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Abstract

Spatial transcriptomic techniques can profile gene expressions while retaining the

spatial information, thus offering unprecedented opportunities to explore the relationship

between gene expression and spatial locations. The spatial relationship may vary across

cell types, but there is a lack of statistical methods to identify cell-type-specific spatially

variable (SV) genes by simultaneously modeling excess zeros and cell-type proportions. We

develop a statistical approach CTSV to detect cell-type-specific SV genes. CTSV directly

models spatial raw count data and considers zero-inflation as well as overdispersion using

a zero-inflated negative binomial distribution. It then incorporates cell-type proportions

and spatial effect functions in the zero-inflated negative binomial regression framework.

The R package pscl (Zeileis et al., 2008) is employed to fit the model. For robustness, a

Cauchy combination rule is applied to integrate p-values from mutliple choices of spatial

effect functions. Simulation studies show that CTSV not only outperforms the competing

methods at the aggregated level but also achieves more power at the cell-type level.

By analyzing pancreatic ductal adenocarcinoma spatial transcriptomic data, SV genes

identified by CTSV reveal meaningful biological insights at the cell-type level. The R

package to implement CTSV is available on GitHub https://github.com/jingeyu/CTSV.

Keywords: cell-type-specific, multiple testing, spatial transcriptomics, zero-inflated negative

binomial regression
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1 Introduction

The development of spatial transcriptomic techniques has enabled the measurement of gene

expression with accompanied spatial context information (Larsson et al., 2021; Zhuang, 2021;

Close et al., 2021), providing unprecedented opportunities to investigate the interaction between

expression and spatial locations. One crucial challenge in the spatial expression data analysis is

to identify genes whose expression levels vary with spatial coordinates in a tissue section, which

are termed as spatially variable (SV) genes. In recent years, the task of SV gene detection

draws much attention from bioinformaticians, and several statistical methods (Edsgärd et al.,

2018; Svensson et al., 2018; Sun et al., 2020; Zhu et al., 2021; Hao et al., 2021; Li et al.,

2021) have been proposed to test the dependence of expression on spatial locations. However,

the dependence may be confounded by some biological or technical factors, thus resulting in

many false positives. In this paper, we aim to mitigate the confounding issues in SV gene

identification by accounting for two possible confounding factors—cell-type proportions and

excessive zeros.

On the one hand, the commonly used spatial transcriptomics (ST) platforms, including

ST based on spatially barcoded microarrays (St̊ahl et al., 2016), 10x Genomics Visium (Rao

et al., 2020), and Slide-seq (Rodriques et al., 2019), profile gene expression from spots that

are regularly organized in a grid in a tissue section. Each spot usually consists of dozens of

cells, so the observed expression measurements are at the bulk level rather than at single-cell

resolution. Since spots in different tissue regions often have different cell-type proportions

(Cable et al., 2021; Elosua-Bayes et al., 2021), the latent cellular compositions can induce

expression variations even though the spatial locations have no impact on the expression, thus

confounding the SV gene detection. In fact, the confounding issue by cell-type proportions has

been also observed in other types of association studies, e.g., the epigenome-wide association

studies (Zheng et al., 2018; Luo et al., 2019; Rahmani et al., 2019). On the other hand,

unlike traditional bulk RNA-seq or microarray data, the bulk ST expression still suffers from

zero-inflation because the expression signals for a large proportion of genes within each spot

are too weak to be captured by ST technologies. Figure 1(a) shows a bar plot of spot-wise

zero proportions in a real bulk ST dataset (Moncada et al., 2020), and we can observe that

more than 80% of spots have at least 70% zeros in the expression. Therefore, it is necessary to

account for cell-type proportions and sparsity when modeling bulk ST data.
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(a) Bar plot of zero-inflation rate (b) Scatter plot of variance versus mean

Fig. 1: Zero-inflation and overdispersion in the pancreatic ductal adenocarcinoma (PDAC) ST
data. (a) Bar plot of spot-wise zero proportions. (b) Scatter plot of genes’ expression variance
versus expression mean in PDAC data. Each point corresponds to one gene, and the red solid
line represents the line with intercept zero and slope one.

If we do not account for the two factors simultaneously, there has been some statistical works

on the identification of SV genes, where frequentist methods carry out multiple hypothesis

testings (non-SV in the null and SV in the alternative) and determine the p-value threshold

by controlling the false discovery rate (FDR), and Bayesian methods calculate the posterior

probability of being SV for each gene using posterior samples and identify SV genes based

on estimated Bayesian FDR. Specifically, to our knowledge, trendsceek (Edsgärd et al., 2018)

and SpatialDE (Svensson et al., 2018) are the first two statistical methods to achieve that.

Trendsceek (Edsgärd et al., 2018) was built upon the marked point process to test whether

the joint probability of expressions on two locations relies on their distance, calling it a mark

segregation. It then makes use of four types of mark-segregation summary statistics to compute

p-values through permutations. As trendsceek models the probability density, it can capture

spatial expression changes both from mean and covariance. In contrast, SpatialDE (Svensson

et al., 2018) only models the spatial covariance structure using zero mean Gaussian process

(Williams and Rasmussen, 2006) and fits spatial expression data via a normal distribution,

and then compares the result against a null model without spatial effects to calculate p-

values. Recently, Hao et al. (2021) proposes SOMDE using self-organizing map to enhance the

computational scalability on large-scale data. However, these methods need to first transform

raw expression count data to continuous values, and this may lose power in the downstream

analysis (Sun et al., 2017).

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474316
http://creativecommons.org/licenses/by-nc-nd/4.0/


SPARK (Sun et al., 2020) is an elegant and powerful statistical method that directly

fits spatial raw counts via the Poisson log linear regression model and uses the zero mean

Gaussian process to model spatial effects. Hence, it can achieve more power than trendsceek and

SpatialDE. It also maintains robustness by considering multiple kernel choices of the Gaussian

process and combining multiple p-values through a Cauchy combination rule (Liu et al., 2019).

Nevertheless, a simple Poisson distribution cannot account for excess zeros (Figure 1(a)) and

overdispersion (Figure 1(b)) in the ST expression data. Recently, BOOST-GP (Li et al., 2021)

explicitly models the sparse spatial expression via a zero-inflated negative binomial distribution,

where the negative binomial mean is connected to covariates through a log link. Spatial effects

are further incorporated via zero mean Gaussian process, and binary indicators are introduced

for SV genes. Subsequently, the inference is performed in the Bayesian framework, and the

posterior samples of SV gene indicators are used to calculate the posterior inclusion probability.

Finally, SV genes are selected based a controlled estimated Bayesian FDR.

Instead of the explicit introduction of zero-inflation in BOOST-GP, Zhu et al. (2021) designs

a nonparametric approach SPARK-X that does not need to specify the distribution of sparse

spatial expression. SPARK-X extends the scalability of SPARK and further improves its

robustness on large scale spatial transcriptomic data. Moreover, as far as we know, currently

SPARK-X (Zhu et al., 2021) is the unique SV gene detection method that provides a way to

identify cell-type-specific SV genes. Specifically, when applied to Slide-seq v2 data and HDST

data, SPARK-X first uses the cell-type proportion estimates from RCTD (Cable et al., 2021) to

assign each spot to its major cell type and then detects SV genes for spots of the same labeled

cell type. Nevertheless, the assignment procedure ignores the influence of minor cell types in

each spot, and thus it is more reasonable to directly utilize the cell-type proportion estimates

to identify cell-type-specific SV genes.

In this paper, we develop a simple statistical approach CTSV to identify Cell-Type-specific

SV genes accounting for excess zeros. CTSV directly fits the sparse expression raw counts

using a zero-inflated negative binomial distribution, models the mean as a weighted average of

cell-type-specific spatial expression profiles with weights being the cell-type proportions, and

for each cell type connects the spatial expression profile to a function of spatial coordinates.

By combining these equations in CTSV, the identification of cell-type-specific SV genes is

equivalent to testing whether the function of spatial coordinates is zero for each cell type in
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a zero-inflated negative binomial regression model. Specifically, since there has been several

mature bulk ST deconvolution methods (Cable et al., 2021; Elosua-Bayes et al., 2021; Dong

and Yuan, 2021), we treat the estimated cell-type proportions as fixed covariates in CTSV. We

further model unknown functions to be linear, focal, and periodic, respectively, and combine

the p-values from the multiple choices to achieve the robustness to unavailable spatial pattern

like in SPARK (Sun et al., 2020). Through simulation studies, CTSV can achieve more power

than SPARK-X in detecting cell-type-specific SV genes and also outperforms other methods at

the aggregated level. The real data analysis to PDAC ST data also shows the practical utility

of CTSV.

2 Method

2.1 The Proposed Approach CTSV

Suppose there are G genes, n spots, and K cell types in the tissue section. Assume that

Y = {Ygi : 1 ≤ g ≤ G, 1 ≤ i ≤ n} is the bulk ST data matrix, where Ygi is the observed raw

count of gene g in spot i. Let S = {(si1, si2) : 1 ≤ i ≤ n} represent the set of coordinates

of spots’ centers, and si = (si1, si2) is the two dimensional coordinate of spot i’s center. To

account for the count nature and overdispersion of ST data, we consider the negative binomial

distribution NB(ciλgi, ψg) with mean ciλgi and shape parameter ψg for gene g in spot i, and its

probability mass function is f(x|ciλgi, ψg) = Γ(x+ψg)

x!·Γ(ψg)
(ciλgi)

x·ψψgg
(ciλgi+ψg)

x+ψg for any non-negative integer x.

In this way, the variance equals ciλgi + (ciλgi)
2/ψg and thus is larger than the mean ciλgi. The

scalar ci is a size factor to account for different library sizes of spots, and it is computed to be the

ratio of spot i’s library size to the median library size across spots, i.e., ci =
∑G
g=1 Ygi

median1≤j≤n
∑G
g=1 Ygj

.

In addition to overdispersion, bulk ST data also suffer from zero-inflation—the observed zero

proportion is much larger than the expected zero proportion of a negative binomial distribution.

Typically there are two kinds of zeros in the data. One is called “biological zeros” resulting

from genes that do not express, and the other one is “technical zeros,” which means that some

genes have relatively low expressions and thus are not captured. Taking both overdispersion

and zero-inflation into consideration, we model the count data Ygi by a zero-inflated negative

binomial distribution,

Ygi ∼ πgδ0 + (1− πg)NB(ciλgi, ψg), (1)
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where πg denotes the probability of being a technical zero for gene g in the spots and δ0 is a

Dirac measure with point mass at zero.

As one spot may consist of dozens of heterogeneous cells, we model the log scale of λgi as a

mix of cell-type-specific expression levels of gene g in spot i,

log λgi =
K∑
k=1

µgkiwik. (2)

wik is the cell-type k proportion in spot i, and µgki represents the expression level of gene g for

cell type k in spot i. µgki depends on the spot i through its location si, and the relationship is

modeled as follows using a similar formulation from Luo et al. (2019).

µgki = ηgk + βgk1h1(si1) + βgk2h2(si2), (3)

where ηgk is the cell-type-k baseline expression level of gene g, the two functions h1(·) and

h2(·) describe the spatial effects on the mean ηgk, and the coefficients βgk1 and βgk2 are of our

interest that can reflect whether the location si affects the expression of gene g in cell type

k. Subsequently, by combining Equations (1)-(3), we arrive at the proposed approach CTSV

(Cell-Type-specific Spatially Variable gene detection),

Ygi ∼ πgδ0 + (1− πg)NB(ciλgi, ψg),

log λgi =
K∑
k=1

µgkiwik,

µgki = ηgk + βgk1h1(si1) + βgk2h2(si2).

If we integrate the last two equations, CTSV is equivalent to

Ygi ∼ πgδ0 + (1− πg)NB(ciλgi, ψg),

log λgi =
K∑
k=1

ηgk · wik +
K∑
k=1

βgk1 · h1(si1)wik +
K∑
k=1

βgk2 · h2(si2)wik. (4)

Our next goal is to conduct statistical inference for the coefficients βgk1 and βgk2 to test

whether they are zero or not for each gene. Specifically, if at least one of these null hypotheses

H0 : βgk1 = 0 and H0 : βgk2 = 0 is rejected, then we believe that gene g is SV in cell type k.
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2.2 Statistical Inference

2.2.1 When functions h1 and h2 are known

In Equation (4), if we know the cellular compositions {wik : k = 1, . . . , K} for each spot i as

well as the functions h1 and h2, then we can treat them as covariates and thus the inference for

CTSV reduces to the inference for a zero-inflated negative binomial regression model (Preisser

et al., 2016), which can be easily conducted by the R package pscl (Zeileis et al., 2008).

However, the cellular compositions of each spot are often unavailable. Fortunately, there has

been several deconvolution methods designed for bulk ST data recently, such as RCTD (Cable

et al., 2021), SPOTlight (Elosua-Bayes et al., 2021), and SpatialDWLS (Dong and Yuan, 2021).

Subsequently, we treat the estimates for {wik : k = 1, . . . , K} as fixed covariates and plug them

in Equation (4).

Next, based on the R package pscl (Zeileis et al., 2008), we can obtain the p-value pgkℓ for

the hypothesis H0 : βgkℓ = 0 vs H1 : βgkℓ ̸= 0 for gene g in cell type k along the ℓth coordinate

(ℓ = 1, 2). Notice that as the inference is carried out for each gene independently, the procedure

is highly parallellable. All the p-values can be organized into a p-value matrix {pgkℓ} with

dimension G× 2K, where the kth (1 ≤ k ≤ K) column corresponds to the p-value vector in

cell type k for the s1 coordinate and the (K + k)th (1 ≤ k ≤ K) column to the p-value vector

in cell type k for the s2 coordinate. To control the false discovery rate (FDR) in the multiple

hypothesis testings, we convert the p-value matrix to the q-value matrix {qgkℓ}G×2K using the

R package qvalue (Storey and Tibshirani, 2003; Storey et al., 2020). In this way, a q-value

threshold α controls the false discovery rate to be not larger than α.

Specifically, for each g-th row in the q-value matrix, if there is at least one q-value in this

row (qgkℓ : 1 ≤ k ≤ K, ℓ = 1, 2) less than α, we call the corresponding gene g SV at the

aggregated level. For each cell type k, if there is at least one q-value in (qgkℓ : ℓ = 1, 2) less

than α, we then identify the gene g to be cell-type-k-specific SV.

2.2.2 When functions h1 and h2 are unknown

In practice, we often do not know what the type of underlying spatial patterns is in the tissue

section for each gene. To deal with possible model misspecification and make the CTSV method

more robust, we follow the idea from Sun et al. (2020) to choose three types of functions for h1

and h2, which can reflect the linear, focal, and periodic spatial expression patterns. Specifically,
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suppose that s1 and s2 are first transformed to have mean zero and standard deviation one.

We choose linear functions as h1(si1) = si1 and h2(si2) = si2, squared exponential functions

hgk1(si1) = exp(− s2i1
2σ2

1
) and hgk2(si2) = exp(− s2i2

2σ2
2
), and periodic functions h1(si) = cos

(
2πsi1
ϕ1

)
and h2(si) = cos

(
2πsi2
ϕ2

)
. Moreover, for the squared exponential functions, we choose two

sets of scale length parameters by (i) letting σ1 and σ2 be the 40% quantile of the absolute

values of the transformed si1 and si2, respectively, denoted by σ1 = Q40%(|s1|), σ2 = Q40%(|s2|);

and (ii) letting σ1 = Q60%(|s1|), σ2 = Q60%(|s2|). Similarly, for periodic functions, we set (i)

ϕ1 = Q40%(|s1|), ϕ2 = Q40%(|s2|) and (ii) ϕ1 = Q60%(|s1|), ϕ2 = Q60%(|s2|). Hence, for each

gene g in cell type k along ℓth coordinate, we obtain five p-values.

Accordingly, for gene g in cell type k along ℓth coordinate, we combine the five p-values

(p
(i)
gkℓ : 1 ≤ i ≤ 5) following the Cauchy combination rule ACAT (Liu et al., 2019). We

first convert each of the five p-values into a Cauchy statistic T
(i)
gkℓ = tan[π(0.5 − p

(i)
gkℓ)], then

take an average of them Tgkℓ =
1
5

∑5
i=1 T

(i)
gkℓ, and transform the average into a single p-value

pgkℓ = P(C ≥ Tgkℓ), where C follows the standard Cauchy distribution (Liu et al., 2019; Pillai

and Meng, 2016). In this way, we convert five p-value matrices to one p-value matrix (pgkℓ)G×2K ,

and then the inference is based on the FDR control as discussed in the last subsection.

3 Simulation

In this section, we compared the performance of our method with several state-of-the-art SV

gene detection methods. We generated the spatial transcriptomic raw count data following

Equation (4), where related parameters are set as follows. Suppose there are G = 10, 000

genes, n = 600 spots, and K = 6 cell types. The cell-type-k baseline expression profile ηk was

generated from normal distributions. Specifically, we first independently simulated ηg1 from

N(2, 0.22) for g = 1, . . . , G in cell type 1 and then randomly sampled 300 differentially expressed

(DE) genes for each cell type k (2 ≤ k ≤ K). Next, on the cell-type-k DE genes (2 ≤ k ≤ K),

we sampled ηgk from N(θk, τ
2
k ) independently, where (θ2, τ2) = (3, 0.2), (θ3, τ3) = (2, 0.2),

(θ4, τ4) = (4, 0.2), (θ5, τ5) = (3, 0.2), (θ6, τ6) = (4, 0.2). For expressions on the remaining genes,

we set ηgk = ηg1.

Moreover, we partitioned the spot region into four regions as displayed in Figure 2(a)

and then sampled cell-type proportions wi of spot i from Dirichlet distributions. Cell-type

proportions of spots in regions from 1 to 4 were independently sampled from Dir(1, 1, 1, 1, 1, 1),

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.27.474316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.27.474316
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dir(1, 3, 5, 7, 9, 11), Dir(16, 14, 12, 10, 8, 6), and Dir(1, 4, 4, 4, 4, 1), respectively. For coefficients

βgk, we set 200 SV genes in each cell type, and there were 700 SV genes at the aggregated level.

Figure 2(b) shows the SV gene distribution patterns in each cell type. We further consider the

following three simulation settings to specify the spatial effects h1 and h2.

(a) Spot regions (b) Heatmap of SV genes in each cell type

cell-
type

1
cell-

type
2
cell-

type
3
cell-

type
4
cell-

type
5
cell-

type
6

Fig. 2: Spot regions and the heatmap of cell-type-specific SV gene pattern. (a) Four spot
regions with different colors. (b) Heatmap of the SV gene pattern. If one gene in a cell type is
SV, then it is colored by black. Only the first 1,000 genes are shown for a good visualization
because all the remaining genes are not SV.

(1) For the linear spatial pattern as shown in Figure 3(a), we chose h1(si1) = si1 and

h2(si2) = si2. For SV genes, we set βgk1 = 1.8 and βgk2 = 0.8 for each cell type. For non

SV genes, βgkℓ was set to be zero.

(2) For the focal spatial pattern as shown in Figure 3(b), we set h1(si1) = exp(− s2i1
2
) and

h2(si2) = exp(− s2i2
2
). For SV genes in each cell type, we set βgk1 = 3 and βgk2 = 1. For

non SV genes, βgkℓ was set to be zero.

(3) For the periodic spatial pattern as shown in Figure 3(c), we have h1(si1) = cos (2πsi1),

h2(si2) = cos (2πsi2). For SV genes in each cell type, we set βgk1 = 2.5 and βgk2 = 1. For

non SV genes, βgkℓ was set to be zero.

After obtaining ηk, wi, h1(si1), h2(si2), and βgkℓ, we can calculate log λgi and then sample

Ygi from NB(ciλgi, ψg), where the shape parameter is ψg = 100 and ci = 1. Considering ST

data have a large proportion of zeros, we set πg (g = 1, . . . , G) to be 0.6 in each spatial pattern.
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Therefore, for each gene, the count data was set to be zero with a dropout probability 0.6. In

other words, the zero proportions of the simulated data were around 60%. Subsequently, we

applied the proposed method CTSV to the three types of simulated ST data and compared the

performance with trendsceek (Edsgärd et al., 2018), SpatialDE (Svensson et al., 2018), SPARK

(Sun et al., 2020), SPARK-X (Zhu et al., 2021), BOOST-GP (Li et al., 2021), and SOMDE

(Hao et al., 2021).

low

high

(a) Linear expreession pattern

(d) ROC curves for linear pattern

(b) Focal expreession pattern (c) Periodic expreession pattern

(e) ROC curves for focal pattern (f) ROC curves for periodic pattern

Fig. 3: SV genes’ spatial expressions in (a) linear pattern, (b) focal pattern, and (c) periodic
pattern, where the coordinates are scaled to have mean zero and standard deviation one. (d-f)
The ROC curves with FPR controlled to be less than 0.05 for CTSV, SPARK-X, SPARK,
BOOST-GP, SpatialDE, trendsceek, and SOMDE in the three spatial expression patterns.

When implementing CTSV, we considered the estimate error for the cell-type proportions

and sampled ŵi from Dir(α0wi) with α0 = 100. In addition, if NA (Not Available) is returned

by the function zeroinfl in R package pscl (Zeileis et al., 2008), the corresponding p-value

is recorded as one. In the argument of function zeroinfl, some commonly used optimization

methods can be used, such as BFGS, conjugate gradient (CG), or Nelder-Mead, and we applied

CG algorithm for its stability during the optimization procedure.

The receiver operating characteristic (ROC) curves for identifying SV genes at the aggregated

level in the three simulation settings were reported in Figure 3(d)-(f), respectively, where the

false positive rate (FPR) is controlled to be less than 0.05 for a good visualization of the
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Table 1: True positive rate (TPR) and the number of false positives (FP) for different methods

Spatial pattern CTSV SPARK-X SPARK BOOST-GP SpatialDE SOMDE tendsceek

TPR

Linear 0.999 0.907 0.178 0.001 0 0 0

Focal 0.871 0.293 0 0.001 0 0 0

Periodic 0.999 0.819 0 0.003 0 0 0

FP

Linear 33 1 0 5 0 0 0

Focal 19 3 0 5 0 0 0

Periodic 21 3 0 4 0 0 0

performance comparison. The partial ROC curves indicate that CTSV uniformly outperformed

other methods in SV gene detection at the aggregated level. In each setting, the performance

of CTSV was followed by SPARK-X, which also performs well due to its nonparametric nature.

SPARK ranked the third for the linear and periodic settings, while SOMDE ranked the third in

the focal spatial pattern. SpatialDE, trendsceek, and BOOST-GP fail to achieve enough power

in all the three simulation settings. Note that trendsceek has four types of statistics, and we

only showed the best one. When controlling the FDR less than 0.01 for each method (i.e., the

q-value threshold is 0.01), Table 1 demonstrates the true positive rates (TPR) and the number

of false positives (FP) in the three spatial expression patterns for all the methods. CTSV and

SPARK-X gave much higher TPR than other methods, while the FP of CTSV was slightly

larger than SPARK-X. We also observed that trendsceek, SpatialDE, and SOMDE cannot

identify any SV gene with FDR less than 0.01. Therefore, at the aggregated level, CTSV can

provide a high power with controlled FP and FDR owing to its ability to handle excess zeros

and account for cell-type proportions.
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SPARK-X

CTSV

cell-type

cell-type

(a) Significance plot of linear pattern
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(d) Significance plot of linear pattern (e) Significance plot of focal pattern (f) Significance plot of periodic pattern

(b) Significance plot of focal pattern

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 6

(c) Significance plot of periodic pattern

−𝑙𝑜𝑔!"𝑝−𝑙𝑜𝑔!"𝑝

−𝑙𝑜𝑔!"𝑝

−𝑙𝑜𝑔!"𝑝

−𝑙𝑜𝑔!"𝑝

Fig. 4: (a-c) Significance plots of CTSV and (d-f) significance plots of SPARK-X in the three
spatial expression patterns for the first 1,000 genes. Values in the heatmaps are − log10 p of the
corresponding gene in each cell type. The darker the color, the more likely the corresponding
gene is to be SV in that cell type.

Table 2: Cell-type-specific TPR and FP of CTSV and SPARK-X

Spatial pattern Linear Focal Periodic

Methods CTSV SPARK-X CTSV SPARK-X CTSV SPARK-X

TPR

cell-type 1 1 0.375 0.800 0 1 0

cell-type 2 0.995 0.095 0.785 0 0.940 0

cell-type 3 0.980 0 0.605 0 0.970 0

cell-type 4 0.975 0 0.515 0 0.980 0

cell-type 5 0.995 0 0.780 0 0.970 0

cell-type 6 0.995 0 0.905 0 0.995 0

FP

cell-type 1 35 33 9 0 1 0

cell-type 2 22 4 9 0 1 0

cell-type 3 10 0 5 0 7 0

cell-type 4 11 0 8 0 6 0

cell-type 5 3 0 9 0 3 0

cell-type 6 21 0 119 0 5 0
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Regarding the detection of cell-type-specific SV genes, as SPARK-X is currently the only

method that can achieve the function, we compared CTSV and SPARK-X. In SPARK-X (Zhu

et al., 2021), if one spot was dominated by a cell type, which has the maximal proportion in

that spot, SPARK-X assigned the spot to the cell type. Subsequently, SPARK-X performed the

detection task on spots with the same cell type. Figure 4 displays the heatmaps of −log10(pgk)

(g = 1, . . . , 1, 000) of CTSV and SPARK-X, where pgk is the p-value of gene g in cell-type k

for SPARK-X, and pgk = min(pgk1, pgk2) for CTSV. The darker the color, the more significant

that the corresponding gene is SV in that cell type. Compared with the underlying truth

(Figure 2(b)), CTSV obtained more accurate results in identifying cell-type-specific SV genes

than SPARK-X. Table 2 indicates that when FDR is controlled to be less than 0.01, CTSV

yielded higher power than SPARK-X for all the cell types in the three simulation settings, but

CTSV did not perform very well in the focal spatial expression pattern. The results showed

that CTSV is good at identifying cell-type-specific SV genes by directly modeling cell-type

proportions rather than transforming them to one-hot code like in SPARK-X, which may lose

some information.

4 Real data analysis

We applied CTSV to pancreatic ductal adenocarcinoma (PDAC) ST data (Moncada et al.,

2020), which can be downloaded from Gene Expression Omnibus (Edgar et al., 2002) with

accession code GSE111672, and our analysis focuses on the ST1 data from PDAC patient A.

As there are associated scRNA-seq data with 18 cell types for patient A, we employed the

deconvolution approach SPOTlight (Elosua-Bayes et al., 2021) to obtain cell-type proportion

estimates ŵi of each spot. We then merged cancer clones A and B into one cell type denoted

by “cancer cell,” and combined macrophages A and B to one cell type named “macrophages.”

To alleviate the effects of rare cell types, we calculated the 80th percentile of proportions

across spots for each cell type and removed cell types whose 80th percentile is less than 0.1.

After the procedure, six cell types—antigen presenting ductal cells, centroacinar ductal cells,

high/hypoxic ductal cells, terminal ductal cells, cancer cells, and macrophages—were remained

for downstream analysis, and their proportions were adjusted such that they are positive and

summed to be one.

Subsequently, we filtered out genes that are expressed in less than 20 spots and kept all
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Fig. 5: Venn plot of SV genes detected by CTSV, SPARK, BOOST-GP, SPARK-X, and
SpatialDE in the PDAC data. The number in the parentheses indicates the total number of
SV genes detected by that method.

spots, resulting in 4,070 genes and 428 spots. We afterward applied CTSV, trendsceek (Edsgärd

et al., 2018), SpatialDE (Svensson et al., 2018), SPARK (Sun et al., 2020), SPARK-X (Zhu

et al., 2021), SOMDE (Hao et al., 2021), and BOOST-GP (Li et al., 2021) to the processed

bulk ST data. Because trendsceek and SOMDE did not detect any SV gene in PDAC dataset,

we did not display them in the downstream comparisons. The Venn plot (Figure 5) shows

the SV gene overlap among CTSV, SpatialDE, SPARK, SPARK-X, and BOOST-GP. When

q-value threshold is 0.05, CTSV identified 61 SV genes from 4,070 genes at the aggregated level,

around a half of which were also detected by SpatialDE, SPARK, SPARK-X, and BOOST-GP.

In contrast, each of the competing methods detected more than 800 SV genes. This may be

because the competing methods do directly incorporate the cell type proportions and lead to

false positives.

Figure 6(a)-(c) displays the overall spatial expression patterns of three representative SV

genes identified by both CTSV and other methods, and we can see that although CTSV detected

much smaller SV genes than other methods, it still captured important spatial patterns. The

spatial expression of SV genes only detected by CTSV in Figure 6(d)-(f) indicates that CTSV is

able to find some SV genes that other methods ignored despite claiming a lot of SV genes. More

importantly, CTSV can recognize the SV genes in a cell-type-specific manner. For example, in
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(d) ATXN2L (1.78×10!") (e) MED16 (2.58×10!") (f) AC073896.4 (3.05×10!")

(a) CLPS (1.81×10!#") (b) CRP (1.82×10!$) (c) COL6A2 (2.25×10!")

Fig. 6: Genes’ spatial expression patterns in the PDAC data. (a-c) The spatial expression
patterns of genes detected by all the methods—CTSV, SPARK, SPARK-X, BOOST-GP, and
SpatialDE. (d-f) The spatial expression patterns of genes only identified by CTSV. The number
in the parentheses is the associated q-value given by CTSV at the aggregated level.

Table 3, gene MED16 is SV in antigen presenting ductal cells, and gene ARHGDIB is SV in

cancer cells.

For the identification of cell-type-specific SV genes, we compared the performance between

CTSV and SPARK-X. In SPARK-X, each spot was assigned to the major cell type of that spot,

and then SPARK-X was applied to spots that belong to the same cell type. Table 3 shows the

SV gene number in each cell type for the two methods as well as the number of overlapping SV

genes. It shows that SPARK-X failed to detect any cell-type-specific SV gene except in cancer

cells, while it captured too many SV genes in cancer cells.

In addition, some cell-type-specific SV genes of CTSV were found to be associated with

meaningful biological functions. Table 4 displays these genes. For example, ARHGDIB in cancer

cells, which was not identified by SPARK-X, encodes the protein RhoGDI2 that functions as

a metastasis suppressor in human cancer (Gildea et al., 2002) and plays an important role

in tumor dormancy regulation (Said et al., 2011). ISG15 found in antigen presenting ductal
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Table 3: Number of SV genes in eac cell type by CTSV and SPARK-X.

Cell types CTSV SPARK-X overlapping genes

Antigen presenting ductal cells 13 0 0

Centroacinar ductal cells 31 0 0

High/hypoxic ductal cells 6 0 0

Terminal ductal cells 6 0 0

Cancer cells 15 673 9

Macrophages 12 0 0

cells is associated with the reinforcement of cancer stem cells’ self-renewal, invasive capacity,

and tumorigenic potential in PDAC (Sainz et al., 2014). In terminal ductal cells, JADE1 may

contribute to the development of pancreatic cancer (Liu et al., 2015). CLPS was detected as

an SV gene in more than one cell type, and the pancreatic lipase requires the colipase protein

encoded by CLPS for efficient dietary lipid hydrolysis (Lowe, 1997; Van Tilbeurgh et al., 1999).

These observations illustrate that CTSV can help us gain more insights into the relationship

between SV genes and diseases.

Table 4: Cell-type-specific SV genes detected by CTSV

Cell types SV genes

Antigen presenting ductal cells
AC092798.1, AL139039.2, CEL, CERS5, CLPS, CTRB1, CTRB2

DUOXA2, FP671120.4, GAPDH, GP2, ISG15, MED16

Centroacinar ductal cells

AC009078.2, AC090114.1, C3, C4A, CD63, CD74, CEL, CELA3A

CELA3B, CLPS, COL6A2, CPA1, CPA2, CPB1, CRP, CTRB1

CTRB2, CTRC, DUOXA2, ELF3, FUT11, GP2, HEIH, IFI6

IGHGP, KRT8, LCN2, MMP1, MMP14, MUC5B, NR4A1

High/hypoxic ductal cells AL139039.2, APBB1, ATXN2L, FYCO1, GALNT14, MMP23A

Terminal ductal cells AC022558.1, AL139039.2, CLPS, COLGALT2, JADE1, MCRIP2

Cancer cells
AC022558.1, AL139039.2, ARHGDIB, C3, CEL, CHMP6, CLPS, CLU

CPA1, CPB1, CTRB1, CTRB2, ELN, GALNT14, LINC00685

Macrophages
AC073896.4, CBLC, CDKN1A, COLGALT2, DES, ELF3

FGFRL1, FTL, GALNT14, IGFBP4, LNPEP, NSDHL

5 Conclusion

In this paper, we developed a cell-type-specific SV gene detection method (CTSV) for bulk

ST data. CTSV directly models raw count data through a zero-inflated negative binomial

distribution, incorporates cell-type proportions, and relies on the R package pscl (Zeileis et al.,
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2008) to fit the model. To capture different types of spatial patterns, five spatial effect functions

are used, and then CTSV applied the Cauchy combination rule (Liu et al., 2019) to obtain

p-values for robustness.

In simulation studies, CTSV was not only shown to be the most powerful approach at the

aggregated level in the three spatial expression settings, but it also outperformed SPARK-X in

terms of cell-type-specific SV gene detection, perhaps due to the direct consideration of cell-type

proportions. In the analysis for pancreatic ductal adenocarcinoma data, CTSV also identified

reasonable cell-type-specific SV genes that are related to meaningful biological functions.

Several extensions are worth exploring in the future. First, for robustness, we choose five

simple spatial effect functions for h1 and h2, and it is better to utilize nonparametric statistical

methods to directly fit the functions, such as splines or wavelets. Second, it is more helpful to

incorporate prior knowledge of the tissue images (Hu et al., 2021). Third, when it comes to

single-cell spatial expression data, we can also apply CTSV by setting the proportion of the

cell type to which this cell belongs as one and the proportions of other cell types as zero.

6 Data availability

The PDAC datasets are publicly available in Gene Expression Omnibus with accession code

GSE111672.
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