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ABSTRACT 18 

Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. 19 

However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and 20 

several bivalve species. The transmissible cancers in dogs and devils are known to spread through direct 21 
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physical contact, but the exact route of transmission of bivalve transmissible neoplasia (BTN) has not yet 22 

been confirmed. It has been hypothesized that cancer cells could be released by diseased animals and 23 

spread through the water column to infect/engraft into other animals. To test the feasibility of this 24 

proposed mechanism of transmission, we tested the ability of BTN cells from the soft-shell clam (Mya 25 

arenaria BTN, or MarBTN) to survive in artificial seawater. We found that BTN cells are highly sensitive 26 

to salinity, with acute toxicity at salinity levels lower than those found in their environment. BTN cells 27 

also survive longer at lower temperatures, with >48% of cells surviving a week in seawater at 28 

temperatures from 4°C to 16°C, and 49% surviving for more than two weeks at 4°C. With one clam 29 

donor, living cells were observed for more than eight weeks at 4°C. We also used qPCR of environmental 30 

DNA (eDNA) to detect the presence of BTN-specific DNA in the environment. We observed release of 31 

BTN-specific DNA into the water of aquaria from tanks with highly BTN-positive clams, and we detected 32 

BTN-specific DNA in seawater samples collected from BTN-endemic areas, although the level detected 33 

was much lower. Overall, these data show that BTN cells can survive well in seawater, and they are 34 

released into the water by diseased animals, supporting the hypothesis that BTN is spread from animal-to-35 

animal by cells through seawater. 36 
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INTRODUCTION 42 

 Most cancer stays with the organism from which it came, arising and dying within a single host, 43 

but in a few cases, cancer has evolved to transmit from one animal to the next, acting as a pathogen as 44 

well as a cancer. The first naturally transmissible cancers to be found were the canine transmissible 45 
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venereal tumor (CTVT) (1, 2) and the Tasmanian devil facial tumor disease (DFTD) (3, 4). More 46 

recently, a leukemia-like disease in multiple bivalve species, called disseminated neoplasia (DN) or hemic 47 

neoplasia, was shown to be a transmissible cancer (5). DN is characterized by proliferation of non-48 

adherent, rounded, polyploid neoplastic cells primarily found in the hemolymph of infected bivalves, 49 

which disseminate into tissues during later stages of this typically fatal disease (6, 7). The disease had 50 

been reported for many decades, although the etiology was unknown. Retroviruses or pollution had been 51 

thought to be the likely causes (8, 9), although two early reports had suggested that it could be due to 52 

infectious spread of cancer cells (Sunila et al. 1998 and James Moore’s 1993 Ph.D. Dissertation (10, 11)). 53 

DN was first confirmed to be a transmissible cancer in soft-shell clams (Mya arenaria) (5), and later, 54 

multiple independent lineages of transmissible cancer were identified in multiple species worldwide (12). 55 

To date, seven lineages of the bivalve transmissible neoplasia (BTN) in eight bivalve species have been 56 

reported (5, 12-17). In many cases, the BTN that circulates in each species has arisen from a member of 57 

that same species. However, increasing cases of cross-species transmission have been reported (a lineage 58 

from Venerupis corrugata to Polititapes aureus and a single lineage of Mytilus BTN now found in four 59 

Mytilus species). Furthermore, multiple independent lineages of BTN have been found to circulate within 60 

the same species (as in Cerastoderma edule and Mytilus trossulus). In soft-shell clams, all analyzed 61 

samples of DN since the confirmation of cancer transmission so far have proven to be a part of one 62 

lineage of BTN that arose from a single founder soft-shell clam and has since spread throughout 63 

populations along the North American East Coast between Prince Edward Island (Canada) and New York 64 

(USA). DN has been reported in M. arenaria as early as 1978 (18, 19) and it has been observed as far 65 

south as Chesapeake Bay, Maryland, USA (9, 20, 21). While it is likely that these earlier reports of DN in 66 

soft-shell clams represent the same BTN lineage observed today, this cannot yet be confirmed. 67 

 CTVT and DFTD are well known to be transmitted by close physical contact (during sex and 68 

biting, respectively), but most adult bivalves are sessile or with limited mobility, without direct contact of 69 

soft body tissues, making widespread BTN transmission through direct contact unlikely. The genomic 70 
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evidence clearly shows that cancers in different individual bivalves do not match the genotypes of their 71 

hosts and that cancers in different individuals, separated by large distances (and in some cases in different 72 

species and different oceans), are nearly identical, so the cancer lineages must transmit through some 73 

alternate mechanism. The most likely route of transmission is release of the BTN cells into the seawater 74 

and uptake of the cells by naïve animals through filter feeding. For this to occur, BTN cells need to be 75 

released from animals and survive in seawater long enough to engraft into a naïve individual.  76 

 A previous report (the first known to propose a transmissible cancer hypothesis for DN in 77 

bivalves) characterized the survival of cancer cells from soft-shell clams collected from Chesapeake Bay 78 

in 1989 and showed that they survive well for 6 hours, and that survival can be affected by salinity and 79 

temperature (10). As in Sunila et al., we aim to analyze the ability of BTN cells from soft-shell clams 80 

(Mya arenaria BTN, or MarBTN) to survive in seawater. We determined the effect of salinity, pH, and 81 

temperature on their short-term survival in artificial seawater (ASW), and we determined how long the 82 

cells can survive at varying temperatures. We additionally tested whether BTN cells can be detected in 83 

seawater through the analysis of environmental DNA (eDNA) collected from both laboratory and field 84 

settings. Our findings provide further validation supporting seawater-based transmission of BTN in the 85 

wild. 86 

 87 

MATERIALS AND METHODS 88 

Collection of clams and MarBTN cells 89 

Soft-shell clams (M. arenaria) were collected by commercial sources from multiple locations in Maine, 90 

USA (Table S1), and animals were screened for high levels of DN as before (5). Animals were housed in 91 

1× ASW (36 g / L Instant Ocean, Blacksburg, VA, USA), in aerated aquaria, supplemented 2-3 times 92 

weekly with PhytoFeast or LPB Frozen Shellfish Diet (Reed Mariculture, Campbell, CA, USA). 93 

Approximately 0.5-1 mL of hemolymph was collected from the pericardial sinus of each animal using a 94 
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0.5 in 26-gauge needle on a 3 mL syringe. Several drops were placed in a well of a 96-well plate and 95 

incubated at 4-10°C for 1 hour to allow the cells to settle. Wells were screened for clams with high levels 96 

of BTN based on morphological differences between healthy hemocytes and BTN cells on an inverted 97 

phase-contrast microscope. Only animals with ≥75% of cancer cells in their hemolymph were used in 98 

survival experiments.  99 

Counting live cells in artificial seawater 100 

We used the alternate vital dye, erythrosine B (MilliporeSigma, Burlington, MA, USA) to stain samples 101 

to discriminate live and dead cells during counting. This dye is soluble throughout all salinities used in 102 

this study. To count live cells, 10 µL of ASW containing cells were mixed 1:1 with 2× erythrosine B 103 

solution (10 µg/mL, dissolved in PBS4, which is PBS plus 400 mM NaCl to approximate marine 104 

salinity). After 10 min at room temperature, live cells were counted manually on a hemocytometer, 105 

counting only rounded, refractive cells that exclude dye.  106 

Short-term cell survival assays 107 

For short-term MarBTN cell survival assays, hemolymph was collected from heavily neoplastic animals, 108 

and allowed to sit on a 6 cm tissue culture dish or 24-well plate at 4 °C for one hour to allow any healthy 109 

hemocytes to adhere to the dish so that they could be removed. Non-adherent cells were then removed 110 

and spun down at 500 × g for 10 min at 4 °C. Hemolymph was removed, and cells were resuspended in 111 

1× ASW: filter-sterilized Instant Ocean with no additives, 36 g/L, specific gravity (sg) 1.023, and pH 112 

7.93. For salinity, cells were diluted to an approximate concentration of 1 × 106 cells/mL, and 20 µL of 113 

cells were added to 180 µL of ASW with varying concentrations of Instant Ocean, from 0 to 2× the 114 

normal salinity level (with sg measured by a refractometer) and placed in wells of a 96-well plate at 16°C. 115 

Cell counts at 4 hours were normalized to expected concentration calculated pre-dilution, as cell death in 116 

low salt was too rapid to allow for counting after dilution. For pH, cells were aliquoted into one tube for 117 

each condition, spun a second time, and resuspended in 200 µL of ASW with different pH (3.8-9.3, 118 
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modified with 2M NaOH or 3N HCl), with a target of 1 × 106 cell/mL, and put into wells of a 96-well 119 

plate. For temperature, the cells were resuspended in 400 µL of 1× ASW (sg 1.023, pH 7.93) and placed 120 

in wells of a 24-well plate at the indicated temperatures (4-37°C). For pH and temperature, cell counts at 121 

time zero were used to normalize cell survival. 122 

Long-term cell survival assays 123 

For long-term cell survival, penicillin/streptomycin (1×, GenClone, Genesee Scientific, El Cahon, CA, 124 

USA) and voriconazole (1 mM final concentration, Acros Organics, Thermo Fisher Scientific, Waltham, 125 

MA, USA) was added to ASW. Other antimicrobial drugs were tested (e.g., moxifloxacin, doxycycline, 126 

metronidazole, and triclosan) but were not found to reduce contaminants at a concentration that was non-127 

toxic to BTN cells. Cells were collected as above and resuspended in 400 µL 1× ASW with 128 

penicillin/streptomycin/voriconazole, in wells of a 48-well plate, at 2 × 105 – 2 × 106 cells/mL. After each 129 

timepoint, the volume was measured by pipette, and ASW with antimicrobial drugs was added to replace 130 

the media removed for cell counting and lost due to evaporation. Live cell counts at each timepoint were 131 

normalized by live cell counts at time zero to calculate survival, and the normalization value was 132 

multiplied by 0.975 after each additional timepoint to reflect the removal of 10 µL of cells from the 133 

original 400 µL sample. 134 

eDNA extraction from aquaria 135 

Animals were maintained at approximately 10°C in individual tanks in 1 L of 1× ASW, with constant 136 

aeration. 24 hrs prior to water collection, the entire volume of the tank water was replaced. Each day for 137 

three days, 250 mL of each water sample was collected, and the entire tank water was replaced, so that 138 

each sampling is from water with 24 hrs of exposure to a single clam. Water samples were vacuum 139 

filtered through a 47 mm 0.45 µm cellulose nitrate filter. Using forceps, the filtered sample/paper was 140 

folded small enough to fit into a 2 mL tube and frozen at -80°C until extraction was performed.  141 
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Extraction protocol was modified from Renshaw et al. (22). Briefly, 900 µL CTAB buffer (2% CTAB 142 

w/v, 20 mM EDTA, 100 mM Tris-HCl, and 1.4 M NaCl, in water) was added to the filter, and the tubes 143 

were incubated at 65°C for 30 min. Tubes were spun to collect the sample in the bottom of the tube and 144 

900 µL chloroform:isoamyl alcohol (24:1) was added, followed by shaking or vortexing. Tubes were 145 

spun for 5 min at 15,000 × g, and the 700-850 µL aqueous layer was transferred to a new tube with 700 146 

µL chloroform. This was shaken and spun as before and the ~700 µL aqueous layer was transferred to a 147 

new tube with 700 µL cold isopropanol and 24 µL 5M NaCl. 4.67 µL glycogen blue was added to ensure 148 

visibility of the pellet, and samples were allowed to precipitate overnight at -20 to -30°C. DNA was spun 149 

for 10 min at 15,000 × g and the liquid removed by pipette. 500 µL of 75% ethanol was slowly added and 150 

poured off. DNA pellets were air dried and resuspended in 100 µL Buffer EB (Qiagen, Hilden, Germany). 151 

Seawater collection and extraction of MarBTN eDNA 152 

Seawater samples were collected from surface water overlying clam-flats in Maine by filling a single 4-153 

liter acid-washed (5% HCl) HDPE bottle from each location (Quahog Bay Dam, June 6, 2021, 154 

43.812541, -69.896802; Gurnet Landing, June 6, 2021, 43.853734, -69.898677; and Long Cove, June 13, 155 

2021, 43.777156, -69.958582). Sample bottles were stored in a cooler with ice packs until delivery to 156 

Bigelow Laboratory within 24 hours of collection. Triplicate sub-samples of 500 mL seawater were 157 

filtered from each bottle onto 47 mm diameter, 0.2 µm Supor filters (Pall Corp., Ann Arbor, MI, USA) to 158 

collect environmental DNA. Filters were rolled and placed in 4.5 mL cryovials (USA Scientific, Ocala, 159 

FL, USA) for storage at -80°C until DNA extraction. Filters were rolled to ensure that the particle-bearing 160 

filter surface faced inward and that the filter would unfurl when it was transferred to a DNA extraction 161 

tube.  162 

Environmental DNA was extracted from the Supor filters using the DNeasy PowerWater kit (Qiagen). 163 

Frozen filters were transferred from the cryovials to the 5 mL PowerWater bead tubes and 1 mL of 164 

warmed (55°C) PW1 solution was added. Bead tubes containing a filter, PW1 solution and garnet beads 165 

were vortexed for 30 min on a Vortex Genie IIT (Scientific Industries, Bohemia, NY, USA) using a 15 166 
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mL tube adapter. After the bead-beating step, the crude cell lysate, extracted Supor filter, and most of the 167 

beads were tapped into the barrel of a sterile 10 mL syringe held over a 2 mL Eppendorf DNA LoBind 168 

tube to catch sample lysate. The syringe's plunger was inserted a short way into the syringe barrel before 169 

the syringe assembly was flipped upright to purge air. The syringe assembly was inverted over the 2 mL 170 

LoBind tube for a second time, and the remaining lysate was pressed out of the bead and filter slurry. The 171 

volume of this crude sample lysate was recorded, and the remainder of the DNA extraction procedure 172 

followed the kit protocol. Extracted DNA samples were stored in DNA LoBind tubes at -20°C until 173 

analysis by qPCR. 174 

qPCR of hemocyte DNA and eDNA  175 

To quantify the presence of neoplastic DNA in a hemolymph genomic DNA or eDNA sample, allele-176 

specific qPCR was performed using four sets of primers (Table S2). The primary locus was a MarBTN-177 

specific insertion of the LTR-retrotransposon Steamer at the N1N2 gene. A MarBTN-specific primer pair 178 

targeting this insertion junction amplifies ½ the total amount of N1N1 alleles in a cancer cell (as the 179 

insertion is in two of four copies of the gene in a tetraploid region) and a primer pair in a conserved 180 

region of the N1N2 ORF nearby quantifies the total copies of the N1N2 locus present. The ratio of the two 181 

can be used to determine the fraction of clam hemolymph made up of MarBTN cells. A single plasmid 182 

(pCR-SteamerLTR-N1N2) was used for the standard curve. It was made by cloning the Steamer-N1N2 183 

amplicon, amplified from genomic DNA of MarBTN cells (Zero Blunt TOPO PCR cloning kit, 184 

Invitrogen, Waltham, MA). The secondary marker was a different MarBTN-specific Steamer integration 185 

site, termed HL03 (23). A plasmid was cloned which includes both the HL03 locus and a separate 186 

conserved region of the EF1α gene as a control (pIMHL03c2-EF1α). Primers used for cloning control 187 

plasmids are listed in Table S2, and sequences have been submitted to GenBank. The plasmid 188 

concentration was measured (Qubit, Thermo Fisher Scientific) and copy number per µL was calculated 189 

based on the plasmid sizes. Plasmids were linearized with 0.25 µL of NotI-HF (NEB, Ipswitch, MA, 190 

USA) for 30 min at 37°C in a 20 µL reaction at 1 × 1010 copies/µL, heat-inactivated 20 min at 65°C, then 191 
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diluted to 1 × 109 with 180 µL Buffer AE (Qiagen). Standard curves were prepared from 1 × 107 192 

copies/rxn to 1 × 101 copies/rxn. For aquaria samples, 2 µL of extracted eDNA was run in 10 µL 193 

reactions on a StepOnePlus real-time PCR cycler (Applied Biosystems, Waltham, MA, USA). For field 194 

eDNA samples, 4 µL of eDNA was used in a 20 µL reaction for increased sensitivity. Reactions were run 195 

as follows: 95°C for 2 min, 40 cycles of 95°C for 15 s and 60°C for 30 s, followed by a melt curve using 196 

95°C for 15 s, 60°C for 1 min, and ramping 0.3°C from 60°C to 95°C, followed by a 15 s hold at 95°C. 197 

All samples were run in triplicate and values presented are an average of triplicates, treating wells with 198 

undetectable amplification as zero copies.  199 

 200 

RESULTS 201 

In order to determine the factors that affect survival of M. arenaria BTN cells in seawater, we collected 202 

MarBTN cells from heavily neoplastic animals and incubated those cells in ASW of varying salinity, pH, 203 

and temperature. Identification of dead cells is challenging in marine cells, as trypan blue (a vital 204 

exclusion dye often used to identify dead cells in mammalian cell culture) precipitates out of solution 205 

when prepared at salinities found in seawater. Therefore, we tested alternate vital dyes, and found that 206 

erythrosine B remains in solution and functions well at salinities up at least twice marine salinity (72 g/L 207 

Instant Ocean, 1.045 sg).  208 

As found in the previous study of bivalve DN cells, MarBTN cells rapidly die in low salinity water 209 

(Figure 1A). In contrast, the majority of cells survive at least 4 hrs in ASW of expected marine salinity in 210 

the New England area (1.023 sg). BTN cells also show the greatest survival at expected marine pH, but 211 

complete cell death required highly acidic conditions not likely to be relevant to the environment (Figure 212 

1B). Variation of temperature from 4 to 37°C, in contrast, had minimal effect on survival within 4 hours 213 

(Figure 1C).  214 
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A four-hour incubation was chosen for these experiments as we found that proliferation of bacteria, 215 

protists, and unknown ciliates led to inconsistent cell survival in ASW beyond short-term incubation 216 

(consistent with Sunila et al). We recently found, however, that with the use of penicillin/streptomycin 217 

and notably, the addition of voriconazole, contaminant overgrowth could be controlled. We were 218 

therefore able to follow MarBTN cell survival long-term. We found that cells were able to survive far 219 

longer than four hours in 1× ASW, approximating typical marine conditions (Figure 2). We observed 220 

some variability in survival times for cells from different donor animals, but overall, we found that cells 221 

consistently survived longer at colder temperatures. At temperatures from 4°C to 16°C, an average of 222 

>48% of BTN cells survived for one week, and, at 4°C, 49% of cells survived for two weeks. For cells 223 

from one animal, >50% of BTN cells were still alive after one month at 4°C (living cells could still be 224 

detected after more than 8 weeks). This dramatically increases the amount of time BTN cells are known 225 

to survive in ASW, showing that BTN cells survive long enough to broadly disseminate through seawater 226 

to infect other clams.  227 

For BTN to be spread through the water, cells need to survive, but they also need to get into the water 228 

from a diseased animal. To test whether BTN cells are released by diseased clams, we used qPCR of 229 

eDNA collected from both aquaria and natural water columns in regions with endemic BTN to look for 230 

two markers found only in M. arenaria BTN cells. Both cancer-specific primer pairs amplify specific 231 

integration sites of the LTR-retrotransposon Steamer, found only in BTN cells (Steamer is highly 232 

amplified within M. arenaria BTN cells, (23)). The cancer-HL03 primers amplify an insertion site cloned 233 

previously (23), and the cancer-N1N2 primers amplify an insertion found near an ORF with high 234 

similarity to the gene N1N2 (identified through preliminary analysis of MarBTN genome sequencing). As 235 

a control, primers in the conserved ORF of N1N2 are used to amplify total copies of the N1N2 locus. Both 236 

alleles in healthy cells amplify only with the healthy N1N2 primers, while MarBTN cells contain both the 237 

normal and the cancer-associated alleles and amplify with both primers (Figure 3A-C).  238 
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To test whether BTN-specific DNA can be released and subsequently detected in seawater, we housed 239 

one healthy and two highly neoplastic animals in separate, individual aquaria, changed the water, and then 240 

after 24 hrs collected a water sample for eDNA extraction. This was done for 3 consecutive days for each 241 

animal (Figure 3D-E). The qPCR data confirm that the healthy animal releases some normal DNA and no 242 

detectible BTN-specific DNA, while the heavily diseased animals release significant amounts of cancer-243 

specific DNA across all three days, although the amount does vary from one 24-hour period to the next. 244 

This pattern is confirmed using the secondary HL03 cancer-specific primer set (Figure S1). Additionally, 245 

we can see that the ratio of cancer-N1N2 to total-N1N2 is between 0.4-0.5, suggesting that the majority of 246 

DNA in the water from both diseased animals came from released BTN cells (the cancer cells contain 247 

both an allele with the insertion and one without, so pure BTN cells have a 0.5 cancer-allele fraction).  248 

The natural clam environment is far larger than a 1 L tank, so we next wished to test whether MarBTN-249 

specific DNA could be found in wild environments where clam populations are known to be affected by 250 

endemic BTN. We chose three populations in Maine, collected surface water samples from each site, 251 

extracted eDNA, and performed qPCR (Figure 3F). Due to the potential for contamination with the 252 

control plasmid, only the HL03 marker was used for analysis of field samples, as this plasmid was not 253 

present in the lab where eDNA was extracted. These results showed levels far lower than aquaria levels 254 

with known heavily diseased animals, as expected, but we did observe MarBTN-specific amplification in 255 

two of the three sub-samples from Long Cove at a level above 1 copy/reaction (with amplification 256 

observed in all triplicate reactions for those two eDNA subsamples). This shows that BTN-specific DNA 257 

can be found in field samples of seawater in addition to being found in more concentrated laboratory 258 

conditions, again providing evidence for the hypothesized seawater-transmission of BTN. 259 

DISCUSSION 260 

This study has shown that MarBTN cells can survive for many weeks in seawater under the right 261 

conditions, that they are acutely impacted by salinity but not pH, and that they can survive longer at 262 

colder environmental temperatures. We also show that eDNA from MarBTN cells can be detected in both 263 
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aquaria and field samples, providing evidence for release of BTN cells from diseased animals for the first 264 

time. The previously proposed mechanism of transmission of BTN through seawater requires both long-265 

term cell survival in the environment and release of BTN cells into the environment by diseased animals. 266 

This study provides evidence supporting both of those requirements.  267 

This study largely agrees with the findings of Sunila et al. (10), showing the strong effect of salinity, but 268 

minimal effect of pH, and minimal effect of temperature on short-term survival except for toxicity at high 269 

temperatures. However, the cancer cells in the previous study demonstrated optimal survival in 10-15 ppt 270 

(approximately 1.0075-1.011 sg), a salinity level that was highly toxic to the cells in this study. Notably, 271 

the samples from that study were collected from northern Chesapeake Bay. In this estuary environment 272 

the surface seawater was 10 ppt, whereas the samples in the current study were taken from the coast of 273 

Maine, where the seawater has a much higher salinity. Sunila et al. had hypothesized an infectious cause 274 

for BTN, but it had not been confirmed at the time of that study, so it is unclear whether the cancer cells 275 

in that study were from the same lineage that is currently affecting New England and Prince Edward 276 

Island clams. The differences between these two findings strongly suggests that there has been evolution 277 

of BTN to survive in the seawater in which it must survive in order to transmit. This could represent 278 

evolution of two separate lineages within different environmental conditions, or it could represent 279 

divergence of a single lineage to better survive in marine vs. estuarine environments. Regardless, both 280 

studies showed that cancer cells were acutely sensitive to salinities lower than 10 ppt (1.0075 sg). To date, 281 

no DN has been observed in freshwater environments, so low-salinity environments may provide a 282 

potential “safe harbor” for bivalves, where transmissible cancer cannot survive. 283 

We found clear evidence that BTN cells survive longer in the environment in colder temperatures, which 284 

may have implications for understanding the seasonality of BTN. BTN in soft-shell clams and other 285 

species have been reported to have seasonal fluctuations in prevalence (20, 24, 25), and these results 286 

suggest that transmission may be more likely in colder seasons, although there are additional unknown 287 

factors, such as the effect of temperature on the progression of disease.  288 
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A very recent study of the MtrBTN2 lineage of transmissible cancer, known to infect four Mytilus species 289 

around the world (14-16), has shown that these cancer cells also can survive for a few days in seawater 290 

(26). The authors assayed cell survival at 18°C; our results showing longer survival of MarBTN at lower 291 

temperatures suggest that their finding of 6-day survival may be an underestimate. It will be interesting to 292 

determine in the future whether our finding of the effects of salinity and temperature on survival are the 293 

same across BTNs from different species.  294 

One limitation of our study is that detection of MarBTN-specific eDNA does not confirm that live cells 295 

are in the environment, only that the DNA can be detected. However, given the fact that BTN cells in 296 

different animals are identical to each other, and that BTN cells can survive well in the marine 297 

environment, it seems reasonable to conclude that eDNA is detecting live cells. This study provides the 298 

proof of principle for an eDNA assay that can be used to determine the timing of cell release during BTN 299 

progression. It can also be used to identify the presence of BTN in field samples, potentially serving as a 300 

non-invasive proxy for monitoring disease in the wild and possibly reducing the requirement for more 301 

invasive and expensive screening of animals for disease.  302 

In this study, we show evidence supporting the long-term survival of MarBTN cells and release of 303 

MarBTN cells from diseased animals. Overall, these data provide proof of principle supporting the 304 

transmission of BTN through the seawater as a pathogen, and they establish new methods to investigate 305 

the mechanisms of BTN survival, progression, and spread. 306 
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 324 

FIGURE LEGENDS 325 

Figure 1. The effect of salinity, pH, and temperature on survival of MarBTN cells in artificial 326 

seawater. BTN cells from soft-shell clams were collected and incubated in ASW with varying (A) 327 

salinity, (B) pH, and (C) temperature for four hours before survival was measured, using erythrosine B to 328 

identify viable cells. Unless it was the variable being tested, ASW was prepared at average marine salinity 329 

(1.023 sg), without additional pH modification (pH 7.93), and held at 16ºC. For pH and temperature 330 

experiments, live cell counts at 4 hrs were normalized by cell counts for each well at initiation of the 331 

experiment, but due to acute toxicity of low salinity, this could not be done for part A. These counts were 332 

normalized by the expected number of cells based on cell counting of the initial cell suspension, assuming 333 
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no loss during centrifugation and pipetting. For each experiment, 3-6 independent replicates using BTN 334 

cells from separate diseased clam donors were conducted (colored points), with the average shown (black 335 

points with line) and error bars showing the standard error of the mean. Identity of clam donors is listed in 336 

Table S1. 337 

Figure 2. The effect of temperature on long-term survival of MarBTN cells in artificial seawater. 338 

BTN cells were collected from three different diseased clams and incubated in ASW (1.023 sg, pH 7.93, 339 

with penicillin/streptomycin/voriconazole). For each clam, cells were incubated in 4ºC, 10ºC, 13ºC, 16ºC, 340 

25ºC, and 37ºC. Cell survival was monitored by resuspension and removal of an aliquot of cells, counted 341 

using erythrosine B, at 4 hrs, 1 day, 2 days, 3 days, 1 week, and weekly beyond that. Experiments were 342 

stopped when survival dropped below 10%.  343 

Figure 3. Detection of MarBTN eDNA from seawater in aquaria and from sites of known endemic 344 

BTN. Representative healthy and cancerous soft-shell clams were identified (A) through a screen of 345 

hemocyte morphology, and (B) the diagnosis was confirmed using a qPCR analysis of genomic DNA 346 

from hemocytes obtained from one of the diseased animal and the healthy animal used in the subsequent 347 

eDNA experiment. (C) The schematic shows the healthy N1N2 allele and the cancer-associated allele, 348 

with arrows indicating the locations of the control primers (Total N1N2, black), used to determine the 349 

total number of clam alleles, and primers specific for the clam BTN lineage (Cancer N1N2, red), used to 350 

quantify BTN DNA. For eDNA analysis (D-E), each animal was housed in a separate aquarium, and 351 

eDNA was extracted from aquaria water on 3 sequential days. (F) Samples of water from sites in Maine 352 

with soft-shell clams known to have BTN were collected and eDNA was extracted. For each site, one 353 

water sample was collected and three sub-samples were extracted separately. qPCR analysis of the 354 

MarBTN-specific marker (Cancer-HL03) confirms detection of BTN DNA in the water. Copy numbers 355 

per µL DNA were converted to copies/mL, based on normalization to the total volume of water extracted. 356 

The dotted line shows 1 copy/reaction. For all qPCR, each sample was run in three reactions, and the 357 

values presented here are averages of the triplicate results. The average value was shown to be above zero 358 
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only if the product was detectible in all triplicate reactions. Water was used as the no template control 359 

(NTC) and was undetectable in all three wells. 360 

 361 
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