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16 Abstract

17 Spatial transcriptomics enables spatially resolved gene expression measurements at near
18 single-cell resolution. There is a pressing need for computational tools to enable the detec-
19 tion of genes that are differentially expressed across tissue context for cell types of interest.
2 However, changes in cell type composition across space and the fact that measurement
2 units often detect transcripts from more than one cell type introduce complex statistical
2 challenges. Here, we introduce a statistical method, Generalized Linear Admixture Models
2 for Differential Expression (GLAMDE), that estimates cell type-specific patterns of differ-
2 ential gene expression while accounting for localization of other cell types. By using general
2 log-linear models, we provide a unified framework for defining and identifying gene expres-
2 sion changes for a wide-range of relevant contexts: changes due to pathology, anatomical
27 regions, physical proximity to specific cell types, and cellular microenvironment. Further-
2 more, our approach enables statistical inference across multiple samples and replicates when
2 such data is available. We demonstrate, through simulations and validation experiments on
30 Slide-seq and MERFISH datasets, that our approach accurately identifies cell type-specific
31 differential gene expression and provides valid uncertainty quantification. Lastly, we apply
3 our method to characterize spatially-localized tissue changes in the context of disease. In an
33 Alzheimer’s mouse model Slide-seq dataset, we identify plaque-dependent patterns of cel-
e lular immune activity. We also find a putative interaction between tumor cells and myeloid
3 immune cells in a Slide-seq tumor dataset. We make our GLAMDE method publicly avail-
36 able as part of the open source R package https://github.com/dmcable/spacexr.

+ Introduction

;s Spatial transcriptomics technologies profile gene expression in parallel across hundreds or thousands
» of genes across spatial measurement units, or pizels [1H9]. These technologies have the potential to
w0 associate gene expression with cellular context such as spatial position, proximity to pathology, or
a cell-to-cell interactions. Studying gene expression changes, termed differential expression (DE), within
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2 tissue context has the potential to provide insight into principles of organization of complex tissues
s and disorganization in disease and pathology [1L|10H13].

4 Current methods for addressing differential expression in spatial transcriptomics fall into two cate-
s gories: nonparametric and parametric methods. Nonparametric differential expression methods [14417]
s do not use constrained hypotheses about gene expression patterns, but rather fit general smooth spatial
« patterns of gene expression. Some of these approaches do not take cell types into account |14/15], while
s« others operate on individual cell types [17]. Discovering non-parametric differential gene expression
s can be advantageous in order to generate diverse exploratory hypotheses. However, if covariates are
so available, for example predefined anatomical regions, parametric approaches increase statistical power
s1  substantially and provide directly interpretable parameter estimates. Specific differential expression
s problems have been addressed with ad-hoc solutions such as detecting gene expression dependent on
3 cell-to-cell colocalization [18] or anatomical regions [10}/19], but no general parametric framework is
s« currently available. In contrast, general parametric frameworks have been widely applied across bulk
s and single-cell RNA-sequencing (scRNA-seq) to test for differences in gene expression across cell type,
s disease state, and developmental state, among other problems [20-22]. Furthermore, although multi-
s» sample, multi-replicate differential expression methods exist for bulk and single-cell RNA-seq [20-22],
ss 10 statistical framework accounting for technical and biological variation [23| across samples and repli-
so cates has been established for the spatial setting.

60 An important challenge unaddressed by current spatial transcriptomics DE methods is accounting
e1 for observations generated from cell type mixtures. In particular, sequencing-based, RNA-capture
2 spatial transcriptomics technologies, such as Visium [7], DBiT-seq [6], GeoMx [§], and Slide-seq [1}2],
ez can capture multiple cell types on individual measurement pixels. The presence of cell type mixtures
s« complicates the estimation of cell type-specific differential expression (i.e. DE within a cell type of
s interest) because different cell types have different gene expression profiles, independent of spatial
e location [24,/25]. Although imaging-based spatial transcriptomics technologies, such as MERFISH (3],
o seqFISH [5], ExSeq [9], and STARmap [4], have the potential to achieve single cell resolution, these
e technologies may encounter mixing or contamination across cell types due to diffusion or imperfect
o cellular segmentation [26]. Several methods [24,27,|28] have been developed to identify cell type
70 proportions in spatial transcriptomics datasets. However, at present no method accounts for cell type
7 proportions in differential expression analysis. Here, we demonstrate how not accounting for cell type
72 proportions leads to biased estimates of differential gene expression due to confounding caused by cell
7z type proportion changes or contamination from other cell types.

74 In this work we introduce Generalized Linear Admixture Models for Differential Expression (GLAMDE),
» a general parametric statistical method that estimates cell type-specific differential expression in the
7 context of cell type mixtures. The first step is to estimate cell type proportions on each pixel using a
7 cell type-annotated single-cell RNA-seq (scRNA-seq) reference [24]. Next, we fit a parametric model,
7 using predefined covariates such as spatial location or cellular microenvironment, that accounts for cell
7 type differences to obtain cell type-specific differential expression estimates and corresponding stan-
s dard errors. The model accounts for sampling noise, gene-specific overdispersion, multiple hypothesis
a1 testing, and platform effects between the scRNA-seq reference and the spatial data. Furthermore, when
&2 multiple experimental samples are available, the GLAMDE model permits statistical inference across
&s  multiple samples and/or replicates to achieve more stable estimates of population-level differential
s gene expression.

& Using simulated and real spatial transcriptomics data, we show GLAMDE accurately estimates cell
s type-specific differential expression while controlling for changes in cell type proportions and contam-
&7 ination from other cell types. We also demonstrate how cell type mixture modelling increases power,
s especially when single cell type measurements are rare. Furthermore, on Slide-seq and MERFISH
s datasets, we demonstrate how GLAMDE’s general parametric framework enables testing differential
o gene expression for diverse hypotheses including spatial position or anatomical regions [29], cell-to-cell
o1 interactions, cellular environment, or proximity to pathology. By associating gene expression changes
e with particular cell types, we use GLAMDE to systematically link gene expression changes to cellular
o3 context in pathological tissues such as Alzheimer’s disease and cancer.
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« Results

s (Generalized Linear Admixture Models for Differential Expression learns cell
» type-specific differential gene expression in the context of spatial transcrip-
~ tomics cell type mixtures

Here, we develop Generalized Linear Admixture Models for Differential Expression (GLAMDE), a
statistical method for determining differential expression (DE) in spatial transcriptomics datasets
(Figure 1a). GLAMDE inputs one or more experimental samples of spatial transcriptomics data,
consisting of Y; ; , as the observed RNA counts for pixel 7, gene j, and experimental sample g. We
then assume Poisson sampling so that,

Yijg | Xijg ~ Poisson(Ni gAi jg), (1)

with A, ; 4 the expected count and N; 4 the total transcript count (e.g. total UMIs) for pixel i on
experimental sample g. Accounting for platform effects and other sources of technical and natural
variability, we assume J; j 4 is a mixture of K cell type expression profiles, defined by,

K

log(Ai j.g) = log (Z Bi,k,gﬂi,k,j,g> + V.9 + €irjgs (2)

k=1

s With 15 ;4 the cell type-specific expected gene expression rate for pixel 4, gene j, experimental sample

% g, and cell type k; ;1. 4 the proportion of cell type & contained in pixel i for experimental sample g;

w0 7Yj,4 a gene-specific random effect that accounts for platform variability; and €; ;4 a random effect to
1w account for gene-specific overdispersion.

To account for cell type-specific differential expression, we model across pixel locations the log of

the cell type-specific profiles 1i; ;.4 as a linear combination of L covariates used to explain differential
expression. Specifically, we assume that,

L
108 (Hi k jg) = C0.kjig T D Tirk gk jug- (3)

=1
w2 Here, ag 1, j,4 represents the intercept term for gene j and cell type k in sample g, and z, ¢ , represents
w3 the £’th covariate, evaluated at pixel ¢ in sample g. Similarly as in linear and generalized linear
e models [30], z, also called the design matriz, represents predefined covariate(s) that explain differential
ws  expression, and the corresponding coefficient(s) ay ;.4 €ach represent the DE effect size of covariate £
ws for gene j in cell type k for sample g.
107 With this general framework we can describe any type of differential expression that can be pa-
s rameterized with a log-linear model. Examples include (Figure 1b):

100 1. Differential expression between multiple regions. In this case, the tissue is manually segmented
110 into multiple regions (e.g. nodular and anterior cerebellum, Figure 3). Design matrix  contains
m discrete categorical indicator variables representing membership in 2 or greater regions.

12 2. Differential expression due to cellular environment or state (special case of (1)). Pixels are
13 discretely classified into local environments based on the surrounding cells (e.g. stages in the
114 testes Slide-seq dataset, Figure 4).

115 3. Differential expression as a function of distance to a specific anatomical feature. In this case,
116 x is defined as the spatial position or distance to some feature (e.g. distance to midline in the
7 hypothalamus MERFISH dataset, Figure 4).

118 4. Cell-to-cell interactions. In this case, we define a cell-to-cell interaction as differential expression
119 within one cell type (A) due to co-localization with a second cell type (B) (e.g. immune cell
120 density in cancer, Figure 5). For this problem, z is the continuous density of cell type B.
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121 5. Proximity to pathology. Similar to (4), except covariate x represents density of a pathological
122 feature (e.g. Alzheimer’s AS plaque, Figure 4), rather than cell type density.

123 6. General spatial patterns (termed nonparametric). In this case, we define design matrix x to
124 be smooth basis functions [31], where linear combinations of these basis functions represent the
125 overall smooth gene expression function and can accommodate any smooth spatial pattern.

126 To estimate this complex model with a computationally tractable algorithm, we note that the gene

17 expression variability across cell types is large enough that, in the first step, we can assume fi; ;g
s does not vary with ¢ and g and estimate 8 using a previously published algorithm [24]. Here, some
120 pixels are identified as single cell types while others as mixtures of multiple cell types. Fixing the
10 [ estimates, we next use maximum likelihood estimation to estimate the cell type-specific DE coef-
wm  ficients « with corresponding standard errors, allowing for false discovery rate-controlled hypotheses
1 testing (see Methods for details). Lastly, GLAMDE performs statistical inference across multiple repli-
133 cates and/or samples, accounting for biological and technical variation across replicates, to estimate
1 consensus population-level differential expression (Methods, Supplementary Figure 1).

135 Because ground truth cell type-specific DE is unknown in spatial transcriptomics data, we first
s benchmarked GLAMDE’s performance on a simulated spatial transcriptomics dataset in which gene
137 expression varied across two regions. Considering the challenging situation where two cell types, termed
s cell type A and cell type B, are colocalized on pixels within a tissue, we simulated, using a single-nucleus
e RNA-seq cerebellum dataset, spatial transcriptomics mixture pixels with known proportions of single
1o cells from two cell types known to spatially colocalize [32] (Methods, Figure 2a). Across two spatially-
w1 defined regions, we varied both the true cell type-specific gene expression of cell types A and B as well
2 as the average cell type proportions of cell types A and B (Figure 2a, Supplementary Figure 2). We
s compared GLAMDE against three alternative methods (see Methods for details): Bulk, bulk differential
e expression (ignoring cell type); Single, single cell differential expression that approximates each cell
us type mixture as a single cell type; and Decompose, a method that decomposes mixtures into single
us  cell types prior to computing differential expression. By varying cell type frequencies between the two
w  regions without introducing differential expression, we observed that GLAMDE correctly attributes
us  gene expression differences across regions to differences in cell type proportions rather than spatial
1o differential expression (Figure 2b, Supplementary Figure 2); in contrast, the Bulk method incorrectly
1o predicts spatial differential expression since it does not control for differences of cell type proportions
151 across regions.

152 Next, we simulated cell type-specific differential expression (DE) by varying the differential expres-
153 sion in cell type A while keeping cell type B constant across regions. Background DE in cell type A
15« contaminated estimates of differential expression in cell type B for all three alternatives models Bulk,
155 Decompose, and Single (Figure 2c, Supplementary Figure 2). In contrast, GLAMDE’s joint model of
156 cell type mixtures and cell type-specific differential expression correctly identified differential expression
17 in cell type A, but not cell type B. Next, we verified that, under the null hypothesis of zero differential
155 expression, GLAMDE’s false positive rate was accurately controlled, standard errors were accurately
50 estimated, and confidence intervals contained the ground truth DE (Figure 2d, Supplementary Fig-
o ure 2). Finally, when nonzero differential expression was simulated, GLAMDE achieved unbiased
o1 estimation of cell type-specific differential expression (Figure 2e). We also found that the power of
12 GLAMDE depends on gene expression level, number of cells, and differential expression magnitude
163 (Supplementary Figure 2). Thus, our simulations validate GLAMDE’s ability to accurately estimate
e and test for cell type-specific differential expression in the cases of asymmetric cell type proportions
15 and contamination from other cell types.

e GLAMDE accurately identifies cell type-specific differential expression in
» spatial transcriptomics data

s To validate GLAMDE’s ability to discover cell type-specific differential expression on spatial transcrip-
e tomics data, we collected Slide-seqV2 data [2] (including one replicate sourced from a prior study [24])
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wo  for three cerebellum replicates. We identified a spatial map of cell types (Figure 3a), previously shown
. to correspond to known cerebellum spatial architecture [24]. We used discrete localization in the ante-
w2 tior lobule or nodulus regions (Figure 3b), a known axis of spatial gene expression variation within the
s cerebellum [32], as a covariate and estimated cell type-specific DE across regions using GLAMDE (Fig-
s ure 3¢, Supplementary Figure 3, Supplementary Table 1). As experimental validation, we performed
s hybridization chain reaction (HCR) on four genes identified to be differentially expressed in specific
wes cell types, and we observed high correspondence between GLAMDE’s estimates of cell type-specific
177 differential expression and DE measurements from HCR data (Figure 3d, R? = 0.89). For example,
s we examined Aldoc and Plebs, two genes expressed in both Purkinje and Bergmann cell types, which
o are known to spatially colocalize in the cerebellum and appear as mixtures on Slide-seq pixels [24].
1o GLAMDE determined that both Aldoc (log2-fold-change = —4.24, p < 107%) and Plcbj (log2-fold-
w1 change = 1.93, p < 1078) were differentially expressed in the Purkinje cell type, but not the Bergmann
2 cell type. Similarly, HCR images of Aldoc and Plcbj showed substantial differential expression within
183 Purkinje cells across the nodulus and anterior lobule, whereas expression within Bergmann cells was
e  relatively even across regions (Figure 3d—e). We conclude that GLAMDE can successfully identify cell
185 type-specific spatial differential expression in spatial transcriptomics tissues, even when multiple cell
186 types are spatially colocalized.

v GLAMDE solves a diverse array of differential gene expression problems in
s spatial transcriptomics

1o We next explored the effect of discrete cellular microenvironments on cell type-specific DE in the mouse
0o testes Slide-seq dataset [12]. GLAMDE’s testes principal cell type assignments (Figure 4a) revealed
11 tubular structures corresponding to cross-sectional sampling of seminiferous tubules. Individual tubules
12 have distinct stages of spermatogonia development, grouped into four classes of stages I-III, IV-VI,
13 VII-VIII, and IX-XII, which were determined from the prior testes Slide-seq study using tubule-
e level gene expression clustering [12] (Figure 4b). Given that each tubule stage represents a distinct
105 microenvironment along the testes developmental trajectory, we applied GLAMDE to identify genes
s that were differentially expressed, for each cell type, across tubule stages (Supplementary Table 2).
17 Furthermore, GLAMDE identified genes expressed in a single tubule stage within a single cell type
s (Figure 4c) which are known drivers of cellular development across stages [12]. For instance, the gene
wo  Tnpl was identified by GLAMDE as upregulated in the IX-XII stage within the elongating spermatid
20 (ES) cell type, in agreement with the known biological role of Tnp! in nuclear remodeling of elongating
a1 spermatids at the late tubule stage [33] (Supplementary Figure 4). After identifying stage-specific genes
22 within each cell type, we additionally found that a majority of GLAMDE-identified stage-specific genes
203 followed cyclic patterns across stages, consistent with previously-characterized cyclic gene regulation
200 in what is referred to as the seminiferous epithelial cycle [34] (Supplementary Figure 4).

205 Next, we evaluated GLAMDE’s ability to identify DE for cell types that primarily appear as
206 mixtures with other cell types, particularly the spermatocyte (SPC) cell type. According to GLAMDE
27 cell type assignments, SPC frequently co-mixes with the ES and round spermatid (RS) cell types,
208 consistent with the known colocalization of spermatocytes with spermatids from previous histological
200 studies [35] (Supplementary Figure 4). Due to GLAMDE'’s ability to learn DE from cell type mixtures,
20 GLAMDE obtained increased power for identifying differentially expressed genes compared to a DE
au method that only uses single cell type pixels (see Supplementary Methods for details, Supplementary
22 Figure 4), especially for spermatocyte cell type (217 significant SPC DE genes discovered by GLAMDE
23 vs. 1 DE gene for the single cell method). In order to validate GLAMDE’s determination that Prss40
24 (log2-fold-change = 1.72, p = 8-10~°) and Snz3 (log2-fold-change = 1.17, p < 10~8) were differentially
a5 expressed, between stage I-1II and stage IX-XII, specifically in the SPC cell type, we compared the
26 average gene expression for three categories of testes pixels: pixels containing spermatid cell types,
27 but not SPC (called S+, SPC-); pixels containing both spermatid and SPC cell types (S+, SPC+);
25 and pixels containing SPC but not spermatids (S-, SPC+) (Figure 4d). For both genes, differential
210 expression across stages was not observed in (S+, SPC-) pixels, indicating that the spermatid cell types


https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.26.474183; this version posted December 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

20 do not exhibit DE. However, (S+, SPC+) pixels are significantly differentially expressed across stages,
21 enabling GLAMDE to infer DE specifically in the SPC cell type. On the other hand, (S-, SPC+)
2 pixels, which include SPC single cells, are not significantly differentially expressed across regions, due
223 to their low sample size. Therefore, GLAMDE’s ability to handle cell type mixtures uniquely enables
24 the discovery of differential expression, even in cell types that only appear as mixtures with other cell
25 types.

» GLAMDE identifies spatial gene expression changes in imaging-based technologies

27 Next, we demonstrated the utility of GLAMDE on an imaging-based spatial transcriptomics dataset
»s (i.e. MERFISH) which achieves closer to single-cell resolution compared to capture-based spatial tran-
20 scriptomics technologies (e.g. Slide-seq, Visium), which contain frequent cell type mixtures [24]. To
20 do so, we applied GLAMDE to a MERFISH dataset collected in the mouse hypothalamus. During
2 development, hypothalamic progenitors create radial projections out from the hypothalamic midline,
2» which are used as scaffolds for the migration of differentiating daughter cells |36]. Thus, we investigated
13 radial distance to the hypothalamus midline as a predictor of differential expression in hypothalamus
2 cell types. First, we assigned cell types and found them to be consistent with the prior MERFISH hy-
25 pothalamus study [11] (Figure 4e). Although GLAMDE mostly assigned single cell types to MERFISH
26 pixels, a non-negligible proportion (12.6% double cell type pixels out of n = 3790 total single and dou-
27 ble cell type pixels) of pixels were assigned as mixtures of more than one cell type. Next, we computed
2 midline distance as a covariate for GLAMDE (Figure 4f), and we next detected genes in hypothalamus
29 excitatory, inhibitory, and mature oligodendrocyte cell types whose expression depended either linearly
20 or quadratically on distance from the midline (Figure 4g, Supplementary Table 3-4). For instance,
a1 Slc18a2 (Figure 4h), identified by GLAMDE as differentially upregulated within inhibitory neurons
22 near the midline (log2-fold-change = 6.14, p < 1078), is required for dopaminergic function in certain
23 inhibitory neuronal subtypes |37], which are known to localize near the hypothalamus midline [11].

x4 GLAMDE enables discovery of AS plaque-dependent cell type-specific differential ex-
25 pression in Alzheimer’s disease

26 We next explored the use of pathological staining, in particular AS plaques, as a continuous covariate
a7 for cell type-specific gene expression changes. To do so, we performed Slide-seqV2 on the hippocampal
2 region of a genetic mouse model of amyloidosis in Alzheimer’s disease (AD) [38] (J20, n= 4 slices,
20 Methods). GLAMDE identified spatial maps of cell types (Figure 4i) which were consistent with past
50 characterizations of hippocampus cellular localization [24]. We collected paired A plaque staining
51 images (Anti-Human AS Mouse IgG antibody, Methods) to quantify the AS plaque density to use as
2 a covariate for GLAMDE (Figure 4j, Supplementary Figure 5). We then used GLAMDE to identify
253 genes whose expression depended in a cell type-specific manner on Af plaque density (Figure 4k,
25 Supplementary Table 5). For instance, we found that Gfap was enriched in astrocytes colocalizing
x5 with AS plaque (Figure 41, Supplementary Figure 5, log2-fold-change = 1.35, p < 107%), a result
6 corroborated by studies that have established the role of Gfap in attenuating the proliferation of A3
»s7 plaques [39]. GLAMDE additionally discovered upregulation in astrocytes of the C4/b complement
x5 gene (log2-fold-change = .85, p = 1-10~%), which is involved in plaque-associated synaptic pruning in
20 Alzheimer’s disease [40H42]. Moreover, several cathepsin proteases including Ctsb (log2-fold-change =
w0 1.65, p < 1078), Ctsd (log2-fold-change = 1.30, p < 10~8) Ctsl (log2-fold-change = 1.96, p = 4-107%),
2 and Ctsz (log2-fold-change = 1.11, p = 3 - 10™%) were determined to be differentially upregulated
»%2 in microglia around plaque, consistent with prior evidence that cathepsins are involved with amyloid
s degradation in Alzheimer’s disease [43| (Supplementary Figure 5). In microglia, we also identified
s known homeostatic microglia markers [44H46| including P2ry12 (log2-fold-change = —1.33, p < 107%)
s and Cz3erl (log2-fold-change = —0.68, p = 3-107%) as downregulated in the presence of plaque. Apoe,
26 which is known to have AS plaque-dependent upregulation within microglia [47], was also detected
%7 as significant (log2-fold-change = 1.58, p < 10~%), although it did not pass default GLAMDE gene
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s filters (Methods) due to its four-fold higher expression in astrocytes than microglia. Finally, the anti-
%0 inflammatory gene Grn was determined by GLAMDE to be upregulated in microglia near plaque
o0 (log2-fold-change = 0.79, p = 6 - 10~%), consistent with prior knowledge [48].

on - GLAMDE discovers tumor-immune signaling in a mouse tumor model

a» Finally, we applied GLAMDE to identify genes with cell type-specific spatial differential expression in
s a Slide-seq dataset of a Kras®'?P/+ Trpsg/- (KP) mouse tumor model [494|50], where we analyzed a
oia - single metastatic lung adenocarcinoma tumor deposit in the liver. We first used GLAMDE to generate
s a spatial map of cell types and found several cell types within the tumor, including both tumor
zs  cells and myeloid cells (Figure 5a). Next, we ran GLAMDE nonparametrically to discover arbitrary
o7 smooth gene expression patterns (see Supplementary Methods for details, Supplementary Table 6). For
s gene expression within the tumor cell type, this procedure identified three categories of genes: genes
o9 with variable expression purely due to sampling noise rather than biology, genes exhibiting biological
0 variation partially explained by the spatial GLAMDE model, and genes exhibiting biological variation
21 not explained by the spatial model (Figure 5b, Supplementary Figure 6). We then hierarchically
22 clustered the GLAMDE fitted spatial patterns of significant differentially expressed genes within the
23 tumor cell type into seven clusters with distinct spatial patterns (Figure 5c, Supplementary Figure
2 6). We tested each cluster for gene set enrichment (see Supplementary Methods for details), and we
x5 identified the Myc targets gene set as enriched in cluster 5 (7 out of 12 genes, p = 2 - 107%, two-
25 sided binomial test, Supplementary Table 7, 1 significant gene set out of 50 tested), a cluster with a
2s7  spatial pattern of overexpression at the tumor boundary (Figure 5d). High expression of Myc target
28 genes is potentially indicative of an increased rate of proliferation [51] at the boundary, which has
20 been previously proposed as a correlate of tumor severity [52]. For example, the Myc target found
20 to have the most differential upregulation at the tumor boundary, Kpnb! (Supplementary Figure 6,
20 p = 1-107%), has been previously been identified as an oncogene that drives cell proliferation and
202 suppresses apoptosis [53}[54].

203 Given the substantial variation in tumor cell spatial expression patterns, we next tested if such
2 variability could be explained by cell-to-cell interactions with immune cells, which have been shown to
205 influence tumor cell behavior in prior studies [55-57]. Using myeloid cell type density as the GLAMDE
25 covariate (Figure 5e), GLAMDE identified genes with immune cell density-dependent cell type-specific
27 differential expression (Figure 5f, Supplementary Table 8), including several genes that were also
208 discovered by our nonparametric procedure (Supplementary Figure 6). One of the genes with the
0o largest effects, Ccl2 (log2-fold-change = 1.74, p < 1078), is a chemotactic signaling molecule known
w0 to attract myeloid cells [58}59]. Furthermore, we tested GLAMDE’s DE gene estimates for aggregate
s effects across gene sets and found that the epithelial-mesenchymal transition (EMT) pathway was
a2 significantly upregulated on average near immune cells (Figure 5f, Supplementary Figure 6, p = 0.0011,
203 permutation test (see Methods), 1 significant gene set out of 50 tested, Supplementary Table 7).
3¢ GLAMDE additionally identified Nfkb! as upregulated in tumor cells in immune-rich regions (log2-
s fold-change = 1.10, p = 1-107°), a gene that has been previously implicated in positively regulating the
s EMT pathway of tumor cells [60,(61]. Moreover, the majority of tumor cells exhibiting a mesenchymal
a7 phenotype were located in immune-rich regions (Figure 5g). Furthermore, morphological analysis and
ss  annotation of an hematoxylin and eosin (H&E) stained adjacent section of the tumor demonstrated a
39 clear increase in the number of spindle-shaped tumor cells relative to polygonal-shaped tumor cells in
a0 the immune rich-areas (Figure 5h). The collective morphological and gene expression changes suggest
sn  a role for the immune microenvironment in influencing the epithelial-mesenchymal transition in this
sz tumor model [62]. Therefore, both exploratory nonparametric GLAMDE and more targeted immune
sz cell-dependent DE reveal biologically-relevant signatures of differential gene expression.
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+« Discussion

a5 Elucidating spatial sources of differential gene expression is a critical challenge for understanding
a6 biological mechanisms and disease with spatial transcriptomics. Here we introduced GLAMDE, a
a7 statistical method to detect cell type-specific DE in spatial transcriptomics datasets. GLAMDE takes
a8 as input one or more biologically-relevant covariates, such as spatial position or cell type colocalization,
a9 and identifies genes, for each cell type, that significantly change their expression as a function of
20 these covariates. Tested on simulated spatial transcriptomics data, GLAMDE obtained unbiased
a1 estimation of cell type-specific differential gene expression with a calibrated false positive rate, while
s other methods were biased from changes in cell type proportion or contamination from other cell
23 types. In the cerebellum, we additionally used HCR experiments to validate GLAMDE’s ability to
24 identify cell type-specific DE across regions. We further applied GLAMDE to a detect differential
w5 expression depending on tubular microenvironment in the testes, midline distance in the MERFISH
16 hypothalamus, and AS plaque density in the Alzheimer’s model hippocampus. Finally, we applied
327 both nonparametric and parametric GLAMDE procedures in a mouse tumor model to discover an
»2s increase in tumor cells undergoing EMT transition in immune-rich regions.

329 Several studies have established the importance of accounting for cell type mixtures in assigning
a0 cell types in spatial transcriptomics data [24,27)/28]. However, it remains a challenge to incorporate cell
s type proportions into models of cell type-specific spatial differential gene expression. GLAMDE enables
s such cell type-specific DE discovery by creating a statistical model of cell type-specific differential gene
;3 expression in the presence of cell type mixtures. In this study, we demonstrated how other potential
s solutions, such as bulk DE, approximation as single cell types, and decomposition into single cell types
135 can be confounded by cell type proportion changes and contamination from other cell types. GLAMDE
35 solves these issues by controlling for cell type proportions and jointly considering differential expression
;7 within each cell type. Even in imaging-based spatial transcriptomics methods such as MERFISH that
;s mostly contain single cell type pixels, we detected some pixels with cell type mixtures, indicating
s potential diffusion or imperfect cell segmentation [26]. To control for cell type proportions in DE
s analysis, GLAMDE can estimate cell types directly or import cell type proportions from any cell type
s mixture identification method [24127,[28].

342 GLAMDE provides a unified framework for detecting biologically-relevant differential expression
w3 in spatial transcriptomics tissues along diverse array of axes including spatial distance, proximity to
s pathology, cellular microenvironment, and cell-to-cell interactions. In settings without prior biological
s hypotheses, GLAMDE may be run nonparametrically to discover general cell type-specific spatial
us  gene expression patterns. When using problem-specific knowledge to generate biologically-relevant
s DE predictors, parametric GLAMDE efficiently detects DE genes along the parametric hypothesis
us  axes. GLAMDE can also be used to test among multiple models of differential expression, such as the
uo  linear and quadratic models applied to the hypothalamus dataset. GLAMDE can also utilize multiple
0 covariates in a joint model of gene expression, such as spatial position and cell type colocalization,
s although more complicated models require more data to fit accurately. Beyond individual samples,
32 GLAMDE can also perform differential expression statistical inference at the population level across
i3 multiple replicates or biological samples, including modeling biological and technical variability in
s complex multi-sample, multi-replicate experiments. Multi-replicate experiments, though more costly,
s produce more robust DE estimates by reducing spurious discoveries of DE on single replicates.

356 One challenge for GLAMDE is obtaining sufficient DE detection statistical power, which we ob-
37 served can be hindered by low gene expression counts, small pixel number, or rare cell types. An
s advantage of GLAMDE is that it increases its statistical power by including cell type mixture pixels in
30 its model. Ongoing technical improvements in spatial transcriptomics technologies |2] such as increased
0 gene expression counts, higher spatial resolution, and increased pixel number, have the potential to
s dramatically increase the discovery rate of GLAMDE. Another limitation of GLAMDE is the require-
w2 ment of an annotated single-cell reference for reference-based identification of cell types in the cell
w3 type assignment step. Although single-cell atlases are increasingly available for biological tissues, they
s may contain missing cell types or substantial platform effects [24], and certain spatial transcriptomics
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35 tissues may lack a corresponding single-cell reference.

366 We envision GLAMDE to be particularly powerful in the context of bridging cell type-specific gene
7 expression changes in pathology. Here, we demonstrate this in two contexts: one, wherein we leverage
s histological features (A plaques) as a covariate, and two, wherein we nominate tumor-immune inter-
w0 actions as a covariate. In the first, prior Alzheimer’s disease (AD) studies have discovered candidate
s genes for disease-relevance through GWAS [63], bulk RNA and protein differences between AD and
s control samples [64], and single cell expression differences of disease associated cellular subtypes [41].
sn Here, with GLAMDE, we identify many genes previously identified by these methods including Gfap
s in astrocytes [39] and Apoe in microglia [47]; furthermore, we take known disease-level associations
s a step further towards mechanistic understanding by directly associating spatial plaque localization
a5 with cell type-specific differential expression. For example, prior studies have established an associ-
w ation between complement pathway activation in plaque-dense areas with synaptic pruning [40] and
s neuronal degeneration [41] leading to cognitive decline. Using GLAMDE we provide evidence for the
ws upregulation of complement protein C4b specifically within plaque-localized astrocytes [65]. Thus,
s amyloid plaques may trigger a cytokine-dependent signaling cascade that stimulates the expression
0 of complement genes in astrocytes, as supported by prior studies [42]. In contrast to C4b upregula-
s tion, homeostatic microglia marker P2ry12, discovered by GLAMDE to be negatively plaque-associated
s within microglia, has been shown to be downregulated in microglia in Alzheimer’s disease (AD), a phe-
33 nomena associated with neuronal cell loss [44]. P2ry12 is involved in early stage nucleotide-dependent
s activation of microglia and is downregulated in later stages of activated microglia [46]. We hypothesize
;s that plaque-dense areas in AD trigger microglia activation which downregulates homeostatic microglia
s genes such as P2ryl2. Lastly, the granulin gene (Grn), discovered by GLAMDE as upregulated in
;7 microglia near plaques, is an anti-inflammatory gene that attenuates microglia activation [66]. It has
ss  been shown to be upregulated in plaque-localized microglia in AD [48] and to potentially have a role in
s reducing plaque deposition and cognitive pathological effects in AD [67] and other pathological protein
w0 aggregates [68].

301 Second, GLAMDE has the potential to elucidate tissue interactions driving system-level behavior
s in complex tissues. For example, recent studies have characterized cell-to-cell interactions of immune
03 cells influencing the behavior of tumor cells [55H57]. Consistent with these studies, on a Slide-seq
s dataset of a mouse tumor model, GLAMDE identified several genes whose expression within tumor
w5 cells was upregulated near myeloid immune cells. We postulate that the tumor cells and myeloid cells
e are involved in a synergistic feedback loop, driven by cell-to-cell signaling. For example, Ccl2, found
37 by GLAMDE to be upregulated in immune-adjacent tumor cells, is known to chemotactically recruit
;s myeloid cells and to induce pro-tumorigenic behavior, including growth, angiogenesis, and metastasis,
20 in myeloid cells [58}/59]. Another synergistic immune-tumor interaction identified by GLAMDE is the
w0 myeloid-associated upregulation of the epithelial-mesenchymal transition (EMT) pathway, known to
s be involved in tumor development and metastasis [62]. Although GLAMDE established an association
a2 between immune cell colocalization and mesenchymal-like tumor cell state, conclusive establishment of
w3 mechanism of causation requires future experimentation. Among other hypotheses, it is plausible that
ws  myeloid cells induce tumor cells to undergo the EMT transition, potentially through the NF-xB (also
ws identified as upregulated by GLAMDE) signaling pathway, as supported by other studies [55H57}/62].
ws Future work is necessary to characterize this phenomena across a broader cohort of samples and to
w7 establish specific molecular mechanisms. Overall, these results highlight the power of combining the
ws  GLAMDE framework with pathological measurements to understand cell type-specific responses to
w0 disease and injury. We envision GLAMDE as a powerful framework for the systematic study of the
a0 impacts of spatial and environmental context on cellular gene expression in spatial transcriptomics
a1 data.
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«» Methods

413 GLAMDE model

ss  Here, we describe Generalized Linear Admixture Models for Differential Expression (GLAMDE), a
a5 statistical method for identifying differential expression (DE) in spatial transcriptomics data. Please
as  first refer to the overall definition of the GLAMDE model in equations , , and . Prior to fitting
a7 GLAMDE, the design matrixz x is predefined to contain covariates, variables on which gene expression
as  is hypothesized to depend such as spatial position or cellular microenvironment. Recall that x; 4
a9 represents the £’th covariate, evaluated at pixel ¢ in experimental sample g. For each covariate x. ¢ 4,
a0 there is a corresponding coefficient oy ; 4, representing a gene expression change across pixels per
a1 unit change of x. ¢ ; within cell type £ of experimental sample g. Next, recall from random effects
w22 7Y, and €; j 4, which we assume both follow normal distributions with mean 0 and standard deviations
2 044 and o j 4, respectively. We designed the overdispersion magnitude, o. ;4 to depend on gene j
«2¢  because we found evidence that the overdispersion depends on gene j (Supplementary Figure 7), and
s modeling gene-specific overdispersion is necessary for controlling the false-positive rate of GLAMDE.
26 Due to our finding that genes can exhibit DE in some but not all cell types (see e.g. Figure 3c),
27 GLAMDE generally does not assume that genes share DE patterns across cell types, allowing for the
w8 discovery of cell type-specific DE. We also developed an option where DE can be assumed to be shared
w90 across cell types (Supplementary Methods). We note that GLAMDE can be thought of as a modification
a0 of the generalized linear model (GLM) [30] in which each cell type follows a log-linear model before
a1 an admixture of all cell types is observed. As a result, we term our model as a Generalized Linear
2 Admixture Model (GLAM). See |Fitting the GLAMDE model and [Hypothesis testing for GLAMDE
a3 model fitting and hypothesis testing, respectively.

~ Parameterization of the design matrix

a5 For specific construction of design matrix « for each dataset, see[Cell type estimation and construction|
a6 |of covariatess Recall the specific examples of design matrix x presented in Figure 1b. In general, we
.7 note that x can take on the following numerical forms:

438 1. Indicator variable. In this case, z; ¢ 4 is always either 0 or 1. This represents differential expression
439 due to membership within a certain spatially-defined pixel set of interest. The coefficient ay ;4
440 is interpreted as the log-ratio of gene expression between the two sets for cell type k and gene j
aa1 in experimental sample g.

a2 2. Continuous variable. In this case, z; ¢ 4 can take on continuous values representing, for example,
a3 distance from some feature or density of some element. The coefficient oy ;4 is interpreted
a4 as the log-fold-change of gene expression per unit change in ;¢ 4 for cell type k and gene j in
aa5 sample g.

6 3. Multiple categories. In this case, we use x to encode membership to finitely many L > 2 sets.
47 For each 1 < £ < L, we define x; ¢4 to be an indicator variable representing membership in set
418 ¢ for sample g. To achieve identifiability, the intercept is removed. The coefficient oy ;¢ is
449 interpreted as the average gene expression in set ¢ for cell type k and gene j. Cell type-specific
450 differential expression is determined by detecting changes in ay 1 ;4 across ¢ within cell type k
451 and sample g.

a2 4. Nonparametric. In this case, we use x to represent L smooth basis functions, where linear
453 combinations of these basis functions represent the overall smooth gene expression function. By
454 default, we use thin plate spline basis functions, calculated using the mgcv package [31].

ss5  In all cases, we normalize each x; ¢ 4 to range between 0 and 1. The problem is equivalent under linear
a6 transformations of x, but this normalization helps with computational performance. The intercept
7 term, when used, is represented in x as a column of 1’s.
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= Fitting the GLAMDE model

w0 GLAMDE estimates the parameters of , 7 and via maximum likelihood estimation. First, we
w0 note that all parameters and parameter relationships in the model are independent across samples, so
w1 we fit the model independently for each sample. We will return to the issue of population inference
w2 across multiple samples in|Statistical inference on multiple samples/replicates Next, the parameters of
w3 [ ) and 7; are estimated by the RCTD algorithm as previously described [24]. We note that GLAMDE
s can also optionally import cell type proportions from external cell type proportion identification meth-
w5 ods [27}28]. Here, some pixels are identified as single cell types while others as mixtures of multiple
ws  cell types. We can accurately estimate cell type proportions and platform effects without being aware
w7 of differential spatial gene expression because differential spatial gene expression is smaller than gene
ws  expression differences across cell types. After determining cell type proportions, GLAMDE estimates
w0 gene-specific overdispersion magnitude o, ;, for each gene by maximum likelihood estimation (see
wo  Supplementary Methods for details). Finally, GLAMDE estimates the DE coefficients a by maximum
wm  likelihood estimation. For the final key step of estimating «, we use plugin estimates (denoted by )
a2 of B, v, and o.. After we substitute (3) into (1)) and (2), we obtain:

K L
Bi kg €XP <ao,k,j,g +y xi,e,gae,k,j,g» + %9 + Ez‘,j,g] }
=1
(4)

Eig,g ~ Normal(oa(}g,j,g)’ .

Yijgl€ijg~ Poisson{Ni’g exp [log <
k=1

az We provide an algorithm for computing the maximum likelihood estimator of «, presented in the
aa Supplementary Methods. Our likelihood optimization algorithm is a second-order, trust-region based
a5 optimization (see Supplementary Methods for details). In brief, we iteratively solve quadratic approx-
a  imations of the log-likelihood, adaptively constraining the maximum parameter change at each step.
w7 Critically, the likelihood is independent for each gene j (and sample g), so separate genes are run in
ws parallel in which case there are K x (L 4+ 1) « parameters per gene and sample.

= Hypothesis testing

w0 In addition to estimating the vector «;, (dimensions L + 1 by K) for gene j and sample g, we
w1 can compute standard errors around «; 4. By asymptotic normality (see Supplementary Methods for
w2 details), we have approximately that (setting n to be the total number of pixels),

Vn(&;,g — ajg) ~ Normal(0, I(;jlg), (6)

w3 where I, is the Fisher information of model , which is computed in the Supplementary Methods.
s Given this result, we can compute standard errors, confidence intervals, and hypothesis tests. As a

s consequence of (6]), the standard error of ay, ;,4, denoted sy j g, is 1/ (Ia,, )ek/n.

486 First, we consider the case where we are interested in a single parameter, ay . j,4, for £ and g fixed
s and for each cell type £ and gene j; for example, ay i ; 4 could represent the log-fold-change between
s two discrete regions. In this case, for each gene j, we compute the z-statistic, z¢y ;4 = (:f:i;;
w0 Using a two-tailed z-test, we compute a p—value for the null hypothesis that oy ;4 = 0 as pgvk;j;q’:
w0 2% F(—|z¢kgl), where F' is the distribution function of the standard Normal distribution. Finally,
w1 g-values are calculated across all genes within a cell type in order to control the false discovery rate
w2 using the Benjamini-Hochberg procedure [69]. We used a false discovery rate (FDR) of .01 (0.1 for
w3 nonparametric case) and a fold-change cutoff of 1.5 (N/A for nonparametric case). Additionally, for
ws each cell type, genes were pre-filtered so that the expression within the cell type of interest had a total
w5 expression of at least 15 unique molecular identifiers (UMIs) over all pixels and at least 50% as large
16 mean normalized expression as the expression within each other cell type.
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497 For the multi-region case, we instead test for differences of pairs of parameters representing the
w8 average expression within each region. As a result, p—values are scaled up due to multiple hypothesis
w0 testing. We select genes which have significant differences between at least one pair of regions. For
so0 other cases in which we are interested in multiple parameters, for example the nonparametric case, we
s test each parameter individually and scale p-values due to multiple hypothesis testing.

= Statistical inference on multiple samples/replicates

s0s. GLAMDE can be run on either one or multiple biological replicates and/or samples. In the case of
s multiple replicates, we recall oy and s, are the differential expression and standard error for replicate
ss g, where 1 < g < G, and G > 1 is the total number of replicates. We now consider testing for
sos differential expression across all replicates for covariate ¢, cell type k, and gene j. In this case, we
sor assume that additional biological or technical variation across samples exists, such that each unknown
sos (g is normally distributed around a population-level differential expression A, with standard deviation

509 T

i.1.d.
ap kg ~ Normal(Agkj, 77k ;)- (7)

sio. Under this assumption, and using @ for the distribution of the observed single-sample estimates &,
su we derive the following feasible generalized least squares estimator of A (see Supplementary Methods
s for details),

a . ~
D1 (o) T2k + STk jg)
G -
> g1 1/(T£2,k,j + S/%,k,jyg)

sz Here, & and s are obtained from GLAMDE estimates on individual samples (see (]ED)7 whereas 7
s represents the estimated variance across samples (Supplementary Figure 7). Please see the Supple-
sis  mentary Methods for additional details such as the method of moments procedure [70] for estimating
516 %Z r,; and the standard errors of A. Intuitively, our estimate of the population-level differential ex-
si7 - pression is a variance-weighted sum over the DE estimates of individual replicates, and we note that
sis our multiple-replicate approach is similar to widely used meta-analysis methods [70,|{71]. As we have
s obtained estimates and standard errors of A, these are subsequently used in hypothesis testing for
s0 the hypothesis that Ay ; = 0 in a manner identical to what is described above in [Hypothesis testing
sa for the single replicate case. We also derived a version of this estimator for the case where there are
s» multiple biological samples and multiple replicates within each sample (Supplementary Methods).

: (8)

Ap kg =

2

= Collection and preprocessing of scRINA-seq, spatial transcriptomics, amyloid
2« beta imaging, and HCR data

s We collected four Alzheimer’s Slide-seq mouse hippocampus sections [38] using the Slide-seqV2 pro-
s tocol [2] (see Supplementary Methods for details) on a female 8.8 month old J20 Alzheimer’s mouse
sz model [38]. We used three total Slide-seq mouse cerebellum sections, two collected using the Slide-
s seqV2 protocol, and one section used from a previous study [24]. Recall that data from multiple sections
20 is integrated as described in[Multiple replicates The Slide-seq mouse testes and mouse cancer datasets
s were used from recent previous studies [12[49]. In particular, the tumor dataset represented a single
s KrasS'?P/F Trp53/~ (KP) mouse metastatic lung adenocarcinoma tumor deposit in the liver [50]. The
s MERFISH hypothalamus dataset was obtained from a publicly available study [11]. To identify cell
s types on these datasets, we utilized publicly available single-cell RNA-seq datasets for the testes [72],
s»  hypothalamus [11], cerebellum [32], cancer [49], and Alzheimer’s hippocampus datasets [73]. All these
s SCRNA-seq datasets have previously been annotated by cell type.

536 Slide-seq data was preprocessed using the Slide-seq tools pipeline [2]. For all spatial transcriptomics
s datasets, the region of interest (ROI) was cropped prior to running GLAMDE, and spatial transcrip-
s tomic spots were filtered to have a minimum of 100 UMIs. We used prior anatomical knowledge to
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s9  crop the ROI from an image of the total UMI counts per pixel across space, which in many cases allows
se0 one to observe overall anatomical features. For example, in Slide-seq Alzheimer’s hippocampus, the
sa somatosensory cortex was cropped out prior to analysis.

542 For the Alzheimer’s dataset, in order to test for differential expression with respect to amyloid
ses  plaques, we collected fluorescent images of DAPT and amyloid beta (Af), using IBL America Amyloid
s« Beta (N) (82E1) A Anti-Human Mouse IgG MoAb on sections adjacent to the Slide-seq data. We
ss  co-registered the DAPI image to the adjacent Slide-seq total UMI image using the ManualAlignImages
ss  function from the STutility R package [74]. To calculate plaque density, plaque images were convolved
se7  with an exponentially-decaying isotropic filter, using a threshold at the 0.9 quantile, and normalized
sis to be between 0 and 1. For each Slide-seq section, plaque density was defined as the average between
ss9  the plaque densities on the two adjacent amyloid sections.

550 For in situ RNA hybridization validation of cerebellum DE results, we collected hybridization chain
ss1 reaction (HCR) data on genes Aldoc, Kcnd2, Mybpcl, Plcbj, and Tmem132¢ (Supplementary Table
52 9) using a previously developed protocol [75]. We simultaneously collected cell type marker genes
s of Bergmann (Gdf10), granule (Gabra6), and Purkinje (Calbl) cell types, markers that were sourced
s« from a prior cerebellum study [32]. Data from Kend2 was removed due to the HCR fluorescent channel
s failing to localize RNA molecules, but rather reflecting tissue autofluorescence. ROIs of nodular and
sss  anterior regions were cropped, and background, defined as median signal, was subtracted. For this
s data, DE was calculated as the log-fold-change, across ROIs, of average gene signal over the pixels
sss within the ROI containing cell type markers of a particular cell type. Pixels containing marker genes of
50 multiple cell types were removed. GLAMDE single-sample standard errors in Figure 3d were calculated
sso by modeling single-sample variance as the sum of the variance across samples and variance representing
ss1  uncertainty around the population mean.

s Cell type proportion estimation and construction of covariates

ss  For each dataset, we constructed at least one covariate, an axis along which to test for DE. All
s covariates were scaled linearly to have minimum 0 and maximum 1. For the cerebellum dataset, the
ses covariate was defined as an indicator variable representing membership within the nodular region (as
se6  opposed to the anterior region). The nodular and anterior ROIs were annotated manually from the
ss7  total UMI image, and all other regions were removed. For the testes dataset, the covariate was a
ss  discrete variable representing the cellular microenvironment of tubule stage, labels that were obtained
o0 from tubule-level gene expression clustering from the previous Slide-seq testes study [12]. In that study
s and here, tubules are categorized into 4 main stages according to tubule sub-stage groups of stage I-II1,
s IV-VI, VII-VIII, and IX-XII. For the cancer dataset, the covariate was chosen to be the density of the
s2 - myeloid cell type. Cell type density was calculated by convolving the cell type locations, weighted by
sz3 UMI number, with an exponential filter. For this dataset, we also ran GLAMDE nonparametrically.
sz For the Alzheimer’s hippocampus dataset, the covariate was chosen to be the plaque density, defined
sis  in Section [Collection and preprocessing For the MERFISH hypothalamus dataset, the covariate was
st defined as distance to the midline, and we also considered quadratic functions of midline distance by
s adding squared distance as an covariate. For the quadratic MERFISH GLAMDE model, we conducted
sts hypothesis testing on the quadratic coefficient. To estimate platform effects and cell type proportions,
sv. - RCTD was run on full mode for the testes dataset, and was run on doublet mode for all other datasets
so0  with default parameters [24].

= Validation with simulated gene expression dataset

se2 We created a ground truth DE simulation to test GLAMDE on the challenging situation of mixtures
3 between two cell type layers. We tested GLAMDE on a dataset of cell type mixtures simulated from
ssa  the cerebellum single-nucleus RNA-seq dataset, which was also used as the reference for cell type
sss  mapping. We restricted to Purkinje and Bergmann cell types, which are known to spatially colocalize.
sss I order to simulate a cell type mixture of cell types A (Purkinje) and B (Bergmann), we randomly
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se7  chose a cell from each cell type, and sampled a predefined number of UMIs from each cell (total
s,s 1,000). We defined two discrete spatial regions (Figure 1a), populated with A/B cell type mixtures.
ss90  We varied the mean cell type proportion difference across the two regions and also simulated the case
so0  Of cell type proportions evenly distributed across the two regions. Cell type-specific spatial differential
s gene expression also was simulated across the two regions. To simulate cell type-specific differential
s2  expression in the gene expression step of the simulation, we multiplicatively scaled the expected gene
53 counts within each cell of each cell type. An indicator variable for the two spatial bins was used as the
s« GLAMDE covariate.

s Additional computational analysis

ss For confidence intervals on data points or groups of data points (Figure 4d, Figure 4g), we used the
so7  predicted variance of data points from GLAMDE (see Supplementary Methods for details). Likewise,
ss  for such analysis we used predicted counts from GLAMDE at each pixel (Supplementary Methods).
s0  For the testes dataset, a cell type was considered to be present on a bead if the proportion of that
0 cell type was at least 0.25 (Figure 4d). Additionally, cell type and stage-specific marker genes were
sr defined as genes that had a fold-change of at least 1.5 within the cell type of interest compared to each
s other cell type. We also required significant cell type-specific differential expression between the stage
s03 of interest with all other stages (fold-change of at least 1.5, significance at the level of 0.001, Monte
s« Carlo test on Z-scores). Cyclic genes were defined as genes whose minimum expression within a cell
ws type occurred two tubule stages away from its maximum expression, up to log-space error of up to
oos  0.25.

607 For nonparametric GLAMDE on the tumor dataset, we used hierarchical Ward clustering to cluster
ss quantile-normalized spatial gene expression patterns into 7 clusters. For gene set testing on the tumor
o0 dataset, we tested the 50 hallmark gene sets from the MSigDB database [76] for aggregate effects in
sw  GLAMDE differential expression estimates for the tumor cell type. For the nonparametric case, we
e used a binomial test with multiple hypothesis correction to test for enrichment of any of the 7 spatial
sz clusters of GLAMDE-identified significant genes in any of the 50 gene sets. For the parametric case,
s3  we used a permutation test on the average value of GLAMDE Z scores for a gene set. That is, we
s modified an existing gene set enrichment procedure [77] by filtering for genes with a fold-change of
eis  at least 1.5 and using a two-sided permutation test rather than assuming normality. In both cases,
sis  we filtered to gene sets with at least 5 genes and we used Benjamini-Hochberg procedure across all
ei7  gene sets to control the false discovery rate at 0.05. The proportion of variance not due to sampling
as  noise (Figure 5b) was calculated by considering the difference between observed variance on normalized
s9 counts and the expected variance due to Poisson sampling noise.

620 We considered and tested several simple alternative methods to GLAMDE, which represent general
ez classes of approaches. First, we considered a two-sample Z-test on single cells (defined as pixels with
s22 cell type proportion at least 0.9). Additionally, we tested Bulk differential expression, which estimated
23 differential expression as the log-ratio of average normalized gene expression across two regions. The
s« Single method of differential expression rounded cell type mixtures to the nearest single cell type and
es computed the log-ratio of gene expression of cells in that cell type. Finally, the Decompose method
o6 of differential expression used a previously-developed method to compute expected gene expression
o7 counts for each cell type [24], followed by computing the ratio of cell type-specific gene expression in
s each region.

2 Implementation details

s0  GLAMDE is publicly available as part of the R package https://github.com/dmcable/spacexr. The
s quadratic program that arises in the GLAMDE optimization algorithm is solved using the quadprog
s package in R [78]. Prior to conducting analysis on GLAMDE output, all ribosomal proteins and
13 mitochondrial genes were filtered out. Additional parameters used for running GLAMDE are shown in
63« Supplementary Table 10. GLAMDE was tested on a Macintosh laptop computer with a 2.4 GHz Intel
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s  Core 19 processor and 32GB of memory (we recommend at least 4GB of memory to run GLAMDE). For
36 example, we timed GLAMDE with four cores on one of the Slide-seq cerebellum replicates, containing
o7 2,776 pixels across two regions, 5 cell types, and 4,812 genes. Under these conditions, GLAMDE
3 ran in 13 minutes and 47 seconds (excluding the cell type assignment step in which computational
e efficiency has been described previously [24]).
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842 Figure 1: Generalized Linear Admixture Models for Differential Expression learns cell type-specific
sz differential expression from spatial transcriptomics data.

s (a) Schematic of the GLAMDE Method. Top: GLAMDE inputs: a spatial transcriptomics dataset

845 with observed gene expression (potentially containing cell type mixtures) and a covariate for differ-
846 ential expression. Middle: GLAMDE first assigns cell types to the spatial transcriptomics dataset,
847 and covariates are defined. Bottom: GLAMDE estimates cell type-specific gene expression along
848 the covariate axes.

a0 (b) Example covariates for explaining differential expression with GLAMDE. Top: Segmentation into

850 multiple regions, continuous distance from some feature, or general smooth patterns (nonparamet-
851 ric). Bottom: density of interaction with another cell type or pathological feature or a discrete
852 covariate representing the cellular microenvironment.
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853 Figure 2: GLAMDE provides unbiased estimates of cell type-specific differential expression in
s simulated data.
855 All: GLAMDE was tested on a dataset of simulated mixtures of single cells from a single-nucleus

sss  RINA-seq cerebellum dataset. Differential expression (DE) axes represent DE in log2-space of region 1
7 w.r.t. region 0.

ess  (a) Pixels are grouped into two regions, and genes are simulated with ground truth DE across regions.

859 Each region contains pixels containing mixtures of various proportions between cell type A and
860 cell type B. The difference in average cell type proportion across regions is varied across simulation
861 conditions.

sz (b) Mean estimated cell type B Astn2 DE (differential expression) across two regions as a function of

863 the difference in mean cell type proportion across regions. Astn2 is simulated with ground truth 0
864 spatial DE, and an average of (n = 100) estimates is shown, along with standard errors. Black line
865 represents ground truth 0 DE (cell type B). Four methods are shown: Bulk, Decompose, Single,
866 and GLAMDE (see Methods for details).

g7 (c) Same as (b) for Nrznd cell type B differential gene expression as a function of DE in cell type A,
868 where Nrzn8 is simulated to have DE within cell type A but no DE in cell type B.

g0 (d) For each significance level, GLAMDE'’s false positive rate (FPR), along with ground truth identity
870 line (s.e. shown, n = 1500, 15 genes, 100 replicates per gene).

en (¢) GLAMDE mean estimated cell type A differential expression vs. true cell type A differential
872 expression (average over n = 500 replicates, s.e. shown). Ground truth identity line is shown, and
873 one gene is used for the simulation per DE condition (out of 15 total genes).
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874 Figure 3: GLAMDE'’s estimated cell type-specific differential expression is validated by HCR-FISH.

g5 (a) GLAMDE’s spatial map of cell type assignments in the cerebellum Slide-seq dataset. Out of 19 cell

876 types, the seven most common appear in the legend. Reproduced from [24]. Three total replicates
yp pPp g p p

877 were used to fit GLAMDE.

ss  (b) Covariate used for GLAMDE, representing the anterior lobule region (green) and nodulus (red).

879 Schematic refers to the GLAMDE problem type outlined in Figure 1b.

g0 (¢) GLAMDE Z-score for testing for DE for each gene and for each cell type. Genes are grouped by

881 cell type with maximum estimated DE, and estimated DE magnitude appears as size of the points.

882 Bold genes appear below in HCR validation.

s (d) Scatterplot of GLAMDE DE estimates vs. HCR measurements for cell type-specific log2 differential

884 expression. Positive values indicate gene expression enrichment in the anterior region. Error bars

885 represent GLAMDE confidence intervals for predicted DE on a new biological replicate. A dotted

886 identity line is shown, and cell types are colored.

g7 (¢) HCR images of Aldoc continuous gene expression. Only pixels with high cell type marker measure-
888 ments for Purkinje (left) and Bergmann (right) are shown. Regions of interest (ROIs) of nodulus
889 and anterior regions are outlined in green and red, respectively.

so  All scale bars 250 microns.
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801 Figure 4: GLAMDE discovers cell type-specific differential expression in a diverse set of problems
g2 on testes, Alzheimer’s hippocampus, and hypothalamus datasets.

893 All panels: results of GLAMDE on the Slide-seqV2 testes (left column), MERFISH hypothala-
s mus (middle column), and Slide-seqV2 Alzheimer’s hippocampus (right column). Schematics in b,f,j
sos reference GLAMDE problem types (Figure 1b).

s (a) GLAMDE’s spatial map of cell type assignments in testes. All cell types are shown, and the most
897 common cell types appear in the legend.

s (b) Covariate used for GLAMDE in testes: four discrete tubule stages.

80 (c) Cell type and tubule stage-specific genes identified by GLAMDE. GLAMDE estimated expression

900 is standardized between 0 and 1 for each gene. Columns represent GLAMDE estimates for each
901 cell type and tubule stage.

w2 (d) Log2 average expression (in counts per 500 (CP500)) of pixels grouped based on tubule stage and
003 presence or absence of spermatid (S) cell types (defined as elongating spermatid (ES) or round
904 spermatid (RS)) and/or spermatocyte (SPC) cell type. Circles represent raw data averages while
905 triangles represent GLAMDE predictions, and error bars around circular points represent + 1.96
906 s.d. (Supplementary methods). Genes Prss/0 and Snz3 are shown on left and right, respectively.

w7 (e) Same as (a) for hypothalamus.
ws (f) Covariate used for GLAMDE in hypothalamus: continuous distance from midline.

w0 (g) Log2 average expression (in counts per 500 (CP500)) of genes identified to be significantly differ-

010 entially expressed by GLAMDE for each of the excitatory, inhibitory, and mature oligodendrocyte
o11 cell types. Single cell type pixels are binned according to distance from midline, and points repre-
012 sent raw data averages while lines represents GLAMDE predictions and error bars around points
o13 represent + 1.96 s.d. (Supplementary methods).

as (h) Spatial visualization of Slc18a2, whose expression within inhibitory neurons was identified by
o1 GLAMDE to depend on midline distance. Red/blue represents inhibitory neurons close/far to
016 midline, respectively. Bold points inhibitory neurons expressing Slc18a2 at a level of at least 10
017 counts per 500.

as (1) Same as (a) for Alzheimer’s hippocampus, where four total replicates were used to fit GLAMDE.

a0 (j) Covariate used for GLAMDE in Alzheimer’s hippocampus: continuous density of beta-amyloid
020 (Ap) plaque.

o1 (k) Volcano plot of GLAMDE differential expression results in log2-space, with positive values cor-

0 responding to plaque-upregulated genes. Color represents cell type, and a subset of significant
023 genes are labeled. Dotted lines represents 1.5x fold-change cutoff used for GLAMDE. (*): Apoe
024 didn’t pass default GLAMDE gene filters(Methods) because 4x higher expression in astrocytes
025 than microglia.

o6 (1) Spatial visualization of Gfap, whose expression within astrocytes was identified by GLAMDE to

027 depend on plaque density. Red/blue represents the astrocytes in high/low plaque density areas,
028 respectively. Bold points represent astrocytes expressing Gfap at a level of at least 1 count per
029 500.

930 All scale bars 250 microns.
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031 Figure 5: GLAMDE enables the discovery of differentially expressed pathways in a KrasS'?P/+

o Trp55/ (KP) mouse model.

033 All panels: GLAMDE was run on multiple cell types, but plots represent GLAMDE results on the
e« tumor cell type.Nonparametric GLAMDE results are shown in panels b—d, while parametric GLAMDE
o5 results are shown in panels e-h.

s (a) GLAMDE’s spatial map of cell type assignments. Out of 14 cell types, the five most common
037 appear in the legend.

s (b) Scatter plot of GLAMDE R? and overdispersion (defined as proportion of variance not due to
939 sampling noise) for nonparametric GLAMDE results on the tumor cell type. Identity line is
940 shown, representing the maximum possible variance that could be explained by any model.

a1 (¢) Dendrogram of hierarchical clustering of (n = 162 significant genes) GLAMDE’s fitted smooth
042 spatial patterns at the resolution of 7 clusters. Each spatial plot represents the average fitted gene
043 expression patterns over the genes in each cluster.

us  (d) Moving average plot of GLAMDE fitted gene expression (normalized to expression at center) as a

o5 function of distance from the center of the tumor for 12 genes in the Myc targets pathway identified
046 to be significantly spatially differentially expressed by GLAMDE.

w7 (e) Covariate used for parametric GLAMDE: continuous density of myeloid cell types in the tumor.
048 Schematic refers to GLAMDE problem type (Figure 1b).

a0 (f) Volcano plot of GLAMDE log2 differential expression results on the tumor cell type with positive
950 values representing upregulation in the presence of myeloid immune cells. A subset of significant
051 genes are labeled, and dotted lines represent 1.5x fold-change cutoff.

o2 (g) Spatial plot of total expression in tumor cells of the 9 differentially expressed epithelial-mesenchymal

053 transition (EMT) genes identified by GLAMDE in (f). Red represents the tumor cells in high
054 myeloid density areas, whereas blue represents tumor cells in regions of low myeloid density. Bold
055 points represent tumor cells expressing these EMT genes at a level of at least 2.5 counts per 500.

s (h) Hematoxylin and eosin (H&E) image of adjacent section of the tumor. Left: mesenchymal (green),

057 necrosis (red), and epithelial (blue) annotated tumor regions, with dotted boxes representing ep-
958 ithelial and mesenchymal areas of focus for the other two panels. Middle/right: enlarged images
059 of epithelial (middle) or mesenchymal (right) regions. Red arrows point to example tumor cells
960 with epithelial (middle) or mesenchymal (right) morphology.

061 All scale bars 250 microns, except for (h) middle/right, which has 50 micron scale bars.
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« Supplementary Methods

w: Introduction and model definition

e  We now revisit our Generalized Linear Admixture Models for Differential Expression (GLAMDE)
ws model at an increased level of detail. Recall the following definition of the GLAMDE model, where for

ws each pixel ¢ = 1,... [ in the spatial transcriptomics dataset, we denote the observed gene expression
o7 counts as Y; ; o for each gene j =1,...,J and experimental sample g =1,...,G:
Yijg | Aijg ~ Poisson(NigAijq) 9)
K
log(A; j,q) = log (Z Bi,k,gm,k,j,g> + Y9 + €idigs
k=1

ws  with N; 4 the total transcript count or number of unique molecular identifies (UMIs) for pixel ¢ and
w0 sample g, K the number of cell types present in our dataset, uy j, the mean gene expression profile for
oo cell type k£ and gene j and sample g, 3; 4 the proportion of the contribution of cell type £ to pixel 7
o in sample g, 7,4 & gene-specific platform random effect, and ¢; ; ; a random effect to account for other
o2 technical and biological sources of variation. We assume ; 4 and ¢; ; , both follow normal distributions
o3 with mean 0 and standard deviation 0., 4 and o, ; 4, respectively. Lastly, u; 1 ;.4 Tepresents the average
o gene expression of gene j in cell type £ at pixel location ¢ in sample g. We model p; 1 j,4, for each gene
as j, each cell type k, and each sample g as depending log-linearly on several covariates, x:

Ly Lo
108(Hikjig) = 02.0kdig T D T1itig1biig T D T2i0.002,0k jug- (10)
=1 =1

o More specifically, we split our covariates into two sets (of sizes Ly and Lo). The first set, x4, 0,4, share
or  coeflicients across cell types, while the second set, x2; ¢ 4, has a different coefficient for each cell type.
ors  This notation is different from the presentation of GLAMDE in the main methods section, in which
o9 x1 was not present and no coefficients were shared across cell types. In practice, we do not typically
0 assume that differential expression is shared across cell types (that is, 1 ¢,4 is not used), but z; is
o1 included here as an optional feature. We have z.; ., representing the £’th covariate, evaluated at
w2 pixel 7 in sample g. In all cases, x is pre-determined to contain variables on which gene expression is
ses  hypothesized to depend.

o84 For each covariate x, there is a corresponding coefficient . More precisely, a1 4 represents a
s gene expression change per unit change of x; ;¢4 for gene j in sample g. Note that this coefficient is
s the same across all cell types. On the other hand, a1 ;4 represents a gene expression change per
o7 unit change of zo ;¢ 4 specific to cell type k in sample g. Finally, ag o 1 ;4 Tepresents the intercept
s term for gene j and cell type k in sample g. For ease of notation, we will sometimes use o ¢k ;.4 to
e equal a4 for all k. Moreover, we will use o to refer to the joint vector of both a1 and an. The
wo parameters « are estimated by GLAMDE by maximum likelihood. GLAMDE also obtains standard
a1 errors for each coefficient a. These standard errors are subsequently used for confidence intervals and
o2 hypothesis testing.

s Maximum Likelihood Estimation

ws GLAMDE estimates the parameters of @[) via maximum likelihood estimation. First, we note that
ws all parameters in the model are independent across samples. As such, we fit the model independently
ws for each sample, and we now drop the subscript of sample g for notational convenience. We will
s7  return to the issue of integrating results across multiple samples in [Multiple replicates First, the
0 parameters f; ; and y; are estimated by the RCTD algorithm as previously described [24]. We can
wo accurately estimate cell type proportions and platform effects without being aware of differential spatial
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w0 gene expression because differential spatial gene expression is smaller than gene expression differences
wo  across cell types. After identifying cell types, GLAMDE estimates gene-specific overdispersion o ;
wee  for each gene by maximum likelihood estimation (see |Fitting the overdispersion parameter). Finally,
ws  GLAMDE estimates the parameters ay; and ag g ; by maximum likelihood estimation. For the
wee final key step of estimating «, we use plugin estimates (denoted by °) of 3, s, v,, and o.. After we
0s  substitute into @, we obtain:

K Ly Lo
Y. j | €i,5 ~ Poisson {Ni exp |:log (Z Bi,k exp (%,o,k,j + Zﬂh,i,eoq,e,j + ZJJQ,i,zaQ,e,k,j)) + 95 + 8i,j:| } (11)
k=1 =1 =1

€55 ~ Norrnal(O,&?’j)7 (12)

wes Now, we provide an algorithm for computing the maximum likelihood estimator of c. Our likelihood
wor  optimization algorithm is a second-order, trust-region based optimization. In brief, we iteratively
ws  solve quadratic approximations of the log-likelihood, adaptively constraining the maximum parameter
wo change at each step. Critically, the likelihood is independent for each gene, so separate genes can be
w0 run in parallel.

1011 Now, we consider the computation of the maximum likelihood estimator (MLE) of « for the likeli-
2 hood L(«) of observing Y; for 1 < i < I, using the assumption that measurements on separate pixels
w3 are independent. We define the predicted counts at pixel i as \;(a), where,

k=1

K
log(Ai(a)) := log (Ni ZszNzk) + 9. (13)

e From now on, we will drop the constant term 4, as it can be equivalently factored into the p intercept
s term. Next, we can use @ to compute the likelihood of the GLAMDE model,

L(a) =) log P(Yi | Mi(a)) = Zlog Qy; (Ai(a)), (14)

i=1
e  where we have introduced the function @) to represent the probability, under our Poisson-log-normal
7 sampling model, of observing Y; counts given predicted counts \;(a),

oo z\\¢
Qe(\) = / Po. (2)e ¢ <e£i\) dz, (15)
—00

s where p,_ is the normal distribution pdf with standard deviation o.. To optimize our likelihood, we
9 develop a second-order trust-region optimization method [79], in which sequential quadratic approx-
w0 imations are optimized within a trust region, whose size is determined adaptively. To do so, we first
w1 initialize v as g, which is set to 0 for intercept terms, and —5 for non-intercept terms. Additionally,
w2 we initialize the trust-region width, §, as o = 0.1. At step n + 1 of the algorithm, with previous
w3 parameters o, and §,, we make the following quadratic Taylor approximation, L, to L,

~L£(0) & ~ L 1= ~Llan) + ban) (0~ ) + (o~ an)T Alan) @ — ), (16)

w2 where b and A represent the gradient and Hessian of — L, respectively, which are computed below. Next,

s we define o as the solution to the following optimization problem of this quadratic approximation
w26 over the trust region:

main blan) T (a — an) + %(a —an) T Alay) (o — ap)

st |aj —ap | <6, for 1< j<length(a)

(17)
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wz  This quadratic program is solved using the quadprog package in R [78]. Next, we define oy, as:

an, L(ay) = Llan) = v(La(ap) = La(an))
ntl = ~ ~ 18
it {am L(ag) = Llan) < Y(Lala) = Lnlan)), %)
ws where v = 0.1. Additionally, the trust region is updated as:
Opiy = Bsueedn, L(ag) — Lan) = V(én(am - Ein(an)) (19)
T Brade, L£(a3) — Llan) < y(La(a}) = Lalan)),

10 where Bguee = 1.1 and Bra = 0.5, which, along with -+, were chosen by a combination of using standard
000 parameter choices [79] and ensuring efficient and stable convergence to local minima. Intuitively, the
ws quadratic approximation £,, will only be accurate within a local region, and the trust region is intended
w2 to empirically approximate that region. In order to test whether our local approximation is accurate,
wss we check whether the predicted gain in log-likelihood, £, () — L, (), is close to the true gain in
wu  log-likelihood, L£(«) — L(a,), within a factor of . If the local approximation is indeed accurate, the
s algorithm takes a step, and the trust region is allowed to grow. If not, the algorithm stays put, and the
w3 trust region shrinks. This prevents the algorithm from diverging due to poor quadratic approximations.
i This procedure is repeated until convergence (see |Stopping conditions and convergence).

s Gradient and Hessian

09 In this section, we will derive an expression for the gradient and hessian of —L(«). First, we can
w0 calculate the gradient as,

b(e) = —VL(a) = — Z Vlog Qy, (\i(a))
‘ (20)

:fZQY (il z) Vi(a).

wa  Additionally, we have the Hessian,

A(a) = Hess(—L(a)) = — ZV(W) (Vi(a)T — Z (M)v%\z(a)
I V. (Aia)) Q4 (Ni(a))\ 2 ) )
- "0 - 5 (o S(a)T
e (B (@) o
; <Q1/i()\i(a))>v Ai(a)

w2 We recall the procedure for computing @ and its derivatives as previously described |24| What remains
w1 to calculate explicit expressions for A and its derivatives, which we do now. From and (15| ., we
i recall the definition of \;(a):

K Lo Ly
=N Z Bk €Xp Z T2,4,0002. 0,k + Z 13000, |- (22)
=1 = =1

34


https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.26.474183; this version posted December 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s Next, we calculate the gradient of A with respect to o; and as separately:

K Lo Ly
Va, Aila) = N; E Bik exp E T2 0020k + E 150010 |21, = Ni(@)T1 4,
k=1 =1 =1

(23)
L2 Ll
Vagk) Ai(a) = N;f3i 1 exp (Z T2 00020k + Z $1,i,ea1,e> To; = /\Z(-k)(a)xg,m
=1 =1

S (k 5 L L
146 where we have defined )\E )(oz) = N; [ i exp (Zeil Toi002 0k + Y oty I17i7gal7g). Next, we can com-
e pute the second derivatives:

VaiVa (@) = M@zl s, V00 Va, Aila) = N (@)z a7, (24)
k) (X2 ’ £
Va<k)V (k') = ;\Ek) (Oé).%‘g,i.rgiﬂ[k‘ = k‘/] (25)
2 Qg ’
e Finally, notice that all the above expressions, including \; and ;\Ek) across all pixels i, can be computed

e efficiently using matrix multiplications. Lastly, the Fisher information is computed as a scaled version
wso  of the Hessian (see [Justification of consistency and asymptotic normality).

s Stopping conditions and convergence

w2 The algorithm stops when one of two conditions are satisfied: 6,, < €1 or ﬁn(afl) — En(an) < gy for 6
w53 consecutive iterations. Default choices are e; = .001 and 5 = .00001. Assume that the algorithm stops
s+ after n—1 iterations and arrives at solution av,. Convergence is defined by considering the distance of a,
wss  to the optimal solution of £,,, which is the maximum step size of the next step of the algorithm. Since
wss L, is a quadratic function, its maximum can be calculated as a* := a,, — A(,) "b(ay, ). Consequently,
w57y — @ = A(ay,) (). For each parameter 1 < i < length(a), we define that parameter i has
wss  converged if |a,, ; —af| < €3, where e3 = .01. Intuitively, for all parameters ¢ such that |a, ; —af| < e3,
wso  these parameters will change by at most €3 in the next step of the algorithm. Note that it is possible
weo for some parameters to converge while others do not. In the most common scenario, consider a case
wer  in which one cell type has very low gene expression in the gene of interest. In this case, it is possible
w2 that the parameter controlling the expression of this gene will diverge to —oo. As such, this parameter
3 doesn’t have a practical effect on the model, but it should not prevent the other parameters (of cell
s types with higher expression) from converging. For each cell type, we filter out genes that did not
wes converge for downstream analysis. In the multi-region case, for each cell type, we test for differential
wes expression among the subset of regions that have converged.

wez  Fitting the overdispersion parameter

s Here, we describe the procedure for fitting the gene-dependent overdispersion parameter o, ;. This is
we necessary because we found evidence that the overdispersion depends on gene j, and modeling gene-
wo  specific overdispersion is necessary for controlling the false-positive rate of GLAMDE. In order to fit a
wn  gene-dependent overdispersion parameter, we fit GLAMDE with initial overdispersion parameter o,
w2 which is obtained from the cell type identification step. Next, we use the fitted parameters a and
w3 calculate the log-likelihood of GLAMDE for each possible choice of o (out of a discrete set ranging
ws  from 0.1 to 2). Because the log-normal distribution has a mean of e’/ 2 the GLAMDE predicted
s expression values \ are scaled by e="/2 to maintain a consistent mean across different values of o. In
wrs  practice, this decision substantially increases the rate of convergence. After computing log-likelihood
w7 values for each o, the best o is chosen, and the parameters of GLAMDE are re-fit. This procedure is
s Tepeated until convergence at o = o, ;.
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wo Predicted mean and variance of individual data pixel counts

wso After «v is estimated, we can compute the predicted mean and variance of Y;, given x;, according to the
wss  GLAMDE model. These predictions are used to check whether the observed behavior of data points
w2 agrees with the predictions of the GLAMDE model. Rewriting (9)),

5]

Yi|a~ Poisson{Lognormal(/\ (@),02 )} (26)
s Using properties of the lognormal distribution, we can calculate the mean counts,
E[Y; | o] = \i(a)e?=/?, (27)
wse  as well as the variance of the counts, using the law of total variance,
VarlV; | o] = E[Var[Y; | o,&;]] + Vare, [E[Y; | o, &]]
= Ni(@)e=/? 4 Xi(a) e 270/ — 1),

wss  where the first part used the equivalence of the mean and variance of the Poisson distribution, and the
wss  second part used the variance of the lognormal distribution.

(28)

w7 IMultiple replicates

wss In order to extend the hypothesis testing framework to the case of multiple replicates, we now recall
we g and s, to be the differential expression and standard error for replicate g, where 1 < g < G, and
wo G > 1 is the total number of replicates. We will consider testing for differential expression for fixed
w  covariate £, cell type k, and gene j. In this case, as later derived in , the observed estimate &. ¢ 1 5.¢,
w2 conditional on «, follows a univariate normal distribution with standard deviation s. ¢ ;4

G.o kg | 0~ Normal(o. s kg5 6kj.g)- (29)

w3 We further assume that additional biological and/or technical variation across samples exists, such
s that each aq4 is normally distributed around a population-level differential expression A, with standard
wes  deviation 7:

a.yg,;w-,g ~iid. Normal(A.,g’k,j, T-%é,k,j) (30)

s We estimate 7 using the method of moments (second moment) on the observed estimate &, obtained
wor independently from each sample:

EV(& ek, @ ko -Gk o)l =
[ (G kg —erg1) © ekt (G2 = rkg2) + kg2
(@ tkje = @pkic) + o ekic)l
=ENV((@ kg1 —a ok jn) (Gehg2 = apkga)s - (Qek o — @ rk;6))]
FEV(e ek g1 @t kg2 tksc)]
(31)
ws Here, the second step utilizes the independence of & a « and «. Additionally, we use the finite sample
e variance function V to denote V(z1,22,...,2¢) = g Zg (g — )%, which is an unbiased estimator

uoo  of the variance of z if z4 is an i.i.d. random variable. Consequently, the second term above equals
no 72, ;- Additionally, since & — o is mean 0, we can use the fact that for mean 0 variables y that are

ne  coordinate-wise independent, E[V(y1,v2,...,y¢)] = & ZgG:1 Var(yy). Applying this fact to the first
o3 term, we obtain,
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G
(Qtkgig = Qtkgig)’ | + 72005 (32)

Ql =

E[V(&. tk,5,1 0 0k,5,25 - -+ Cetk5,G)] = ]E{

—

g:
_ 1
NE

Ma

20 kdg T Tk g (33)

g=1

s where we have used the GLAMDE standard errors s2 to estimate the variance of & — «. Consequently,
uos  we obtain the following method of moments estimator of 72:

1 G
22 (A A - 2
ok = V(G 0kt Qr ks s Gk jG) — el > 5%k (34)
g=1

uos  Given the above analysis, the estimator is the unbiased method of moments estimator. Since we know
nor  that 72 is nonnegative, we next modify our estimator to an estimator that dominates the original:

G
1
~2 N A N Z 2
T-,E,lc,j = max (|:V(Oz.)g’k,j’1,a.’g’kd‘,g,...,Ot.’g’k,j’g) — E S-,Z,k,j,g ,0 . (35)
g=1

e We note that the above method of moments estimator (and our overall approach) is similar to the
noe  widely used DerSimonian-Laird method in meta-analysis [70,71]. After utilizing the estimate of 72,
uo  we can now compute the estimate and standard error of A, as follows. Given equations, and ,
un  we have that &. 1 j 4 is distributed independently for 1 < g < G as:

. 2 2
Q. 0 kjg ~ Normal(A. ¢k, 770 5 + 870k (36)

,j7g)'
uz By the Gauss-Markov theorem for Generalized Least Squares, the best (i.e. minimum variance) unbi-
uis - ased estimator of A is:

G N
N Zg:l(a‘7£»k7j79)/(7-2,2,k,j + S?,E,k,j,g)

kg = G
Dt V(T20k i+ 520k 5g)

s We further plugin our estimate 72 for 72, which is an approach called feasible generalized least squares:

. (37)

G - .
- 29:1(a»7€,k,j,g)/(7.2,z,k,j + 5% ki)

A bk, = G A
Dot V(P2 5200 54)

ws  Finally, the feasible estimate of variance of this estimator (also by the Gauss-Markov theorem) is:

: (38)

1

- . .
D1 V(2 i+ 52005.0)

Var(/i.’g,kvj) = (39)

mes Multiple samples and replicates

uir  After developing a hypothesis testing framework for the case of multiple replicates, we now consider the
wis  extension of this framework to the more complicated study design of multiple biological samples (M
s samples) with multiple replicates per sample (G, replicates per sample). In this case, we now model
uo « for each sample 1 < m < M and each replicate 1 < g < GG, as normally distributed, independently
un  for each replicate, with standard deviation 7, as follows,

Q. gk jm,g ~ Normal(A. ¢+ 0. 0k j.ms T.z,z,k,j)a (40)
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u2 where § represents a sample-specific random effect which is itself normally distributed with standard
23 deviation A,

d..0.k.j.m ~iid. Normal(0, A»%Z,Im‘)- (41)

1124 Notice that for fixed sample m, conditional on d, our problem is identical to the multiple replicate
uzs  case above, given a population-mean of A. ¢ j+0. ¢k j.m. Using this reasoning, we take as an estimate
e of 72 the average, across samples, of the estimates of 72 in . As we have utilized the variance
uz  within each sample to obtain an estimate of 7, we will next use the variance across samples to estimate
ws A, We take and as the value and variance (conditional on §) respectively of the following
uz unbiased estimate E of A. ¢ ; + 0.4k jm, which represents the differential expression within sample
130 M,

Gm /A N
Zgzl(aw,k,j,m,g)/(f%e,k,j + S?,l,k,j,m,g)
E',Z,k‘,j,m = G 2 5 . (42)
2 V(o k s + 570k jmag)

un  Given that E. 4 ; » is an unbiased estimate of A. ;s ; + 0. ¢k, jm, We recognize that our problem has
un  been reduced to the original multiple replicates problem (addressed above), where o has been replaced
us  with A+ 6, 7 has been replaced with A, & has been replaced by E, and s2 has been replaced by what
us  we define as 52, the conditional (on §) variance of E given in (39),

SQM jm " !
SOkgm T SGom N ‘
Zg:l 1/(T-2,£,k,j + S-Q,E,k,j,m,g)

uss  As a result of this observation, we can apply a similar derivation as that of to obtain the following
ms  method of moments estimate of A,

(43)

m=1

M
) 1
A?, ) j = max ([Var(E,z,k,j,hE-,e,k,j,m s B gm) — i > S%Z,k,j,m:|70> . (44)

uz  Continuing our parallel to our previous result, we use the feasible Gauss-Markov estimator of A derived

uss  in in and ,

o .
p Somet (Botkjom) /(D24 i+ 5% 4 im)

Atkj = A A (45)
Zm:l 1/(A~2,£,k,j + S-z,é,k,j,m)
ue  Moreover, using , the feasible estimate of variance of this estimator is,
. 1
Var(A. ¢k,;) = (46)

S .
Comet V(A% + Sk jim)

mwo Therefore, we have derived estimators of population-level differential expression in the case of multiple
na  replicates or multiple samples with multiple replicates.

ue  Justification of consistency and asymptotic normality of maximum likelihood
s estimator of «

s Since each gene and each sample analyzed independently, we drop the notation of gene j and sample
s g. First, we consider the joint distribution of all the variables in our model: z;, 5;, and Y;. We recall

we  that z; and Y; are observed, and we assume that these variables are generated i.i.d. for each pixel
1147 (1 S ) S n, with n := I)

Z; o= (i, B:, Vi) " Py, (47)
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ws  where Z; represents the joint random variable and P, (Z;) = Q(x;, 8;)Pa(Y; | x, 8). Here, @ represents
e the joint distribution, across pixels, of cell type proportions and covariates, which we assume does
uso  not depend on «. As estimation of a does not depend on this term, we will ignore this term. The
ns conditional distribution P, (Y; | z, 8) is precisely the probabilistic model specified by GLAMDE in (9).
us2  For this analysis, we treat 8 as observed and do not consider the uncertainty around the estimation
uss  of 3, as errors in the estimation of 8 are expected to be small and independent across pixels.

1154 Due to the specification of GLAMDE, assuming that the columns of x are linearly independent,
uss identifiability is satisfied. That is, P, # P,/ for any other pair of distinct parameters a and o’. It
uss  follows from standard asymptotic theory results [80] (using additional regularity conditions including
us7  Lipschitz continuity of second derivatives and local convexity of the GLAMDE log-likelihood within
uss  a bounded region) that if we let &, be the MLE estimator on n pixels, then asymptotic consistency
uso  holds:

an 23 a. (48)
ueo In addition to consistency, asymptotic normality holds as n — oo [80]:
Vin(én —a) SN0, 1,7, (49)
uer  where I, is defined to be the Fisher information, which can be represented as,
Io = —Eo[VZlog Po(Y; | z, B)]. (50)
ue2  In our case, we will use the observed Fisher information I, to estimate the Fisher information:

o= =2 YV log PalY; | 2.8) = Afa), (51)

i=1

s where A(«), defined in (6], is the Hessian of the GLAMDE log-likelihood function. Substituting the
nes Hessian into the equation above, we conclude that approximately for large n,

(G, — @) ~ N(0, A(a)™h). (52)

1165 Next, for a fixed individual cell type k, gene j, sample g, and covariate ¢, the distribution of
s Q. g follows a univariate normal distribution with standard deviation s. ¢ ;4. According to (49),

ner  if we define s as s. 01, = 1/ (Ia,, ) e/, We conclude that,

Q. p kg | @~ Normal(aw. gk jgs S 0.kj.g) (53)

ues Thus, we have derived the asymptotic distribution of &, allowing us to compute confidence intervals
ueo and perform statistical inference.
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Supplementary Experimental Methods

Animal Handling

All procedures involving animals at the Broad Institute were conducted in accordance with the US
National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocol number
0120-09-16.

Transcardial Perfusion

C57BL/6J mice were anesthetized by administration of isoflurane in a gas chamber flowing 3% isoflurane
for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch response. Animals were
moved to a dissection tray and anesthesia was prolonged via a nose cone flowing 3% isoflurane for the
duration of the procedure. Transcardial perfusions were performed with ice cold pH 7.4 HEPES buffer
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM
KCl to remove blood from brain and other organs sampled. The appropriate organs were removed and
frozen for 3 minutes in liquid nitrogen vapor and moved to -80C for long term storage.

Tissue Handling

Fresh frozen tissue was warmed to -20 C in a cryostat (Leica CM3050S) for 20 minutes prior to handling.
Tissue was then mounted onto a cutting block with OCT and sliced at a 5° cutting angle at 10 um
thickness. Pucks were then placed on the cutting stage and tissue was maneuvered onto the pucks. The
tissue was then melted onto the puck by moving the puck off the stage and placing a finger on the
bottom side of the glass. The puck was then removed from the cryostat and placed intoa 1.5 mL
eppendorf tube. The sample library was then prepared as below. The remaining tissue was re-deposited
at -80 C and stored for processing at a later date.

Puck preparation and sequencing

Pucks were prepared as described recently using barcoded beads synthesized in-house on an Akta
Oligopilot 10 according to the updated Slide-seqV2 protocol [2]. Pucks were sequenced using a
monobase-encoding sequencing-by-ligation approach also described in the updated protocol. We used
slide-seq tools for alignment and processing of Slide-seq data.

Pucks were generated using one of two separate bead batches with the oligo sequences listed below:
Batch 1:

5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTIIIITCTTCAGCGTTCCCGAGA)

JIJJIITCNNNNNNNNT25

Batch 2:
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5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTIINIITCTTCAGCGTTCCCGAGAI
JIJJJNNNNNNNVVT30

“PC” designates a photocleavable linker; “J” represents bases generated by split-pool barcoding, such
that every oligo on a given bead has the same J bases; “N” represents bases generated by mixing, so
every oligo on a given bead has different N bases; and “TX” represents a sequence of X thymidines. “V”
represents bases which may contain A, C, G but not T.

Slide-seqV2 library preparation

RNA Hybridization:

Pucks in 1.5 mL tubes were immersed in 200 pL of hybridization buffer (6x SSC with 2 U/puL Lucigen
NxGen RNAse inhibitor) for 15 minutes at room temperature to allow for binding of the RNA to the
oligos on the beads.

First Strand Synthesis
Subsequently, first strand synthesis was performed by incubating the pucks in RT solution for 30 minutes
at room temperature followed by 1.5 hours at 52 °C.

RT solution:

115 pL H20

40 pL Maxima 5x RT Buffer (Thermofisher, EP0751)

20 pL 10 mM dNTPs (NEB N0477L)

5 pL RNase Inhibitor (Lucigen 30281)

10 pL 50 uM Template Switch Oligo (Qiagen #339414YC0O0076714)
10 pyL Maxima H- RTase (Thermofisher, EP0751)

Tissue Digestion:
200 pL of 2x tissue digestion buffer was then added directly to the RT solution and the mixture was
incubated at 37 °C for 30 minutes.

2x tissue digestion buffer:

200 mM Tris-Cl pH 8

400 mM Nacl

4% SDS

10 mM EDTA

32 U/mL Proteinase K (NEB P8107S)

Second Strand Synthesis:

The solution was then pipetted up and down vigorously to remove beads from the surface, and the glass
substrate was removed from the tube using forceps and discarded. 200 uL of Wash Buffer was then
added to the 400 L of tissue clearing and RT solution mix and the tube was then centrifuged for 2
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were
resuspended in 200 plL of Wash Buffer, and were centrifuged again. This was repeated a total of three
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times. The supernatant was then removed from the pellet. The beads were then resuspended in 200 pL
of Exol mix and incubated at 37 °C for 50 minutes.

Wash Buffer:

10 mM Tris pH 8.0
1 mM EDTA
0.01% Tween-20

Exol mix:

170 uL H20

20 uL Exol buffer

10 pL Exol (NEB M0568)

After Exol treatment the beads were centrifuged for 2 minutes at 3000 RCF. The supernatant was then
removed from the bead pellet, the beads were resuspended in 200 plL of Wash Buffer, and were
centrifuged again. This was repeated a total of three times. The supernatant was then removed from the
pellet. The pellet was then resuspended in 200 pL of 0.1 N NaOH and incubated for 5 minutes at room
temperature. To quench the reaction, 200 pL of Wash Buffer was added and beads were centrifuged for
2 minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were
resuspended in 200 pL of Wash Buffer, and were centrifuged again. This was repeated a total of three
times. Second Strand Synthesis was then performed on the beads by incubating the pellet in 200 pL of
Second Strand Mix at 37 °C for 1 hour.

Second Strand Synthesis mix:

133 uL H20

40 pL Maxima 5x RT Buffer

20 uL 10 mM dNTPs

2 uL 1 mM dN-SMRT oligo

5 pL Klenow Enzyme (NEB M0210)

After Second Strand Synthesis, 200 pL of Wash Buffer was added and the beads were centrifuged for 2
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were
resuspended in 200 plL of Wash Buffer, and were centrifuged again. This was repeated a total of three
times.

Library Amplification:

200 pL of water was then added to the bead pellet and the beads were centrifuged for 2 minutes at
3000 RCF. The supernatant was then removed from the bead pellet and the beads were resuspended in
50 pL of library PCR mix and moved into a 200 pL PCR strip tube. PCR was then performed as outlined
below:

Library PCR mix:
22 uL H20

25 pL of Terra Direct PCR mix Buffer (Takara Biosciences 639270)
1 uL of Terra Polymerase (Takara Biosciences 639270)

1 pL of 100 uM Truseq PCR primer (IDT)

1 pL of 100 uM SMART PCR primer (IDT)


https://doi.org/10.1101/2021.12.26.474183
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.26.474183; this version posted December 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PCR program:
95 °C 3 minutes

4 cycles of:

98 °C 20 seconds
65 °C 45 seconds
72 °C 3 minutes

9 cycles of:

98 °C 20 seconds
67 °C 20 seconds
72 °C 3 minutes

Then:
72 °C 5 minutes
Hold at 4 °C

PCR cleanup and Nextera Tagmentation:

Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with
manufacturer’s instructions at a 0.6x bead/sample ratio (30 pL of beads to 50 pL of sample) and
resuspended in 50 pL of water. The cleanup procedure was repeated, this time resuspending in a final
volume of 10 pL. 1 pL of the library was quantified on an Agilent Bioanalyzer High sensitivity DNA chip
(Agilent 5067-4626). Then, 600 pg of cDNA was taken from the PCR product and prepared into lllumina
sequencing libraries through tagmentation using the Nextera XT kit (Illumina FC-131-1096).
Tagmentation was performed according to manufacturer's instructions and the library was amplified
with primers Truseg5 and N700 series barcoded index primers. The PCR program was as follows:

PCR program:
72 °C for 3 minutes

95 °C for 30 seconds

12 cycles of:

95 °C for 10 seconds
55 °C for 30 seconds
72 °C for 30 seconds

72 °C for 5 minutes
Hold at 4 °C

Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with
manufacturer’s instructions at a 0.6x bead/sample ratio (30 pL of beads to 50 pL of sample) and
resuspended in 10 plL of water. 1 uL of the library was quantified on an Agilent Bioanalyzer High
sensitivity DNA chip (Agilent 5067-4626). Finally, the library concentration was normalized to 4 nM for
sequencing. Samples were sequenced on the lllumina NovaSeq S2 flowcell 100 cycle kit with 12 samples
per run (6 samples per lane) with the read structure 44 bases Read 1, 8 bases i7 index read, 50 bases
Read 2. Each puck received approximately 200-400 million reads, corresponding to 3,000-5,000 reads
per bead.
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w  Supplementary Figures
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un Supplementary figure 1: GLAMDE can integrate results from multiple samples to form a robust
un  estimate of population-level consensus differentially-expressed genes.
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173 Supplementary figure 2: In simulated data, GLAMDE provides unbiased estimates of cell type-
una  specific differential expression, with calibrated p—values.
s All: GLAMDE was tested on a dataset of simulated mixtures of single cells from a single-nucleus

us  RNA-seq cerebellum dataset.

urr  (a) Mean estimated cell type A Astn2 DE (differential expression) across two regions as a function of

178 the difference in mean cell type proportion across regions. Ground truth 0 spatial DE is simulated,
1179 and average of (n = 100) estimates is shown, along with standard errors. Black line represents
1180 ground truth 0 DE (cell type B). Four methods are shown: Bulk, Decompose, Single, and GLAMDE
11 (see Methods for details).

uzz  (b) Same as (b) for Nrzn3 cell type A differential gene expression as a function of DE in cell type A,
1183 where Nrznd is simulated to have DE within cell type A but no DE in cell type B. Ground truth
1184 identity line shown.

uss  (¢) GLAMDE mean estimated cell type B differential expression as a function of gene (average over
1186 n = 500 replicates, with confidence intervals shown). Ground truth line (0 DE) is shown, and each
1187 condition used a different gene (out of 15 total genes).

uss  (d) Average measured standard error of GLAMDE estimates for each bin of GLAMDE predicted
1189 standard error.

uw  (e) Statistical power (FPR = 0.01) as a function of gene (y-axis), cell type A DE (x-axis), and number
101 of cells (table number). Genes are sorted by cell type A expression (shown on right in log2 counts
1192 per 1).
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1103 Supplementary figure 3: Volcano plot of GLAMDE log2 differential expression results for cerebellum
uee  Slide-seq across three replicates, with positive values representing enrichment in the anterior region
nos  vs. the nodulus. Color represents cell type, and a subset of significant genes are labeled. Dotted lines
nos represents GLAMDE fold-change cutoff at 1.5.
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1197 Supplementary figure 4: On the Slide-seq testes, GLAMDE achieves increased power in the presence
nes  of cell type mixtures to discover tubule stage-specific genes and cyclic genes.

e (a) Number of significant genes detected, for each cell type, by GLAMDE or the Z-test method.
oo (b) Number of pixels used, for each cell type, to fit the GLAMDE or Z-test model.
o (¢) Spatial plot of Tnp1, a gene identified by GLAMDE to be differentially expressed in stage IX-XII of

1202 cell type ES. Red represents the pixels of cell type ES within stage IX-XII, whereas blue represents
1203 pixels of another cell type or region. Bold points represent pixels expressing Tnpl at a level of at
1204 least 7.5 counts per 500. Scale bar represents 250 microns.

s (d) For each cell type, genes identified using GLAMDE results to be cyclic. Panels, indexed by tubule
1206 stage, contain cyclic genes whose peak estimated expression is at that stage. Error bars represent
1207 confidence intervals.

e (e) Proportion of genes categorized as cyclic (using GLAMDE fits), compared to proportion that
1200 would be categorized as cyclic if tubule stages were shuffled.
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1210 Supplementary figure 5: On the Slide-seq Alzheimer’s hippocampus, GLAMDE identifies genes
1 whose expression depends on AS plaque density.

vz (a) The proportion of cells, for each cell type, that localize in a high plaque density area.

iz (b) Spatial visualization of Ctsd, whose expression within astrocytes was identified by GLAMDE to

1214 depend on plaque density. Red represents the astrocytes in high plaque density areas, whereas blue
1215 represents astrocytes in regions of low plaque density. Bold points represent astrocytes expressing
1216 Ctsd at a level of at least 3 counts per 500. Scale bar is 250 microns.

vir (¢) Log average expression of genes Ctsd and Gfap, which were identified to be significantly differ-

1218 entially expressed by GLAMDE for microglia/macrophages and astrocyte cell types, respectively.
1219 Single cell type pixels are binned according to plaque density, and points represent raw data av-
1220 erages while lines represents GLAMDE predictions and error bars around points represent + 1.96
1221 s.d. (Supplementary Methods).

2 (d) Antibody stain of AS plaque in adjacent hippocampus section. This image is subsequently trans-
1223 formed to calculate a covariate for GLAMDE.
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1224 Supplementary figure 6: on the Slide-seq mouse tumor, GLAMDE identifies differentially expressed
125 genes within tumor cells.

s (a) Histogram, across genes identified to be significantly DE within tumor cells by nonparametric
1227 GLAMDE, of adjusted R-squared, which is defined as the proportion of variance, not due to
1228 sampling noise, explained by the GLAMDE model.

120 (b) Dendrogram of hierarchical clustering of (n = 162 significant genes) GLAMDE’s fitted smooth
1230 spatial patterns.

va (c) Spatial plot in tumor cells of Kpnbl, a Myc-target gene identified to be differentially expressed by
1232 nonparametric GLAMDE. Top shows GLAMDE fitted expression, while bottom shows observed
1233 expression in counts per 500. Scale bars are 250 microns.

vu  (d) For each cluster of spatially-varying genes, the proportion of genes identified by hypothesis-driven
1235 GLAMDE to be over- or under-expressed near myeloid cells. This proportion is plotted alongside
1236 the squared correlation of the cluster to the density of myeloid cells.

2w () GLAMDE estimated differential expression and 95% confidence intervals of 9 genes from the
1238 epithelial-mesenchymal transition (EMT) pathway identified to be significant.
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1239 Supplementary Figure 7: GLAMDE estimated variance parameters on the Slide-seq cerebellum
1220  data.

va (a) Density plot, over genes, of overdispersion standard deviation, o., for each of three Slide-seq
1242 replicates.

ez (b) Density plot, over genes, of GLAMDE estimated batch effect standard deviation, 7, for each of
1244 the Bergmann, granule, and Purkinje cerebellum cell types.
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