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Abstract 

The human kidney is a complex organ with various cell types that are intricately organized to perform 

key physiological functions and maintain homeostasis. New imaging modalities such as mesoscale and 

highly multiplexed fluorescence microscopy are increasingly applied to human kidney tissue to create 

single cell resolution datasets that are both spatially large and multi-dimensional. These single cell 

resolution high-content imaging datasets have a great potential to uncover the complex spatial 

organization and cellular make-up of the human kidney. Tissue cytometry is a novel approach used for 

quantitative analysis of imaging data, but the scale and complexity of such datasets pose unique 

challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and 

Analysis (VTEA) software, a unique tool that integrates image processing, segmentation and interactive 

cytometry analysis into a single framework on desktop computers. Supported by an extensible and 

open-source framework, VTEA’s integrated pipeline now includes enhanced analytical tools, such as 

machine learning, data visualization, and neighborhood analyses for hyperdimensional large-scale 

imaging datasets. These novel capabilities enable the analysis of mesoscale two and three-dimensional 

multiplexed human kidney imaging datasets (such as CODEX and 3D confocal multiplexed 

fluorescence imaging).  We demonstrate the utility of this approach in identifying cell subtypes in the 

kidney based on labels, spatial association and their microenvironment or neighborhood membership. 

VTEA provides integrated and intuitive approach to decipher the cellular and spatial complexity of the 

human kidney and complement other transcriptomics and epigenetic efforts to define the landscape of 

kidney cell types. 
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Introduction 

Renal researchers increasingly appreciate the importance of characterizing the cellular niches of the 

kidney (cell types and subtypes, physiological state, neighborhood interactions) and how they are 

altered in kidney disease1–4. Imaging of kidney tissue specimens with single-cell resolution at a large 

scale is an attractive approach for uncovering cellular niches in their tissue context5–7. Such an 

approach has become more feasible because of the increased ability to collect mesoscale imaging 

datasets on accessible confocal microscopes, whole slide imagers and light-sheet microscopes. 

Furthermore, combining mesoscale imaging with highly multiplexed staining or labeling approaches 

allows for the capture, in situ, of hundreds-of-thousands cells that may be classified by many markers. 

The scale and depth of these data create a mounting challenge for timely quantitative and interpretable 

analysis. This is particularly important for kidney research, where biopsy-scale multiplexed imaging 

datasets of the human kidney are being collected and publicly released by large collaborative consortia 

such as the Kidney Precision Medicine Project (KPMP) and the Human BioMolecular Atlas Program 

(HuBMAP)8,9. 

 

Tissue cytometry (TC) is a powerful approach for analyzing mesoscale fluorescence images with 

single-cell resolution5,10–13. Depending upon the imaging platform, datasets may be either 2D or 3D10,14. 

An important first step in TC is to survey all the cells by segmentation. This is often accomplished by 

using nuclei as fiduciaries for cells. Segmentation entails identifying regions of images as nuclei based 

on contrast provided by stains, registering each individual nucleus as an object, and identifying an 

associated cytoplasm spatially or with a specific marker.  Features to describe these cells can be 

calculated on this segmentation. These features could be related to fluorescence intensities of markers 

within or around the nucleus (i.e. the cytoplasm) or based on the spatial coordinates or proximity 

relationships to these nuclei10,13,14. Multiplexing several markers in the same experiment enhances the 

richness of the imaging data, by providing specificity of cell types based on unique markers (or unique 
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combination thereof) and generating spatial information based on the distribution of stains within the 

tissue5,13–15.  

 

In a standard cytometry analysis, after cell segmentation, cells can be classified and quantitated by 

supervised approach using gating based on marker intensity, in which cells are defined according to 

threshold levels of marker fluorescence (gating).  However, as the scale and complexity of multiplex 

mesoscale image volumes increase, such a manual approach becomes intractable and increasingly 

unlikely to be successful at uncovering the complex spatial organization and cellular niches of the 

kidney.  Multiplexed mesoscale tissue cytometry thus requires tools supporting unsupervised analysis, 

ideally with machine learning, to characterize the cellular makeup of a tissue accurately and completely, 

to identify cellular niches and to map their neighborhoods and microenvironments11,14,16–18. Given the 

complexity of the interacting processes of segmentation, classification, quantification and neighborhood 

analysis, the ideal system should incorporate all these processes into a single, integrated analysis and 

visualization software package. 

 
Since the initial description of Volumetric Tissue Exploration and Analysis (VTEA) as an open-source 

project, several excellent tools for tissue cytometry have been developed (Table 1).   In this time VTEA 

(v0.5.2-v0.7) has been used in several projects involving single imaging fields to large mesoscale multi-

fluorescence kidney image volumes to perform supervised cytometry analysis with gating4,5,19–24.  

However, machine learning, data visualization and analysis tools that are useful for multidimensional, 

big-data scale imaging data were not previously implemented in VTEA’s uniquely integrated pipeline.   

Here we describe VTEA 1.0 which specifically adds, 1) machine learning for clustering and 

dimensionality reduction to aid in automated classification of cell types, 2) neighborhood analysis to 

uncover cellular niches and 3) new data visualization tools to support discovery.  To facilitate this growth 

of VTEA’s integrated approach, a SciJava framework was implemented25,26.  VTEA now supports 

extensible image processing, segmentation, classification, visualization, and neighborhood analysis for 

processing on hundreds-of-thousands of cells and multi-gigabyte datasets with a fully integrated 
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workflow. We demonstrate the utility of VTEA by identifying cell subtypes based on labels, spatial 

association and neighborhood membership using large scale 3D and 2D imaging data from kidney 

tissue.  
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Methods 

Data acquisition and availability 

Image data used in figures 3,4 and 5 or figure 1 and S2 was previously and separately analyzed in 

Woloshuk et al, 2021 or Winfree et al, 2017 10,23.  The analyses herein are wholly separate and 

independent of those analyses.  The data present here is available upon request or, in-part, at 

https://vtea.wiki.  

Tissue acquisition 

Tissue was collected and processed under the Institutional Review Board at Indiana University 

approved protocols: 1906572234, for nephrectomy samples and 1010002261, for human biopsy 

samples. 

Tissue preparation 

Multiplexed Immunofluorescence.  Sectioning and staining for multiplexed staining were performed 

as described previously23. Briefly, 50 um sections of human nephrectomy tissue were cut from 

formaldehyde fixed (4.0% and stored in 0.25% in 1X PBS) with a vibratome (Leica Biosystems).  Tissue 

sections were blocked in 10% normal donkey serum, 0.1% Triton X-100 in 1X phosphate buffered 

saline (PBS) and stained overnight with antibodies in block (Table 3)7.  All secondaries were raised in 

donkey (ThermoFisher).  In some cases, primary antibodies were directly conjugated including CD31, 

CD45, and Nestin conjugated with Dylight550, Alexa488 and Alexa647 (Thermofisher).  After staining 

with DAPI for nuclei and in some cases with Alexa488-phalloidin for F-actin for 30 minutes, cells were 

washed in block, 1X PBS and mounted in Prolong Gold or Prolong Glass under #1.5 coverslips 

(ThermoFisher).  Prolong Glass mounts were allowed to cure for 24-48 hours.  As required coverslips 

were sealed with clear nail polish (Electron Microscopy Supply) and stored at 4°C before imaging. 

Highly multiplexed immunofluorescence.  Sectioning and staining for highly multiplexed 

immunofluorescence were performed as described previously5,27.  Briefly, 50 um human nephrectomy 

tissue was cryosectioned and fixed in formaldehyde (4.0% and stored in 0.25% in 1X PBS).  Blocking, 

staining was performed with six antibodies, secondaries as needed, DAPI and phalloidin as indicated 
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(Table 3).  Coverslips were mounted in Prolong Glass under #1.5 coverslips and cured for 24-48 hours.  

The eight markers were collected across 16 channels with four excitation wavelengths and spanning 

the visible spectrum and near infra-red.  

Confocal Microscopy 

Multiplexed immunofluorescence specimens were imaged on either an FV1000 (Olympus) at 20x 0.75 

NA oil immersion objective or a fully automated SP8 confocal with a 20x 0.75 NA Mimm objective as 

described previously23.  Highly multiplexed fluorescence imaging was performed on the fully automated 

SP8 confocal and unmixed and stitched in either LASX(Leica) or FIJI26. 

CODEX 

Antibody Conjugation and Validation.  14 of the 23 antibodies used here were conjugated in-house using the 

protocol outlined by Akoya Biosciences (Table 3)19,20. To conjugate barcodes to antibodies, antibodies were 

reduced using a “Reduction Master Mix” (Akoya Biosciences) to which lyophilized barcodes resuspended in 

molecular biology grade water and “Conjugation Solution” (Akoya Biosciences) were added and incubated for 2 

hours at room temperature. Labeled antibodies were purified from free-barcode in a 3-step wash and spin 

process and stored at 4°C. Successful conjugation was validated via SDS-PAGE gel electrophoresis as well 

as immunofluorescent staining of reference tissue followed by confocal microscopy.    

Tissue Preparation. 10-micron sections of human renal tissue embedded in OCT were cut onto poly-L-lysine 

coated coverslips. Sections were prepared as detailed by Akoya Biosciences and as described previously7,14. 

Tissue retrieval was conducted with a 3-step hydration process, followed by fixation with a PFA-containing 

solution. Following fixation, the coverslip mounted tissue was incubated overnight at 4°C with an antibody 

cocktail of 23 of the antibodies listed in Table 3. Tissues were washed, and post-fixed in 4% PFA for 15 minutes. 

Imaging. Antibodies were imaged cyclically using the CODEX system from Akoya Biosciences and 

a Keyence BZ-X810 slide scanning microscope fitted with a 20x air objective (0.75 NA).  Images were processed 

using the CODEX Processor (Akoya Biosciences) and images exported for analysis with VTEA.  

 

Software design, development, and distribution 
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Volumetric Tissue Exploration and Analysis (v1.0) was developed in Java, with SQL, R-script and 

Python, using the integrated development environment Netbeans (Apache) using a maven build 

scheme.  Major application program interfaces (APIs) used in VTEA include SciJava (v.30.0.0), ImageJ 

(v.1.53f), h2 (v. 1.4.198), SMILE (v.1.5.3), Renjin (v3.5-beta76) and JFreeChart (v. 1.5.0).  The github 

release tag @cdfbd46 can be used to perform all the analyses presented here.  VTEA v1.0, bleeding-

edge and archival versions, can be downloaded and built from source-code using a maven build 

scheme, https://github.com/icbm-iupui/volumetric-tissue-exploration-analysis .  Stable releases can be 

installed in FIJI by using the FIJI updater and selecting the “Volumetric Tissue Exploration and Analysis” 

update site.  General description, analysis vignettes with demonstration data and development plans 

can be found at https://www.vtea.wiki and https://imagej.net/plugins/vtea. 

 

Computers used in analysis 

Image data was analyzed VTEA on a Macbook laptop (mCorei5, 8 GB RAM, 2016), a Lenovo P51 

(Xeon quad-core, 64 GB RAM) or an 8-core custom-built workstation (Xeon 8-core, 256 GB RAM). 

 

Figure preparation 

All images were generated in ImageJ/FIJI and plots (scatter, violin, heatmaps), gated cell overlays and 

segmentation maps were created by VTEA.  Photoshop (Adobe) was used for final annotation and 

assembly of panels.  Scales were set by the microscopy platform and annotated in ImageJ/FIJI.  All 

intensity changes are linear unless otherwise noted.   

 

Results  

VTEA, an integrated tool for image processing, segmentation, and interactive cytometry analysis 

VTEA has a fully integrated analytical pipeline for image processing, segmentation, and cytometry in 

one software framework (Figure 1). Using the standard approach of VTEA, segmented cells can be 

analyzed in a 2D scatter plot, where gating can be applied based on marker intensity to identify and 
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count specific cells of interest. Gated cells are visualized in the image volume, which allows for visual 

validation of the gating strategy and facilitate biological interpretation (Figure 1f). Furthermore, using 

ImageJ/FIJIs region-of-interest(roi) selection tool allows quantitation and visualization of select cells in 

the image within the scatter plot (Figure 1g and h). This back-and-forth interaction between the image 

and analytical space allows for fine-tuning of the analysis and interactive exploration. VTEA has also a 

unique bidirectional workflow, whereby a user can make upstream adjustments in image processing 

and segmentation and test the effect of these adjustments on the cytometry output (Figure 1, double 

headed arrows).  

Building an extensible framework for an integrated tissue cytometry (TC) analysis in VTEA  

To facilitate on-going improvements to VTEA’s integrated pipeline, a SciJava based plugin 

infrastructure was implemented.  The SciJava extensible framework uses interfaces implemented by 

super-classes that are extended by concrete implementations which include runtime annotations for 

indexing of available classes or plugins(Table 2).  Using this extensible framework, new functionality 

was incorporated into VTEA including functionality from SMILE, Renjin, and ImageJ/FIJI(Figure 

S1A)26,28,29.  To improve data handling the SQL based Java database h2 was also implemented (Figure 

S1A)30.  Furthermore, additional functionality has been added to VTEA including but not limited to: 1) 

compatibility with other segmentation and analysis tools, 2) archiving and sharing data 3) generating 

multiclass training dataset for use in image classification (Figure S1B)23. 

VTEA with unsupervised machine learning improves the accuracy and resolution of cell classification 

in kidney image volumes   

Manual gating has limitations in accuracy and resolution of cell classification and may underperform in 

the setting of large multi-dimensional datasets. The use of scatterplots, gates and sub-gating is a 

common strategy for analyzing cytometry data.  Gating frequently requires the use of expert opinion 

and operator-dependent thresholding of cells that are positive or negative for a marker of interest 

(Figure 2A).  For instance, in 3D confocal imaging data of human renal cortex, detecting aquaporin-2 

(AQP2) positive cells is expected to identify the collecting duct (CD).  However, in a standard VTEA 
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analytical 2D scatter plot, the population of AQP2-positive cells may not be accurately nor rigorously 

identified by manual gating (Figure2A, lower right plot).  Using one of VTEA’s newly implemented 

clustering algorithms, agglomerative hierarchical clustering with Ward linkage, using fluorescence 

intensities, the AQP2-positive population was readily clustered (Figure 1e, Figure2B, lower right).  

Importantly, this added functionality to VTEA also identified additional AQP2-positive cells not initially 

included in the expert drawn gate, and clearly a part of the CD epithelium when mapped back to the 

imaging volume improving the classification of putative AQP2-positive CD cells (Figure 2C).   

To improve the resolution of classified AQP2-positive populations, non-proximal epithelial cells (AQP1-

, F-actin- negative cells) in the renal cortex (clusters 2,3 and 4, Figure S2A and S2Ba) were subgated 

in VTEA. Using fluorescence intensities, the segmented cells were re-clustered and mapped to t-SNE 

space with VTEA.  Ward clustering uncovered three AQP2-positive clusters (Figure S2Bb) that 

mapped to distinct tubular epithelium.  The two AQP2-positive clusters with highest intensity (clusters 

1 and 2 Figure S2Bc) mapped predominantly to collecting duct cells and putative distal epithelial cells 

(verified by morphology), which could be consistent with APQ2-positive progenitor cells described 

previously31. The AQP2-positive with low intensity mapped to the distal tubular epithelium, suggesting 

a subpopulation of cells in the distal nephron with a low level of AQP2 (Figure S2Ad and S2Bc). The 

increased resolution and distribution of AQP2 expression was only apparent after using VTEA to 1) 

sub-gate and re-cluster putative APQ2-positive cells and 2) confirm these new populations with both 

mapping the gated cells to the image and selecting the tubules with an ROI in the image to map to the 

scatterplot (Figure S1Ae and S1Bc).  Using VTEA’s unsupervised analysis, subgating and bi-

directional mapping increased the resolution of cell classification which could not be performed using 

a traditional supervised approach (Figure 1A). 

Separation of spatially overlapping cell populations in 3D image volumes with unsupervised machine-

learning and determination of glomerular census at large scale with VTEA 

Using a manual gating strategy with standard 2D scatter plots may poorly discriminate spatially 

congested cells (for example within glomeruli), where staining from one cell can confound the 
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classification of neighboring cells.  As shown in Figure 3A, Gating Nestin-positive podocytes cells 

successfully in a standard scatter plot with VTEA is not feasible, because the analysis is confounded 

by the close association of Nestin-positive cells with CD31-positive glomerular endothelial cells and 

CD45-positive immune cells. Using dimensionality reduction with t-SNE, feature plots and unsupervised 

agglomerative hierarchical clustering with Ward-linkage as implemented in VTEA, Nestin-positive 

podocytes can be isolated from CD31-positive endothelial and CD45-positive immune cells (Figure 

3B). Such an analytical approach can also be applied at a large scale, where unsupervised analysis 

can identify immune, endothelial and podocyte cells for an entire section of kidney tissue (Figure 4A-

B). Glomerular cell census in such tissue can be readily acquired by applying spatial regions-of-interest 

on the image volume (Figure 4D). Cells in the glomeruli are counted and classified as podocytes, 

endothelial, immune or other (likely mesangial).  Furthermore, the 3D volumes collected allow for 

volumetric cell densities to be calculated for glomeruli (Figure 4D).  

Assessing infiltrating immune cell subtypes in human kidney based on spatial neighborhoods 

Focusing on the CD45-positive immune cells from Figure 3 and applying VTEA’s unsupervised 

analysis, we uncovered 2 populations of CD45-positive immune cells, which separated based on their 

nuclear staining and CD45 intensity (Figure 5A and B). We asked if these two subpopulations could 

distribute in unique spatial niches. Using the cell-centric neighborhood analysis function and data 

visualization features within VTEA, we defined the spatial neighborhoods of all labeled cells, including 

the two types of CD45-positive immune cells defined by CD45 and DAPI intensity where CD45-pop1 

cells had higher intensities of CD45 and DAPI than CD45-pop2 (Figure 5e). Most neighborhoods with 

immune cells had a mixture of the two CD45-positive populations (Figure 5Ca,5Cb and 5Cg 

neighborhoods 7, 8 and 9). However, a unique immune neighborhood enriched with endothelial cells 

(i.e., close to vessels) had a preponderance of CD45-pop1 (Figure 5Ce and 5Cg Neighborhood 4). 

Another neighborhood with the lowest fraction of endothelial cells (i.e., distant from vessels) had a 

mostly of CD45-pop2 cells (Figure 5Cf and 5Cg neighborhood 10). These findings demonstrate that 
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unsupervised clustering with neighborhood analysis in VTEA can uncover a variety of cell niches based 

on spatial relationships that may have biological relevance.  

Using VTEA for classification of cell-types in 3D spectral confocal images of human kidney 

The use of multispectral confocal imaging and linear unmixing of fluorophores enables large-scale 3D 

imaging with 8 multiplexed probes (Figure 6A). This approach allows the survey of tens- to hundreds-

of-thousands of cells in situ within kidney tissue.  Identifying major cells subtypes and the less abundant 

immune cells can be difficult using traditional gating, particularly when the emission spectra from 

fluorophores are overlapping. Using unsupervised machine learning, including clustering (Figure 6Ba-

6Bc), and visualizing mean fluorescence intensity distributions of the cell subtypes in VTEA (Figure 

6Bd), we can readily classify both epithelial and immune cells in an unbiased manner (Figure 6B).     

Applying VTEA’s pipeline on highly multiplexed CODEX data of the human kidney to uncover cell sub-

types and biologically relevant cell neighborhoods 

Human cortical biopsy underwent CODEX imaging with 23 markers (Figure 7A, Table 3) and analyzed 

with VTEA to perform cytometry, cell-classification, and neighborhood analysis (Figure 7B-E). 

Unsupervised hierarchical clustering of the 11,355 segmented cells identified the major cell types in the 

kidney (Figure 7B).  Using subgating and subclustering, additional novel cell state phenotypes were 

identified including PROM1-positive (CD133) thick ascending limb and proximal tubule cells (Figure 

7B, and S3D) and CD68-positive dendritic cells, CD68-positive putative macrophages, and CD68-

positive epithelial cells (Figure 7C and S3C-E). To determine if specific cellular microenvironments 

were present in the tissue, VTEA’s neighborhood analysis function (Figure 1i) was used to tabulate 

neighborhoods and revealed, after clustering and dimensionality reduction, unique neighborhoods with 

associations between tubular epithelial cell subtypes and immune cells, such as the association of 

PROM1-positive TAL and PROM1-positive PT cells with low levels of CD68-positive macrophages 

(Figure 7D and E, N4 and N5 respectively) and an association of CD90-positive proximal tubules with 

DC and T-cells (Figure 7E, N6).  
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Discussion 

In this work, we present an integrated tissue cytometry approach with VTEA to analyze and extract 

biologically relevant data from state-of-the-art and increasingly multiplexed fluorescence imaging 

datasets of human kidney tissue. This approach leverages innovative tools for analysis and 

visualization using machine learning to perform rigorous, reproducible, and informative analysis that 

could be used to uncover the complex spatial organization and cellular make-up of the human kidney. 

Using this analysis pipeline, we demonstrated how we can improve the accuracy and resolution of cell 

classification in kidney tissue. Furthermore, we showed unique advantages of this approach in 

performing advanced quantitative analysis to uncover cell populations based on spatial associations 

and neighborhood memberships. In addition, VTEA has the tools to perform intuitive analysis on highly-

multiplexed datasets and extract novel information on cell subtypes and neighborhoods that could 

complement findings from other omics studies at the single cell level. VTEA is available for download 

through the FIJI plugin updater with the source code is available on github, https://github.com/icbm-

iupui/volumetric-tissue-exploration-analysis.  Additional description and vignettes demonstrating the 

use of VTEA are available at https://vtea.wiki. 

 

One of the advantages of incorporating machine learning and dimensionality reduction in the VTEA 

workflow, as compared to relying only on one label of interest to identify cells, is the ability to use 

information from the other label intensities and potentially additional spatial parameters. These added 

parameters increase the discriminative power to identify specific population of cells such as better 

identification of low intensities of a specific marker (as shown for AQP2). These applications will 

improve the accuracy compared to a standard gating strategy and increase the confidence of identifying 

novel cells that may be biologically relevant, as we showed for low AQP2 expressing cells in the distal 

nephron.  
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In addition to improving the accuracy and resolution of cell classification, the workflow of VTEA with 

machine learning tools will facilitate the cytometry analysis of imaging data that was not previously 

feasible using a standard VTEA approach. We present examples of spatially overlapping cells within 

structures like glomeruli. Taking advantages of multiple dimensions, it is possible now to accurately 

quantify the various cell types within glomeruli. This process could also be semi-automated using the 

data analytical tools provided, thereby having important potential implications on studying human 

glomerular pathology, where the cell density of specific cell types such as podocyte, immune and 

mesangial cells may be linked to the pathogenesis of kidney disease5.  We also demonstrated the utility 

of VTEA in classifying cells based on spatial parameters, such as neighborhood memberships based 

on association with structures such as vessels and or other cell types. In the CD45-positive immune 

cell example, we could classify two cell populations based on nuclear staining and association with 

vessels. We hypothesize that these immune cell subpopulations may reflect different stages of activity 

and infiltration: from margination, extravasation and exiting vessels towards forming foci of inflammation 

within the peritubular space. These findings are only proof-of-principle of the capabilities of VTEA in 

using imaging-based data for discovery of spatially based cell niches and require further validation to 

fully determine biological relevance and generalizability4,19. 

 

Next, we demonstrated VTEA’s utility in segmentation and analysis of imaging data from kidney tissue, 

while supporting classification, quantitation, and visualization. VTEA can process mesoscale datasets 

with tens to hundreds of thousands of cells both in 2D and 3D while maintaining the interactive 

characteristics of the analysis. In the multiplexed 3D confocal large-scale data, we used unsupervised 

analysis and dimensionality reduction to classify the cell types and validated these classes of cells 

based on visualizing the distribution of intensity for each classified cell type. This provides a 

semiautomated process for large and high-content datasets that augments the rigor of other quality 

check measures already used, such the validation of the identified cells by mapping them in the original 

image.   
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We also analyzed highly multiplexed large-scale data from human cortical kidney tissue imaged with 

CODEX. This imaging technology expands the ability to multiplex markers on the same 10 µm thick 

tissue sections using DNA-conjugated antibodies.  With CODEX imaging, these antibodies are revealed 

three at a time by the reversible binding of fluorescent oligonucleotide reporters. Following imaging, the 

fluorescent reporters are stripped from the tissue and replaced with a second set of three probes and 

imaged again. This process is repeated until all the antibodies in the tissue have been revealed. Images 

of DAPI-labeled nuclei are collected in each round to enable registration of images into a single highly 

multiplexed image. Although CODEX imaging has been described on mouse and human kidney tissue 

recently6, the analytical output from such data has been limited.  Using the integrated analytical pipeline 

with VTEA, we can perform not just cytometry, but also use unsupervised machine learning to classify 

major cell types and uncover novel subtypes. For example, we demonstrate the existence of subtypes 

of proximal tubules (PT: CD90-positive PT, PROM1-positive PT) and thick ascending limb cells 

(PROM1-positive TAL)4. Subclassifying also identified T-cell subtypes based on multiple markers. 

Using neighborhood analysis, we can uncover new spatial associations that could inform on the biology. 

For example, macrophage association with PROM1-positive TAL cells is consistent with recent single 

cell transcriptomics data suggesting the transcriptional phenotype of PROM1-positive TALs, may be in 

niches of immune activation4. We expect that applying VTEA analysis on such highly multiplexed 

CODEX data will complement and spatially anchor single cell transcriptomics data and may inform and 

confirm (at the protein level within the tissue) transcriptomics outputs such as receptor-ligand analyses.     

 

The advantages of VTEA analysis have been outlined in this work and include the unique integrated 

workflow in the setting of a general framework of accessibility, flexibility, and extensibility. VTEA can 

work as a stand-alone tool carrying the imaging data (after collection) all the way to analysis, which 

offers unique advantages. For example, applying the integrated VTEA workflow to analyze human 

kidney multiplexed imaging data will enhance efficiency and discovery because all the steps, including 
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advanced machine learning analysis and visualization, occur in one software space. Furthermore, 

VTEA has unique strengths such as: 1) fine-tuning, in real-time, image processing and segmentation 

parameters to optimize the analysis and 2) gating for interactive back-and-forth between image and 

analysis. Importantly, VTEA can also operate with custom workflows to accept inputs from other 

sources. For example, a better segmentation algorithm (by importing segmentation maps) or an outside 

set of measurements (such as from MorphoLibJ) can be easily imported. VTEA also exports csv files 

of measured and unsupervised machine learning features and indexed segmentation maps for 

integration into other tools and pipelines. 

 

Tissue cytometry with VTEA still has limitations. Despite the advantages of an integrated workflow that 

has been applied on computer desktops (not requiring computer clusters or server-based), the analysis 

and visualization of large mesoscale datasets will require desktop computers with enhanced data 

processing and RAM. Although the analyses of the smaller image datasets presented here can be 

performed on very modest computers (e.g., 2016 Macbook). There are also persistent challenges in 

mobilizing large datasets from acquisition platforms to the analysis computers.  Importantly, this is not 

unique to VTEA or even TC and a problem that pertains to other mesoscale and omics datasets. 

Combining datasets, into the same analytical and non-overlapping image spaces within VTEA is an 

ongoing area of research and development.  Practically, with progress in multiscale and hierarchical 

image formats this may be greatly simplified soon32.  Furthermore, multiple datasets can be aligned 

into a single analysis with VTEA using normalization and mapping strategies but testing and adequately 

addressing batch effects needs to be established across image datasets33. One possibility is to use 

cell-centric neighborhood analysis, which is, by default, normalized spatially for a common set of cell 

classifications, to combine disparate imaging datasets. We recently used such an approach on 3D 

large-scale multiplex confocal image volumes of human biopsies from the Kidney Precision Medicine 

Consortium and successfully combined neighborhoods of ~1.2 million cells4.  
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In conclusion, we present tissue cytometry with VTEA as a solution to analyze and interpret high-

content imaging data of human kidney tissue.  Using appropriate unsupervised machine learning 

approaches, we demonstrated how VTEA can classify and characterize cell populations based on a 

suite of cell-wise features including intensity measurements and neighborhood cell population statistics. 

We anticipate that this approach will be useful in uncovering the complex spatial organization and 

cellular make-up of the human kidney and generalized to analyzing imaging data of tissues from other 

organs.  
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Figure 1.  Integration of VTEA into a renal tissue cytometry workflow.  VTEA provides an 
interactive and bidirectional workspace to integrate the image processing (Processing, blue, b), 
segmentation (Segmentation, orange, c), clustering and dimensionality reduction (green, e), mapping 
and back-mapping between the image and scatter plots (yellow, g and h) and generation of 
neighborhoods (Neighborhoods, red, i).  Neighborhoods generated in VTEA can be clustered, back-
mapped and additional levels of micro-environments (e-i).  
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Figure S1. Volumetric Tissue Exploration and Analysis software stack and design schematic.  
A.  Volumetric Tissue Exploration and Analysis (VTEA) is built on robust open-source Java projects for 
visualization, SQL database backend and an annotation-based extensible framework with SciJava for 
implementing functionality such as image processing (ImageJ), machine learning (SMILE) and the R 
statistical environment (Renjin). B. VTEA is flexible in the data it can operate on (Input, left column), 
extensible analysis methods it has implement and could be added (Analysis, middle column) and the 
output data it generates (Output, right column). The output results support management and distribution 
of data and analysis for scientific rigor and mechanisms for sharing analytical results with other tools 
such as machine learning pipelines. 
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Figure 2.  Improved classification of the kidney epithelium with semi-automated machine 
learning.  50-micron thick human kidney tissue was stained for proximal tubule and collecting duct 
markers aquaporin-1 (AQP1) and aquaporin-2(AQP2) and counterstained for nuclei (DAPI) and 
filamentous actin (F-actin, phalloidin) and imaged by confocal fluorescence microscopy.  A. Supervised 
analysis of a volume of human kidney cortex in 3D (top panels) in VTEA with user defined gates based 
on the intensity of AQP1, AQP2, and F-actin intensities where the AQP2 gate was selected to avoid 
cells with high F-actin intensity per a lookup-table (LUT, lower panels).  Scale bar = 100 um. B.  
Unsupervised dimensionality reduction and clustering in VTEA of average and standard deviation of 
cell associated intensities of DAPI, phalloidin, AQP1 and AQP2 partitions the cells into discrete groups.  
Intensity of F-actin, AQP1 and AQP2 is plotted as the LUT in t-SNE space (top panels) and Elbow Plot 
for estimation of k from selected feature space (k=5, vertical red line), Agglomerative hierarchical 
clustering with Ward-linkage (k=5, red line on dendogram) subdivides the cells into clusters that reflect 
the marker intensity (bottom panels).  C.  Changes in cell classification visualized in VTEA demonstrate 
an increase in the number of each group of cells with the unsupervised approach in (B).  Cells classified 
in (A) are in yellow and cells in orange were added to the classification with Ward Hierarchical clustering 
(cluster 4, B). Scale bars = 100 and 20 um. 
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Figure S2. Uncovering subpopulations of AQP2-positive cells with subgating and unsupervised 
analysis of cell image volumes.  The confocal image volume collected and analyzed in Figure 1 was 
further analyzed for AQP2-positive cells and subpopulations.  A.  Overlays of cell classification as 
calculated in Figure 1. Low levels of AQP2 are seen in some cells of cluster 3 (inset, a-d). Panel Aa is 
an overlay of all four fluorescence images, DAPI in gray, F-actin in green, AQP1 in magenta and AQP2 
in yellow.  Ac and Ad show either AQP2 and DAPI or AQP2 alone in the same colors.  Ab show the 
overlay of clusters identified in Figure 1, colored by the t-SNE given at left.  Scale bar = 100 um, A, or  
30 um Aa. B. Clusters 2-4, low in AQP1 and F-actin intensity (Ba), were subgated and clustered and 
mapped to t-SNE space based on the average intensity of all channels for each segmented cell.  3 
AQP-positive clusters were identified including the previously mapped collecting duct and a population 
of AQP2 low epithelium, Bb and Bc. This was confirmed by image gating and on the cells of interest 
and mapping to the scatter plot with VTEA (green region-of-interest Ae and green rings on scatter plot 
insert Bc). Cluster 1 cells mapped to cells with lower AQP2 intensity, (white asterisks Ad) and cluster 
2 mapped to cells with higher AQP2 intensity (yellow asterisk Ad). 
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Figure 3. Separating masked populations of podocytes, leukocytes and endothelium by 
unsupervised analysis of cell image volumes in VTEA.  A. Human nephrectomy tissue was fixed in 
and stained with DAPI and with antibodies against CD31 (yellow), CD45 (green) and Nestin (magenta) 
and imaged by confocal microscopy.  Separated channels are given at right.  All images are maximum 
intensity Z-projections, scale bar = 100 um.  B. Nuclei segmented as fiduciaries of cell with connected 
components in 3D, ‘Connect 3D’, and associated intensities of CD31, CD45 and Nestin were measured.  
Ba. map of all segmented cells uniquely colorized.  Bb-d Scatterplots of CD31, CD45 and Nestin 
demonstrate overlap in Nestin and CD31 signal in 2D plots.  C. Unsupervised analysis of cell and 
marker intensity uncovers closely associated Nestin and CD31-positive cells.  Ca-Cc. Mapping of cell 
associated intensity (every dot is a cell) to t-SNE projection calculated from the mean intensity of DAPI, 
CD31, CD45 and Nestin. Cd. Ward clustering dendogram using the same mean intensities with major 
bifurcation between labeled and unlabeled and at least 3 subclusters of labeled cells at k=5 (red line). 
Ce. Ward clusters mapped to t-SNE projection. Putative cell types are colored and labeled.  Cf. 
Colorizing of segmented pixels for cells within CD45-positive, Nestin-positive and CD31-positive 
classes as given in Ce. 
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Figure 4. Automated glomerular census in mesoscale 3D tissue cytometry with machine 
learning classification and spatial analysis in VTEA.  A. Human nephrectomy tissue was fixed in 
and stained with DAPI (gray) and with antibodies against CD31 (yellow), CD45 (green) and Nestin 
(magenta) and imaged by confocal microscopy. Scale bar = 500 um  B.  The whole 3D volume was 
analyzed, and 172,258 cells were segmented and processed by VTEA.  Unsupervised analysis, G-
means clustering and t-SNE mapping identified CD45-positive, CD31-positive, and Nestin-positive cells 
automatically.  C. The cluster identities were confirmed by the plots generated by VTEA including 
average mean fluorescence intensity of each class, (heatmap, left panel) or by the distribution of mean 
fluorescence intensities for each cell (violin plots, right panels).  D. Unsupervised classifications were 
used in combination (left panel) with regions-of-interest (ROIs) drawn with ImageJ during analysis to 
perform a glomerular census of the endothelium (CD31), leukocytes (CD45) and podocytes (Nestin).  
The census is presented as density of cells per mm3 (right panels). 
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Figure 5. Using VTEA to classify leukocytes based on association with vascular endothelium.  
Using the image volume collected for Figure 4, spatially defined neighborhoods with CD45-positive 
cells were generated in VTEA.  A. Mesoscale maximum z-projection of human nephrectomy tissue 
stained with DAPI (gray) and with antibodies against [CD31 (yellow), CD45 (green) and Nestin 
(magenta) and presented as separate channels in gray.  CD45-positive leukocytes localize in clusters 
that associate with CD31-positive structures including glomeruli and blood vessels (Aa-Ad).  Scale bar 
= 500 um B.  CD45-positive leukocytes and CD31+ endothelium was subgated from all cells (Figure 
4B) and reclustered for k=5.  Ba-Be, feature plots and VTEA generated heatmaps of mean signal 
intensity for CD45, Nestin and CD31 uncovers podocytes (Pod., green), Endothelium (Endo., red) and 
two putative populations of CD45-positive cells based on DAPI and CD45 intensity (p1 or pop1 vs. p2 
or pop2, orange and blue respectively).  Bf. Using cell-wise export with VTEA ground truth generation 
routine, 100 cells sampled from the two CD45-positive populations.  Ca-Cb. Maximum projections of 
mapped CD45-p1 and CD45-p2 in the image volume identifies tissue regions of mixed, and uniquely 
CD45-p2 cells.  Cg, neighborhood analysis, for every classified cell within r = 25 um and unsupervised 
clustering of neighborhoods based on cellular census, demonstrates CD45-p1 are found in 
neighborhoods with (N4, red) and without endothelium (Endo, N7-9, green e.g., Ca and Ce) in 
neighborhoods with CD45-p2.  CD45-p2 are also found alone without CD45-p1 nor endothelium (N10, 
orange, e.g., Cd and Cf). 
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Figure 6. Uncovering cell types in 3D highly multiplexed data with VTEA. Human nephrectomy 
tissue was fixed and stained for 8 markers and imaged by 3D spectral confocal microscopy.  Using 
reference spectra, 8 channels were unmixed and analyzed by VTEA.  A. Mesoscale, maximum 
projections of subsets of channels highlighting immune or tubular epithelium (Aa and Ab), with insets 
as given in Ab.  Arrowheads indicate neutrophils (red), T-cells (blue) and eosinophils (yellow). Scale 
bars are 200 um and 50 um. B.  Unsupervised analysis of all cells with 8 marker channels separates 
the major cell types expected in the renal cortex.  Mixed classes of Interstitium (Int) and distal nephron 
including distal convoluted tubule (DCT) or collecting ducts (CD) are low for all markers (Bb and Bc). 
A small group of THP high cells were annotated as not defined (ND, Ba).  Granulocytes, eosinophils 
and neutrophils, are abbreviated as Neut and Eos in Bc. 
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Figure 7. Automated detection, classification of cell-types and assessing cellular 
microenvironments in CODEX data with VTEA. Multiplexed immunofluorescence image dataset of 
human reference kidney was processed, segmented, and analyzed with VTEA. A.  Maximum projects 
of subsets of channels highlighting tubular epithelium or immune cells in the renal cortex.  Left panel 
indicates three regions given in Aa, Ab and Ac and segmentation mask (inset).  Scale bars are 500 
um and 30 um.  B. Segmented cells with associated marker intensity with clustered using hierarchical 
clustering and projected into t-SNE space using the average intensity of associated markers.  Putative 
cell-types as indicated.  C. Marker intensity for clusters identified in B, normalized by marker.  Cell types 
include subclasses of epithelial and leukocytes.  TMEM and TN are putative memory and novel T-cells.  
epithelium identified included proximal tubule (PT) S1, S2 and S3 subsegments, loop of Henle thick 
ascending limb (TAL) and the distal nephron subsegments distal convoluted tubule (DCT) and 
collecting duct (CD).  Markers are given at bottom.  A subset of clusters had overlapping proximal tubule 
(LRP2-positive green arrowhead) and TAL (cyan asterisk) or leukocyte signatures (green and orange 
asterisks).  D. Using cell-types defined in C and Figure S3, neighborhoods were defined in VTEA for 
every cell within 50 um.  The cell census for all neighborhoods was used to cluster and map the 
neighborhoods to t-SNE space in VTEA.  E.  The distribution of cell-types was plotted by neighborhood 
as a heatmap to identify unique microenvironments in the tissue volume.   
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Figure S3. Subclustering of epithelial cells in CODEX data uncovers novel cell states in the 
proximal tubular (PT) and thick ascending limb (TAL).  A-B. Clusters 12 or clusters 0 and 7 from 
Figure 7 were subgated based on intermediate LRP2 expression and either CD68 or PROM-1 or UMOD 
expression.  C. Cluster 12 was reclustered separating CD68+ DCs, putative macrophages and CD68-
positive PT cells.  D. Clusters 0 and 7 were subgated and reclustered identifying two PT cell-types 
(PROM-1-positive vs. CD90+).  E. CD68-positive DC-cells and putative epithelium are readily 
identifiable (Ea-f vs Eg-m).  Ec-f and Ei-l are insets for Ea and Eh respectively. 
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