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Abstract

Motivation: High-throughput technologies play a more and more significant role in discovering prognostic
molecular signatures and identifying novel drug targets. It is common to apply Machine Learning (ML)
methods to classify high-dimensional gene expression data and to determine a subset of features (genes)
that is important for decisions of a ML model. One feature subset of important genes corresponds to
one dataset and it is essential to sustain the stability of feature sets across different datasets with the
same clinical endpoint since the selected genes are candidates for prognostic biomarkers. The stability
of feature selection can be improved by including information of molecular networks into ML methods.
Gene expression data can be assigned to the vertices of a molecular network’s graph and then classified
by a Graph Convolutional Neural Network (GCNN). GCNN is a contemporary deep learning approach
that can be applied to graph-structured data. Layer-wise Relevance Propagation (LRP) is a technique to
explain decisions of deep learning methods. In our recent work we developed Graph Layer-wise Relevance
Propagation (GLRP) — a method that adapts LRP to a graph convolution and explains patient-specific
decisions of GCNN. GLRP delivers individual molecular signatures as patient-specific subnetworks that
are parts of a molecular network representing background knowledge about biological mechanisms. GLRP
gives a possibility to deliver the subset of features corresponding to a dataset as well, so that the stability
of feature selection performed by GLRP can be measured and compared to that of other methods.
Results: Utilizing two large breast cancer datasets, we analysed properties of feature sets selected
by GLRP (GCNN+LRP) such as stability and permutation importance. We have implemented a graph
convolutional layer of GCNN as a Keras layer so that the SHAP (SHapley Additive exPlanation) explanation
method could be also applied to a Keras version of a GCNN model. We compare the stability of feature
selection performed by GCNN+LRP to the stability of GCNN+SHAP and to other ML based feature selection
methods. We conclude, that GCNN+LRP shows the highest stability among other feature selection
methods including GCNN+SHAP. It was established that the permutation importance of features among
GLRP subnetworks is lower than among GCNN+SHAP subnetworks, but in the context of the utilized
molecular network, a GLRP subnetwork of an individual patient is on average substantially more connected
(and interpretable) than a GCNN+SHAP subnetwork, which consists mainly of single vertices.
Keywords: gene expression data, explainable AI, personalized medicine, precision medicine,
classification of cancer, deep learning, prior knowledge, molecular networks.
Availability: https://gitlab.gwdg.de/UKEBpublic/graph-lrp
Contact: tim.beissbarth@bioinf.med.uni-goettingen.de

1 Introduction
Microarray and especially high-throughput technologies have become

commonly used tools for genome-wide gene-expression profiling.
Gene expression patterns elucidate the molecular mechanisms of such
heterogeneous disease as breast cancer (Sørlie, 2007) As a result, large
amounts of data produced by high-throughput sequencing are utilized to

identify predictive gene signatures and discover individual biomarkers in
cancer prognosis (Perera, Leha, and Beissbarth, 2019)

One of the tasks of clinical cancer research is to identify prognostic
gene signatures that are able to predict the clinical outcome (Johannes et al.,
2010) From a machine learning perspective, the clinical endpoint is usually
presented as a classification task, and the challenge is to find a subset
of important features containing the most information about the clinical
outcome. Prediction is performed by a ML model, which is trained on a
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high-dimensional gene expression dataset. A predictive gene signature is a
feature subset driving the classification result of the ML model. However,
when the number of genes is much higher than the number of patients,
the feature selection for the ML model has to deal with the “curse of
dimensionality” (Porzelius et al., 2011) It leads to instability in the selected
feature subsets across different datasets with the same clinical endpoint.

The stability of a feature selection algorithm is essentially the
robustness of the algorithm’s feature preferences. The feature selection is
unstable when small changes in training data lead to large changes in the
chosen feature subsets. The quantification of stability can be performed by
providing different samples from the same training data and measuring the
changes among chosen feature subsets. According to (Nogueira, Sechidis,
and Brown, 2018) the measurement of stability addresses the question —
how much we can trust the algorithm? From biomedical standpoint, it
is crucial to guarantee the reproducibility of the given feature selection
methods when finding proper sets of biomarkers (Lee et al., 2013)

Incorporation of prior knowledge of molecular networks (e.g.
pathways) into a ML algorithm improves stability (Johannes et al., 2010)
since genes connected in close proximity should have similar expression
profiles and should not be treated independently. Molecular networks
represent molecular processes in a given biological system and are widely
used by biologists to interpret the results of a statistical analysis (Porzelius
et al., 2011) The nodes of a molecular network depict molecules: genes,
RNA, proteins and metabolites. The interactions between molecules
are represented by edges. Different molecular networks can be used to
approximate the interactions between features (genes). ML-based feature
selection methods benefit from molecular network information in terms of
interpretability of selected gene signatures (Johannes et al., 2010; Porzelius
et al., 2011)

In our recent work (Chereda et al., 2021) we presented the Graph
Layer-wise Relevance Propagation (GLRP), an adaptation to GCNN
(Defferrard, Bresson, and Vandergheynst, 2016) of the Layer-wise
Relevance Propagation (LRP) (Bach et al., 2015) method explaining
deep neural networks. The GCNN method utilizes prior knowledge of a
molecular network structuring gene expression data. The GLRP approach
delivers patient-specific predictive subnetworks, which are parts of a
molecular network representing background knowledge about molecular
mechanisms. In our previous work (Chereda et al., 2021) we used a protein-
protein interaction network as a molecular network. The vertices of a
predictive subnetwork are selected genes that are highly relevant for a
classifier’s individual decision. Additionally, the GLRP approach allows
for selecting not only a feature subset relevant for an individual patient, but
also a subset of features important for the classifier decisions made over
a whole dataset. Here we aim to estimate the stability of feature subsets
selected by GLRP w.r.t. different training samples provided from the same
data.

Besides, we applied the SHAP method (Lundberg and Lee, 2017) to
GCNN to interpret its individual decisions, and to deliver patient-specific
subnetworks that can be compared with the subnetworks delivered by
GLRP (GCNN+LRP). As well as GLRP, SHAP allows for the selection of
a general subset of features by quantifying feature importance scores over
a whole dataset. We analyze the stability estimates for GCNN+LRP and
GCNN+SHAP and the properties of subnetworks delivered by these two
approaches.

The contributions of this work are the following:

• Present the Keras (Chollet, 2015) compatible graph convolutional layer
of the GCNN method (Defferrard, Bresson, and Vandergheynst, 2016)
allowing for creating a Keras Sequential GCNN model, so that the
SHAP method could explain it.

• Estimate and compare the stability of feature selection performed
by GCNN+LRP, GCNN+SHAP and other machine learning based
approaches.

• Compare and analyze the subnetworks delivered by GCNN+LRP and
GCNN+SHAP: quantify the permutation importance of the features
among patient-specific subnetworks as well as their connectivity.

2 Materials and Methods

2.1 Protein-Protein Interaction Network

The gene expression data was structured with the Human Protein Reference
Database (HPRD) protein-protein interaction (PPI) network (Keshava
Prasad et al., 2009) It contains protein-protein interaction information
based on yeast two-hybrid analysis, in vitro and in vivo methods. The set
of binary interactions between pairs of proteins in the HPRD PPI network
represented as an undirected graph. The graph is not connected.

2.2 Breast Cancer Data

2.2.1 Metastases Dataset
We applied our methods to a large breast cancer patient dataset that we
previously studied and preprocessed (Bayerlová et al., 2017) That data is
compiled out of 10 public microarray datasets measured on Affymetrix
Human Genome HG-U133 Plus 2.0 and HG-U133A arrays. The datasets
are available from the Gene Expression Omnibus (GEO) (Barrett et
al., 2013) data repository and have the accession numbers GSE25066,
GSE20685, GSE19615, GSE17907, GSE16446, GSE17705, GSE2603,
GSE11121, GSE7390, GSE6532. The data preprocessing is the same as
in our previous work (Chereda et al., 2021, “Breast cancer data” section
of) After pre-processing, the dataset consisted of 12179 genes and 969
patients. The patients were divided into two classes: 393 patients with
distant metastasis occurred within the first 5 years, and 576 patients without
metastasis having the last follow-up between 5 and 10 years.

After genes were mapped to the vertices of the HPRD PPI network,
the main connected component of the resulting graph consisted of 6888
vertices. GCNN’S input dimensionality is equal to 6888 as well.

2.2.2 Subtype Dataset
We have also applied our approaches on another RNA-seq based gene
expression dataset of human breast cancer patient samples. A label of each
patient corresponds to a breast cancer molecular subtype. The expression
(batch normalized from Illumina HiSeq_RNASeqV2) and clinical data
are provided by The Cancer Genome Atlas (TCGA), were downloaded
from (cBioPortal TCGA-BRCA PanCancer data 2018) The expression data
comprise the collection of 20531 genes and 1082 samples. After mapping
sample’s IDs to clinical data (containing subtype labels) we ended up with
981 samples of breast cancer, corresponding to five subtypes: luminal A
(499 samples), luminal B (197 samples), basal-like (171 samples), HER2-
enriched (78 samples) and normal-like (36 samples).

Neighboring genes within a molecular network should have similar
expression profiles. To promote gene expression similarities, the gene
expression data was normalized utilizing the gene length corrected
trimmed mean of M-values (GeTMM) method (Smid et al., 2018) It allows
for inter- and intrasample analyses with the same normalized data set. After
that we applied log2(x+1) transform to reduce the scale. The expression
data were mapped to vertices of PPI resulting in 8469 genes in the main
connected component.
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2.3 ML methods for feature selection

2.3.1 GCNN+LRP
In our recent work (Chereda et al., 2021) we developed the Graph
Layer-wise Relevance Propagation (GLRP) — a method that adapts LRP
(Bach et al., 2015) to graph convolution layers of GCNN (Defferrard,
Bresson, and Vandergheynst, 2016) and explains GCNN’s patient-specific
decisions. GCNN was applied to two breast cancer datasets (“2.2 Breast
Cancer Data”). The HRPD PPI network (“2.1 Protein-Protein Interaction
Network”) was used to structure gene expression data. The GLRP method
(can be also referred as GCNN+LRP) computes a relevance value for
each feature of an individual data point representing a cancer patient. A
single relevance value shows how much a particular feature influences a
classifier’s decision.

As in our previous work (Chereda et al., 2021, “GLRP on gene
expression data” section of) GCNN is trained on training data and the
subnetworks are generated by GLRP on test data. The number of GCNN’s
output neurons corresponds to the number of classes in a classification
task. Also for binary classification, GCNN had two output neurons that
showed the probability of the two classes. For each patient in a test set,
relevance was propagated by GLRP from the output neuron (corresponding
to the ground truth label even if a data-point was misclassified) to the input
neurons representing genes (vertices) of the underlying molecular network.
In our setup, GLRP propagates only positive contributions to a predicted
class.

Let gp be the set of 140 most relevant genes for a single patient where
p corresponds to a patient’s index. The genes of the set gp are mapped
to the vertices of an underlying molecular network, creating a patient-
specific subnetwork. This subnetwork, that explain the prediction of a
single patient, consists from 140 genes in the set gp and corresponding to
gp edges from the underlying molecular network. The description of how
to construct a feature subset using GCNN+LRP is given in “2.5 Selecting
a feature subset via LRP and SHAP” section.

2.3.2 GCNN+SHAP
Additionally, we generated patient-specific subnetworks applying SHAP
method (Lundberg and Lee, 2017) to GCNN trained on breast cancer
subtype data (“2.2.2 Subtype Dataset”). The SHAP method explains
single decisions of a classifier in a similar to LRP manner, but instead
of relevances it estimates Shapley values. The Shapley value is a term
established in cooperative game theory. According to Molnar, 2019, the
game theory setup behind Shapley values is the following: The “game” is
the prediction task for a single data point. The “payout” is the difference
between the actual prediction for this data point and the average prediction
for all instances. The “players” are the feature values of the data point that
collaborate to receive the “payout” (predict a certain value). Shapley values
indicate how to fairly distribute the “payout” among the features. A single
Shapley value represents an importance measure of a particular feature
value of a data point that was fed into the classifier.

The SHAP’s DeepExplainer approach suitable for convenient deep
learning models was not applicable for GCNN and in our previous work
(Chereda et al., 2021, “Discussion” section of) the KernelExplainer was
utilized to explain GCNN, although the estimation of Shapley values took
very long. To make explanations delivered faster within 10-fold cross
validation, we have implemented graph convolution as a separate Keras
layer and built a GCNN model as a Keras sequential model. The SHAP’s
DeepExplainer approach was applied to our Keras implementation of
GCNN. Similarly to GLRP, for each patient we create a set gp of top
140 genes with the highest positive Shapley values, which were pushing
prediction to a higher probability of the ground truth label. As background
data for integrating out the features we used training dataset, and the
Shapley values were estimated for the test test. The positive Shapley values

are referred as feature relevance values in “2.5 Selecting a feature subset
via LRP and SHAP” section that describes how to construct a feature
subset using GCNN+SHAP.

2.3.3 MLP+LRP and MLP+SHAP
Multi-Layer Perceptron (MLP) is a feed-forward neural network. In this
work MLP was trained on breast cancer subtype data (“2.2.2 Subtype
Dataset”). MLP consisted of three hidden fully-connected layers with 1024
units each. Rectified linear unit was used as activation function. Five output
neurons correspond to five subtypes of breast cancer. For the performance
results on (“2.2.1 Metastases Dataset”) we refer the reader to (Chereda
et al., 2019)

The set gp of 140 most relevant genes can be generated as a data
point specific explanation of a single MLP’s decision. For comparison,
we applied both LRP and SHAP to MLP to deliver patient-specific
explanations. The MLP approach does not use prior knowledge. Thus,
in the context of MLP, we refer to patient subnetworks only as a set gp for
the sake of simplicity. A feature subset, corresponding to a dataset, is built
with MLP in the same way as with GCNN and described in “2.5 Selecting
a feature subset via LRP and SHAP” section.

2.3.4 GLMGRAPH and Random Forest
Chen et al., 2015 developed a ’glmgraph’ method that implements network-
constrained sparse regression model. HPRD PPI was used as an underlying
network. The idea of the network constraint is to shrink the difference
between the estimated coefficients of the connected predictors. The
selection of tuning parameters for the sparsity and network constraints was
performed within a separate run of 5-fold cross-validation. For ’glmgraph’,
important features were selected according to the ranking of their absolute
coefficients in the linear model.

Random Forest is a tree-based ensemble machine learning technique
that combines bagging and random subspace method. It does not
incorporate any prior knowledge, but is widely used as a baseline tool for
high-dimensional data analysis. We trained Random Forest with 10000
trees. Important features were selected on the basis of mean decrease in
Gini impurity.

2.4 Measuring the stability of a feature selection algorithm

The input of a feature selection procedure is the data set {xi, yi}ni=1 where
each xi is a m-dimensional feature vector and yi is the associated label.
Feature selection identifies a feature subsetS of the dimensionality k < m

(Nogueira, Sechidis, and Brown, 2018) The subset S conveys the most
relevant information about the label y. The output of a feature selection
approach is either a scoring on the features, a ranking of the features, or a
subset of the features. Thus, the output of any feature selection method can
be treated as a subset selection. Further in this paper, we do not consider
the scoring information about features selected and treat them as a set.
The input dataset of a feature selection technique is a finite sample that
is created by a generating distribution. In the case of varying samples,
the selected feature subset may vary as well. The variation of the feature
subset is the stability that we aim to measure.

A typical approach to measure stability is to produce M subsamples
of the dataset at hand, to apply a feature selection approach to each
one of them, and then to measure the variability in the M feature sets
obtained (Nogueira, Sechidis, and Brown, 2018) Let Z = {S1, ..., SM}
be a collection of feature sets. Let φ(Si, Sj) be a symmetric function
taking two feature sets as input and returning their similarity value and
let Φ̂ be a function taking Z as input and returning a stability value.
Nogueira, Sechidis, and Brown, 2018 provide a good overview over
stability measuring techniques. We utilize similarity based approach, so
that Φ̂ can be defined as the average pairwise similarity between the
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M(M − 1)/2 possible pairs of feature sets in Z:

Φ̂ =
2

M(M − 1)

M∑
i=1

M∑
j>i

φ(Si, Sj). (1)

One of the techniques to generate subsamples is bootstrap. Another
approach is random subsampling (Wald, Khoshgoftaar, and Dittman, 2012)
In this work we use subsamples within 10-fold cross validation, therefore
M = 10. As an easily interpretable pairwise similarity function, we use
Jaccard distance:

φ(Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

. (2)

2.5 Selecting a feature subset via LRP and SHAP

Since the stability measure in equation (1) requires correspondence
of a single feature subset to a single dataset, we used two generic
ways to construct a feature subset S for the approaches GCNN+LRP,
GCNN+SHAP, MLP+LRP, MLP+SHAP. Further in this section, which is
a follow-up of 2.3.1, 2.3.1 and 2.3.3, we refer as feature relevances to both
the values delivered by LRP and the values computed by SHAP. Given
the set gp of top 140 genes with the highest feature relevances of a single
patient, we denote a set Ŝ = ∪pgp as a union of subnetworks’ genes of all
the patients in test data. The two ways to construct a feature subset, which
can be used to measure the stability of feature selection, are the following:

1. We rank genes among patient subnetworks genes Ŝ according to their
frequency in subnetworks. There, we select the set Ŝ140 of 140 top
frequent genes among subnetworks.

2. We compute average feature relevances of genes across patients in
the test set and select top 140 genes with the highest average feature
relevances into the set S̄140.

The feature subset Ŝ was not used to estimate the stability of feature
selection. This subset represents rather differences across patients, while
subsets Ŝ140 and S̄140 contain features that are common or averaged
across patients.

We also compare the stability measures based on S̄140 to the stability
measures of top 140 important features from Random Forest using no prior
knowledge and from ’glmgraph’ method (Chen et al., 2015) implementing
network-constrained sparse regression model using HPRD PPI network.

Two types of feature subsets, that can be delivered by GCNN+LRP,
GCNN+SHAP, MLP+SHAP, and MLP+LRP (Ŝi

140
and S̄i

140, i ∈
{1, 2, ..10}) are generated in scopes of 10-fold cross validation. The
stability measures on the subsets above are presented in “3 Results” section.

2.6 Measuring the permutation importance of
patient-specific subnetworks prioritized by LRP and
SHAP

Apart from the feature selection stability, one can estimate another valuable
property — the permutation importance of features that are relevant for
individual decisions made by a particular ML model. The permutation
importance of a particular feature is calculated as a drop in classification
score when the values of this feature are permuted. We measure the
permutation importance of all the genes that are included in patients’
subnetworks. Following the notations from the previous section, we define
the set of important genes as the union of the subnetworks’ genes of all
the patients in the dataset:

G =

M⋃
i=1

Ŝi =
n⋃

p=1

gp, (3)

Table 1. Stability of gene selection, metastases prediction. In the last column,
for Random Forest top important 140 features are selected according to the
decrease of Gini impurity, while for ’glmgraph’ according to the absolute value
of their coefficients.

Method Top 140 most frequent
genes within subnetworks
per fold, subsets Ŝi

140, %

Top important 140
genes per fold, subsets
S̄i

140, %

GLRP 92.13 92.10
Random Forest - 63.61
glmgraph - 56.22

where M = 10 since subnetworks are generated using 10-fold cross-
validation, and n is a number of patients in the dataset. The subnetworks
can be generated either by LRP or SHAP methods.

The permutation importance of the genesG was calculated in another
additional run within 10-fold cross validation. Inside of each iteration,
we provide three test sets instead of one: T 1

i , T
2
i , T

3
i , i ∈ {1, 2, ..10}.

The first T 1
i is a usual one as it was during the initial run of 10-fold

cross validation generating subnetworks. The second one T 2
i is based

on T 1
i , but the gene expression values of genes G are randomly and

independently permuted across patients. The third one T 3
i is created

by shuffling expression values of |G| randomly selected genes. The
performance difference between T 1

i and T 3
i -like test sets is used as a

baseline to compare with the performance difference between T 1
i and

T 2
i -like test sets.

3 Results
3.1 Stability of feature selection
3.1.1 GLRP on the metastases dataset

The stability of feature selection performed by GLRP on the dataset
described in “2.2.1 Metastases Dataset” section was measured as it is
written in “2.5 Selecting a feature subset via LRP and SHAP” section. The
GCNN architecture consisted of two graph convolutional layers following
maximum pooling of size 2, and two hidden fully connected layers with
512 and 128 units respectively. Each graph convolutional layer contained
32 filters covering a vertex’ neighborhood with seven hops. We utilized two
other baselines as we did in our previous research (Chereda et al., 2021) a
’glmgraph’ method (Chen et al., 2015) implementing network-constrained
sparse regression model (HPRD PPI as prior knowledge), and Random
Forest (no prior knowledge). ’glmgraph’ was evaluated on standardized
data, since it had convergence issues otherwise. The performance results
of 10-fold cross validation of these methods are available in (Chereda et
al., 2021, Table 1 of) The stability estimates shown in Table 1 are based
on feature subsets Ŝi

140
and S̄i

140 described in “2.5 Selecting a feature
subset via LRP and SHAP” section. The stability metrics demonstrate that
the feature selection using GLRP is substantially more stable than using
’glmgraph’ or Random Forest. For ’glmgraph’, the top 140 important
features were selected according to their absolute coefficients in the linear
model. For Random Forest, top 140 important features were selected on
the basis of mean decrease in Gini impurity.

3.1.2 GLRP on the subtype dataset
On the RNA-seq dataset described in “2.2.2 Subtype Dataset” section

a slightly different GCNN architecture was applied and our analyses
additionally included multilayer perceptron (MLP) method. The GCNN
architecture consisted of two graph convolutional layers following average
pooling of size 2, and two hidden fully connected layers with 512 units
each. Each graph convolutional layer contained 32 filters covering a
vertex’ neighborhood with seven hops. MLP consisted of three hidden
fully-connected layers with 1024 units each.
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Table 2. Performance of GCNN predicting the breast cancer subtype.
’glmgraph’ performs binary classification, LumA vs rest.

Method Multiclass Accuracy, % F1-weighted, %

GCNN + 91.33±0.77 91.29±0.71
MLP + 91.54±0.68 91.30±0.73
Random Forest + 87.06±0.83 85.82±1.00
glmgraph - 88.99±1.55 88.99±1.54

Table 3. Stability of gene selection, breast cancer subtype prediction. In the last
column, for Random Forest top important 140 features are selected according
to the decrease of Gini impurity, while for ’glmgraph’ according to the absolute
value of their coefficients.

Method Top 140 most frequent
genes within subnetworks
per fold, subsets Ŝi

140, %

Top important 140
genes per fold, subsets
S̄i

140, %

GLRP 92.29 92.68
Random Forest - 83.96
glmgraph - 58.21
MLP+LRP 34.93 34.84
MLP+SHAP 62.07 39.84
GCNN+SHAP 55.88 25.63

While the RNA-seq dataset has 5 different classes, the ’glmgraph’
method is only suitable for binary classification. Thus, ’glmgraph’
performed luminal A (499 data points) vs other subtypes (482 data points)
binary classification. The data was standardized only for ’glmgraph’. The
performance of the methods was measured using 10-fold cross validation
and the results are depicted in Table 2. As we can see in Table 2, the MLP
and GCNN demonstrate similar performances, while Random Forest and
’glmgraph’ show worse classification scores.

To have more holistic picture on how LRP and SHAP influence
the stability of feature selection, we applied LRP and SHAP to MLP
and compared GCNN+LRP (GLRP) with GCNN+SHAP. The stability
estimates are presented in Table 3 and were obtained according to the
procedure detailed in “2.5 Selecting a feature subset via LRP and SHAP”
section.

Compared to the metastases dataset, the stability of GLRP, Random
Forest, and ’glmgraph’ applied to the subtype dataset were higher. GLRP
demonstrated a slight increase in stability w.r.t. S̄i

140 subsets (92.10 %
vs 92.68 %). Random Forest showed higher stability estimates (63.61 %
vs 83.96 %) as well as ’glmgraph’ (56.22 % vs 58.21 %). The rise of
the stability estimates indicates that the subtype dataset has higher quality
than the metastases dataset. While the stability estimates are lower for LRP
than for SHAP when both are applied to MLP, the situation is the opposite
when both applied to GCNN utilizing the prior knowledge. Furthermore,
GLRP provides the highest stability compared to other methods shown in
Table 3.

3.2 Comparing properties of subnetworks prioritized by
LRP and SHAP

The results showed in the previous section highlight the differences
between stability estimates computed for the SHAP and LRP methods
explaining MLP or GCNN models. We examine these differences further
on the same breast cancer subtype dataset ( “2.2.2 Subtype Dataset”) by
computing the permutation importance for the set of important genes G,
which is the union of the subnetworks’ genes of all the patients in the
dataset. The permutation importance was calculated within 10-fold cross
validation. Inside of each iteration, we provide three test sets instead of
one. The first test set is a usual one. The second test set has shuffled

expression values across patients for the genes from the setG. The third one
has shuffled expression values across patients for |G| randomly selected
genes. Comparing classification performances on those three test sets, one
can evaluate the permutation feature importance as a performance drop
caused by shuffling the expression values of the subnetworks’ genes G.
The results are presented in Table 4. The set G as well as the procedure
to measure the permutation importance are described in “2.6 Measuring
the permutation importance of patient-specific subnetworks prioritized by
LRP and SHAP” section.

One notices, that the performance drop between T 2
i , T

3
i when GLRP

prioritizes 140 top genes per patient, is quite moderate - a bit more than 3
% (Table 4). Also, the set G contains quite small amount of genes - 836
out of 8469. In the second row of Table 4, the increase of the size of a
patient’s subnetwork to 600 genes (|G| = 2712) lead to the increase of
the performance drop between T 2

i , T
3
i up to around 10 %. The stability

estimates (when a patient subnetwork consists of 600 genes) for the subsets
Ŝi

600
and S̄i

140 are the following: 92.66% and 92.68%. It indicates that
increase of subnetworks’ size does not influence the stability estimates.

The permutation importance of the features selected by GCNN+SHAP
is demonstrated in the third row of Table 4. The feature set G contains
higher number of genes (4172 for GCNN+SHAP vs 836 for GLRP), which
indicates that the individual patient subnetworks differ across the patients
much more than in the case of GLRP. The performance drop between
T 2
i , T

3
i is around 40 % that shows that genes selected by SHAP carry

higher importance for classification decisions than genes selected by LRP.
In other words, from the perspective of feature selection, the fraction
of false positive genes among patient subnetworks prioritized by LRP is
higher than the fraction of false positive genes among patient subnetworks
prioritized by SHAP. Another cornerstone of the patient’s subnetworks
is interpretability in the context of underlying prior knowledge (HPRD
PPI network). We compared the connectivity of individual subnetworks
delivered by GCNN+SHAP and GLRP by counting the number of
connected components in them. The distributions of the number of
connected components in subnetworks are displayed as boxplots in Figure
1. While the subnetworks generated by GLRP have on average 16
connected components, the subnetworks generated by GCNN+SHAP have
126 of them. In contrary to the GLRP subnetworks, the genes prioritized
by GCNN+SHAP can hardly be interpreted in the context of the HPRD PPI
network since a subnetwork generated by GCNN+SHAP consists mainly
of singletons.

The last two rows in Table 4 compare the behavior of SHAP and LRP
applied to MLP that does not use any prior knowledge. As in the case
of GCNN, SHAP features has lower amount of false positives than LRP
features. Comparing the fourth and the second row, one can notice that the
performance drop on MLP+LRP is higher than that on GLRP even though
the number of genes with permuted vertices was lower for MLP+LRP.
Perhaps the reason for GLRP to demonstrate such a behavior is that if a gene
which is not that important for classification is adjacent to an important
one, it can be assigned abundant relevance if the expression values of these
genes are similar and the corresponding weights of graph convolutional
filters have similar values.

4 Discussion
The focus of our paper is to investigate the stability of feature selection

performed by the GCNN+LRP approach (GLRP) and to compare it to
the stability of feature selection performed by GCNN+SHAP. Moreover,
the stability of GLRP was compared to that of more commonly used
algorithms, such as Random Forest and network-constrained sparse
regression model. The stability estimates for GLRP are the highest among
all the feature selection approaches used in this paper. Surprisingly,
for GCNN+SHAP the stability estimates are among the lowest and the
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Table 4. Performance drop by permuting subnetworks’ genes values across patients in test sets. The measure for the peformance drop is F1-weighted score.

Method Performance, usual
test sets T 1

i , %
Performance, permuting
values of subnetworks’
genes G, test sets T 2

i , %

Performance, permuting values
of |G| randomly selected genes,
test sets T 3

i , %

|gp|, number of
selected top relevant
genes per patient,

|G|, number of genes
with permuted values

GLRP 91.29±0.71 87.55±0.71 90.79±0.95 140 836
GLRP 90.17±0.95 76.18±1.40 86.54±0.97 600 2712
GCNN+SHAP 91.60±0.84 43.81±1.18 82.73±1.33 140 4172
MLP+LRP 91.30±0.73 69.62±1.84 87.79±0.66 140 2372
MLP+SHAP 91.17±0.71 40.78±1.19 86.54±1.35 140 2952

Fig. 1. The distribution of the number of connected components in patients’ subnetworks.
The left boxplot corresponds to the subnetworks obtained by GLRP while the right one
corresponds to the subnetworks obtained by GCNN+SHAP.

GCNN+SHAP subnetworks are much less similar between patients than
the GLRP subnetworks. As for the permutation importance, the situation is
completely opposite: the subnetworks’ genes prioritized by GCNN+SHAP
are more important for GCNN’s decisions than the the subnetworks’ genes
prioritized by GCNN+LRP. Although one should take into account that
the number of all subnetwork genes is more than four times higher for
GCNN+SHAP than for GLRP.

One one hand it is expected to have very different patient-specific
subnetworks because cancer is a heterogeneous disease. On the other hand,
the connectivity properties of GCNN+SHAP subnetworks are poor since
they mainly consist of single vertices that are disconnected within the
HPRD PPI network. On contrary, GLRP produces connected subnetworks.
We hypothesise, that the GLRP method smoothes the relevances across
layer’s nodes of a neural network while propagating them from output to
input layers.

In the case of MLP models, the permutation importance is also
substantially higher for SHAP features than for LRP features that perhaps
supports our previous claim. Comparing GLRP and MLP+LRP, one
can notice that the permutation importance of the genes prioritized by
MLP+LRP is higher than that of the genes prioritized by GCNN+LRP.
Investigating properties of the distribution of relevance, gene expression
values, and weights among input features of GCNN and MLP, one could
potentially check the hypothesis mentioned in the previous paragraph but
we leave it for our future research.

Additionally, we noticed that the frequency, with which a gene is
prioritized by LRP (for both GLRP and MLP+LRP), correlates with the
expression value of a gene - this correlation is around 0.47. For the SHAP
method the same correlation is less then 0.10. We assume that the LRP
has a slight bias towards genes with higher expression values, and this
property also needs to be investigated further.

The performances of MLP and GCNN on the breast cancer subtype data
are basically the same. This fact questions the superiority of GCNN over
other ML methods in classification tasks. In our recent research (Alachram
et al., 2021) we utilized three additional microarray cancer datasets. We
have checked how the GCNN’s performance depends on prior knowledge
and also compared it to the performance of Random Forest. We found out
that the performances of GCNN and Random Forest were comparable.
Moreover, permutation of nodes of an underlying molecular network did
not substantially alter the classification performance of GCNN (Alachram
et al., 2021) It can be explained by our assumption that the expression
correlations between genes did not coincide well with provided network
topologies (Alachram et al., 2021) This property is worth to be studied
further as well.

5 Conclusion
We have investigated the stability of feature selection procedure

based on the GLRP (GCNN+LRP) approach delivering patient-specific
subnetworks. Its stability was also compared to the stability of feature
selection of more classical methods such as Random Forest and generalized
linear model with graph constraints. Additionally, we have studied the
prioritization of features performed by the SHAP and LRP explanation
methods that were applied to GCNN and MLP. We conclude that GLRP
provides the highest stability in feature selection compared to other
approaches. Patient-specific features prioritized by SHAP had consistently
higher permutation importance than patient-specific LRP features when
LRP and SHAP were applied to GCNN as well as to MLP. It was
also established, that highly unstable approach MLP+LRP (no prior
knowledge) prioritizes features with permutation importance higher than
that of features prioritized by GCNN+LRP. Our further investigation of
subnetworks that were prioritized by GCNN+LRP and GCNN+SHAP
showed that while the subnetworks generated by GCNN+SHAP had higher
permutation importance for GCNN’s decisions, the subnetworks generated
by GLRP were much more connected in contrast to the subnetworks
delivered by GCNN+SHAP that consisted mainly of single vertices.
Therefore, the subnetworks generated by GLRP are more interpretable
in the context of prior knowledge compared to the subnetworks obtained
from GCNN+SHAP.
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