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Abstract: 26 

1. Identified ligands for > 500 mouse ORs 27 

2. ORs are specifically tuned towards individual odorants and their molecular properties 28 

3. Odor molecular properties are informative of odor responses 29 

4. Predictive modeling and convergent evolution analyses suggest specific residues within a 30 

canonical location for odorant binding 31 

Olfactory receptors (ORs) constitute the largest multi-gene family in the mammalian genome, with 32 

hundreds to thousands of loci in humans and mice respectively1. The rapid expansion of this massive 33 

family of genes has been generated by numerous duplication and diversification events throughout 34 

evolutionary history. This size, similarity, and diversity has made it challenging to define the principles 35 

by which ORs encode olfactory stimuli. Here, we performed a broad surveying of OR responses, using 36 

an in vivo strategy, against a diverse panel of odorants. We then used the resulting interaction profiles 37 

to uncover relationships between OR responses, odorants, odor molecular properties, and OR 38 

sequences. Our data and analyses revealed that ORs generally exhibited sparse tuning towards 39 

odorants and their molecular properties. Odor molecular property similarity between pairs of odorants 40 

was informative of odor response similarity. Finally, ORs sharing response to an odorant possessed 41 

amino acids at poorly conserved sites that exhibited both, predictive power towards odorant selectivity 42 

and convergent evolution. The localization of these residues occurred primarily at the interface of the 43 

upper halves of the transmembrane domains, implying that canonical positions govern odor selectivity 44 

across ORs. Altogether, our results provide a basis for translating odorants into receptor neuron 45 

responses for the unraveling of mammalian odor coding.  46 
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Introduction: 47 

Stimulus encoding and feature extraction are fundamental tasks performed by all sensory systems. 48 

Therefore, a central problem in neurobiology is defining how aspects of a stimulus are represented by 49 

the activity of sensory receptors2-5. This problem is particularly intriguing in the case of olfactory 50 

stimuli, which do not vary along a single, continuous dimension, such as wavelength or amplitude. 51 

Odorants, rather, have discrete molecular structures that determine their physical-chemical properties. 52 

An inability to relate how these discrete molecular structures and their associated physical-chemical 53 

properties influence receptor responses represents a major gap in knowledge. Consequently, one 54 

cannot robustly predict the neural activity patterns nor the perceptual attributes6 of an odorant 55 

starting from its physical-chemical properties. 56 

 57 

A major hindrance in deciphering the coding of olfactory information by olfactory receptors (ORs) has 58 

been the historic inability to comprehensively identify ORs that respond to an odorant. Various in vivo, 59 

ex vivo, and in vitro methods have generally suffered from either a lack of insight into receptor identity 60 

or have been too low throughput for a comprehensive surveying of OR selectivity5,7-9. With the mouse 61 

genome encoding over 1000 intact ORs, and odor reception following a combinatorial coding scheme, 62 

where one OR can be activated by a set of odorants and one odorant can activate a combination of 63 

ORs, defining a logic for peripheral odor coding is dependent on a comprehensive surveying while 64 

tracking receptor identity over a large odor panel1,10-12.  65 

 66 

Here, we performed a broad surveying of odorants in vivo to identify odorant-OR interactions in Mus 67 

musculus. By leveraging phosphorylated S6 ribosomal subunit capture (pS6-IP) coupled to RNA-Seq 68 

(pS6-IP-Seq), we were able to identify ORs expressed by recently active olfactory sensory neurons 69 

(OSNs; receptor deorphanization)11,13-15. Then, using a library of molecular property descriptors, we 70 
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parameterized the physical-chemical properties of the tested odorants to uncover relationships to the 71 

responses they elicited from cognate receptors. Finally, using our data, we asked 1) how well does 72 

odor molecular property similarity predict receptor response similarity and 2) if there are specific 73 

amino acid positions that influence odorant selectivity amongst receptors. Our results and analyses 74 

provide a foundational framework for understanding the molecular logic by which the quality of an 75 

odor molecule is encoded across a mammalian receptor repertoire.  76 
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Results: 77 

Estimation of chemical and receptor space sampling 78 

First, we set out to identify ORs activated by a set of 61 odorants at various concentrations by 79 

leveraging pS6-IP-Seq. Immunoprecipitation of phosphorylated ribosomes from activated neurons 80 

followed by associated mRNA profiling by RNA-Seq, and differential expression analysis, enabled us to 81 

identify ORs expressed by OSNs activated by specific odorants (Supplementary figure 1A)11,14,15. ORs 82 

were considered odor-responsive if enrichment values (log2FC) were positive with a false discovery 83 

rate (FDR) < 0.05. Considering all odorants at all tested concentrations, this approach deorphanized a 84 

total of 555 ORs across 72 conditions (Supplementary table 1). Considering unique odorants yielding at 85 

least one activated OR at the lowest tested concentration, this approach deorphanized a total of 375 86 

ORs across 52 odorants. 87 

 88 

To examine the bias in our odorant set, we built an 1811-dimensional (1811D) space in which each 89 

dimension represented a molecular property descriptor5, such as molecular weight, number of atoms, 90 

or aromatic ratio,  parameterizing the physical-chemical properties of the odor molecule. We then 91 

plotted our 52 uniquely tested odorants together with 4680 other small molecules16 other small 92 

molecules commonly found in foods and fragrances in this 1811D space to construct a chemical space 93 

consisting of a total of 4732 small molecules. Visualization of the first two principal components (PCs) 94 

did not reveal any obvious segregation of the test odorants, suggesting a broad sampling of chemical 95 

space by our test odor panel (Figure 1A, Supplementary figure 1B-C). To examine bias in our resulting 96 

deorphanized OR cohort, we computed pairwise OR Grantham distances17, an index of amino acid 97 

similarity, and visualized the results using multidimensional scaling (MDS). Examination of the first two 98 

MDS coordinates did not reveal any obvious segregation of the deorphanized 375 ORs, suggesting a 99 

broad sampling of receptor space (Figure 1B).  100 
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Figure 1. Data bias and pS6-IP-Seq validation. A, A total of 1811 molecular descriptors were 
calculated for a total of 4732 small molecules. The small molecules were projected onto a 2D 
chemical space made of the first and second principal components. The 52 unique odorants tested 
by pS6-IP-Seq at low concentrations, each yielding at least one activated OR, are colored in red. B, 
Left, Grantham distances were used to calculate a distance matrix for intact ORs. The matrix was 
visualized in two dimensions with multidimensional scaling to represent receptor space. ORs 
responding to at least one of the 52 tested odorants are colored red (n = 375). Right, a phylogenetic 
tree of intact ORs. Tree edges with identified and unidentified agonists at low concentrations are 
colored red and black respectively. C, ORs responsive to tested enantiomers were evaluated by 
heterologous expression. ORs enriched by pS6-IP-Seq against (+)-odorant are colored red while ORs 
enriched by (-)-odorant are colored blue. ORs enriched by both enantiomers are colored purple. 
Linear regression reveals in vivo and in vitro responses to be highly correlated (carvones r = 0.91, p = 
0.012; menthols r = 0.84, p = 0.0043; 2-octanols r = 0.65, p = 0.0084). 

 101 

To validate the receptor specificity of the pS6-IP-Seq dataset, we selected enantiomers (carvones, 102 

menthols, and 2-octanols) for in vitro testing. We transiently expressed ORs responsive to tested 103 

enantiomers in Hana3A cells and challenged with individual odorants to generate dose response 104 

curves. Comparison of in vitro responses to in vivo responses revealed the data to be highly correlated 105 

(carvones r = 0.91, p = 1.2E-2; menthols r = 0.84, p = 4.3E-3; 2-octanols r = 0.65, p = 8.3E-3). Altogether, 106 
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these results substantiated the pS6-IP-Seq dataset and yielded confidence that the pS6-IP-Seq strategy 107 

would provide an index of receptor selectivity even amongst structurally similar odorants (Figure 1C, 108 

Supplementary figure 2A-F). 109 

 110 

Describing receptor tuning 111 

Having broadly sampled chemical and receptor spaces, we next sought to quantify the relative 112 

responses of individual receptors to the test odor panel. Individual receptors displayed unique 113 

response profiles across the odorants. Examining receptor tuning did not reveal a bimodal distribution 114 

of narrowly and broadly tuned receptors, but rather a continuum of tuning breadths with an average of 115 

1.85 cognate odorants per significantly responding receptor (Figure 2A-D, Supplementary figure 3A-B).  116 

 117 

To describe the tuning of ORs towards specific molecular properties, we next generated property 118 

strength vectors (PSVs) for each of the molecular descriptors (Figure 2E)18. The responsiveness of each 119 

OR to each molecular property was then characterized as a Pearson’s correlation between the odor 120 

response spectrum and the values taken by the PSV across the 52 odorants tested (Figure 2F). The 121 

array of such correlations (hereby termed property response spectrum) taken across the molecular 122 

property descriptor set defined the molecular receptive range and property tuning of each OR (Figure 123 

2G). For example, several ORs that displayed robust responses towards thiol odorants yielded tuning 124 

towards the “number of thiol groups” molecular property (Supplementary figure 4A-D). The number of 125 

properties that single receptors responded to significantly (FDR < 0.05) varied from receptor to 126 

receptor with a range of 0 to 136 (mean = 7.91, median = 2). Indeed, the majority of deorphanized ORs 127 

(223/375) displayed significant correlations to at least one of the molecular property descriptors 128 

(Figure 2H). Within the subset of significant OR response-property pairs (2967/ 679125), correlations 129 
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spanned both negative (-0.77 to -0.49) and positive (0.49 to 0.82) values with an absolute average of 130 

0.55 (Supplementary figure 3C).  131 

 

Figure 2. Combinatorial coding and OR tuning. A, Odor responses across the 52 unique odorants, 
tested at low concentrations, visualized by heatmap. A total of 375 ORs were determined to be 
responsive to at least one of the tested odorants (log2FC > 0 and FDR < 0.05). Responses are 
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 132 

Odor molecular properties are informative of odor response patterns 133 

Having identified receptor responses to a large and diverse set of odorants, we next sought to 134 

determine the effectiveness of using odor molecular properties to predict receptor responses via 135 

similarities5,18,19. To describe the similarity between odorants in molecular property space, we 136 

calculated distances of normalized property strength values between odorant pairs. To represent odor 137 

similarity in OR response space, we similarly calculated pairwise distances between normalized 138 

receptor responses. Linear regression between odorant similarity distances and response similarity 139 

distances revealed a significant relationship (r = 0.29, p = 3.4E-27; Figure 3A, Supplementary figure 5A-140 

B), implying odor molecular properties were informative of receptor response patterns. 141 

 142 

We next considered the possibility that a subset of the molecular property descriptors may be better 143 

able to relate odor molecular property similarities to receptor response similarities. To test this 144 

normalized such that each odor has zero response mean and one standard deviation (z-scored). 
Responses are color coded from negative, to zero, to positive responses in light blue to white to red. 
The following odorants are abbreviated: 2-methyl-2-thaizoline (2M2T), 2,4,5-trimethyl-4,5-
dihydrothiazole (TMT), 2-sec-butyl-4,5-dihydrothiazole (SBT), 2,4,5-trimethylthiazole (nTMT), and 
3,4-dehydro-exo-brevicomin (DHB). ORs were sorted by correlation distance. Odorants were sorted 
by odor category. B, Odor responses across the same 52 odorants visualized by chord plot. Odorants 
were sorted by odor category and associations were visualized. Association band thickness 
corresponds to the number of ORs shared, while color corresponds to overall response similarity 
across the 375 deorphanized ORs using correlation distance (1-r). C, Z-scored odor response spectra 
of five example ORs across the 52 tested odorants. Responses were normalized such that each OR is 
z-scored. D, Histogram of the number of significant odorants per receptor. On average, each 
responding OR was activated by 1.85 odorants (n = 692). E, Z-scored PSVs of five example molecular 
properties across the same set of odorants as B. F, Property responses given by the Pearson’s 
correlation coefficients between the odor responses (B) and PSVs (D) calculated over the 52 
odorants in the panel. The following molecular properties are abbreviated: aromatic ratio (ARR), 
hydrophilic factor (Hy), rotatable bond fraction (RBF), number of secondary alcohols (nOHs), and 
number of thiols (nSH). G, Property response spectra characterized by Pearson’s correlation 
coefficients between the five example ORs and 1811 molecular properties. H, Histogram of the 
number of significant molecular properties per receptor (n = 2967). On average, each odor-
responsive OR was significantly correlated with 7.91 molecular properties with a median of 2 (FDR < 
0.05). Out of the 375 deorphanized ORs, 223 ORs displayed significant correlations to at least one 
molecular property descriptor. 
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possibility, we built a sparse regression and performed feature selection using the Least Absolute 145 

Shrinkage and Selection Operator (LASSO). By varying the LASSO loss function (λ) to influence the 146 

number and relative contribution of the selected molecular properties, we observed improved 147 

correlations with increasing numbers of weighted molecular properties. Importantly, by performing 148 

odor pair cross-validation, we observed that parsimonious combinations of odor molecular properties 149 

selected by LASSO yielded positive predictive abilities (optimal correlation distance odor pair cross-150 

validation r = 0.30, Figure 3B, Supplementary figure 6A-B). To complement these findings, we also 151 

selected an “optimized” set of 65 molecular properties; which included descriptions of aromaticity, 152 

functional group, and molecular geometry; that could be individually linearly decoded and regressed 153 

from OR response patterns alone (Supplementary figure 7A, Supplementary table 2). Using ridge 154 

regression with the “optimized” set of 65 molecular properties, we could again predict response 155 

similarities from molecular property similarities (optimal correlation distance odor pair cross-validation 156 

r = 0.30, Figure 3C-D, Supplementary figure 7B-C). Altogether, we interpreted these “optimized” set of 157 

65 molecular property descriptors as both, being capable of explaining OR response variance, and 158 

contributing to the natural statistics of odorants. 159 

 160 

To further validate the predictive abilities of molecular properties and our molecular property 161 

optimization, we also trained and cross-validated a feed-forward non-linear model (XGBoost). In the 162 

first cross-validation scheme, we performed odor-pair cross-validation using all calculated molecular 163 

properties as predictors. In the second, we limited molecular properties to the “optimized” set. In both 164 

cross-validation schemes, predicting response similarities from molecular properties outperformed 165 

shuffled controls (Figure 3E-F, Supplementary figure 8A-B). Altogether, these results show that odor 166 

responses can be explained in part by combinations of molecular property descriptors.  167 
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Figure 3. Pairwise odor similarity comparisons in response and property spaces. A, Pairwise 
correlation distance measurements between odorants in response space regressed against 
molecular property space (r = 0.29, p = 3.4E-27, n = 1326). B, LASSO regression as a function of 
varying the loss function (λ). Large λ values (leftmost edge) generally correspond to the selection of a 
few weighted molecular properties. Small λ values (rightmost edge) generally correspond to the 
selection of many weighted molecular properties. By increasing the number of weighted molecular 
properties selected by the LASSO algorithm, odor responses become increasingly well fit by 
molecular properties (black line). To evaluate the generalizability of the sparse property selection, 
pairs of odorants were iteratively held-out during training and added back intact (solid red line) or 
shuffled (dashed red line) for cross-validation. Euclidean distances were used to quantify differences 
between pairs of odorants in molecular property space. Correlation distances were used to quantify 
differences between pairs of odorants in response space. C, Pairwise correlation distance 
measurements between odorants in response space against optimized molecular property space (r = 
0.34, p = 3.2E-37, n = 1326). D, Ridge regression results as a function of varying the λ loss function 
using the optimized set of molecular properties. Large λ values (leftmost edge) generally correspond 
to dependence on a few weighted molecular properties. Small λ values (rightmost edge) generally 
correspond to dependence on many weighted molecular properties. E, Results of odor pair cross-
validation using the XGBoost model framework with default hyperparameters with all molecular 
properties (r = 0.33, n = 1326). F, Results of odor pair cross-validation using the XGBoost model 
framework with default hyperparameters with the optimized set of molecular properties (r = 0.31, n 
= 1326). 

 168 

Specific receptor residues predict ligand selectivity of ORs 169 

Comprehensive identification of ORs responsive to many odorants prompted us to next search for 170 

generalizable relationships between odorants, ORs, and receptor residues11,14. To do so, we built 171 
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logistic models using aligned ORs. For each odor fit with a regularized logistic model, receptors were 172 

randomly split into 90% training and 10% testing sets for 100 repetitions. Iterating this process over the 173 

set of tested odorants identified a series of weighted positions, harboring amino acids with predictive 174 

power, occurring primarily at the upper halves of the fourth and fifth transmembrane domains (TMDs) 175 

(Figure 4A). For example, visualizing amino acids occurring at these positions identified an enrichment 176 

of cysteine and methionine residues in TMD5 amongst ORs responding to sulfurous odorants 177 

(Supplementary figure 9A). Regressing the average weight assigned to each position, from odorants 178 

solvable by logistic regression (area under receiver operating characteristic curve, AUROC > 0.5), by 179 

percent conservation revealed an anti-correlation (r = -0.38, p = 6.1E-12, Figure 4B-C)1. Using a Support 180 

Vector Machine (SVM) classifier, with a linear kernel, led to similar predictions regarding the response 181 

likelihoods of held-out ORs (Logistic regression AUROC = 0.70, Linear SVM AUROC = 0.78, Figure 4D, 182 

Supplementary figure 10A).  183 

 184 

The massive expansion and rapid evolution of the OR gene family posits opportunities for the 185 

convergent evolution of distantly related ORs to evolve odorant selectivity independently. To search 186 

for receptor sequence positions exhibiting convergent evolution, we asked if ORs sharing response to 187 

an odorant possessed positions harboring amino acids with physical-chemical properties, measured by 188 

Grantham’s distance17, which deviated from comparable but odor-unresponsive ORs. Iterating over the 189 

set of tested odorants, this analysis identified a series of poorly conserved positions (r = -0.54, p = 6.5E-190 

25, Figure 4E, Supplementary figure 10B), especially localized to the upper half of TMD5. Regressing 191 

the average weight assigned to each position, via regularized logistic regression, by the number of 192 

times each position displayed convergent evolution, revealed similar findings between the two 193 

approaches (r = 0.42, p = 1.5E-14, Supplementary figure 10C). Importantly, the localization of these 194 

positions, and those identified by logistic models, was consistent with a region implicated in ligand 195 
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binding in other class A GPCRs20-25. Altogether these results show the odorant selectivity of ORs are in 196 

part explained by convergently evolving residues occurring at a common site of poorly conserved 197 

residues within the TMDs. 198 

 199 

To visualize the results of our analyses in 3D, we next built an OR homology model. Focusing on the 200 

conserved “toggle switch” Y6.48 residue previously reported to reside at the bottom of the ligand-201 

binding cavity of other class A GPCRs20,26-28, we consistently observed nearby residues in the upper 202 

halves of TMD3, TMD5, and TMD6 as exhibiting heavy weights in our logistic models, poor 203 

conservation, and convergent evolution, implying a canonical cavity for odorant binding across our 204 

tested odorants. Altogether, these results are consistent with the idea that few mutations within the 205 

ligand binding site of ORs can broadly reconfigure chemical tuning, a feature that is likely to have 206 

facilitated the rapid evolution of receptors with distinct ligand specificities.  207 
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Figure 4. Sequence-function relationships of ORs. A, ORs were split into 90% training and 10% 
testing sets for 100 repetitions of regularized logistic regression using aligned sequences as 
predictors. Odorants which yielded AUROC values > 0.5 (Supplementary table 3) were subset and 
non-zero weights were averaged across positions, repetitions, and odorants. Individual weights were 
visualized by snakeplot (left) with the most commonly occurring amino acid described at each 
position. Ballesteros-Weinstein x.50 numbers for each TMD are highlighted in green. Weight 
distributions were visualized across domains by box-and-whisker plot (right). B, Left, the most 
commonly occurring amino acid was quantified by its percent conservation across ORs and visualized 
by snake plot. Right, percent conservation distributions were visualized across receptor domains by 
box-and-whisker plot. C, Regressing the average weight assigned to a position, by regularized logistic 
regression, by its percent conservation reveals an anti-correlation (r = -0.38, p = 6.1E-12). D, Using a 
SVM classifier with a linear kernel to predict response likelihoods of held-out ORs leads to similar 
results as logistic regression (logistic regression AUROC = 0.70, linear SVM AUROC = 0.78). E, ORs 
sharing response to an odorant were subset and pairwise compared to a null set of ORs with 
comparable protein sequences. Pairwise Grantham distance distributions between the responsive 
and null sets were compared by Kolmogorov-Smirnov statistical test to determine if amino acid 
similarity distributions were different. Count measurements reflect the number of times a position 
harbored amino acids with differing distributions between the two groups at an FDR < 0.05. Left, 
these results were visualized by snakeplot. Right, these results were visualized by box-and-whisker 
plot describing domain distributions. F, Left, visualization of the data in 3D using homology models. 
Color schemes are identical those in panels A, B, and E. TMDs are indicated. Right, zoomed in view 
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focusing on residues found directly above the conserved Y6.48 toggle switch residue. A consensus of 
poorly conserved residues found in TMD3, 5, and 6 can be seen to exhibit both higher weights by 
regularized logistic regression models, and convergent evolution. Ballesteros-Weinstein numbers 
associated with displayed residues are also described. 

  208 
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Discussion: 209 

Given the inordinate complexity of the chemical world, large repertoires of ORs appear to be necessary 210 

for the detection and discrimination of diverse chemicals in the environment, as exemplified by the 211 

significant genomic space that is systematically subjugated to ORs across numerous species. These 212 

findings are compounded by the identification of OR-specific chaperone proteins which may allow 213 

functional expression of ORs with cryptic mutations, further underscoring the high degree of sequence 214 

diversification ORs are enabled to possess29,30. Using a diverse set of odorants, here we have 215 

performed a functional in vivo characterization of the OR repertoire of Mus musculus. Linking the 216 

activity of the receptor repertoire to an extensive set of molecular property descriptors parameterizing 217 

the physical-chemical properties of the odorants, we learned that ORs displayed a continuum of tuning 218 

breadths. Similarities between sparse sets of molecular properties could be used to predict receptor 219 

response patterns. Finally, analyses linking odorant selectivity and amino acid residues most 220 

consistently identified a series of poorly conserved residues located primarily in the upper half of the 221 

transmembrane domains.  222 

 223 

While our test odor panel, and resulting deorphanized receptor set, was broad in the coverage of odor 224 

and receptor spaces, the data was by no means all-encompassing. 20 PCs were required to cover 90% 225 

of variance in the 52 set of tested odorants, whereas the full set of 4732 small molecules required 74 226 

PCs to achieve comparable coverage (Figure 1 – Supplementary figure 1B). Our analyses therefore 227 

likely reflect lower bound estimates of chemical and receptor response spaces. Nevertheless, these 228 

results also imply that a substantial amount of the information in the molecular property descriptors is 229 

highly redundant. Furthermore, we note that the dimensionality of the tested odorants in receptor 230 

response space is higher than the dimensionality of the odorants in chemical space, with 34 PCs 231 

needed to explain more than 90% of the response variance (Figure 1 – Supplementary figure 1B). This 232 
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increased dimensionality indicates there are facets of odor response by ORs that are poorly explained 233 

by a similar number of flat surfaces in chemical space described by molecular property descriptors. 234 

Although the molecular property descriptors used in this study can explain and predict response 235 

similarities, further searches for latent descriptors capable of better associating odor properties to 236 

their receptor responses may improve these associations31,32. 237 

 238 

Several implications arise from our observation that diverse odorants share commonalities that relate 239 

their receptor responses to amino acid residues. First, the poor conservation of positions harboring 240 

residues exhibiting predictive power and convergent evolution suggest a mechanism by which flexible 241 

chemical recognition can be achieved by a family of proteins while maintaining a degree of 242 

conservation necessary for functional protein integrity and activation of conserved downstream 243 

signaling cascades. Second, the association of the third, fifth, and sixth transmembrane domains with 244 

odor selectivity are also consistent with site-directed mutagenesis efforts on single ORs that have been 245 

shown to influence OR responses33-37. Finally, these results are consistent with recent evidence from 246 

structural elucidation of an ionotropic insect OR, which revealed a single binding pocket for a 247 

structurally diverse odorants38. Future structural elucidation of mammalian ORs will enable direct 248 

addressing of the modes of odorant-OR interactions. 249 

 250 

In summary, we have provided a systematic, quantitative analysis of the primary representation of an 251 

odor, as registered by the differential responses of individual ORs. Our results and analyses provide a 252 

foundational framework for investigating how these primary odorant representations are transformed 253 

into subsequent representations to ultimately guide behavioral outputs.  254 
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Supplementary figures: 255 
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Supplementary figure 1. Details of chemical and receptor space sampling. A, Schematic of 
the pS6-IP-Seq experiment. Litter matched, ~3 weeks old mice were used. Mice were first 
habituated to an odor-free environment for 1 hour. One mouse then received exposure to an 
odor stimulus, while another received exposure to the solvent, again for 1 hour. Whole 
olfactory mucosa was then harvested and immunoprecipitated using an antibody against pS6 
and subjected to RNA-Seq. B, Top, tested odorants in chemical space colored by odor 
category. Bottom, molecular structures of tested odorants sorted by odor category. C, Left, 
the cumulative percent variance of the tested odorants in chemical space explained as a 
function of included PCs of molecular properties. A minimum of twenty PCs was required to 
capture at least 90% of the variance for the test odorants in chemical space. Middle, the 
cumulative percent variance of all molecules in chemical space explained as a function of 
included PCs of molecular properties. A minimum of seventy-four PCs was required to 
capture at least 90% of the variance for all molecules in chemical space. Right, the cumulative 
percent variance of the tested odorants in response space explained as a function of included 
PCs of receptor responses. A minimum of thirty-four PCs was required to capture at least 
90% of the variance for the test odorants in response space. 
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Supplementary figure 2. Details of in vitro validation. A, Volcano plots for pS6-IP-Seq results by 
exposure of mice to 1% (+)-carvone and 1% (-)-carvone. A red line at FDR = 0.05 is drawn. ORs 
enriched by just (+)-odorant are colored red while ORs enriched by just (-)-odorant are colored blue. 
ORs enriched by both enantiomers are colored purple. Labeled ORs were validated in vitro. B, Dose 
response curves of ORs displaying in vitro response to at least one of the tested carvone 
enantiomers. C, Volcano plots for pS6-IP-Seq results using 1M (+)-menthol and 1M (-)-menthol. D, 
Dose response curves of ORs displaying in vitro responses towards menthol enantiomers. E, Volcano 
plots for pS6-IP-Seq results using 10% (+)-2-octanol and 10% (-)-2-octanol. F, Dose response curves of 
ORs displaying in vitro responses towards 2-octanol enantiomers. 
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Supplementary figure 3. Details of OR response properties. A, Odorant responses determined by 
pS6-IP-Seq across all tested 72 odorants/concentrations visualized by heatmap. A total of 555 ORs 
are determined to respond to at least one of these odorants/concentrations. Responses are z-scored 
by odor. The following odorants are abbreviated: 2-methyl-2-thaizoline (2M2T), 2,4,5-trimethyl-4,5-
dihydrothiazole (TMT), 2-sec-butyl-4,5-dihydrothiazole (SBT), 2,4,5-trimethylthiazole (nTMT), and 
3,4-dehydro-exo-brevicomin (DHB). Odorants are sorted by functional group while ORs are sorted 
using correlation distance. B, Left, histogram (bin size = 0.05) of the distributions of OR responses 
across the panel of 52 odorants tested at low concentrations. Significant OR-odor pairs (log2FC > 0 
and FDR < 0.05) are colored red, while non-significant pairs are colored black. OR-odor pairs that 
were classified as nonsignificant had an average log2FC enrichment of 0.08 by pS6-IP-Seq. OR-odor 
pairs classified as significant had an average log2FC enrichment of 1.98 by pS6-IP-Seq (nonsignificant 
responses n = 18808, significant responses n = 692). Middle, zoomed in. Right, A small number of 
inhibitory responses (log2FC < 0 and FDR < 0.05) were observed in the data. These responses were 
otherwise classified as nonsignificant (n = 44). C, Left, distribution of the OR-molecular property 
pairwise Pearson correlation coefficients using the 52 odorants tested at low concentrations (bin size 
= 0.01). At an FDR < 0.05, the Pearson correlation coefficient cutoffs were -0.49 and 0.49 for negative 
and positive correlations respectively, with an absolute average of 0.55 for significant correlations 
(nonsignificant correlations n = 676158, significant correlations n = 2967). Right, zoomed in. 
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Supplementary figure 4. Details of thiol property tuning. A, Tuning towards molecular properties 
described by the number of significant OR-molecular property associations. Out of the 1811 
molecular properties, 1005 were tuned towards by at least one OR. Molecular property nSH (number 
of thiol groups) is highlighted in red. B, Visualization of the average Pearson correlation tuning value 
for ORs that were significantly tuned toward each of the 1005 molecular properties. C, Top, tuning of 
individual ORs, measured by Pearson correlation, towards nSH. Bottom, the top ten ORs displaying 
nSH tuning. Eight of these ten ORs were significant (FDR < 0.05). D, Raw pS6-IP-Seq differential 
expression data, visualized by volcano plot, with chemical structures of the tested thiol odorants. 
ORs that were tuned towards thiol are highlighted in red. A consensus of thiol odorant response can 
be observed for the ORs tuned towards nSH. 
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Supplementary figure 5. Details of the pairwise comparisons between odorants in response 
and molecular property space. A, Schematic of how pairwise distance comparisons between 
odorants were calculated for figures 3A and 3C. B, Correspondence between odorants in 
response and molecular property spaces. Three (Euclidean, correlation, and cosine) different 
distance metrics were used. Pearson correlation coefficients and p-values are reported for 
each combination of distance metric. 
 

 260 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474279doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474279


 
Supplementary figure 6. Details of the odor pair cross-validation for regression models. A, 
Schematic of how odor pair cross-validation was performed. Pairs of odorants were 
iteratively held-out from training. Distances between held-out odorants were iteratively 
predicted and regressed against true distances to report a Pearson correlation and mean 
squared error. B, Results of LASSO regression using various metrics to quantify distances 
between odorants in response space. Molecular property distances were quantified by 
Euclidean distances. Reported are Pearson correlation coefficients, mean squared error, and 
the number of non-zero weighted molecular properties as a function of varying the loss 
function (λ). 
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Supplementary figure 7. Performance of optimized molecular properties in predicting receptor 
response similarities. A, Schematic of how “optimized” molecular properties were selected. First, a 
set of 763 non-continuous descriptors were subset. Molecular properties that could be linearly 
decoded and regressed (with cross-validation) from the OR responses were then further selected 
using classifier AUROC thresholds of 0.75 and regressor r thresholds of 0.5. Ultimately 65 molecular 
properties passed these criteria and were considered “optimized”. B, Correspondence between 
odorants in response and “optimized” molecular property spaces. Euclidean, correlation, and cosine 
distance metrics are used to report Pearson correlation coefficients and p-values. C, Results of ridge 
regression using various metrics to quantify distances between odorants in response space. 
Generalizability was evaluated by odor pair cross-validation. Reported are Pearson correlation 
coefficients and mean squared error as a function of varying the loss function (λ). 
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Supplementary figure 8. Results of using the XGBoost model framework. A, Using default 
XGBoost hyperparameters with 1811 molecular property descriptors, we asked how well does 
odor molecular property similarity predict receptor response similarity. Response similarities 
were calculated using Euclidean, correlation, and cosine distances. Odor pair cross-validation 
was performed to evaluate the generalizability of the models. B, Results of the XGBoost models 
when only the 65 set of “optimized” odor molecular properties were used as predictors and 
odor pair cross-validation is performed. The positive predictive abilities of these sparse 65 odor 
molecular properties, independent of the distance metric used) demonstrates odor similarity in 
response space can be approximated with parsimonious combinations of odor molecular 
properties. 
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Supplementary figure 9. Details of logistic regression to uncover sequence-function relationships 
of ORs. A, Data for odorants solvable by regularized logistic regression (AUROC > 0.5) is shown. For 
each odor, shown is a volcano plot highlighting responsive ORs in red (log2FC > 0 and FDR < 0.05) and 
non-responsive ORs in gray. Aligned amino acid sequences were used as inputs to predict response 
likelihoods of a held-out 10% of ORs for 100 repetitions. The receiver operating characteristic (ROC) 
curve for held-out data is shown. Positions harboring amino acids assigned non-zero weights were 
averaged and visualized by snakeplot. Ballesteros-Weinstein x.50 numbers for each TMD are 
highlighted in green. The consistency of high weights assigned to residues localized to the upper 
halves of the fourth and fifth transmembrane domains motivated visualization of the amino acid 
distributions of responsive ORs by WebLogo. An enrichment of cysteine residues can be seen 
amongst ORs responsive to sulfurous odorants at positions 202 and 203 in TMD5. Similarly, an 
enrichment of methionine residues can be seen amongst ORs responsive to sulfurous odorants at 
positions 199 and 206. 
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Supplementary figure 10. Details of SVM classifiers and comparing between approaches. A, 
Results of using a linear SVM classifier to predict OR response likelihoods across 100 
repetitions of splitting ORs into 90% training and 10% testing sets. Models were trained and 
optimized using ten-fold cross-validation. Prediction likelihoods across 100 repetitions were 
compounded to generate single ROC curves for single odorants. AUROC values for each 
odorant are reported in supplementary table 4. B, Regressing convergent evolution counts by 
percent residue conservation reveals an anti-correlation (r = -0.54, p = 6.5E-25). Snakeplot is 
colored by the distance of each data point from the line of regression. Ballesteros-Weinstein 
x.50 numbers for each TMD are highlighted in green. C, Regressing logistic model 
dependency, evaluated by average positional weight, by convergent evolution count reveals 
consistency between approaches (r = 0.42, p = 1.5E-14). 
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Methods: 266 

Phosphorylated S6 ribosomal capture (pS6-IP) 267 

Mice used for pS6-IP were ~3 weeks old, mixed sex, and littermates. Mice were killed by 268 

CO2 asphyxiation and cervical dislocation. Olfactory tissue was rapidly dissected in Buffer B (2.5 mM 269 

HEPES KOH pH 7.4, 0.63% glucose, 100 μg/mL cycloheximide, 5 mM sodium fluoride, 1 mM sodium 270 

orthovanadate, 1 mM sodium pyrophosphate, 1 mM β-glycerophosphate, in Hank’s balanced salt 271 

solution). Tissue pieces were then minced in 1.35 mL Buffer C (150 mM KCl, 5 mM MgCl2, 10 mM 272 

HEPES KOH pH 7.4, 0.100 μM Calyculin A, 2 mM DTT, 100 U/mL RNAsin, 100 μg/mL cycloheximide, 273 

protease inhibitor cocktail, 5 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM sodium 274 

pyrophosphate, 1 mM β-glycerophosphate)and subsequently transferred to homogenization tubes for 275 

steady homogenization at 250 rpm three times and at 750 rpm nine times at 4 °C. Samples were then 276 

transferred to a 1.5 mL LoBind tube (Eppendorf 022431021) and clarified at 2000xg for 10 min at 4 °C. 277 

The low-speed supernatant was transferred to a new tube on ice, and 90 μL of NP40 (Sigma 278 

11332473001) and 90 μL of 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, Avanti Polar Lipids 279 

850306P, 100 mg/0.69 mL) were added to this solution. This solution was mixed and then clarified at a 280 

max speed (17,000xg) for 10 min at 4 °C. The resulting high-speed supernatant was transferred to a 281 

new tube where 20 μL was saved and transferred to a tube containing 350 μL buffer RLT. To the 282 

remainder of the sample, 1.3 μL of 100 μg/mL cycloheximide, 27 μL of phosphatase inhibitor cocktail 283 

(250 mM sodium fluoride, 50 mM sodium orthovanadate, 50 mM sodium pyrophosphate, 50 mM β-284 

glycerophosphate) and 6 μL of anti-pS6 antibody (Cell Signaling D68F8) were added. The sample was 285 

gently rotated for 90 min at 4 °C. To prepare beads, 100 μL of beads (Invitrogen 10002D) was washed 286 

three times with 900 μL of buffer A (150 mM KCl, 5 mM MgCl2, 10 mM HEPES KOH pH 7.4, 10% NP40, 287 

10% BSA), and once with 500 μL of buffer C. Sample homogenate was added to the beads and 288 

incubated with gentle rotation for 60 min at 4 °C. Following incubation, beads were washed with four 289 
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times with 700 μL of buffer D (350 mM KCl, 5 mM MgCl2, 10 mM HEPES KOH pH 7.4, 10% NP40, 2 mM 290 

DTT, 100 U/mL RNAsin, 100 μg/mL cycloheximide, 5 mM sodium fluoride, 1 mM sodium 291 

orthovanadate, 1 mM sodium pyrophosphate, 1 mM β-glycerophosphate). During the final wash, 292 

beads were moved to room temperature, wash buffer was removed, and 350 mL of buffer RLT was 293 

added. Beads were incubated in buffer RLT for 5 min at room temperature. Buffer RLT containing 294 

immunoprecipitated RNA was then eluted and stored at −80 °C until clean up using a kit (Qiagen 295 

74004). cDNA was generated using 11 rounds of amplification with 10 ng RNA input. DNA libraries 296 

were prepared using a half-sized Nexterra XT DNA Library Preparation Kit (Illumina 15032354) protocol 297 

as per the manufacturer’s guidelines. Libraries were sequenced on either HiSeq 2000/2500 (50 base 298 

pair single read mode) or NextSeq 500 (75 base pair single read mode) with 6–12 pooled indexed 299 

libraries per lane.  300 

 301 

RNA-Seq alignment, quantification, and differential expression analysis 302 

Reads were aligned against a modified GRCm38.p6 (M25) reference, in which we deleted 303 

ENSMUSG00000116179 (Olfr290), using STAR39 with --outFilterMultimapNmax 10. Reads mapping to 304 

Olfr290 were inferred from ENSMUSG00000070459, with the rationale that this gene model included 305 

ENSMUSG00000116179 plus untranslated regions. Gene-level read quantification was done using 306 

RSEM40. Differential expression analysis was performed against all genes using EdgeR41. Gene 307 

nomenclature was retrieved from BioMart42. Intact Olfr genes with identifiable sequences were 308 

filtered, and p-values were then re-corrected by FDR. Only ORs exhibiting odor response to at least one 309 

of the tested odorants (log2FC > 0 and FDR < 0.05) were considered. A total of 555 ORs responded 310 

across the 72 different odorants at various concentrations. A total of 375 ORs were responsive to 311 

unique odorants at the lowest tested concentrations. Raw and processed RNA-Seq datasets generated 312 

as part of this study are available from NCBI GEO at accession GSE185415.  313 
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 314 

Source of odorants  315 

The following odors/concentrations were used for comparing molecular properties to receptor 316 

responses: 1% 2-methyl-2-pentenal (Sigma 294667), 1% trans-cinnamaldehyde (Sigma C80687), 1% 2-317 

heptanone (Sigma 53768315), 1% linalool (Sigma L2602), 1% ethyl butyrate (Sigma W242713), 1% 318 

guaiacol (Sigma G10903), 1% diacetyl (Sigma W237027), 1% 2-ethyl-3-methylpyrazine (Sigma 319 

W315508), 1% 2,5-dimethylpyrazine (Sigma 17542015), 1% benzaldehyde (Sigma W212717), 1% (+)-320 

limonene (Sigma 183164), 1% β-damascone (Sigma W324300), 1% α-pinene (Sigma W290267), 1% 2-321 

methyl-2-thiazoline (Sigma M83406), 1% citronellol (Sigma W230915), 1% dimethyl trisulfide (Sigma 322 

W327506), 1% p-Cresol (Sigma C85751), 0.01% citral (Sigma W230316), 1 M (+)-menthol (Sigma 323 

224464), 1 M (-)-menthol (Sigma M2780), 0.01% anisaldehyde (Sigma A88107), 1% 4-324 

methylacetophenone (Sigma W267708), 1% methyl salicylate (Sigma W274502), 1% (+)-carvone (Sigma 325 

22070), 1% (-)-carvone (Sigma 22060), 1% β-ionone (Sigma W259525), 1% isopropyl tiglate (Sigma 326 

W322903), 1% hexyl tiglate (Sigma W500909), 1% pyridine (Sigma 270970), 1% butyric acid (Sigma 327 

W222119), 0.01% cyclopentanethiol (Sigma W326208), 0.01% 2-butene-1-thiol (1717 CheMall Corp 328 

OR116574), 100 mM cyclopentadecanone (Sigma C111201), 1% 2-methyl-2-propanethiol (Sigma 329 

109207), 0.01% acetophenone (Sigma W200910), 0.1% isovaleric  acid (Sigma 129542), 1% isoamyl 330 

acetate (Sigma 306967), 1% ethyl tiglate (Sigma W246000), 1% heptanoic acid (Sigma W334812), 10% 331 

(+)-2-octanol (Sigma O4504), 10% (-)-2-octanol (Sigma 147990), 1% 2-hexanone (Sigma 103004), 1% 2-332 

phenylethanol (Sigma 77861), 1% 3-methyl-1-butanethiol (Sigma W385808), 1% octanal (Sigma 333 

O5608), 1% heptanal (Sigma W254002), 1% 2,4,5-trimethylthiazole (nTMT, Sigma 219185), 100% (E)-b-334 

Farnesene (Bedoukian P3500-9014), 100 µM (methylthio)methanethiol (MTMT, synthesized15), 0.01% 335 

2-sec-butyl-4,5-dihydrothiazole (SBT, synthesized15), 77% 3,4-dehydro-exo-brevicomin (DHB, 336 

synthesized15), and 0.01% 2,4,5-trimethyl-4,5-dihydrothiazole (TMT, synthesized14). 337 
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 338 

For logistic regression and identifying residues with predictive power towards ligand selectivity, 339 

odorants tested at the lowest concentration with at least 8 activated ORs (log2FC > 0 and FDR < 0.05) 340 

were used to promote class stability. Thus, following odors were removed from consideration using 341 

logistic regression compared to above: 100 mM cyclopentadecanone, 1% 2-heptanone, 1% 2-342 

hexanone, 1% 3-methyl-1-butanethiol, 1% a-pinene, 1% benzaldehyde, 1% b-ionone, 1% ethyl tiglate, 343 

1% heptanoic acid, 1% hexyl tiglate, 1% isopropyl tiglate, 1% linalool, 1% methyl salicylate, 1% (+)-344 

limonene, 1% trans-cinnamaldehyde, and 0.1% isovaleric acid. The following odors were considered at 345 

a modified concentration from above: 0.1% TMT, 0.1% acetophenone, and 10 mM MTMT. 346 

 347 

Odorants were excluded from all analysis if no ORs were identified as responsive at the tested 348 

concentrations: 1% β-Caryophyllene (Sigma W22520715), 1% dimethyl sulfide (Sigma 274380), 1% 349 

geraniol (Sigma W250716), 1% indole (Sigma W259378), 1% (-)-dihydrocarveol (Sigma 37278), 1% (+)-350 

dihydrocarveol (Sigma 37277), 1% propionic acid (Sigma 109797), 3mM androstenone (Sigma 284998), 351 

or if the number of ORs identified as responsive were more than five standard deviations away from 352 

the mean: 1% 2’-hydroxyacetophenone (Sigma H18607). 353 

 354 

Chemical space estimation 355 

To estimate chemical space, we first identified 4680 small molecules commonly found in foods and 356 

fragrances from http://www.thegoodscentscompany.com/16. Three dimensional structures for these 357 

molecules and the 52 in the test odor set were then downloaded from PubChem, and 5666 molecular 358 

properties were calculated using AlvaDesc (v2.0.10). From the 5666 calculated molecular properties, 359 

3855 were discarded because they were either not calculated for all molecules or exhibited zero 360 
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variance across all molecules, leaving behind 1811 molecular descriptors. Chemical space was 361 

estimated by PCA dimensionality reduction on all molecules in R.  362 

 363 

Receptor alignment and space estimation 364 

Mouse ORs were aligned to one another using the MAFFT E-INS-I method with manual refinements43. 365 

The resulting alignment file was subjected to ModelTest-NG to identify ideal amino acid substitution 366 

models44. Phylogenetic trees were generated with RAxML-NG using the JTT+I+G4 amino acid 367 

substitution model with 100 bootstraps45. Receptor pairwise similarity matrices for multidimensional 368 

scaling were generated from an alignment in which positions with amino acids in at least 60% of the 369 

receptors were considered. Receptor pairwise similarity was calculated by summing amino acid 370 

differences at each position by Grantham’s amino acid distances17. Multidimensional scaling was done 371 

in R.  372 

 373 

Generating response spectra 374 

To generate odor response spectra, we first began with the log2FC values of each odor-responsive OR. 375 

Each OR, r, was then centered and scaled (z-scored) by mean subtraction and standard deviation 376 

division across the odorants, o, in the test panel. The resulting matrix is denoted as Δ#!". To generate 377 

property strength vectors, each molecular property, p, was z-scored across the odorants in the test 378 

panel. The resulting matrix is denoted as 𝑃%"#. To calculate property responses and thereby property 379 

response spectra (Pearson correlation coefficients), we used the following formula: 380 

Φ!# =(Δ#!"
"

𝑃%"# 381 

where Φ!# refers to Pearson correlation coefficients between individual receptors, r, and molecular 382 

properties, p. 383 

 384 
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To evaluate the significance of the correlation between a property and the response pattern of an OR, 385 

we used an FDR cutoff of 0.05. P-values were obtained by first calculating the t-statistic using  𝑡	 =386 

	!	√&	'	(
√)	'	!!

 ,where r is the correlation coefficient and n is the number of data points. The two-tailed P-387 

value was then calculated as twice the probability a t-distributed variable exceeds t using the python 388 

scipy.stats.t.sf function. P-values were adjusted by FDR correction in R. 389 

 390 

Odor distance calculation in property space and response space 391 

We calculated the distances between odorants in property and response space by calculating Euclidean 392 

distances, Pearson correlation coefficients, and cosine similarities between all possible unique pairs of 393 

odorants. Molecular properties and receptor response data were normalized to their respective zero 394 

mean and unit standard deviation. Correlation distances were reported as 1 – r, and cosine distances 395 

were reported as 1 – cos(𝜃). 396 

 397 

Regression models with odor pair cross-validation 398 

Linear models (LASSO and ridge regression) were implemented with the glmnet package (v4.1) in R46. 399 

XGBoost was implemented with the xgboost module (v1.4.2) in python. Distances (Euclidean, cosine, 400 

and correlation) between each unique pair of odorants were calculated in normalized receptor 401 

response space. Then, Euclidean distances between each unique pair of odorants were calculated for 402 

each feature in normalized feature space. Regularization was then applied as either the L1 (LASSO) or 403 

L2 (ridge regression) norm. The λ loss function, which controls the number and relative contribution of 404 

selected features, was sequentially varied from zero to three by length 1000. Pearson correlation 405 

values were reported for the varied λ hyperparameters of the models by comparing model predicted 406 

response distances to true response distances. Shuffled controls consisted of using 52 fictitious 407 
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odorants whose individual feature vectors were generated by resampling with replacement across the 408 

52 test odorants. 409 

 410 

Default XGBoost model hyperparameters were used as follows: base_score=0.5, booster='gbtree', 411 

colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, importance_type='gain', 412 

interaction_constraints='', learning_rate=0.300000012, max_delta_step=0, max_depth=6, 413 

min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, 414 

num_parallel_tree=1, random_state=42, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, 415 

subsample=1, tree_method='exact', validate_parameters=1, and verbosity=None.  416 

 417 

Odor pair cross-validation was performed by iteratively holding out each unique pair of odorants from 418 

the normalized 52 odor dataset (test data). Features with zero variance from the remaining 50 odor set 419 

were dropped (train data). Distances were calculated between the test data for each remaining feature 420 

(xtest) and response pattern (ytest). Train data were normalized by z-scoring independent of test data. 421 

Distances were then calculated between pairwise combinations of the 50 train odorants for each 422 

feature (xtrain) and response pattern (ytrain). Feature distances between the held-out odor pair (xtest) 423 

were then used to predict response pattern distances (ypred). Pearson correlation and mean squared 424 

error values were reported from comparing model predicted response distances (ypred) to true 425 

distances (ytest). 426 

 427 

Optimized molecular property selection 428 

To select a subset of molecular properties that were well represented in the data, we utilized Support 429 

Vector Machine (SVM) classifiers and regressors with linear kernels in the python sklearn.svm module 430 

(v0.24.2). Beginning with the 1811 molecular properties, we first considered those that were non-431 
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continuous (at least one zero entry, ex. molecular weight is a continuous molecular property). Non-432 

zero values were set to one and zero values were kept. Classifiers were trained and cross-validated 433 

across the 52 odorant molecules using the normalized 375 deorphanized receptor responses as 434 

predictors in a leave-one-out scheme. Data normalization was first performed including the test data. 435 

After removing test data, training data were normalized independently to prevent contamination. 436 

Classifier area under receiver operating characteristic (AUROC) thresholds of 0.75 were applied. 437 

Molecular properties passing this threshold were next subjected to regression with non-zero entries 438 

restored. A Pearson correlation cutoff of 0.5 was applied to finally select the 65 “optimized” molecular 439 

properties. 440 

 441 

Protein sequence analysis of ORs by logistic regression and SVM classifiers 442 

Regularized logistic regression was used to build models linking OR-protein sequence properties to OR-443 

odor responses with the glmnet package (v4.1) in R46. ORs were classified as responders if they 444 

exhibited log2FC > 0 and FDR < 0.05 following pS6-IP-Seq and differential expression analysis. For 445 

odorants tested at multiple concentrations, the lowest concentration that activated at least 8 ORs was 446 

used to promote class stability. Predictors were generated from converting the FASTA alignment file 447 

into categorical variables reflecting the presence/absence of specific amino acids at each position. 448 

 449 

To evaluate model performance, fitted odorants were randomly split into 90% training and 10% testing 450 

receptor sets. Each test set contained at least one responding receptor. Predictors with zero variance 451 

in the training set were dropped. The grid-search optimized α hyperparameter (setting the ratio of the 452 

L1 and L2 norms) was set by ten-fold cross-validation with ten-fold cross-validation to set the λ (loss 453 

function) value. λ values one standard error of mean greater than optimal were selected to encourage 454 

statistically identical but sparser solutions. Model weighted predictors were then used to determine 455 
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the response likelihood of the test receptors. This procedure was repeated 100 times. Non-zero 456 

weights were averaged across repetitions and odorants to report positions with residues contributing 457 

predictive power towards odor selectivity. WebLogo visualizations were prepared at 458 

http://weblogo.threeplusone.com/47. 459 

 460 

SVM classifier response probabilities were calculated using the same inputs as logistic regression using 461 

100 repetitions of 90% training (with ten-fold cross-validation for hyperparameter tuning) and 10% 462 

testing. Each repetition’s response likelihoods and true outcomes were aggregated to generate a single 463 

ROC curve for a single odor, which were then combined to generate an aggregate ROC curve. 464 

 465 

Protein sequence analysis of ORs by comparison to convergently evolved ORs 466 

As an alternative strategy, we also performed a statistical evaluation of amino acid properties of ORs 467 

sharing responsiveness to an odor against convergently evolved receptors. First, responsive ORs 468 

(log2FC > 0 and FDR < 0.05 from differential expression) were subset, and pairwise Grantham distances 469 

were calculated at each position to generate Grantham distance distributions within the responsive OR 470 

alignment. Pairwise comparisons between gaps were considered to have zero distance while pairwise 471 

comparisons between gaps and amino acids were considered to have the average Grantham distance 472 

across all pairwise comparisons between all ORs at that position. Null distributions were generated 473 

similarly from convergently evolved odor-unresponsive ORs. To identify convergently evolved odor-474 

unresponsive sets of ORs, odor-specific receptors with log2FC < 0 or FDR > 0.25 were first subset. Then, 475 

for each unique pairwise comparison between the odor-responsive ORs, full protein sequence 476 

Grantham distances were calculated. For each receptor in each pairwise comparison, the closest 477 

receptor was selected from the odor-unresponsive subset with the most similar absolute full protein 478 

sequence Grantham distance to the pairwise comparison. This meant, for each odor with some 479 
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number of responsive receptors, there was twice as many receptors identified as convergently evolved 480 

and odor-unresponsive. Distributions were compared using the Kolmogorov-Smirnov statistical test. 481 

FDR correction was applied across all calculated P-values with a cutoff of 0.05. The number of times 482 

responding receptors displayed statistically significant deviations in the distribution of Grantham 483 

distances from the null set, at each position, was counted and summed across all odorants. 484 

 485 

Residue conservation calculation 486 

Using the 313 length alignment file, in which each position was occupied by an amino acid in at least 487 

60% of the responsive ORs (387 ORs that were responsive to the lowest concentration of tested 488 

odorants yielding response to at least 8 ORs each), we first identified the most common amino acid at 489 

each position. We term this the reduced consensus OR sequence. The percent presence of the most 490 

commonly occurring amino acid at each position was then reported as conservation percentage for 491 

said position. 492 

 493 

Homology models 494 

To build an OR homology model, we adapted previously published methods48,49. The reduced 495 

consensus OR sequence was manually re-aligned to pre-aligned sequences of the bovine rhodopsin 496 

(PDB ID 1U19), the human chemokine receptors CXCR4 (3ODU) and CXCR1 (2LNL), and human 497 

adenosine A2A receptor (2YDV) using Jalview. Experimental GPCR structures of these receptors were 498 

then used as templates to build the homology model of the reduced consensus sequence with 499 

Modeller. Visualization and analysis of the homology model was done using VMD and Chimera. 500 

 501 

Heterologous luciferase assay 502 
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Hana3A cells; which stably express Golf, RTP1, RTP2, and REEP1; were grown in minimum essential 503 

medium eagle (MEM; Corning 10-010-CV) containing 10% Fetal Bovine Serum (FBS; vol/vol; Gibco 504 

16000-044), penicillin-streptomycin (Sigma-Aldrich P4333), and amphotericin B (Gibco 15290018). Cells 505 

were cultured and incubated at 37°C, 5% CO2, and saturated humidity for use with the Dual-Glo 506 

Luciferase Assay (Promega E2980)29,50. Cells were plated at 20-25% confluence on poly-D-lysine-coated 507 

96-well plates (Corning 3843) overnight. After overnight incubation, cells were transfected with 6 mL of 508 

MEM containing 10% FBS, 0.5 µg SV40-RL (Promega E2980), 1 µg CRE-Luc (Promega E2980), 0.5 µg 509 

mouse RTP1s, 0.25 µg M3 muscarinic receptor51, 0.5 µg of Rho-tagged receptor plasmid DNA, and 20 510 

µg Lipofectamine 2000 (Invitrogen 11668019) per plate. Transfection medium was divided equally 511 

among the wells so that each OR-odorant combination could be conducted in triplicates. The following 512 

day, cells were incubated with 25µL of odorant solution diluted in CD-293 (Gibco 11913-019) 513 

containing 30 µM CuCl2 (Sigma-Aldrich C-6641) and 2 mM glutamine (Gibco 25030-081) for 3.5 hours. 514 

cAMP-driven firefly Luciferase luminescence (Luc) was used to assess OR activation, and SV40-driven 515 

Renilla Luciferase luminescence (Ren) was used to control for variation in cell viability within wells. Cell 516 

luminescence was read by a POLARstar OPTIMA (BMG Labtech) luminometer, and normalized response 517 

values were calculated using the formula (Luc-400)/(Ren-400). ORs were considered responsive in vitro 518 

if ANOVA p-value was < 0.05 and ANOVA with post-hoc Dunnet’s test correction p-adjusted was < 0.05 519 

for at least 2 of the tested odor concentrations using the R package DescTools (v0.99.42). Log-logistic 520 

4-parameter dose response curves were fit to the data using the R package drc (v3.0-1). In vitro 521 

responses were compared to in vivo responses by subtracting mean ligand-independent activity 522 

(luciferase values of ORs with no odor stimulation) from each of the ligand stimulated data points and 523 

summing. Scaled summed (+)-enantiomer responses were divided by scaled summed (-)-enantiomer 524 

responses and log2 transformed for comparison to log2FC (+)/(-) in vivo enrichments. 525 

 526 
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Data and code availability: 527 

Data and code are available upon reasonable request.  528 
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