynamictimewarping.github.io/python/). Specifically, PyTorch implementation 1030 

of cosine similarity18 was used for accelerated calculations.  1031 

 1032 
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Pose-estimation with DeepLabCut 1033 

We used the official implementation of DeepLabCut20,21. For training, 120 frames of a 1034 

mating behavior video were labeled manually, and 85% of them were used as the 1035 

training set. Marked body parts included nose, ears, body center, hips, and bottom, 1036 

following previous publications22,23. The model (ResNet-50 as the backbone) was 1037 

trained for 100,000 iterations, with a batch size of 16. We kept other hyperparameters 1038 

the same as default settings. 1039 

 1040 
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FIGURES AND TABLES 1099 

Figure 1 1100 

 1101 

 1102 
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Figure 2 1103 
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Figure 3 1106 
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Figure 4 1109 
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Figure 1—figure supplement 1 1113 

 1114 

Figure 1—figure supplement 2 1115 
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Figure 2—figure supplement 1 1118 

 1119 

Figure 2—figure supplement 2 1120 
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Figure 2—figure supplement 3 1123 

 1124 

Figure 2—figure supplement 4 1125 
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Figure 2—figure supplement 5 1127 
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Figure 2—figure supplement 6 | Ablation test of Selfee training process on fly datasets.  1129 

 1130 

Model 
Pretrained ResNet-50 with 

random projectors 
Selfee Selfee without CLD loss 

Selfee without Turbo 

transformation 

Evaluation 
Mean F1 

Score 
Mean AP 

Mean F1 

Score 
Mean AP 

Mean F1 

Score 
Mean AP 

Mean F1 

Score 
Mean AP 

Replication 1 0.586  0.580  0.724  0.758  0.227  0.227  0.604  0.550  

Replication 2 0.597  0.570  0.676  0.683  0.163  0.200  0.574  0.551  

Replication 3 0.596  0.586  0.714  0.754  0.172  0.214  0.517  0.497  

Best 0.597  0.586  0.724  0.758  0.227  0.227  0.604  0.551  
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Figure 3—figure supplement 1 1132 

 1133 

 1134 

Figure 4—figure supplement 1 1135 
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