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Abstract 

During development, positional information directs cells to specific fates, leading them 

to differentiate with their own transcriptomes and express specific behaviors and 

functions. However, the mechanisms underlying these processes in a genome-wide view 

remain ambiguous, partly because the single-cell transcriptomic data of early developing 

embryos containing both accurate spatial and lineage information is still lacking. Here, 

we report a new single-cell transcriptome atlas of Drosophila gastrulae, divided into 65 

transcriptomically distinct clusters. We found that the expression profiles of plasma-

membrane-related genes, but not those of transcription factor genes, represented each 

germ layer, supporting the nonequivalent contribution of each transcription factor mRNA 

level to effector gene expression profiles at the transcriptome level. We also reconstructed 

the spatial expression patterns of all genes at the single-cell stripe level as the smallest 

unit. This atlas is an important resource for the genome-wide understanding of the 

mechanisms by which genes cooperatively orchestrate Drosophila gastrulation. 
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Introduction 

One of the fundamental goals of developmental biology is to understand how genes 

cooperatively orchestrate morphogenesis and physiological functions at the cellular and 

tissue levels. During embryogenesis, a fertilized egg divides multiple times to increase 

the cell number. The proliferating cells form blastoderm, and the embryo undergoes 

gastrulation and later organogenesis (Perrimon et al., 2012). In the scheme of 

programmed control of development, positional information is established by the 

combination of morphogens and cell-cell interactions, and each cell is canalized into a 

specific fate depending on their positions in embryos (Collinet and Lecuit, 2021). Initial 

positional information is often graded and continuous, but the consequence of cell fate 

determination shows a discrete spatial pattern (Briscoe and Small, 2015; Petkova et al., 

2019). The status of cell fates is often recognized by the expression of a limited number 

of marker genes, most of which encode transcription factors (TFs). It is widely considered 

that the combinatorial action of TFs through the dynamics of gene regulatory networks is 

important for transforming analog gradual information into a discrete digital pattern of 

gene expression (Briscoe and Small, 2015; Small and Arnosti, 2020; Zinzen et al., 2009), 

and new mechanisms to achieve this non-linear transformation have also been recently 

reported (Lammers et al., 2020; Papadopoulos and Tomancak, 2019). After cell fate 

canalization, each cell behaves differently to drive multicellular tissue morphogenesis 

(Heisenberg and Bellaiche, 2013; Kondo and Hayashi, 2015). However, since most 

studies have only considered a limited number of marker genes and focused on specific 

target genes/enhancers, genome-wide insight into cell differentiation and morphogenesis 

is still limited. To overcome these limitations, it is important to establish a single-cell 
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transcriptome atlas of early developing embryos that contains both accurate spatial and 

lineage information. 

Drosophila gastrulae has been an excellent model system for studying 

multicellular morphogenesis for decades (Gheisari et al., 2020; Martin, 2020; Wieschaus 

and Nüsslein-Volhard, 2016). The fertilized egg undergoes 13 rounds of nuclear division 

and then forms a single layer of the epithelial sheet covering the entire embryo, the so-

called blastoderm. Although each cell has a similar columnar shape at this time, positional 

information along the anterior-posterior axis and dorsal-ventral axis has already been 

established in embryos and directs cells to express different set cell fate determinants 

(Jaeger, 2011; Perrimon et al., 2012). The cell-specific expression of genes has been 

extensively analyzed using in situ hybridization (ISH), but it is difficult to obtain the 

transcriptome profiles of each cell with spatial information from these data. For example, 

more than ten thousand genes have been analyzed by fluorescent ISH (FISH), but they 

are far from quantification and cannot integrate all FISH data per cell (Lécuyer et al., 

2007; Wilk et al., 2016). The Berkeley Drosophila Transcription Network Project 

(BDTNP) established a gene expression database as a virtual embryo by integrating the 

quantified FISH data from multiple embryos, but the number of genes analyzed was less 

than 100 (Fowlkes et al., 2008; Keränen et al., 2006; Luengo Hendriks et al., 2006). 

In this decade, single-cell RNA-sequencing (scRNA-seq) has become a standard 

technique that enables the analysis of transcriptomes at the single-cell level 

(Kolodziejczyk et al., 2015; Tanay and Regev, 2017). One of the disadvantages of 

scRNA-seq for tissue or embryo scale analysis is that each data loses the information of 

the original position of each cell in tissue, because, in conventional scRNA-seq protocols, 

cells need to be dissociated into the single-cell level from tissues. Several computational 
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methods have been proposed to restore the spatial information of scRNA-seq data (Achim 

et al., 2015; Satija et al., 2015; Stuart et al., 2019; Welch et al., 2019). Basically, these 

methods can infer the original position of every cell from each scRNA-seq data by 

statistically comparing it to the known spatial expression profile of some landmark genes 

and thereby reconstruct the spatial profiles of all genes based on the inferred position. For 

Drosophila gastrulae, scRNA-seq analysis and spatial reconstruction of gene expression 

were performed (Karaiskos et al., 2017). However, there is room for improvement in its 

quality because, for many genes, the reconstructed spatial pattern from scRNA-seq data 

did not match the original pattern uncovered by in situ hybridization. For example, pair-

rule genes (e.g., fushi tarazu (ftz), even-skipped (eve)), and segment polarity genes (e.g., 

wingless (wg), engrailed (en)) show seven- or fourteen-stripe expression patterns along 

the anterior-posterior axis in the gastrulae, but 14 stripes of segment polarity genes have 

not been fully reconstructed in the Drosophila Virtual Expression eXplorer (DVEX; 

http://DVEX.org). Recently, we computationally overcome this limitation by developing 

a new machine learning method, Perler, based on generative linear mapping (Okochi et 

al., 2021). Using the same scRNA-seq dataset with DVEX, Perler can reconstruct 14 

stripe patterns of segment polarity genes. Furthermore, Perler has a notable feature in that 

the scRNA-seq data are not overfitted to the reference FISH data. 

Although we and others have made efforts to improve computational methods 

(Cang and Nie, 2020; Nitzan et al., 2019; Tanevski et al., 2020), there is a fundamental 

limitation with the scRNA-seq data itself in using their outputs for biological research; 

the number of high-quality cells sequenced was 1,297, which is much lower than the 

number of cells in a gastrula (approximately 6,000 cells) (Karaiskos et al., 2017). Even 

though the gastrula is bilaterally symmetric and can be thought of as half 3,000 cells, 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


 6 

there might be cells not in the scRNA-seq data. Karaiskos et al. were able to distinguish 

only 13 clusters in their scRNA-seq data, which may not be sufficient to fully describe 

the entire Drosophila gastrula. In addition, the depth of sequenced reads per cell was 

limited. Deeper data will allow us to understand the characteristics of each cell in more 

detail. Therefore, new acquisition of scRNA-seq data with higher numbers or depth will 

enable us to perform a more precise transcriptomic characterization, and the improvement 

of the spatial transcriptome reconstruction, which are of critical importance for 

understanding the mechanisms of cell differentiation and tissue morphogenesis during 

gastrulation from a genome-wide perspective. 

In this study, we aimed to improve the single-cell transcriptome atlas of 

Drosophila gastrula and update it into version 2.0. To this end, we first developed a 

scRNA-seq protocol for Drosophila embryos with single-cell dissociation using cold-

active protease (CAP), followed by non-crosslinked fixation of cells. CAP dissociation 

allows us to maintain the original gene expression profiles better than canonical trypsin 

dissociation. Second, we profiled single-cell transcriptomes with a higher number of cells 

and greater sequence depths, and manually annotated them into 65 clusters. Using this 

dataset, we revealed that the expression profiles of plasma membrane and cytoplasmic 

protein genes represent the cellular characteristics, such as differences between the three 

germ layers, better than those of the nuclear transcription factor genes. By detailed 

clustering analysis using previous biological knowledge, we further recapitulated the 

transcriptome profiles of each pair-rule stripe. Finally, we cataloged the spatial expression 

patterns of all genes in Drosophila gastrulae via computational integration with reference 

spatial expression patterns using Perler (Okochi et al., 2021) or NovoSpaRc (Moriel et 

al., 2021; Nitzan et al., 2019). Since Drosophila gastrula is one of the most well-
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characterized multicellular systems, this new atlas provides an important quantitative 

resource for a wide range of biological fields as a reference for understanding the 

principles that link gene regulatory networks and cell differentiation to cell behavior and 

tissue morphogenesis. 
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Results 

Single-cell RNA-seq of fixed-cells dissociated from Drosophila embryos 

To conduct scRNA-seq analysis for Drosophila gastrulae, we first reexamined the 

commonly used protocols of the single-cell dissociation step. We tried the mechanical 

dissociation protocol as previously reported (Karaiskos et al., 2017), but did not recover 

enough cells in our hands. Therefore, we next attempted gentle breaking of the vitelline 

membrane and dissociated the cells enzymatically. It has recently been recognized that 

enzymatic dissociation at room temperature leads to artificial changes in the 

transcriptome. To overcome this problem, the use of CAP has recently been shown to be 

a good solution (Adam et al., 2017; Denisenko et al., 2020; Miyawaki-Kuwakado et al., 

2021; O’Flanagan et al., 2019). CAP (also known as subtilisin A from Bacillus 

licheniformis) is active even at 6 °C and can dissociate cells with minimal impact on gene 

expression. To assess the artificial effect of trypsin and the usefulness of CAP on single-

cell dissociation of Drosophila embryos, we examined both enzymes (Figure 1A). In 

addition, in the step of isolating single cells using microfluidic devices, such as Fluidigm 

C1 (C1) or 10x Chromium, it is assumed that the live cells are exposed to room 

temperature, and this procedure may compromise the gene expression of the cells. 

Furthermore, in the case of C1, by inspecting cells after loading and capturing, we noticed 

that cells often undergo cell death in the C1 chip after loading, possibly due to mechanical 

stresses caused by flowing through microfluidic channels. To solve these problems, we 

added a step of non-cross-linking fixation using CellCover after dissociation (Figure 1A). 

To evaluate the preservation efficiency of fixation, we performed bulk RNA-seq analysis 

of non-fixed dissociated and fixed cell populations. Gene expression profiles were well 
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correlated (R = 0.983), indicating that non-cross-linking fixation by CellCover could 

preserve the transcriptome profile of cells (Figure S1A). 

We then performed scRNA-seq analysis using three different protocols: Set1 

trypsin-dissociation and Fluidigm C1 mRNA Seq HT IFC (Set1 trypsin-C1HT), Set 2 

trypsin-dissociation and 10x Genomics Chromium V3.1 (Set2 trypsin-10x), and Set 3 

CAP-dissociation and 10x Genomics Chromium V3.1 (Set3 CAP-10x) (Figure 1A). In 

all dataset, gene expression was quantified by counting the different unique molecular 

identifiers (UMI), which were short random nucleotide sequences added to each transcript 

in the reverse transcription step, per gene and per cell (Islam et al., 2014). After filtering 

the data of high-quality cells (See Materials and Methods for details), 1,243, 7,314, or 

6,180 cells remained and the expression of 4,500, 3,222, or 4,053 genes per cell in the 

median was detected for the Set1, Set2, or Set3 data, respectively. Set1 trypsin-C1HT 

data showed higher median UMI counts per cell (152,279) than the other 10x data (22,506 

(Set2) and 37,610 (Set3)). One of the reasons for higher sensitivity is greater sequencing 

depth per cell, and this is consistent with a previous report that the C1 platform can 

produce rich information (Torre et al., 2018). Unsupervised clustering and the extraction 

of marker genes for each cluster using Seurat v3 (Stuart et al., 2019) revealed that each 

dataset contains all major cell types, such as mesoderm (snail (sna), twist (twi)), trunk 

dorsal ectoderm (decapentaplegic (dpp), pannier (pnr)), trunk neuroectoderm (short 

gastrulation (sog)), head ectoderm (Optix, ocelliless (oc)), terminal endoderm (fork head 

(fkh)), pole cells (polar granule component (pgc)), and dorsal amnioserosa cells (pebbled 

(peb)), indicating there was no cell type bias in all datasets (Figures 1B, C; Figure S1B). 

The Set1 trypsin-C1HT data was composed of four biological replicates, and there was 

no obvious batch effect among them, indicating the reproducibility of our protocol 
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(Figure S1B). 10x data allowed us to identify more cell types than C1HT data, suggesting 

that sequencing more cells, rather than deeper sequencing of each cell, is more important 

for identifying minor cell types in an embryo that is composed of many cell types, as 

already mentioned (Heimberg et al., 2016; Zhang et al., 2020). The Set1 trypsin-C1HT 

data are useful for detecting low-expression genes and characterizing each cell more 

comprehensively. 

 

Trypsin-dissociation causes artificial upregulation of Notch-target genes 

To reveal the extent to which different dissociation methods affect the single-cell 

transcriptome profile, we inspected the marker genes of each cluster for all scRNA-seq 

data in depth. Midline cells (mesoectoderm) are known to highly express Notch target 

genes, such as single-minded (sim) and some Enhancer of split (E(spl)) complex genes, 

such as E(spl)m5, helix-loop-helix (E(spl)m5-HLH), and E(spl)m8-HLH (Cowden and 

Levine, 2002; Morel and Schweisguth, 2000; Zinzen et al., 2006). In Set3 CAP-10x data, 

all these genes were identified as marker genes of the midline cell cluster (Figures 1D-F). 

On the other hand, we noticed that, in Set2 trypsin 10x data, although the midline cell 

cluster was identified by specific expression of sim, E(spl)m8-HLH showed strong and 

broad expression not only in the midline cell cluster, but also in other clusters (Figures 

1H-J). In the cell dissociation process from embryo homogenization to cell fixation, cells 

were placed on ice except for 10 min trypsin treatment, suggesting that trypsin treatment 

caused the upregulation of E(spl) complex genes through artificial activation of Notch 

signaling irrespective of cell type. To assess whether artificial induction of E(spl) 

complex genes is due to trypsin treatment, we analyzed bulk RNA-seq data to identify 

differentially expressed genes (DEGs) between intact embryos and trypsin-dissociated 
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cells. Although there was a high correlation between them, trypsin-dissociated cells 

showed higher expression of some E(spl) complex genes, indicating that they were 

artificially upregulated by trypsin treatment before fixation (Figures S2A, B). 

In addition, Set2 trypsin-10x data had clusters that showed high twinstar (tsr) 

expression (Figure 1K). For example, the trunk mesoderm was divided into two clusters 

(clusters 1 and 10 in Figure 1C), and cluster 10 showed higher expression of tsr compared 

to cluster 1 (Figure 1K). Furthermore, cluster 6, which seems to belong to the trunk 

ectoderm, also showed high tsr expression. Clusters 6 and 10 showed relatively low 

expression of E(spl) complex genes (Figure 1J). To characterize these cells with high tsr 

expression (tsr-high cells), we identified highly expressed genes in cluster 10 compared 

to cluster 1 and performed gene-set enrichment analysis. By Gene Ontology (GO) 

enrichment analysis, we found that the term “oxidative phosphorylation” was enriched in 

highly expressed genes of the tsr-high cell cluster (Figure S2C), suggesting that these 

cells exhibited some metabolic stress responses.  

These results suggest that there are two types of cells in Set2 trypsin-10x data: 

one increased some of the Notch target genes (E(spl) complex genes), and the other 

showed some kind of stress response upon trypsin treatment. Set1 trypsin-C1HT data also 

showed strong and broad expression of E(spl) complex genes (Figures S1D, E), and 

clusters showing high tsr expression (Figure S1F). On the other hand, in Set3 CAP-10x 

data, there was no such cluster (Figures 1F, G), indicating that these cellular responses 

are specific to trypsin treatment, but not CAP treatment. Notably, even in Set2 trypsin-

10x data, similar clusters were distinguished as in Set3 data (Figure 1C), indicating that 

these trypsin-dependent artifacts did not extensively distort the transcriptome profile. 

Because it is likely that the CAP dissociation could well preserve the original expression 
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patterns of Notch target genes, and there was no cluster showing any stress responses, we 

mainly focused on the Set3 CAP-10x dataset using CAP for further analysis. 

 

Identification of 65 transcriptomically distinct clusters 

To further investigate the detailed single-cell transcriptome diversity in the gastrulae, we 

focused on the Set3 data and manually annotated each cell utilizing known gene 

expression patterns from databases (BDGP insitu database (https://insitu.fruitfly.org), 

Fly-FISH (http://fly-fish.ccbr.utoronto.ca)), and information from the literature. In the 

trunk region of the gastrula, the amnioserosa, dorsal ectoderm, ventral neuroectoderm, 

mesoectoderm (midline cells), and mesoderm emerge along the dorsal-ventral axis 

(Reeves and Stathopoulos, 2009). On the other hand, along the anterior-posterior axis, 

cells were divided into 14 parasegments (PS) (Akam, 1987; Ingham, 1988; Jaeger, 2011; 

Jaeger et al., 2012; McGinnis and Krumlauf, 1992; Peter A. Lawrence, 1992), and even 

parasegments express tartan (trn) and ftz specifically (Clark and Akam, 2016; Graham et 

al., 2019). Unsupervised graph-based clustering with 3,000 highly variable genes (HVGs) 

revealed that cells in the trunk ectoderm were divided into mixed characteristics of both 

AP- and DV-axis patterns (Figure 1B. clusters 2, 3, 4 and 6). For example, cluster 2 was 

the dorsal part of odd parasegments, and cluster 6 was the ventral neuroectoderm of even 

parasegments. To annotate the spatial origin more precisely, we inferred the origin of the 

cells for each of the AP and DV axes separately. We picked up the trunk ectoderm cells 

(Figure 2A, corresponding to PS2-13), and assigned these cells to seven DV identities 

(Amnioserosa (zerknullt (zen) +, peb+), medial dorsal ectoderm (eiger (egr) +, 

Dorsocross2 (Doc2) +, zen–), intermediate dorsal ectoderm (dpp+, extra macrochaetae 

(emc) +, Doc2–), lateral dorsal ectoderm (dpp+, Ataxin 1 (Atx-1) +), lateral 
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neuroectoderm (Drop (Dr) +, SoxNeuro (SoxN) +), intermediate neuroectoderm 

(intermediate neuroblasts defective (ind) +, SoxN+, sog+), medial neuroectoderm (ventral 

nervous system defective (vnd) +, SoxN+, sog+)) by k-means clustering with 35 selected 

DV genes (Figure 2D). Along the AP axis, we annotated each cell based on graph-based 

clustering by Seurat and Hox gene expression as landmarks, and assigned these cells to 

four AP identities (Parasegment 2 (PS2), Trunk ectoderm odd (PS3, 5, 7, 8, 9, 11), trunk 

ectoderm (PS4, 6, 8, 10, 12), and PS13) (Figures 2B, C). By combining these AP and DV 

identities, the trunk ectoderm cells were divided into 25 subclusters (Figure 2E). We also 

performed a manual annotation for each cluster (Figure S3), and eventually divided the 

cells into 65 subclusters for Set3 data (Figure 3; Figure S4). The mesoderm was divided 

into 14 types along the AP axis (Figures S3A-E). Posterior clusters (clusters 5, 9, and 12) 

were composed of three posterior midgut types, two hindgut types, and four types of 

parasegment 14 ectoderm (Figure S3H). Head regions located anterior to parasegment 1 

could be divided into two anterior endoderm and seven head ectoderms containing future 

foregut primordium (Figures S3F, G). The results of the subclustering are summarized in 

Supplementary Table 1. During the subclustering process, 62 potential doublet cells were 

identified and discarded from the dataset. The remaining dataset consisted of 6,118 cells. 

We noticed that two of the 65 clusters were difficult to annotate with an equivocal 

identity. From the subclustering of cluster 18, three subclusters were identified (Figure 

S3B). One of them was “Anterior endoderm wg+” that specifically expresses anterior 

endoderm markers, such as fkh, huckebein (hkb), and serpent (srp), as well as wg. Another 

subcluster named “Anterior mesoderm” showed the expression of mesoderm markers, 

such as sna, twi, and heartless (htl). However, the third subcluster expressing wnt 

inhibitor of Dorsal (wntD) was positive for both endoderm and mesoderm markers. Since 
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wntD is known to repress mesoderm differentiation (Ganguly et al., 2005; Rahimi et al., 

2016), we annotated this subcluster as “Anterior endoderm wntD” at this moment. 

Another example of an intermediate state is “PS14 ectoderm wg” which seems to be 

between PS14 ectoderm and hindgut (Figure S3H). It expressed both PS14 ectoderm 

markers (Abdominal B (Abd-B)) and hindgut markers (disconnected (disco), wg, and no 

ocelli (noc)). Since this subcluster did not show the expression of the key hindgut gene 

fkh, we annotated this subcluster as one of the PS14 ectoderm regions. We concluded that 

the scRNA-seq data contains enough information, in terms of both the number of cells 

and sequencing depth, which allows us to distinguish the spatial origin at the single-cell 

level, as well as rare intermediate states that have not been recognized so far. 

 

Expression profile of plasma membrane genes, rather than transcriptional regulator 

genes, better represents the major cell types 

Next, we analyzed the features of the transcriptome profile that contributed to the 

classification of each cell. GO term analysis revealed that genes encoding transcriptional 

factors (TF genes), as well as plasma membrane-related genes (PM genes) were highly 

enriched in 1,500 HVGs (Figures 4A, B). This suggests that a combination of 

transcription factors and downstream effector plasma membrane-related genes mainly 

contributes to the generation of transcriptome diversity in Drosophila gastrula. 

Hierarchical clustering of 64 subclusters (pole cells were removed) with all 1,500 HVGs 

classified the subclusters into three germ layers (ectoderm, endoderm, and mesoderm), 

indicating that the differences in the cellular transcriptome at the gastrula stage reflect the 

differences among future cell lineages (Figures 4C, F). However, it is unclear whether 

each gene set alone holds enough information to characterize the cell type. To address 
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this issue, based on the Gene List Annotation for Drosophila database (GLAD; 

https://www.flyrnai.org/tools/glad/web/)(Hu et al., 2015), the 1,500 HVGs were 

classified into four categories (TF genes, PM-related genes, non-TF and non-PM genes 

in GLAD, and genes not included in GLAD; see Materials and Methods for 

details)(Figure S5A), and clustering analyses were performed using each gene set alone. 

The set of 258 TF genes in 1,500 HVGs well segregated each cell along with the original 

positions on the UMAP plot (Figure 4D). By hierarchical clustering using only TF genes, 

subclusters tended to be classified by their spatial location compared to the case using all 

1,500 HVGs (Figure 4G). For example, the subclusters of “ectoderm_PS14”, 

“mesoderm_PS14” and “mesoderm_caudal_visceral” form a single group beyond the 

types of mesoderm and ectoderm. In addition, the subclusters located in anterior and 

posterior terminals were also grouped across the three germ layers. On the other hand, the 

set of PM genes well reproduced the clustering pattern with all 1,500 HVGs, and 

hierarchical clustering categorized 64 subclusters with their germ layer identities (Figures 

4E, H). Furthermore, the set of non-TF and/or non-PM genes also classified the 

subclusters into three germ layers (Figures S5B-E). These clustering analyses revealed 

that, without any prior functional knowledge about each gene, only the mRNA expression 

profiles of TF genes were insufficient to distinguish future cell lineages. On the other 

hand, those of other effector genes better represented the differentiation status of the three 

germ layers. 

 

Transcriptome-level differences between the single-cell stripes along the A-P axis 

During gastrulation of Drosophila gastrulae, each parasegment of the lateral ectoderm is 

composed of four stripes along the A-P axis, and each stripe is a single-cell wide column 
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(Figure 5A). Each stripe has different identities with combinatorial sets of pair-rule genes, 

directing polarized myosin localization and cell intercalation movement (Bertet et al., 

2004; Zallen and Blankenship, 2008; Zallen and Wieschaus, 2004). Because pair-rule 

genes encode TFs, they should control downstream effector genes to drive germband 

extension. Some effector genes, such as 18 wheeler (18w, also known as Toll-2), Toll-6 

and Tollo (also known as Toll-8), and trn were identified (Paré et al., 2014, 2019), but the 

sufficient conditions for differential gene expression to promote germband extension are 

still unclear. For example, there is a possibility that several different mechanisms act in 

parallel to drive germband extension, and minor mechanisms may have been overlooked 

due to the large contribution of major mechanisms. In addition, it has been proposed that, 

from detailed live imaging analyses, the difference between the third and fourth stripes in 

each parasegment might be difficult to distinguish, suggesting that the strength of cell-

cell interaction between them is weaker and the difference in gene expression profiles 

may also be smaller (Tetley et al., 2016). Tetley et al. also proposed that ‘super-

boundaries’ that interface between cells of non-adjacent stripes (‘skipped boundary’) are 

more contractile, implying that these boundaries have larger differences in receptor 

expression patterns and stronger cell-cell interaction than boundaries of adjacent 

identities (Tetley et al., 2016).  

To clarify the whole picture, we need to quantitatively describe the transcriptome 

of each stripe and understand how the gene expression profiles differ among them. To do 

this, by using pair-rule genes and segment polarity genes as stripe landmarks, we 

categorized the trunk ectodermal cells into eight single-cell stripes that span an odd- and 

even parasegmental unit (Figures 5A-C) (see Materials and Methods for details). To 

validate this striped pattern inference, we visualized the repeated pattern of genes that are 
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already known to show striped expression along the A-P axis (Figure 5D). These 

visualizations revealed that, in addition to the landmark genes that were used for the 

inference, other stripe genes, such as 18w, Toll-6, and Tollo, showed gradual changes, 

and these patterns were well correlated with the expression patterns revealed by in situ 

hybridization (Figures 5E, F) (Paré et al., 2019). These results indicated that the 

reconstruction of the stripe pattern was highly accurate. 

This transcriptome information of eight single-cell stripes provides opportunities 

to quantitatively compare the differences in gene expression profiles between them. First, 

we conducted the DEG analyses between all pairs of adjacent identities. Based on an 

expression difference of ≥ 1.3 fold and a false discovery rate (FDR) of ≤ 0.01, nine to 25 

genes were identified as DEGs between adjacent pairs (Figure 5G). Next, we investigated 

the DEGs. Similar to the DEG composition of whole scRNA-seq data, most of the DEGs 

between adjacent stripes were TF- or PM-genes, and there was little contribution from 

other cytoplasmic genes (Figure 5H). As proposed by the “Toll receptor code,” all 

boundaries showed at least one Toll receptor gene (18w, Toll-6, and Tollo) as DEGs 

(Figure 5F). trn was also differentially expressed at the parasegment boundaries. In 

addition to these known PM genes, our scRNA-seq data revealed that transmembrane 

genes, such as commissureless (comm), comm2, and Semaphorin 5c (Sema5c), were 

quantitatively differentially expressed in a stripe manner (Figure S6A), suggesting that 

these genes also play a role in cell-cell recognition for cell intercalation. In terms of the 

number of DEGs, the difference between parasegments (Odd4 vs. Even1 and Even4 vs. 

Odd1) was larger than that between cell stripes within parasegments, and the difference 

between the third and fourth stripes (Odd3 vs. Odd4 and Even3 vs. Even4) was the lowest 

(Figure 5G). In addition, comparing the differences between super-boundaries, more 
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DEGs were identified than the differences between adjacent pairs (Figures 5G, H; Figure 

S6B). These results are consistent with the proposed models of super-boundaries and 

smaller differences between the third and fourth stripes (Tetley et al., 2016). This 

quantitative dataset will be important for determining the sufficient mechanisms for 

germband extension. 

 

scRNA-seq analysis of the bicoid mutant 

During development, the input signals direct cell fate through gene regulatory networks. 

Perturbations of upstream signals often compromise the process and result in the 

transformation of one cell type to another. However, these transformations have been 

assessed by the change in the expression of limited marker genes, most of which encode 

TFs, and it is not clear whether the cells transformed at the level of the whole 

transcriptome. To address this issue, we performed scRNA-seq analysis of the bicoid-

depleted embryos. The A-P axis of Drosophila is determined by the morphogen gradients 

of the anterior Bicoid (Bcd) and the posterior Nanos (Nos). It is widely accepted that the 

loss of Bcd function results in the conversion of the anterior identity into the posterior 

one (Petkova et al., 2019; Staller et al., 2015). This transformation has been demonstrated 

by a limited number of gene expression and morphogenetic phenotypes, and it is still 

unclear whether this transformation occurs at the transcriptome level. The anterior part of 

bcd mutants eventually shows posterior profiles, but the developmental history of cells in 

the anterior region to reach the state is different from that in the original posterior region. 

For example, the onset of the anterior hunchback (hb) expression in bcd mutants is 

delayed compared to that in the posterior (Staller et al., 2015). In addition, pair-rule genes 

ftz and eve show mutually exclusive expression patterns of each other in wildtype, but 
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they are initially overlapped in the early stage of bcd mutants, and then segregated later 

(Staller et al., 2015). Since these historical differences may affect the final state (Briscoe 

and Small, 2015), it is still possible that there are transformed cells with a mixed state of 

both anterior and posterior identities at the transcriptome level. 

To clarify these points, we conducted scRNA-seq of bcd-RNAi (bcd-depleted) 

embryos and compared the cellular composition and transcriptome with that of control 

embryos. In bcd-RNAi embryos, cell types that belong to the anterior region of wild-type 

embryos, such as the anterior midgut, head/PS1-2 ectoderm, and anterior mesoderm were 

not identified (Figures 6A, B). When the bcd-RNAi data were integrated with the control 

data,  there were no novel cell types or no mis-specified cells in bcd-RNAi embryos 

(Figure 6C). The anterior clusters consisted of control cells only (Figure 6C, 

Head_ectoderm, Ectoderm_PS1-2, anterior midgut/mesoderm). The ratio of cells 

assigned to posterior clusters in bcd-depleted embryos was almost double that in wild-

type embryos (Figure 6D). These results indicate that the anterior region of bcd-RNAi 

embryos is completely canalized into the posterior identity, and there are no mixed-state 

cells at the transcriptome level. We consider that this complete transformation could be 

achieved without posterior determinants because the bcd mutation does not affect the 

mRNA localization and translation of the posterior determinant nanos (Wang et al., 1994). 

This complete transformation of the transcriptome is consistent with the observation that 

the anterior region of bcd mutants exhibits the gastrulation movement of the posterior 

pole, as well as its differentiation to posterior identity. Similar results have been reported 

in scRNA-seq of zebrafish mutants with defective Nodal signaling (Farrell et al., 2018; 

Wagner et al., 2018). Taken together, these results strongly suggest that there are strict 
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constraints in gene regulatory networks that allow cells to canalize into the defined 

transcriptomic state existing in wild types upon perturbations. 

 

Spatial reconstruction of all gene expression patterns at the single cell resolution 

We and others have made efforts to reconstruct the spatial expression patterns of all genes 

at single cell resolution by developing novel computational tools. However, all 

reconstructions were based on the scRNA-seq data composed of 1,297 cell data 

established by N. Karaiskos et al. (hereafter, NK-data)(Karaiskos et al., 2017), and the 

number of cells was much smaller than that in a Drosophila gastrula. Here, we obtained 

new scRNA-seq data containing 6,118 cell data (hereafter, Set3), which is approximately 

equal to the number of cells in a Drosophila gastrula. We hypothesized that our Set3 data 

would substantially improve the reconstruction quality.  

We reconstructed the spatial expression pattern using our Set3 data and Perler 

(Okochi et al., 2021), and then compared the results with those obtained using the NK-

data. The reconstruction method uses quantitative in situ hybridization (ISH) data from 

BDTNP as a reference for spatial patterns. However, both scRNA-seq data were derived 

from stage 6-7 embryos, while ISH data were established for stage 5 embryos. We noticed 

that some of the genes in the ISH data dynamically changed the expression pattern from 

stage 5 to stage 6-7. Therefore, we removed the 26 genes from the reference, whose 

expression patterns significantly changed between the two time points and could worsen 

the reconstruction results; hence, 67 genes were used as references (Supplementary Table 

S6). To compare Set3- and NK-data-based reconstruction using Perler, we first performed 

leave-one-gene-out cross validation (LOOCV) for both datasets. Set3-based 

reconstruction showed a higher prediction score (median correlation coefficient = 0.66) 
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than that of NK-data-based reconstruction (median correlation coefficient = 0.61) (Figure 

7A), indicating that the Set3-based reconstruction had a higher generalization 

performance than the NK-data-based reconstruction. Second, the gene-gene correlations 

in scRNA-seq data were better conserved in Set3-based reconstruction than in NK-data-

based reconstruction (Figure 7B). Finally, Set3-based reconstruction maintained the scale 

of expression values, but NK-data-based reconstruction did not (Figures 7C-E). For 

example, NK-data-based reconstruction had high background values and had to be 

rescaled by the minimum to maximum value for each gene. On the other hand, Set3-based 

reconstruction showed quite low background signals, and there was no need to perform 

any re-scaling. The expression values in Set3-based reconstruction were comparable to 

those in the original scRNA-seq data. In the spatial reconstruction based on NK-data, 

maybe due to the insufficient number of sequenced cells, a given reconstructed cell is 

likely to have more contribution from less related scRNA-seq data.  

We also found that the reconstructed pattern of some genes was qualitatively 

improved using our Set3 data. For example, the pattern of segment polarity genes (wg 

and en) became much clearer in Set3 reconstruction. NK-data-based reconstruction 

showed weak wg expression in the cells between the stripes, while this background was 

suppressed to almost zero in the Set3-based reconstruction (Figure 7F). In addition, ISH 

for C15 showed expression only in the dorsal amnioserosa, and ISH for egr showed a 

broader expression along the dorsal midline. The reconstructed pattern of C15 with NK-

data and Perler showed a broad expression like egr, while Set3 and Perler reconstructed 

a pattern similar to that of ISH (Figure 7G). These results indicate that the reconstruction 

based on Set3 data is more accurate and provides better interpretability for applications 

in future biological studies. 
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Recently, in addition to Perler, other computational methods for spatial 

reconstruction have been proposed. One of them is NovoSpaRc, which adopts a different 

strategy from Perler, and is based on the hypothesis that physically neighboring cells 

share similar transcriptional profiles and the framework of optimal transport (Moriel et 

al., 2021; Nitzan et al., 2019). To compare their performances when our Set3 data were 

used as input and to establish a more accurate reconstruction, we attempted spatial 

reconstruction using NovoSpaRc and our Set3 data. Overall, both Perler and NovoSpaRc 

showed comparable performances. First, the spatial reconstruction by Perler and 

NovoSpaRc showed a high correlation with each other (Figure S7A). Second, the 

prediction performance of spatial reconstruction by LOOCV were also comparable to 

each other (Figure S7B). Finally, we also examined the degree to which the spatial 

reconstruction by Perler and NovoSpaRc conserved the gene-gene correlation in the 

original scRNA-seq, and found that Perler maintained slightly higher gene-gene 

correlations than NovoSpaRc (Figure S7C). On the other hand, from a qualitative point 

of view, NovoSpaRc showed more spatially uniform patterns than Perler. For example, 

both methods well reconstructed the ventral expression of mesodermal gene twi, the 

expression within ventral mesodermal in Perler looked more spatially variable than that 

in NovoSpaRc (Figure S7D). This could be due to the fact that NovoSpaRc takes physical 

distances between cells into account. The reconstructed patterns obtained using both 

methods are listed in Supplementary Figures S8 and S9. 

Although both reconstructions seem to be highly accurate, there is still a limitation. 

In both methods, the spatial gene expression along the anterior-posterior axis appears to 

be well reconstructed, whereas that along the dorsal-ventral axis seems to be insufficient. 

For example, in the UMAP plot of the original scRNA-seq data, the expression levels of 
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vnd and ind were mutually exclusive in the brk+ medial neuroectoderm, intermediate 

neuroectoderm, and midline cells, but these levels were intermingled in both 

reconstructed data (Figures S7E-H). This is probably because the reference BDTNP ISH 

data is not sufficient and accurate because of the limited number of genes analyzed and 

the incomplete computational integration of the imaging data from multiple embryos. The 

construction of more precise reference data in the future will enable us to perform a more 

accurate reconstruction of the spatial transcriptome. Taken together, at this moment, it 

would be better to use a combination of both reconstruction results with the original 

scRNA-seq data in future biological applications.   
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Discussion 

We conducted scRNA-seq analysis to establish the single-cell transcriptome atlas of 

Drosophila gastrulae with higher accuracy and spatial resolution. This data consists of 

6,118 cells that cover the entire gastrula, and allowed us to identify 65 subclusters. We 

also recapitulated the stripe expression patterns along the A-P axis with single-cell wide 

column resolution. We found that, at the transcriptome level, rather than the primary TF 

layer in the regulatory network, the subsequent layer of PM-related genes or other 

cytoplasmic genes showed mRNA expression profiles that better represented the features 

of the three germ layers. A new spatially reconstructed dataset is also established. 

 

Artificial effect of trypsin treatment during cell dissociation 

Single-cell dissociation is one of the critical steps for scRNA-seq analysis, and 

minimizing the artificial effect of dissociation on gene expression is of critical importance. 

Here, we compared two proteases, trypsin and CAP, and found that trypsin treatment at 

25 °C upregulated Notch target genes regardless of cell type, but CAP treatment did not. 

This result suggests that trypsin treatment of Drosophila gastrula cells induces Notch 

signal activation by unknown mechanisms. One possible mechanism is the loss of cis-

inhibition of Notch (Del Álamo et al., 2011). The other is the direct activation of Notch 

by trypsin. Since artificial Notch activation by trypsin has also been reported in 

mammalian cells (Liu et al., 2014), this may be a universal phenomenon in animal cells. 

Although the detailed mechanism of Notch activation by trypsin is still unclear, these 

results indicate that cell dissociation methods need to be carefully considered not only for 

mammalian tissues as previously reported (Adam et al., 2017; Van Den Brink et al., 2017; 

Denisenko et al., 2020; Miyawaki-Kuwakado et al., 2021; O’Flanagan et al., 2019), but 
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also for insect tissues. We also found that not all Notch target genes were upregulated by 

trypsin treatment. For example, E(spl) complex genes, such as E(spl)m8-HLH, were 

upregulated ubiquitously, but sim, another Notch target gene, was not. A possible cause 

of this difference is that sim has a higher threshold and responds more slowly than E(spl) 

complex genes (Falo-Sanjuan et al., 2019). In addition, Notch may be able to instruct the 

expression of E(spl) complex genes in all cells, but sim expression is only permitted by 

Notch and may require other activators (Bray and Furriols, 2001).  

 

The whole picture of transmembrane-related DEGs between pair-rule stripes 

In this study, we succeeded in reconstructing the transcriptome of stripe patterns at the 

single-cell level using scRNA-seq data, allowing us to seek quantitative differences in the 

gene expression neighboring cells for all genes. We then determined that each adjacent 

pair showed 9–25 DEGs. These DEGs were mainly composed of transmembrane genes, 

in addition to pair-rule TF genes. Since genes encoding cytoplasmic proteins were hardly 

detected, the trunk ectoderm could deform based solely on differential expression of 

plasma membrane genes. The transcriptome features of the trunk ectoderm differ more 

significantly from those of the mesoderm or endoderm, so that the feature may give the 

trunk ectoderm the characteristic competence to undergo cell intercalation behavior. 

Transmembrane-related DEGs between stripes include three Toll receptor genes 

(18w, Toll-6, and Tollo), trn, and 5-HT2A, which are known to play a role in the regulation 

of germband extension (Colas et al., 1999; Paré et al., 2014, 2019; Schaerlinger et al., 

2007). Our scRNA-seq data provide an opportunity for a quantitative understanding of 

their functions, rather than qualitative and binarized data. In addition, DEGs include 

factors that have not been recognized as regulators of germband extension, but are known 
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to be involved in axon guidance. For example, comm and comm2 are involved in axon 

guidance across the Drosophila midline (Keleman et al., 2002, 2005). Sema5c is a 

member of the semaphorins that was originally identified as axonal growth cone guidance 

molecules (Yazdani and Terman, 2006). There is growing evidence that many 

transmembrane proteins identified as factors for neural network formation are also 

involved in epithelial morphogenesis and homeostasis (Cammarota et al., 2020; Hinck, 

2004; Vaughen and Igaki, 2016; Yoo et al., 2016). Furthermore, Sema5c was recently 

reported to be involved in the morphogenesis of follicle epithelia (Stedden et al., 2019). 

In this analysis, only a small number of genes were identified as DEGs. Although it 

remains possible that some important genes are being missed because the threshold is too 

high, the limited transmembrane DEGs are expected to be sufficient to organize the 

dynamics of epithelial morphogenesis in a redundant or cooperative manner. 

 

Transient intermediate/hybrid state during cell differentiation 

Detailed subclustering revealed two potential intermediate-state cells in Drosophila 

gastrulae. One is the cells belonging to “Anterior midgut wntD”, which express both 

endodermal and mesodermal markers. The other is the cells belonging to “PS14 ectoderm 

wg” that are likely to be intermediate between PS14 ectoderm and hindgut. These kinds 

of intermediate/hybrid (or multilineage priming) states have also been identified in the 

embryogenesis of other organisms by scRNA-seq analysis (Briggs et al., 2018; Farrell et 

al., 2018; Packer et al., 2019), suggesting that the transient intermediate state is a common 

step during cell differentiation. It is thought that such intermediate states do not persist, 

and the cells should eventually differentiate into one of the two states, but how the 

direction of differentiation is determined is still not well understood. During development, 
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cell differentiation proceeds in parallel with morphogenesis, and we recently found that 

morphogenesis can modulate cell differentiation (Kondo and Hayashi, 2019). Since 

regions of two intermediate states that we identified undergo dynamic changes in tissue 

shape (mesoderm/endoderm invaginations), it is possible that their cell differentiation 

paths depend on the completion of invagination of the head mesoderm or hindgut at this 

time. In the future, it is essential to investigate the lineages of these cells in detail using 

time-series analyses of cell differentiation and morphogenesis. 

 

Cell fate transformation in bcd mutants at the transcriptome level 

How a limited number of TFs and signaling generate various cell types during 

development is still a fundamental biological question. It has been proposed that 

sequential logic can overcome the bottleneck of combinatorial logic (Letsou and Cai, 

2016). At least in this theoretical view, there is a limit to the transcriptome pattern that 

can be established from only the combination state at the time. However, if we take the 

sequential logic wherein the time ordering of factors informs the final outcome, the 

diversity of target configurations dramatically increases even with the same regulatory 

network. Although the anterior part of bcd mutants eventually got the posterior 

combination of gap genes (Staller et al., 2015), the temporal histories of gap gene 

expression and pair-rule gene expression are slightly different from those of the original 

posterior region. For example, in bcd mutants, a gap gene hb mRNA expression is 

observed in both the anterior and posterior regions, but the posterior one initiates earlier 

than the anterior one (Staller et al., 2015). In addition, in bcd mutants, pair-rule genes ftz 

and eve show mutually exclusive expression patterns at the end of cellularization, but they 

show extensive overlap in earlier stages. This overlap was more evident than in the WT. 
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However, our scRNA-seq analysis of bcd-depleted embryos revealed that the anterior part 

of them acquired transcriptome characteristics for cells in the posterior region (Figure 7), 

strongly suggesting that the temporal histories of gap genes and pair-rule genes do not 

significantly affect the formation of transcriptome, and the status at last time just before 

gastrulation starts (50 min after the onset of nuclear cycle 14) determines the cell fate. 

Therefore, at least from early zygotic control in the Drosophila gastrula, the sequential 

scheme has less contribution, possibly because of the short duration of the process. This 

supports the proposed possibility that “subsequent layers serve to transform the positional 

information, fully available already at the gap gene layer, into an explicit commitment to 

repeated but discrete cell types” (Petkova et al., 2019). Furthermore, even though there 

are some noise and sharp discontinuities along the A-P axis, all cells in bcd mutants 

eventually canalize into cell types that are present in wild type at the level of the 

transcriptome, suggesting that the robust gene regulatory mechanism is operating not only 

with a handful of marker genes, but also with a multitude of genes across the whole 

genome. 

 

Non-linear conversion from spatial information to cell-type specific transcriptome 

During the process from patterning to cell differentiation, it is widely considered that 

gradual positional information is converted into the expression of TFs, and these 

combinatorial patterns determine cellular lineages in a discrete fashion (Briscoe and 

Small, 2015; Petkova et al., 2019). However, most studies have been based on a limited 

number of TFs, and the understanding of the relationship between cell differentiation 

status and genome-wide gene expression profiles is still limited. In this study, we 

established the scRNA-seq dataset with 64 subcluster information, and the hierarchical 
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clustering of these subclusters revealed that, in terms of the transcriptome level, rather 

than the expression profiles of TF genes, those of PM-related genes or other effector genes 

better represented the cell differentiation status corresponding to the three germ layers. 

This could indicate that these effector genes directly define cellular characteristics, such 

as behaviors and functions. Furthermore, it is suggested that when viewed from the 

perspective of only mRNA expression profiles of all TFs, initial positional information 

still remains there to some extent. In other words, without any prior functional knowledge 

about each gene, only the mRNA expression profiles of TF genes were not sufficient to 

distinguish the three germ layers. These analyses using our scRNA-seq data support the 

idea of a non-linear combinatorial scheme of transcriptome establishment by TFs from 

the point of transcriptome-wide view. In addition, it also implies that, in order to 

understand the regulatory mechanisms of cell differentiation, it is not enough to look at 

the overall mRNA expression of TFs, but it is important to look at the expression profiles 

of downstream effector genes and to focus the TFs that have a strong contribution. This 

may be because a small subset of TFs is the true master controller that sets up the lineages 

and that these are the ones that drive the expression of the cellular effector genes in a non-

equivalent manner. One possibility is that mRNA expression levels do not reflect the 

activity of each TF, and such master regulators are highly activated by post-transcriptional 

modifications through cellular signaling to have stronger effects than others. This is 

consistent with the fact that the expression profiles of PM-related genes were significantly 

variable among cells in the gastrula. Alternatively, from the diverse states of TF 

expression, a strong combinatorial action of common master controllers emerges in the 

gene regulatory network, resulting in the induction of the downstream effector gene 
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profile corresponding to each germ layer. It is also possible that similar expression 

profiles of effector genes arise from different combinations of TFs.  

 In this study, by using our scRNA-seq data with Perler or NovoSparc, we 

reconstructed the spatial transcriptome of Drosophila gastrula at single-cell resolution 

with high accuracy. Our scRNA-seq data with spatial reconstruction can be used as an 

important reference for the elucidation of regulatory networks, including cell-cell 

communication. Future integrated analyses of the genome-wide gene-regulatory network 

and spatial signaling activity with this scRNA-seq data will provide us with more detailed 

insights into the mechanisms by which the gradual positional information is non-linearly 

converted into discrete patterns of cell differentiation, and also enable a deeper 

understanding of the developmental systems that orchestrate tissue morphogenesis and 

functions. 
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Materials and Methods 

Fly strains 

All stocks were maintained on standard laboratory food containing corn flour, corn grits, 

dry yeast, glucose, agar, propionic acid, and butyl p-hydroxybenzoat. The following fly 

strains were used: y w for Set1 C1-HT and Set2 trypsin-10x data and w; R14E10-

GAL4[attP2] UAS-mCD8.chRFP (III) for Set3 CAP-10x data was used as a control. 

Maternal RNAi knockdown of bcd was performed as previously reported (Staller et al., 

2015). Briefly, UAS-bcd RNAi (HMS00035) females were crossed with matalpha4-GAL-

VP16[67] and matalpha4-GAL-VP16[15] males. The matalpha4-GAL-VP16[67]/+; 

matalpha4-GAL-VP16[15]/ UAS-bcd RNAi (HMS00035) females hatched from it were 

crossed with UAS-bcd RNAi (HMS00035) males, and embryos obtained from this cross 

were used as bcd-RNAi embryos. 

 

Preparation and fixation of single-cell suspensions. 

All equipment, including the forceps, brushes, and nylon mesh, was treated with RNase 

quiet (Nacalai) and washed well with RNase-free water. Embryos were collected by egg 

laying for 20–30 min and kept for 90 min at 25 °C. Then, embryos were dechorionated 

using bleach and washed with RNase-free PBS. The developmental stages of embryos 

were monitored under a fluorescent stereomicroscope (Nikon SMZ18), and stage 6 to 7 

embryos shortly after initiation of gastrulation were picked and transferred into 10 µL of 

ice-cold homogenization buffer (1x RNase-free PBS, 5% trehalose) in a 1.5 mL 

microtube (Watson, PROKEEP protein low binding tube). Trehalose was included in the 

whole dissociation process as a cell protectant (Saxena et al., 2012). After collecting 150–

300 embryos at the bottom of the microtubes, the vitelline membranes were broken by 
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slowly turning the tip of the pipette tip (Axygen, Maxymum Recovery 200 μL Universal 

Fit Tip with Filter). The disrupted embryos were suspended in 500 µL of ice-cold 

homogenization buffer and  pelleted by centrifugation at 800 rcf for 2 min at 4 °C. After 

removing the supernatant, the pellet was resuspended in 500 µL of ice-cold 

homogenization buffer, followed by centrifugation at 800 rcf for 2 min at 4 °C.  

For trypsin treatment, the pellet was resuspended in 1x trypsine-EDTA (Sigma, 

T3924) and kept at 25 °C for 10 min. 500μl of ice-cold stopping buffer (1x PBS, 5% 

trehalose, 0.375 % BSA (WAKO, 012-23881), 0.1 mg/ml trypsin inhibitor (Sigma, 

T6522)) was added. After washing with 500μl of ice-cold wash buffer1 (1x PBS, 5% 

trehalose, 0.375 % BSA (WAKO, 012-23881)) twice, the pellet was resuspended with 

200 µL of ice-cold loading buffer (1x PBS, 5% trehalose, 0.5 mg/ml ULTRAPURE BSA 

(Thermo fisher, AM2616), 1/200 RNasin plus (Promega, N2611)). 

For CAP treatment, the pellet after homogenization was resuspended in 500μl 

CAP solution (5 mg/mL Bacillus licheniformis protease (Sigma P5380), 5% trehalose, in 

1x PBS), and kept at 6 °C for 30 min. Then, 500 μL of ice-cold wash buffer2 (1x PBS, 

5% trehalose, 0.5 mg/ml ULTRAPURE BSA (Thermo fisher, AM2616)) was added. 

After washing with wash buffer2 four times, the pellet was resuspended in 200 µL of ice-

cold loading buffer. 

For either trypsin or CAP treatment, the cells suspended in 200 µL of ice-cold 

loading buffer were filtered through a cell strainer (FLOWMI Cell Strainers for 1000ul 

Pipette Tip, 40um Porosity) and fixed with 1 ml of CellCover (Anacyte Laboratories) for 

1 h at 25 °C, and then kept at 4 °C overnight. The fixed cells were washed with 500 µL 

of ice-cold loading buffer and resuspended in 100 µL of ice-cold loading buffer. After 

counting the density of cells using a hemocytometer, the density was adjusted to 
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approximately 200 or 300 cells/µL for Fluidigm C1-HT, or approximately 300 cells/µL 

for 10x genomics Chromium.  

 

Single-cell RNA-seq 

scRNA-seq library preparations using Fluidigm C1 with the C1 Single-Cell mRNA Seq 

HT IFC were performed according to the manufacturer’s protocol with some 

modifications. Before proceeding to the cell lysis step, all 800 capture sites in the IFC 

were automatically imaged using an Axio Observer.Z.1 (Zeiss) equipped with an 

Axiocam 105 color (Zeiss) and an electric stage. One modification was custom primers 

with inserted 8 base UMI for the reverse transcription reaction. Primer sequences are 

listed in Supplementary Table S2. We also added the ERCC spike-in mix (Thermo Fisher, 

4456740) to the Lysis Mix. Another modification was the concentration of the primers 

used in the library amplification step. A 10-fold lower concentration of enrichment primer 

was used. The PCR cycle for library amplification was 12. After quality control and 

quantification using Bioanalyzer and qPCR, the libraries were sequenced with a NextSeq 

500 (Illumina), 75 cycle high-output kit v2 (Read1: 15 cycles, Read2: 69 cycles, Index1: 

8 cycles, total 92 cycles). 

Library preparations using 10x Chromium with the Chromium Next GEM Single 

Cell 3ʹ Reagent Kits v3.1, were performed according to the manufacturer’s protocol. The 

PCR cycles were 11 for cDNA amplification and 11 for library amplification. After 

quality control and quantification using Bioanalyzer and qPCR, the libraries were 

sequenced using NextSeq 500 (Read1: 28 cycles, Read2, 56 cycles), NovaSeq 6000 

(Illumina) (Read1: 28 or 151 cycles, Read2, 91, 98, or 151 cycles), or HiSeqX (Illumina) 

(Read1: 151 cycles, Read2, 151 cycles). For the trypsin dataset (Set2), the libraries were 
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sequenced using the NovaSeq 6000. For the CAP dataset, the same library was sequenced 

three times with NextSeq 500, NovaSeq 6000, and HiSeqX. All reads obtained from the 

three sequencing times were integrated for analysis. 

 

Analysis of scRNA-seq data of 10x Chromium 

Read1, including UMIs and cell barcords, was trimmed to 28 base lengths using 

fastx_trimmer (FASTX-toolkit, version 0.0.14, http://hannonlab.cshl.edu/fastx_toolkit). 

Adapter trimming and quality filtering were performed using fastp (version 0.20.1, for 

NextSeq 500 data with q 20 --cut_tail -l 28 --max_len1 28 --max_len2 55 --trim_poly_g 

--trim_poly_x, for 10x NovaSeq data -q 20 --cut_tail -l 28 --max_len1 28 --max_len2 97 

--trim_poly_g --trim_poly_x, for HiSeqX data with -q 20 --cut_tail -l 28 --max_len1 28 -

-max_len2 97 --trim_poly_x) (Chen et al., 2018). The trimmed reads were mapped to the 

genome sequence of Drosophila melanogaster (BDGP6.22.98) and UMI-counted using 

STARsolo (version 2.7.7a)(Kaminow et al., 2021). In this process, since STARsolo 

(version 2.7.7a) cannot account for multi-gene reads for UMI counting, a modified gtf 

annotation file, in which genes overlapped in the same direction of the genome were 

integrated and treated as the same gene (Supplementary Table S3), was used. For cell 

filtering, the median of the total UMI per cell in the filtered output of STARsolo was 

calculated, and cells with a total UMI two times higher than the mean value were filtered 

as potential doublets. Then, cells in which either the number of genes detected, the UMI 

proportion of ribosomal RNA genes, or the UMI proportion of mitochondrial genome 

genes were outside the range of an average value ± 2.5×SD were filtered as low-quality 

cells. Remained UMI-count tables were loaded into Seurat (version 3.2.3)(Stuart et al., 

2019) and normalized using the SCTransform function with an option (vars.to.regress = 
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c("percent.mt”, "percent.rRNA"))(Hafemeister and Satija, 2019). "percent.mt" and 

“percent.rRNA” were labels of metadata which contain the percentages of transcripts 

from the mitochondrial genome and nuclear rRNA genes to total detected transcripts in 

each cell respectively. Dimensional reduction analyses were performed using RunPCA 

and RunUMAP (dims = 1:30, n.neighbors = 20L) functions, followed by unsupervised 

graph-based clustering with FindNeighbors and FindClusters functions in Seurat. A 

cluster showing high expression of ribosomal protein genes was filtered out as low-

quality cells. Each cluster was manually annotated based on the marker genes identified 

by the FindAllMarkers function. For subclustering of each cluster, unsupervised graph-

based clustering with FindNeighbors and FindClusters functions were further applied to 

each cluster, as listed in Supplementary Table S1. In general, highly variable features 

identified using SCTransform were used for clustering. One exception is that 

subclustering along the DV axis of the lateral ectoderm was performed using k-means 

clustering (n=7) with only 35 DV genes listed in Supplementary Table S4. Each 

subcluster was manually annotated based on the marker genes shown in Figrues 2, S3, 

and S4. During the process of subclustering, cells showing expression of both ectodermal 

and mesodermal genes were removed as doublets. The remaining singlet dataset consisted 

of 6,118 cells. 

All plots were generated using Seurat or ggplot2 in R unless otherwise noted. 

 

Analysis of scRNA-seq data of C1-HT 

Adapter trimming and quality filtering were performed using fastp (version 0.20.1) with 

options (-q 20 --cut_tail -l 14 --max_len1 14 --max_len2 68 --trim_poly_g --trim_poly_x), 

and the trimmed reads were mapped to the genome sequence of Drosophila melanogaster 
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(BDGP6.22.98) with a modified gtf annotation file as described above and UMI-counted 

using STARsolo. Only the data derived from the cells determined to be a singlet from the 

image of the capture site were loaded into Seurat. For each batch, cells in which either 

the number of genes detected, the UMI proportion of ribosomal RNA genes, the UMI 

proportion of mitochondrial genome genes, or the UMI proportion of ERCC spike-ins 

were outside the range of an average value ± 2.5×SD were filtered as low-quality cells. 

Then, all four batches were integrated and normalized using SCTransform with an option 

(vars.to.regress = c("percent.mt”, "percent.rRNA”, “percent.ERCC”)). “percent.ERCC” 

were labels of metadata which contain the percentage of ERCC to total detected 

transcripts in each cell. Dimensional reduction, graph-based clustering, and cluster 

annotation were performed in the same way as the 10x data. All plots were generated 

using Seurat or ggplot2 (version 3.3.3)(Wickham, 2009) in R, unless otherwise noted. 

 

Gene Ontology enrichment analysis 

For GO enrichment analysis of all high-quality cells, cells in the pole cell cluster were 

removed and the list of the top 1,500 highly variable features was extracted using Seurat. 

The gene list was analyzed using g:Profiler (https://biit.cs.ut.ee/gprofiler) with g:SCS 

algorithm(Raudvere et al., 2019), and significantly enriched terms in cellular components 

were identified at an FDR threshold of 0.01, and term_size lower than 4,000. For the 

analysis of highly expressed genes in the tsr-high cluster of set2 10x trypsin dataset, 328 

highly expressed genes in cluster 10 (Mesoderm_tsr-high) compared to cluster1 

(Trunk_mesoderm) were identified using the FindMarkers function with MAST (Finak 

et al., 2015) at an FDR threshold of 0.01 and logFC threshold of 0.25. The gene list was 
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analyzed using g:Profiler, and significantly enriched terms of the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) were identified at an FDR threshold of 0.01. 

 

Clustering analysis with GLAD 

The gene list of each GLAD category was downloaded from 

https://www.flyrnai.org/tools/glad/web/. Since some genes that are listed in the 

"Transcription factor/DNA binding” category are also listed in other categories, a 

modified database was prepared to exclude these duplications. The modified GLAD list 

is presented in Supplementary Table S5. Integrated gene list of "Trans-membrane 

proteins,” "Receptors,” "Secreted proteins,” and "Matrisome" categories was used as the 

list of plasma membrane-related genes. Genes listed in GLAD categories other than the 

“Transcription factor/DNA binding” category and plasma membrane-related genes were 

considered as other cytoplasmic genes. 

For the analysis using only a specific gene set, only the gene of interest from the 

top 1,500 highly variable features was extracted, and the dimensionality reduction 

analysis was performed using Seurat, as described above. The cell identity in the UMAP 

plot was colored using pre-annotated information. 

For the hierarchical clustering analysis, the average normalized expression value 

of each gene for each 64 subcluster was calculated using the AverageExpression function 

of Seurat. Euclidean distances for all pairs of clusters in log-transformed gene-expression 

space were calculated using the dist function of R. Then, hierarchical clustering based on 

the Euclidean distances was performed with the hclust function with the average method. 

Euclidian distances and the structure of hierarchical clustering were drawn as a heatmap 
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using the heatmap.2 function in the gplot package (version 3.1.1, https://CRAN.R-

project.org/package=gplots) of R. 

 

Assignment of stripe identities of ectoderms along the A-P axis 

scRNA-seq data annotated as “trunk ectoderms 2” (see Supplementary Table S1 for 

details) were extracted. To infer the stripe positions in parasegement, they were analyzed 

by k-means clustering (n=4) with nine landmark genes of the stripe position (Figure 5A). 

Then, data in each stripe were divided into odd or even parasegment by k-means 

clustering (n=2) with trn for stripes 1 and 2 (or pxb for stripes 3 and 4) and genes 

positively and negatively correlated with it. K-means clustering was performed with the 

k-means function in the ClusterR package (version 1.2.2, https://CRAN.R-

project.org/package=ClusterR) of R, and the correlation coefficient between all pairs of 

1,000 HVGs was calculated with the correlate function in the corrr package (version 

0.4.3) of R. All plots were generated by Seurat or ggplot2 (version 3.3.3) in R. DEGs 

between each adjacent boundary or super boundary were identified using the 

FindMarkers function with MAST at an FDR threshold of 0.01, and FC threshold of 1.5. 

 

Filtering of tsr-high cells from trypsin-10x data 

To remove tsr-high cells from Set2 trypsin-10x data and bcd-RNAi data, the correlation 

coefficients between all pairs of 2,000 HVGs were calculated with the correlate function 

in the corrr package (version 0.4.3) of R. Then, genes positively and negatively correlated 

with tsr were extracted to perform principal component analysis (PCA) and model-based 

clustering by the Mclust function in mclust package of R (version 5.4.7, https://cran.r-

project.org/package=mclust) with options (pca=30, G=2, modelNames="VVV"). The 
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cluster with high tsr expression was filtered out as stressed cells for further data 

integration. 

 

Integration of scRNA-seq data 

Reference-based integration between control (10x trypsin set2) and bcd RNAi scRNA-

seq data was performed with the “FindIntegrationAnchors” and “IntegrateData” functions 

in the Seurat package. Control data were used as a reference. Further dimensional 

reductions and clustering analysis of the integrated data were performed using the 

standard procedures of Seurat. Each cluster was manually annotated using the marker 

gene information identified by the FindAllMarkers function, and the ratio of each cluster 

was calculated as the ratio of the total number of cells to the number of cells in each 

cluster.  

 

Preprocessing scRNA-seq data for spatial reconstruction of gene expression 

For Set3 data, because the BDTNP FISH data does not contain pole cells, 123 cells in the 

“pole_cells” cluster were removed from the dataset. The UMI-count table of the 

remaining 5,995 cells was renormalized using SCTransform as described above. Then, 

dimensional reduction analysis was performed using the RunPCA function of Seurat with 

default settings.  

The raw count table (dge_raw.txt) was obtained from Drosophila Virtual 

Expression eXplorer (https://shiny.mdc-berlin.de/DVEX/). This count table was loaded 

into Seurat and normalized using the SCTransform function without options. Note that, 

in this data, pole cells were already removed and the UMI counts for mitochondrial and 

rRNA genes were not included. 
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For both datasets, a log-scaled count (“data” slot in “SCT” assay of the Seurat 

object) and HVGs detected by SCTransform were used for spatial reconstruction. 

 

Selection of ISH reference landmark genes for spatial reconstruction 

ISH spatial references were constructed mainly based on the BDTNP database 

(D_mel_wt__atlas_r2.vpc from http://bdtnp.lbl.gov) and DVEX (bdtnp.txt). The DVEX 

reference was forked from the BDTNP reference, but three genes (bowl, ems, and exex) 

were only in the DVEX reference.  

Both scRNA-seq data were derived from stage 6-7 embryos, while ISH reference 

data were established for stage 5 embryos. Some genes in the ISH data dynamically 

changed the expression pattern from stage 5 to stage 6-7. Therefore, genes whose 

expression patterns significantly changed between the two time points and that could 

worsen the reconstruction were removed from the reference. As a result, 67 genes 

remained as landmarks for spatial reconstruction (Supplementary Table S6). In addition, 

among 3,039 cells in the DVEX reference, eight cells with y < 0 were removed.  

 

Spatial reconstruction of gene expression by Perler 

Perler (version 0.1.0) Python package was obtained from 

https://github.com/yasokochi/Perler. For both Set3 and NK-data, log-scaled counts and 

reference above were loaded into the PERLER object, and then the EM algorithm was 

performed using the em_algorithm method with option (optimize_pi = False). Next, the 

distances between the scRNA-seq data points and reference data points were calculated 

using the calc_dist method with default parameters. Optimization of hyperparameters was 

performed by the loocv method with default parameters and the gridsearch method with 
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parameters (grids = ((0,1), (0.01,1))). Finally, spatial gene expression patterns were 

reconstructed by the spatial reconstruction method with parameters (mirror = False, _3d 

= True, z_scored = False). 

 

Spatial reconstruction of gene expression by NovoSpaRc 

NovoSpaRc (version 0.4.3) reconstruction was mainly performed according to 

https://github.com/rajewsky-lab/novosparc. First, log-scaled counts and reference were 

loaded into the Tissue object of NovoSpaRc. Cost matrices for the optimal transport 

framework were calculated by the set_up_smooth_costs method based on 30 principal 

components (PCs) and the setup_linear_cost method with the reference and default 

parameters. Then, spatial reconstruction was performed using the reconstruction method 

with parameters (alpha_linear=0.3, epsilon=5e-3). Note that the alpha_linear parameter 

and the number of used PCs were determined by grid search so that the LOOCV score 

described below was maximized.  

 

Leave-one-gene-out cross-validation (LOOCV) 

Each of the 67 landmark genes in the ISH reference was removed from the reference as 

the true expression, and spatial reconstruction by Perler or NovoSpaRc was performed 

using the remaining 66 genes as the reference. Pearson correlations between the 

reconstructed expression pattern of the removed gene and the truth were then calculated.  

For decision of hyperparameter for NovoSpaRc, we calculated the score: 

𝐽 = 	− !
"
∑ ln(1 − 𝜌#")$%
# .  
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Here, 𝜌#  is the Pearson correlation coefficient between the ISH expression and the 

reconstructed expression of gene 𝑖. The hyperparameter and number of PCs with the 

highest score were selected. 

 

Comparison of gene-gene correlation structure conservation  

First, common 372 HVGs included in the top 500 HVGs of both Set3 and NK-data 

scRNA-seq datasets were selected. Pearson correlation between the gene and 371 HVGs 

in the original scRNA-seq data and those in the Set3-based or NK-data-based 

reconstruction were calculated. Then, the Pearson correlation coefficient between these 

two correlation scores for each of the 372 HVGs was calculated as gene-gene correlation 

structure conservation between the original scRNA-seq data and either reconstruction. 

For the comparison between Perler and NovoSpaRc, the top 500 HVGs of the Set3 data 

were used. 

 

Plotting reconstructed expression pattern 

Plotting was performed using the scatter function in the matplotlib (version 3.3.4) 

package (Hunter, 2007). The reconstructed expression values were converted from a log-

scale to a linear scale. For the lateral view, all the cells in the reference were plotted. For 

dorsal and ventral views, cells with z > 0 and z <= 0 were used, and the cells were mirrored 

on the x-y plane. The anterior is left in all plots, and the dorsal is up in lateral views. 

 

Density plot of ind and vnd expression 

For the plot of single cell data, intermediate or medial neuroectoderm cells in the abdomen 

and PS13 and midline cells were extracted from Set3 data. For the reconstruction data 
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plot, cells with |x| < 50 and -55° < θ < 0° were extracted. θ is the angle between the y-axis 

and the line segment drawn from the center of the embryo to the cell in a cross section 

parallel to the yz-plane containing the cell, expressing the position of the cell on the DV-

axis (Figure S7G). Density estimation was performed using the gaussian_kde class in the 

stats module in the Scipy package (version 1.6.0)(Virtanen et al., 2020). Estimation 

results were plotted using the pcolormesh function in the matplotlib package (version 

3.3.4). 

 

Bulk RNA-seq 

For total RNA preparation from embryos, 80 stage 6-7 embryos were harvested, and total 

RNA was purified using RNeasy Lipid Tissue Mini Kit (Qiagen). For total RNA 

preparation from dissociated cells, 200-300 embryos at stage 6-7 were dissociated into 

single-cell suspensions by trypsin-EDTA treatment as described above. After washing, 

the cells were passed through a 40 µm strainer and pelleted. Total RNA was purified from 

approximately 40,000 cells using the RNeasy Mini Kit (Qiagen). For total RNA 

preparation from fixed cells, 200-300 embryos at stage 6-7 were dissociated into single-

cell suspensions by trypsin-EDTA treatment and fixed by CellCover as described above. 

Cells were stored at 4 °C for one day and pelleted. Total RNA was purified from 

approximately 40,000 pelleted cells using an RNeasy Mini Kit (Qiagen). 

cDNA was synthesized from 250 ng of each total RNA using the SMART-Seq 

v4 Ultra Low Input RNA Kit (Clonetech). Then, a library for Illumina sequencers was 

constructed from 0.0625 ng cDNA using the Illumina Nextera XT DNA Library 

Preparation Kit. The libraries were sequenced on an Illumina NextSeq 500 to obtain 
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single-end reads with a length of 76 bases. Each sample was analyzed in duplicates. For 

each library, 36,577,021–41,844,986 reads were sequenced. 

 

Analysis of bulk RNA-seq data 

Sequenced reads were quality trimmed using Trim Galore (version 0.6.4, 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and Cutadapt 

(version 1.18)(Martin, 2011) with the --nextseq 20 option. After removing the 76th base 

from each read, the remaining reads were mapped to the genome sequence of Drosophila 

melanogaster (BDGP6.22.98) using STAR with a modified gtf annotation file, as 

described above. Gene expression was calculated using RSEM (version 1.3.3)(Li and 

Dewey, 2011), and differential expression analysis was performed using edgeR (version 

3.32.1)(Robinson et al., 2009). After removing the mitochondrial and ribosomal RNA 

genes, low expression genes with CPM less than 0.1 in all six samples were also filtered 

out. Normalization was performed using calcNormFactors. Spearman correlation 

coefficients were calculated using the cor function in R. DEGs were identified using the 

glmQLFit and glmQLFTest functions in the edgeR package at an FDR threshold of 0.01 

and logFC threshold of 2. 

 

Data Availability 

All raw sequence data that were deposited in the DDBJ Sequence Read Archive (DRA) 

and the processed data will be available at the time of publication. 
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Figure 1: Comparison between trypsin and CAP dissociation for scRNA-seq. 
A. Schematic diagram of the data acquired in this study. 
B-C. Uniform manifold approximation and projection (UMAP) plot of the Set3 CAP-10x 

scRNA-seq data (B) and the Set2 trypsin-10x scRNA-seq data (C) with cluster 
information. Dot plot shows the expression patterns of typical marker genes for each 
cluster. 

D. Midline cells are colored magenta in the UMAP plot of the Set3 CAP-10x data. 
E-G. Expression patterns of sim (E), E(spl)m8-HLH (F) and tsr (G) in Set3 CAP-10x data.  
H. Midline cells are colored magenta in the UMAP plot of the Set2 trypsin-10x data. 
I-K. Expression patterns of sim (I), E(spl)m8-HLH (J) and tsr (K) in Set2 trypsin-10x data.  
The expression patterns in (E-G, I-K) represent the log-transformed values after 
SCTransform normalization. 
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Figure 2: Subclustering of trunk ectodermal cells. 
A. Trunk ectodermal cells are colored magenta in the UMAP plot of the Set3 CAP-10x 

data. 
B. Annotation of the anterior-posterior (AP) identities of the trunk ectodermal cells. 
C. Expression patterns of anterior-posterior specific genes.  
D. Annotation of dorsal-ventral (DV) identities of the trunk ectodermal cells. Dot plot 

shows the expression patterns of typical marker genes for each cluster. 
E. Annotation of the trunk ectodermal cells with a combination of AP and DV identities. 
F. Heatmap showing the typical marker genes for all subclusters of the trunk ectodermal 

cells. 
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Figure 3: 65 subclusters of Drosophila gastrulae identified from scRNA-seq data. 
A. UMAP plot of the Set3 CAP-10x scRNA-seq data with information on the 65 

subclusters.  
B. Schematic diagram showing the inferred spatial location of each subcluster in gastrulae. 
AS: Amnioserosa, CVM: Caudal visceral mesoderm, DE: Dorsal ectoderm, MG: Midgut, 
NE: Neuroectoderm 
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Figure 4: Clustering analysis with GLAD categories. 
A. Gene Ontology enrichment analysis of 1,500 HVGs using g:Profiler. The terms of 

cellular components are presented. 
B. The number of genes belonging to each category in each bin of 1,500 HVGs divided 

into 15 bins from the top. The red dotted line is the expected number by random 
sampling. 

C-E. UMAP plot with 1,500 HVGs (C), 258 TFs in 1,500 HVGs (D), and 519 PM-related 
genes in 1,500 HVGs (E). Cells were colored by super cluster information based on 
prior annotations (I) 

F-H. Hierarchical clustering analyses of 64 subclusters based on the Euclidean distances 
in log-transformed gene-expression space with top 1,500 HVGs (F), 258 TFs in 1,500 
HVGs (G), and 519 PM-related genes in 1,500 HVGs (H). Subclusters were colored 
based on the future germ layers. 

I. Super cluster information used to color the cells in the UMAP plot. See Supplementary 
Table S1 for details. 
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Figure 5: Assignment of the stripe identities to ectodermal cells. 
A. (top) Examples of the stripe expression patterns of pair-rule genes (eve, ftz) from the 

BDTNP ISH database. eve is expressed in odd parasegments and ftz is expressed in 
even parasegments. (bottom) Expression patterns of nine stripe landmark genes and 
two odd/even landmark genes. 

B. (Step 1) UMAP plot of the Set3 CAP-10x data. Trunk ectodermal cells used for stripe 
assignment are colored magenta. (Step 2) t-SNE plot with 1,711 trunk ectodermal cells 
and 9 stripe landmark genes. Cells were colored by k-means clustering (n=4) using 9 
stripe landmark genes. (Step 3) Principal component analysis (PCA) plots of each 
stripe in Step 2. Cells were colored by k-means clustering (n=2) using trn for stripe 1 
and 2 (or pxb for stripe 3 and 4) and genes positively and negatively correlated with it. 

C. The number of cells assigned to each stripe identity. 
D. Dot plots showing the expression patterns of landmark genes used for stripe 

assignment and non-landmark genes in each stripe. 
E. Reported stripe patterns of eve, ftz, h, 18w, Toll-6, and Tollo (Clark and Akam, 2016, 

Paré et al., 2019). 
F. Violin plots showing the expression patterns of eve, ftz, h, 18w, Toll-6, and Tollo in 

each reconstructed pair-rule stripe. The gray line indicates the median values for each 
stripe. Expression levels represent the log-transformed values after SCTransform 
normalization. 

G. The number of differentially expressed genes (DEGs) between adjacent or super 
boundaries. DEGs were identified using the FindMarkers function with MAST at a 
FDR threshold of 0.01 and FC threshold of 0.25. 

H. GLAD category breakdown for unique DEGs of adjacent or super boundaries. 
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Figure 6: Analysis of fate transformation in bcd knockdown mutants with scRNA-
seq 
A. UMAP plot of Set2 trypsin-10x data after removal of tsr-high cells. 
B. UMAP plot of bcd-KD scRNA-seq data after removal of tsr-high cells. 
C. (left) UMAP plot of integrated data between Set2 (A) and bcd-KD (B). Clustering and 

annotation were performed again after integration. (right) Cells are colored according 
to the data they were derived from. Arrows indicate the clusters that are only composed 
of cells from the Set2 control. 

D. Ratio of the total number of cells to the number of cells in each cluster for each dataset. 
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Figure 7: Spatial reconstruction by Perler. 
A. Comparison between the leave-one-gene-out cross validation (LOOCV) results of 

Perler reconstructions based on NK-data and Set3 data. Each dot indicates each 
landmark gene. X- and Y-axis show the correlations between reference ISH expression 
patterns and the reconstructed expression pattern of each gene based on NK-data and 
Set3 data, respectively. 

B. Comparison of gene-gene correlation structure conservation between Set3-based and 
NK-data-based reconstruction by Perler. Each dot indicates each gene which was 
commonly included in Top 500 HVGs of both datasets (372 genes). The X-axis shows 
gene-gene correlation structure conservation in NK-data-based reconstruction and the 
Y-axis shows gene-gene correlation structure conservation of Set3-based 
reconstruction. The definition of gene-gene correlation structure conservation was 
described in Materials and Methods. 

C-E. Examples of reconstructed expression by Perler on Set3 (left) and NK-data (right). 
In each plot, upper panels show reconstructed expression patterns. Colormaps are 
linear and zero-max scaled. Bottom panels show density histograms of the gene 
expression in the original scRNA-seq and the reconstruction. Expression patterns are 
log-scaled and each bin size is 0.2 in density histograms. 

F. The reconstructed expression patterns of wg by Perler based on Set3 (left) and NK-
data (right). In each plot, upper-left panel shows reconstructed expression patterns in 
whole-embryo. Bottom-left panel shows the enlarged views of the region enclosed 
with a red rectangle in the upper-left panel. Upper-right panel and bottom-right panel 
show the histograms of the expression in whole-embryo and the region shown in 
bottom-left panel, respectively. Expression values in plots are linear-scaled and on y-
axes are log-scaled in the histogram. The maximum expression patterns in the whole 
embryo plots and enlarged plots are indicated by “max1” and “max2” (red dashed 
lines), respectively. The minimum expression in whole embryo is indicated by “min” 
(green dashed line) 

G. (left) in situ hybridizations of C15 and egr from the Berkeley Drosophila Genome 
Project (BDGP; https://insitu.fruitfly.org/)(Hammonds et al., 2013; Tomancak et al., 
2002, 2007). Lateral view. (middle) The lateral or dorsal views of Set3-based 
reconstructed patterns of C15 and egr by Perler. (left) The lateral or dorsal views of 
NK-data-based reconstructed patterns of C15 and egr by Perler. Red and white lines 
show the region of expression along the dorsal midline.  
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Supplementary Figure S1: Evaluation of CellCover fixation and C1HT scRNA-seq. 
A. Scatter plot of bulk RNA-seq data between dissociated-cell and fixed-cell samples. 

Each dot represents a log2 value of average (CPM + 1).  
B. UMAP plots of the Set1 trypsin-C1HT scRNA-seq data. Cells were colored by the 

batch of C1HT run (left) or with cluster information (right).  
C. Dot plot showing the expression patterns of typical marker genes for each cluster. 
D-F. Expression patterns of sim (D), E(spl)m8-HLH (E), and tsr (F) in Set1 trypsin-C1HT 

data.  
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Supplementary Figure S2: Artificial effect of trypsin treatment. 
A. Scatter plot of bulk RNA-seq data between embryo and dissociated-cell samples. Each 

dot represents a log2 value of average (CPM + 1). 
B. Volcano plot of bulk RNA-seq data between the embryo and dissociated-cell samples. 

Red dots represent the differentially expressed genes (DEGs) (|logFC| > 2 and FDR < 
0.01).  

C. Gene Ontology enrichment analysis of highly expressed genes in cluster 10 compared 
to cluster 1 in Set2 trypsin-10x scRNA-seq data. The terms of KEGG are presented. 
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Supplementary Figure S3: Subclustering of the Set3 CAP-10x data. 
A. (left) The trunk mesodermal cells from clusters 0 and 1 are colored magenta in the 

UMAP plot. (middle) UMAP plot and subcluster information for trunk mesodermal 
cells. (right) Heatmap showing the typical marker genes for all subclusters of the trunk 
mesodermal cells. 

B. (left) The head mesodermal/anterior endodermal cells from cluster 18 are colored 
magenta in the UMAP plot. (middle) UMAP plot and subcluster information for head 
mesodermal/anterior endodermal cells. (right) Heatmap showing the typical marker 
genes for all subclusters of the head mesodermal/anterior endodermal cells. 

C. (left) The gcm+ anterior mesodermal cells from cluster 15 are colored magenta in the 
UMAP plot. (middle) UMAP plot and subcluster information for gcm+ anterior 
mesodermal cells. (right) Heatmap showing the typical marker genes for all subclusters 
of the gcm+ anterior mesodermal cells. 

D. (left) The PS1 and PS2 mesodermal cells from cluster 17 are colored magenta in the 
UMAP plot. (middle) UMAP plot and subcluster information for PS1 and PS2 
mesodermal cells. (right) Heatmap showing the typical marker genes for all subclusters 
of the PS1 and PS2 mesodermal cells. 

E. (left) The posterior mesodermal cells from cluster 13 are colored magenta in the UMAP 
plot. (middle) UMAP plot and subcluster information for posterior mesodermal cells. 
(right) Heatmap showing the typical marker genes for all subclusters of the posterior 
mesodermal cells. 

F. (left) The head ectodermal cells from clusters 8 and 14 are colored magenta in the 
UMAP plot. (middle) UMAP plot and subcluster information for head ectodermal cells. 
(right) Heatmap showing typical marker genes for all subclusters of the head 
ectodermal cells. 

G. (left) The PS1 ectodermal cells from cluster 11 are colored magenta in the UMAP plot. 
(middle) UMAP plot and subcluster information for PS1 ectodermal cells. (right) 
Heatmap showing typical marker genes for all subclusters of the PS1 ectodermal cells. 

H. (left) The posterior ectodermal and endodermal cells from cluster 5, 9, and 12 are 
colored magenta in the UMAP plot. (middle) UMAP plot and subcluster information 
for posterior ectodermal and endodermal cells. (right) Heatmap showing the typical 
marker genes for all subclusters of the posterior ectodermal and endodermal cells. 
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Supplementary Figure S4: Marker genes for all 65 subclusters. 
Heatmap showing the top 10 marker genes for all subclusters.  
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Supplementary Figure S5: Clustering analysis with GLAD categories. 
A. Breakdown of GLAD category affiliation for 1,500 highly variable genes. 
B-E. (left) UMAP plot and with 1,242 non-TF HVGs (B), 723 non-TFs and non-PM 

HVGs (C), 320 other HVGs in GLAD (D) and 403 HVGs not in GLAD. Cells were 
colored by super cluster information based on prior annotations (see Figure 4I and 
Supplementary Table S1 for details). (right) Hierarchical clustering analyses of 64 
subclusters based on the Euclidean distances in log-transformed gene-expression space. 
Subclusters were colored based on the future germ layers. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


TF DEGs between adjacent bounary

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

Alh

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Abd-B

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

ac

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

dpn

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

drm

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

edl

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

en

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

eve

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

ftz

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

gsb

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

h

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

ich

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

l(1)sc

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

mid

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

nub

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

odd

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

prd

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

run

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

sc

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

slp1

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

slp2

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

sob

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Ubx

PM-ralated DEGs between adjacent bounary

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

5−HT2A

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

18w

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

blot

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

CG4702

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

comm

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

comm2

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

dally

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

hh

0

1

2

3

4

5

O1 O2 O3 O4 E1 E2 E3 E4

ImpL2

0.0

0.5

1.0

1.5

2.0

2.5

O1 O2 O3 O4 E1 E2 E3 E4

Notum

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Obp99a

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

pio

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

pxb

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

Sema5c

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Toll−6

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Tollo

0

2

4

O1 O2 O3 O4 E1 E2 E3 E4

trn

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

upd1

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

wg

Ex
pr

es
si

on
 le

ve
l (

lo
g 

SC
T 

no
rm

al
iz

ed
)

Ex
pr

es
si

on
 le

ve
l (

lo
g 

SC
T 

no
rm

al
iz

ed
)

A

Supplementary Figure S6 (1/3)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

CG10479

  DEGs Not in GLAD list between adjacent bounary

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

CG15480

non-TF and non-PM DEGs between adjacent bounary

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

halo

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

pri

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

rdx

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

rpr

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

stg

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

toc

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

Supplementary Figure S6 (2/3)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


PM-related DEGs between only super boundary

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

aos

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

CG12986

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

Best1

0.0

0.5

1.0

1.5

2.0

O1 O2 O3 O4 E1 E2 E3 E4

Esp

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

CG45263

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

sca

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

Pvf3

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

MFS14

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

tkv

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

chrb

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Ppa

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

Thor

non-TF and non-PM DEGs between only super boundary

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

CG14427

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

CG17716

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

cv−c

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

lncRNA:bxd

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

lncRNA:CR44931

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

lncRNA:CR45559

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

lncRNA:noe

0

1

2

O1 O2 O3 O4 E1 E2 E3 E4

pigs

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

Pino

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

sprt

DEGs Not in GLAD list between only super boundary

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

grn

TF DEGs between only super boundary

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

Blimp−1

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

emc

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

salm

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

mirr

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

SNCF

0

1

2

3

O1 O2 O3 O4 E1 E2 E3 E4

noc

0

1

2

3

4

O1 O2 O3 O4 E1 E2 E3 E4

D

Ex
pr

es
si

on
 le

ve
l 

(lo
g 

SC
T 

no
rm

al
iz

ed
)

B

Supplementary Figure S6 (3/3)

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


  

Supplementary Figure S6: The whole list of DEGs between stripes. 
A. Violin plots showing the expression patterns of genes identified as DEGs between 

adjacent boundaries. The gray line indicates the median values for each stripe. 
Expression levels represent the log-transformed values after SCTransform 
normalization. 

B. Violin plots showing the expression patterns of genes identified as DEGs only between 
super boundaries. The gray line indicates the median values for each stripe. Expression 
levels represent the log-transformed values after SCTransform normalization. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


Correlation between
Perler vs NovoSparc

Correlation coefficient
1.00.6 0.7 0.8 0.90.5

# 
of

 g
en

es

0

10

20

30

40

50 500 HVGs

Prediction score (LOOCV)

Pe
rle

r

0.4 1.00.6 0.80.20.0

0.4

1.0

0.6

0.8

0.2

0.0

NovoSpaRc

67 landmark genes

Similarity of gene-gene correlation
(scRNA-seq vs Each reconstruction)

NovoSpaRc

Pe
rle

r

0.4 1.00.6 0.7 0.8 0.90.5
0.4

1.0

0.6

0.7

0.8

0.9

0.5
500 HVGs

twi (ventral view)

Dorsal

Ventral
-90°

0°

90°

θ

brk

ind

−10

−5

0

5

10

15

−15 −10 −5 0 5 10
UMAP_1

U
M

AP
_2

vnd

−5 0 5 10
UMAP_1

brk

−10

−5

0

5

10

15

−15 −10 −5 0 5 10
UMAP_1

U
M

AP
_2

ind

0 1 2 3

0 1 2 3 4

0 1 2

vnd

Perler NovoSpaRc

brk

ind

vnd

Log-expressionLog-expression

Log-expression

Original scRNA-seq

−10

−5

0

5

10

15 Intermediate NE
Medial NE
Midline cells

-10 100 5-5
UMAP 1

1

3

5

Ex
pr

es
si

on

max

min

1

2

3

Ex
pr

es
si

on

7

1

3

5

Ex
pr

es
si

on

4

1

2

3

Ex
pr

es
si

on

1

2

Ex
pr

es
si

on

4

1

2

3

Ex
pr

es
si

on

max

min

max

min

max

min
max

min

max

min

Perler NovoSpaRc
scRNA-seq

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

4

1

2

0

8

324 8 161 20

ind Expression

vn
d 

Ex
pr

es
si

on

Pe
rle

r

Ex
pr

es
si

on

N
ov

oS
pa

R
c

Ex
pr

es
si

on

R
ec

on
st

ru
ct

io
n

max

min

max

min

FI
SH

(B
D

TN
P)

Ex
pr

es
si

on

max

min

A B C

DE

F

G

H
(Intermediate/medial NE

& Midline cells)

-200 -150 -100 0-50 50 100 150 200

0°θ
30°

60°

90°

-30°

-60°

-90°

-200 -150 -100 0-50 50 100 150 200

0°θ
30°

60°

90°

-30°

-60°

-90°

brk (FISH BDTNP)

Ex
pr

es
si

on

max

min

Supplementary Figure S7

U
M

AP
 2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474293doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474293


  

Supplementary Figure S7: Comparison between the reconstructions by Perler and 
NovoSpaRc. 
A. The histogram of Pearson correlation coefficients of each gene expression in top 500 

HVGs between Perler and NovoSpaRc reconstruction based on Set3 data.  
B. Comparison between LOOCV results of reconstructions by NovoSpaRc and those by 

Perler based on Set3 data. Each dot indicates each gene in reference. X-axis and Y-
axis show the Pearson correlation coefficient between the reference expression and 
reconstruction result of each gene by NovoSpaRc and Perler, respectively. 

C. Comparison of gene-gene correlation structure conservation between Set3-based 
reconstruction by Perler and NovoSpaRc. Each dot indicates each gene in top 500 
HVGs of Set3 data. The X-axis shows gene-gene correlation structure conservation in 
the NovoSpaRc reconstruction and the Y-axis shows gene-gene correlation structure 
conservation in the Perler reconstruction. The definition of gene-gene correlation 
structure conservation was described in Materials and Methods. 

D. Reference or reconstructed expression patterns of twi. Colormap is linear and min-max 
scaled. Ventral view. 

E. Upper-left panel shows the cells used for the plot in (H, left). Other panels show the 
expression patterns of ind (upper-right), brk (bottom-left), and vnd (bottom-right). 

F. Reconstructed expression patterns of ind (top), vnd (middle), and brk (bottom) by 
Perler (left) and NovoSpaRc (right). 

G. (left) Schematic diagram showing the definition of the position of a cell along the DV 
axis. (upper-right) Reference expression patterns of brk. The embryo is shown in a 
flattened view. (bottom-right) Magenta indicates cells within the red rectangle region 
in the upper-right panel. These cells were used for the plot in (H, middle and right). 

H. (Top) Scatter plots of the expression patterns of ind (X-axis) and vnd (Y-axis) in each 
neuroectoderm or midline cell in scRNA-seq (left), Perler reconstruction (middle), and 
NovoSpaRc (right). (Bottom) Density plots of the expression levels of ind (X-axis) 
and vnd (Y-axis) in the neuroectoderm and midline cells in scRNA-seq (left), Perler 
reconstruction (middle), and NovoSpaRc (right). Color map is min-max scaled. In both 
plots, each axis is shown in the log-scale and the scale labels are linear values. 
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Supplementary Figure S8: Spatial reconstruction of landmark genes. 
ISH reference expression patterns (left) and spatial reconstruction of all landmark genes 
(67 genes) by Perler with Set3 data (middle-left), NovoSpaRc with Set3 data (middle-
right), and Perler with NK-data (right). Colormaps are linear and min-max scaled. The 
upper panels show the dorsolateral views (θ = 45°, Figure S7G), and the lower panels 
show the ventrolateral views (θ = –45°, Figure S7G). Dashed lines indicate the dorsal or 
ventral midline. 
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primer name sequence

oligodTprimer1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACGTANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCACANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCATCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCAGACNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATGTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer6 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACTGCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer7 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCTCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer8 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATCTGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer9 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACTCANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer10 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGATCGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer11 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCAGCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer12 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTACANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer13 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGATCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer14 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCACAGTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer15 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTACGAGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer16 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGACTANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer17 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATCTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer18 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCACTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer19 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACACTGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer20 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTAGANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer21 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTCGANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer22 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATGCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer23 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTCATNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer24 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTACGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer25 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCAGTANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer26 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCACGTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer27 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTCANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer28 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTCGATNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer29 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCGTGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer30 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGATNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer31 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCTACNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer32 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATGCTNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer33 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGCACNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer34 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGCATNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer35 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTCGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer36 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCTCAGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer37 ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTAGTCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer38 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCTAGCNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer39 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGACGNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

oligodTprimer40 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGCTANNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN
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Modified gene symbol list of the annnotation file

Supplementary_tableS3_modified_gene_symbol.xlsx

Supplementary table S3

List of 35 genes for lateral ectoderm annotation along the DV axis
Ama Ance Atx-1 bbg brk C15 CG13653

cic cv-2 dap Doc1 Doc2 Doc3 dpp

Dr Dtg Egfr egr emc ind mirr

peb pnt pnt rho sog SoxN srp

stg tup ush vn vnd Z600 zen

Supplementary table S4

Modified gene list of GLAD 

Supplementary_tableS5_modified_GLAD.tsv

Supplementary table S5

List of 67 landmark genes for spatial reconstruction
aay Ama Ance apt Blimp-1 bowl brk Btk29A

bun cad CenG1A CG10479 CG11208 CG43394 cnc croc

Cyp310a1 D dan danr Dfd disco Doc2 Doc3

dpn E(spl)m5-HLH edl ems eve exex fkh ftz

h hb hkb htl Ilp4 ImpE2 ken knrl

Kr lok Mdr49 Mes2 MESR3 mfas NetA noc

nub oc odd peb phu prd pxb rau

sna srp tkv tll toc Traf4 trn tsh

twi zen

Supplementary table S6

CG17724_Kdm4B_seq
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Supplementary Figure S9 (1/3)
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Supplementary Figure S9 (2/3)
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Supplementary Figure S9 (3/3)
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Supplementary Figure S9: Predicted spatial patterns of non-landmark HVGs. 
Predictive spatial reconstruction of non-landmark 66 HVGs by Perler with Set3 data (left), 
NovoSpaRc with Set3 data (middle), and Perler with NK-data (right). Colormaps are 
linear and min-max scaled. The upper panels show the dorsolateral views (θ = 45°, Figure 
S7G), and the lower panels show ventrolateral views (θ = –45°, Figure S7G). Dashed 
lines indicate the dorsal or ventral midline. HVGs that were detected in both Set3 and 
NK-data and had the top 66 variances in Set3 data are shown. 
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