
picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/12/24 — page 1 — #1

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Application Note

PyLiger: Scalable single-cell multi-omic data
integration in Python
Lu Lu 1 and Joshua D. Welch 1,2,∗

1Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
2Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: LIGER is a widely-used R package for single-cell multi-omic data integration. However, many
users prefer to analyze their single-cell datasets in Python, which offers an attractive syntax and highly-
optimized scientific computing libraries for increased efficiency.
Results: We developed PyLiger, a Python package for integrating single-cell multi-omic datasets. PyLiger
offers faster performance than the previous R implementation (2-5× speedup), interoperability with
AnnData format, flexible on-disk or in-memory analysis capability, and new functionality for gene ontology
enrichment analysis. The on-disk capability enables analysis of arbitrarily large single-cell datasets using
fixed memory.
Availability: PyLiger is available on Github at https://github.com/welch-lab/pyliger and on the Python
Package Index.
Contact: welchjd@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
High-throughput sequencing technologies now enable the measurement of
gene expression, DNA methylation, histone modification, and chromatin
accessibility at the single-cell level. Integration of such single-cell multi-
omic datasets is crucial for identifying cell types and cell states across
a range of biological settings. Previously, we developed LIGER (Linked
Inference of Genomic Experimental Relationships), an R package that
employs integrative non-negative matrix factorization to identify shared
and dataset-specific factors of cellular variation (Welch et al., 2019). These
factors then provide a principled and quantitative definition of cellular
identity and how it varies across biological settings.

Many users prefer to analyze their single-cell datasets in Python, which
offers an attractive syntax and highly-optimized scientific computing
libraries for increased efficiency. However, there is a lack of single-cell
multi-omic integration tools available in Python. The Seurat v3 (Stuart
et al., 2019) anchors algorithm is implemented in R, as is Harmony
(Korsunsky et al., 2019). Scanpy (Wolf et al., 2018) offers excellent
libraries for single-cell RNA-seq analysis, including batch correction with
the BBKNN algorithm, but this approach is not designed for multi-omic

integration such as combining scRNA and snATAC from different cells.
The scvi-tools (Gayoso et al., 2021) library similarly provides options for
scRNA integration, but is not designed for integrating different single-cell
modalities from different individual cells.

To address these limitations, we developed PyLiger, a Python
implementation of LIGER.

2 Results

2.1 Python implementation of LIGER

We translated the complete, established LIGER framework into Python.
Key functions includes integration of multiple single-cell datasets
using integrative nonnegative matrix factorization, joint clustering,
visualization, and differential expression testing (Fig. 1A). We carefully
compared outputs to ensure that function outputs from the R and Python
versions are identical to within the limits of numerical precision. The
only exceptions are cases when external packages called by PyLiger, such
as UMAP and Leiden, produce slightly different results between R and
Python.

As an additional feature, we embedded new functionality for gene
ontology (GO) enrichment analysis within PyLiger. This makes it much

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.474131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474131
http://creativecommons.org/licenses/by/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/12/24 — page 2 — #2

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

2 Sample et al.

Fig. 1. (A) PyLiger functions include preprocessing, joint matrix factorization, joint clustering, visualization, differential expression testing, and GO enrichment analysis. Note that
differences in UMAP coordinates are due to differences between R and Python UMAP implementations. (B) Diagram of how Liger class member variables are represented in AnnData
format. (C) Comparison of runtimes for PyLiger (in-memory mode), LIGER (in-memory mode), PyLiger (on-disk mode), and LIGER (on-disk mode) functions on a dataset of 6,000
PBMCs. Note that iNMF algorithm only supports in-memory mode, while the online iNMF algorithm can run in on-disk or in-memory mode. (D) Comparison of runtimes for Python and
R implementations of online iNMF on a dataset sampled from the adult mouse cortex (n = 10,000, 50,000, 100,000, 200,000 and 255,353 cells datasets)

easier to formulate hypotheses about the functions of key genes that
are differentially expressed across cell types or biological conditions.
Specifically, PyLiger incorporates GOATOOLS (Klopfenstein et al., 2018)
for gene ontology enrichment testing and GO-Figure! (Reijnders and
Waterhouse, 2021) for visualizing enriched GO terms. For example, given
a list of differentially expressed genes, users can easily run a PyLiger
function to identify a list of significantly enriched GO terms. They may
further visualize the GO terms by semantic similarity scatterplots (Fig.
1A). Functions are fully user-customizable in colormap, labels, etc.

2.2 PyLiger adapts AnnData format to interoperate with
existing packages

We designed the structure of the PyLiger class to smoothly interface with
the widely used AnnData format. The AnnData package was initially
introduced along with Scanpy offering a convenient way to store data
matrices and annotations together. We store cell factor loading matrices
(Hi), shared metagenes (W ), and dataset-specific metagenes (V i) as

annotations of the raw matrix (Fig. 1B). The use of AnnData format also
facilitates interoperability with existing single-cell analysis tools such as
Scanpy and scVelo (Bergen et al., 2020). We used the naming rules from
Scanpy to name our annotations (UMAP coordinates, for instance) so that
each individual AnnData object can be plugged into Scanpy easily.

2.3 Python implementation reduces runtimes

To demonstrate the performance of PyLiger package, we tested functions
using a dataset of 6,000 PBMCs (Kang et al., 2018). We confirmed that the
results from PyLiger are identical (to within numerical precision) to those
from the LIGER R package. (External packages called by PyLiger, such
as UMAP and Leiden, produce slightly different results between R and
Python in some cases.) Moreover, PyLiger functions run 1.5 to 5 times
faster than their R counterparts (Fig. 1C). In particular, the most time-
consuming step–matrix factorization–is approximately 3 times faster in
Python than our previous R implementation. This is particularly impressive

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.474131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474131
http://creativecommons.org/licenses/by/4.0/


picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/12/24 — page 3 — #3

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

short Title 3

because many of the R functions are implemented using Rcpp, whereas
all of PyLiger is simply implemented in native Python.

2.4 PyLiger scales to arbitrarily large single-cell datasets
using fixed memory.

PyLiger supports HDF5 file format for on-demand loading of datasets
stored on disk. We found that in AnnData objects, only raw matrix
allows HDF5-based backing, but not other processed matrices stored as
layers. Therefore, we store data matrices in a separate HDF5 file while
matrix annotations are still stored in AnnData objects. We compared the
on-disk mode to the in-memory mode using the same dataset of 6,000
PBMCs. By sacrificing a little processing efficiency (within a second
on a dataset of 6,000 cells), the on-disk mode functions can process
arbitrarily large datasets using fixed memory (Fig. 1C). Note that the
functions create_liger and select_genes in the on-disk mode of PyLiger
are slightly slower than on-disk mode of LIGER due to new feature
implementation.

Moreover, we implemented the online iNMF algorithm (Gao et al.,
2021) in combination with HDF5 file format, providing scalable and
efficient data integration as well as significant memory savings. The online
iNMF algorithm scales to arbitrarily large numbers of cells but still uses
fixed memory and can incorporate new data without recalculating from
scratch. To benchmark the performance, we did a comparison of online
iNMF between PyLiger and LIGER using five datasets of increasing sizes
(ranging from 10,000 to 255,353 cells in total) sampled from the same adult
mouse frontal and posterior cortex data. The PyLiger implementation of
online iNMF achieves a 2.3× speedup on average in comparison to its R
counterpart (Fig. 1D).

3 Conclusion
PyLiger provides an effective way to integrate large-scale single-cell
multi-omic datasets. Its Python implementation enables convenient
interoperability with other single-cell analysis tools and advanced machine
learning and deep learning approaches. Embedded GO enrichment analysis
and visualization modules provide a convenient interface for downstream
analysis. Furthermore, incorporating online iNMF and HDF5 file format
bring PyLiger’s scalability into arbitrarily large numbers of cells.

Acknowledgements

Funding
This work was supported by R01HG010883 to JDW.

References
Welch, J. D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C.,

Macosko, E. Z. (2019). Single-cell multi-omic integration compares and
contrasts features of brain cell identity. Cell, 177(7), 1873-1887 (2019).
https://doi.org/10.1016/j.cell.2019.05.006.

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd,
Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of
Single-Cell Data. Cell, 177, 1888–1902 June 13, 2019 a 2019 Elsevier Inc.
https://doi.org/10.1016/j.cell.2019.05.031

Korsunsky, I., Millard, N., Fan, J. et al. Fast, sensitive and accurate integration
of single-cell data with Harmony. Nat Methods 16, 1289–1296 (2019).
https://doi.org/10.1038/s41592-019-0619-0

Wolf, F., Angerer, P. Theis, F. SCANPY: large-scale single-cell gene expression data
analysis. Genome Biol 19, 15 (2018). https://doi.org/10.1186/s13059-017-1382-0

Gayoso A, Lopez R, Xing G, Boyeau P, Wu K, Jayasuriya M, Melhman E, Langevin
M, Liu Y, Samaran J, Misrachi G, Nazaret A, Clivio O, Xu C, Ashuach T,
Lotfollahi M, Svensson V, Beltrame E, Talavera-López C, Pachter L, Theis F.

J., Streets A, Jordan M. I., Regier J, Yosef N. scvi-tools: a library for deep
probabilistic analysis of single-cell omics data. bioRxiv 2021.04.28.441833; doi:
https://doi.org/10.1101/2021.04.28.441833

Klopfenstein, D.V., Zhang, L., Pedersen, B.S. et al. GOATOOLS: A Python library for
Gene Ontology analyses. Sci Rep 8, 10872 (2018). https://doi.org/10.1038/s41598-
018-28948-z

Reijnders MJMF and Waterhouse RM (2021) Summary Visualizations of
Gene Ontology Terms With GO-Figure! Front. Bioinform. 1:638255. doi:
10.3389/fbinf.2021.638255

Bergen, V., Lange, M., Peidli, S. et al. Generalizing RNA velocity to transient
cell states through dynamical modeling. Nat Biotechnol 38, 1408–1414 (2020).
https://doi.org/10.1038/s41587-020-0591-3

Kang, H., Subramaniam, M., Targ, S. et al. Multiplexed droplet single-cell RNA-
sequencing using natural genetic variation. Nat Biotechnol 36, 89–94 (2018).
https://doi.org/10.1038/nbt.4042

Gao, C., Liu, J., Kriebel, A.R. et al. Iterative single-cell multi-omic
integration using online learning.Nat Biotechnol 39, 1000–1007 (2021).
https://doi.org/10.1038/s41587-021-00867-x

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.24.474131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.24.474131
http://creativecommons.org/licenses/by/4.0/

