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Abstract 23 

Genetic assimilation is a process that leads to reduced phenotypic plasticity during adaptation 24 

to novel conditions, a potentially important phenomenon under global environmental change. 25 

Null expectations when testing for genetic assimilation, however, are not always clear. For 26 

instance, the statistical artifact of regression to the mean could bias us towards detecting 27 

genetic assimilation when it has not occurred. Likewise, the specific mechanism underlying 28 

plasticity expression may affect null expectations under neutral evolution. We used 29 

macroevolutionary numerical simulations to examine both of these important issues and their 30 

interaction, varying whether or not plasticity evolves, the evolutionary mechanism, trait 31 

measurement error, and experimental design. We also modified an existing reaction norm 32 

correction method to account for phylogenetic non-independence. We found: 1) regression to 33 

the mean is pervasive and can generate spurious support for genetic assimilation; 2) 34 

experimental design and post-hoc correction can minimize this spurious effect; and 3) neutral 35 

evolution can produce patterns consistent with genetic assimilation without constraint or 36 

selection, depending on the mechanism of plasticity expression. Additionally, we re-analyzed 37 

published macroevolutionary data supporting genetic assimilation, and found that support was 38 

lost after proper correction. Considerable caution is thus required whenever investigating 39 

genetic assimilation and reaction norm evolution at macroevolutionary scales. 40 

 41 

Keywords: plasticity, acclimation, global change, evolution, reaction norm 42 
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Introduction 45 

Phenotypic plasticity is an important phenomenon in evolutionary biology with far-reaching 46 

implications (Ghalambor et al. 2007; Murren et al. 2015). For example, plasticity in a given trait 47 

can facilitate evolutionary radiations (Pfennig et al. 2010), contribute to local adaptation (Price 48 

et al. 2003), and dampen selection on underlying genetic variation (Price et al. 2003; Crispo 49 

2008). Interest in the expression and evolution of phenotypic plasticity has increased in recent 50 

years due to the intense selection pressure that human activity has imposed on the natural 51 

world (Chevin et al. 2010; Kingsolver and Buckley 2017). Taxa with greater plasticity in traits 52 

that are important for tolerating human-induced changes to the environment are predicted to 53 

fare better under the novel conditions created by global warming, urbanization, and species 54 

introductions (Somero 2010; Gunderson and Stillman 2015; Seebacher et al. 2015; Gunderson 55 

et al. 2017). For instance, plasticity in thermal physiology is predicted to decrease the negative 56 

impact of global warming on ectotherms (Gunderson et al. 2017; Riddell et al. 2018; Rohr et al. 57 

2018; Morley et al. 2019). Greater knowledge of the forces that shape and constrain phenotypic 58 

plasticity is crucial both for our fundamental understanding of ecology and evolution and our 59 

ability to predict and mitigate the consequences of global change.  60 

Adaptation to novel conditions is sometimes associated with a reduction or loss of 61 

plasticity in traits under selection, a process that is known as genetic assimilation (Waddington 62 

1953; Schlichting and Pigliucci 1998). Some have argued that genetic assimilation is a key 63 

mechanism of adaptive evolutionary change (West-Eberhard 2003; Crispo 2007). For example, 64 

the canalization of formerly induced phenotypes can provide a means of adaptive phenotypic 65 

divergence during local adaptation and adaptive radiation (Ehrenreich and Pfennig 2016; 66 
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Martin et al. 2016; Gunter et al. 2017; Schneider and Meyer 2017). In addition, genetic 67 

assimilation may be an outcome of population responses to anthropogenic global change. 68 

Lande (2009) found that the evolution of increased phenotypic plasticity followed by genetic 69 

assimilation should result from selection due to dramatic changes in the environment.  70 

 The intersection of adaptation, genetic assimilation, and global change is highlighted by 71 

the Baseline Tolerance/Tolerance Plasticity Trade-off Hypothesis (hereafter referred to as the 72 

Trade-off Hypothesis). Emerging from the field of evolutionary physiology, the hypothesis 73 

states that, as organisms evolve greater baseline tolerance to extreme temperatures (heat or 74 

cold), plasticity in their thermal tolerance should actually decrease (van Heerwaarden and 75 

Kellermann 2020). In other words, high levels of constitutive thermal tolerance evolve by 76 

genetic assimilation, resulting in thermal tolerance phenotypes that are less sensitive to 77 

environmental temperature variation (Sikkink et al. 2014).  Support for this hypothesis comes 78 

from a variety of organisms, including marine and aquatic vertebrates and invertebrates at both 79 

the intraspecific and interspecific levels (e.g., Stillman 2003; Esperk et al. 2016; Comte and 80 

Olden 2017; Armstrong et al. 2019). One of several implications of the Trade-off Hypothesis is 81 

that physiological plasticity serves as the raw material for thermal adaptation. Therefore, as 82 

organisms evolve greater baseline tolerance in response to global change, they may lose both 83 

the ability to evolve even greater tolerance and their capacity to track shorter-term 84 

environmental changes via a plastic response (van Heerwaarden and Kellermann 2020).  85 

 Hypotheses that make predictions about trait change over time among individuals 86 

and/or taxa, such as the Trade-off Hypothesis, are prone to spurious support due to the well-87 

known statistical phenomenon called regression to the mean. A consequence of this 88 
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phenomenon is that when a particular trait is measured repeatedly, the experimental units 89 

(e.g., species, populations, or individuals) that start with particularly high or low values relative 90 

to the population mean are also likely to record the greatest change in value over time as 91 

subsequent measures regress towards the mean (Barnett et al. 2005). This is not a real 92 

biological effect: rather, it is an artifact created by sampling and measurement error. 93 

Regression to the mean is a common problem in repeated-measures analyses, and statistical 94 

methods have been developed to overcome the spurious results that it can create. For 95 

example, data resampling techniques have been applied to generate null distributions of trait 96 

change (Jackson and Somers 1991), and methods to statistically remove regression to the mean 97 

effects prior to statistical analysis have also been proposed (Kelly and Price 2005). These 98 

approaches are most often employed at the intraspecific level (Ghalambor et al. 2015; Deery et 99 

al. 2021), but accounting for regression to the mean is also necessary, though more often 100 

neglected, in interspecific macroevolutionary analyses (Baker et al. 2015).  101 

 Motivated by current debate surrounding the Trade-off Hypothesis and increasing 102 

interest in the evolution of phenotypic plasticity and genetic assimilation under global change 103 

(Kelly 2019; Sasaki and Dam 2019; van Heerwaarden and Kellermann 2020; Barley et al. 2021; 104 

Preston et al. 2021), we used simulations to explore the more general consequences of 105 

regression to the mean for tests of genetic assimilation at the macroevolutionary level. We 106 

conducted simulations that assumed mechanistically different models for plasticity evolution, 107 

as well as different experimental sampling designs for measuring species phenotypic traits. In 108 

addition, we conducted simulations with and without the assumption that phenotypes are 109 

measured with error. We found that measurement error alone can be sufficient to recover a 110 
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macroevolutionary pattern that is consistent with genetic assimilation due entirely to the 111 

phenomenon of regression to the mean. This problem can be avoided, however, by using an 112 

appropriate experimental design. In addition, we found that macroevolutionary patterns 113 

consistent with genetic assimilation are the null expectation under random Brownian motion 114 

evolution for some models by which plasticity evolves. Finally, we applied a statistical method 115 

designed to remove the regression to the mean effect from compromised data (Kelly and Price 116 

2005), that we modified to take non-independence due to phylogeny into account. We found 117 

that our approach can reduce the effect of regression to the mean in some, but not all, 118 

circumstances. We applied this modified approach to published phylogenetic comparative data 119 

that was thought to be consistent with the Trade-off Hypothesis, and showed that the 120 

relationship is not significant when properly corrected for regression to the mean.  121 

 122 

Methods 123 

In our simulations, we assumed that there were two different environments that induce 124 

different phenotypes. The difference between trait values in each environment represented the 125 

magnitude of phenotypic plasticity and, in a two-environment system, is equivalent to the slope 126 

of the reaction norm. In any given simulation, we first generated a random phylogenetic tree 127 

with 50 terminal nodes using the pbtree function in the phytools R package (Revell 2012; R 128 

Development Core Team 2021). Depending on the simulation, we either modeled the evolution 129 

of plasticity across the phylogeny using the fastBM function or assumed no phenotypic 130 

evolution at all (see below for details). In addition, we assumed a certain degree of sampling 131 

error in the measurement of phenotypes in each environment. We did so by drawing 132 
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phenotypes for individuals randomly from a Gaussian distribution with a mean value at the true 133 

phenotypic population mean. For each simulation run, we calculated the phylogenetic 134 

correlation coefficient for the association between the baseline phenotype and the reaction 135 

norm slope using the phyl.vcv function. Starting conditions assumed a baseline phenotypic trait 136 

value of 0 and a phenotypic value in the novel environment of 1. In simulations where evolution 137 

occurred, the Brownian motion rate parameter (s2) was set at 1, 0.1, or 0.01 for respective 138 

traits. Phenotypic measurement error was set to variance (s2) of 1, 0.1, or 0.01.  139 

 We predicted that experimental design would influence whether or not regression to 140 

the mean biased our results. As such, we modeled three different experimental designs for 141 

measuring the phenotypes of each taxon in each environment (Figure 1). In Design 1, we 142 

assumed that each individual has their phenotype measured twice in total: once after 143 

 
Figure 1. Three experimental designs that we simulated for estimating baseline 
phenotype and phenotypic plasticity of species. In Experimental Design 1, baseline 
phenotype and plasticity are estimated from a single group of individuals that have their 
phenotype measured twice: once after exposure to each environment. In Experimental 
Design 2, there are two groups of individuals that have their phenotype measured only 
once, after exposure to either the baseline or novel environment. In Experimental Design 
3, there are also two groups of individuals. One group has their phenotype measured only 
after exposure to the baseline condition, and are used only to estimate the baseline 
phenotype. The other group of individuals have their phenotypes measured twice (as in 
Experimental Design 1), but they are only used to estimate phenotypic plasticity. Thermal 
environments are shown simply as an example.  

Experimental design 1 Experimental design 2 Experimental design 3 

Environment Environment Environment
Baseline Novel Baseline Novel Baseline Novel
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acclimation to each environment. Therefore, in this case the same individuals are used to 144 

estimate both the baseline phenotype and the reaction norm. In Design 2, we assumed that 145 

different individuals are acclimated to each environment prior to phenotypic measurement. In 146 

this case, individuals exposed to the baseline environment are used to estimate the baseline 147 

phenotype, and the difference in phenotype between the two sets of individuals is used to 148 

estimate the reaction norm. Finally, in Design 3, we assumed that one set of individuals is 149 

acclimated only to the baseline environment prior to phenotypic trait measurement, and that a 150 

second set of individuals have their phenotypes measured twice: once after acclimation to each 151 

of the two environments. The former individuals are used only to estimate baseline 152 

phenotypes, and the latter individuals are used only to estimate the slope of the reaction norm.  153 

 We also tested whether regression to the mean could emerge as a significant problem 154 

when phenotypic plasticity evolves, and did so assuming a neutral evolutionary process (i.e., 155 

Brownian motion). We used two different models for the evolution of phenotypic plasticity, 156 

that we refer to as Linked Phenotypes and Unlinked Phenotypes. In the Linked Phenotypes 157 

model, we assumed that the slope and intercept of the reaction norms evolve directly, with the 158 

phenotype that is expressed in each environment evolving indirectly as a byproduct. This is one 159 

of the most common ways in which the evolution of phenotypic plasticity is conceptualized and 160 

studied theoretically (Lande 2009; Chevin et al. 2010; Chevin et al. 2013). We refer to this as the 161 

Linked Phenotypes model because the phenotypes that are expressed in each environment are 162 

each determined by the slope and the intercept, linking them under a neutral evolutionary 163 

process. In the Unlinked Phenotypes model, the phenotype that is expressed in a given 164 

environment evolves directly and independently of the phenotype expressed in the other 165 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2021. ; https://doi.org/10.1101/2021.12.28.473512doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.473512
http://creativecommons.org/licenses/by-nc-nd/4.0/


environment. Therefore, the phenotypes that are expressed in each environment lack genetic 166 

covariance (Via and Lande 1985), and the slope and intercept of the reaction norm emerge 167 

merely as a byproduct of the trait values expressed in each environment. This model is based 168 

on the concept that parts of a reaction norm can evolve independently of one another as 169 

outlined in Ghalambor et al. (2007). Using each model, we conducted simulations in which the 170 

evolving parameters diverge via Brownian motion, and then estimated the phylogenetic 171 

correlation coefficient for an association between baseline phenotype and the reaction norm 172 

slope, as described above.  173 

 When possible, we applied a statistical correction developed by Kelly and Price (2005) to 174 

remove the regression to the mean effect from reaction norm values. The method was not 175 

originally designed for use with phylogenetic comparative data, but we modified it to that 176 

purpose here. We use the correction only with data simulated under Experimental Designs 1 177 

and 2, as the method cannot be applied to Experimental Design 3. The approach is based on the 178 

premise that if the plastic response is constrained by the baseline phenotype, then phenotypic 179 

variation should be reduced under novel conditions and that phenotypes in the baseline and 180 

novel conditions should be correlated within experimental units (Kelly and Price 2005). The 181 

approach is implemented as follows. First, we estimate the phylogenetic variance in 182 

phenotypes in each environment (𝑠") using the phyl.vcv function, then we conduct a Pittman’s 183 

test of homogeneity of variance. If there is no difference in variance between the phenotypes, 184 

then corrected reaction norms (𝐷$∗) are calculated using the following function: 185 

 186 

 Equation 1: 𝐷$∗ = 	𝑟(𝑋+ −	𝑋-+) − (𝑋/ −	𝑋-/)	 187 
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 188 

where r is the phylogenetic correlation coefficient for the relationship between phenotypes in 189 

the baseline and novel environments, 𝑋"  is the vector of phenotypes in a given environment, 190 

and 𝑋-"  is the phylogenetic phenotypic mean in a given environment. If the phenotypic variance 191 

differs between environments, then an adjusted correlation coefficient (�̂�) is used in Equation 192 

1, calculated as follows:  193 

 194 

 Equation 2:  �̂� = /12324
2345	244

 195 

 196 

Where 𝑠"/ is the estimated phylogenetic variance in the environment i.  𝐷$∗ is then used as the 197 

reaction norm value for subsequent analyses as described above.  198 

 Using our modified Kelly and Price (2005) approach, we reanalyzed previously published 199 

data on heat tolerance plasticity across Nudibranch species (Armstrong et al. 2019). The 200 

authors of that study used what we refer to as Experimental Design 2 (Figure 1), and originally 201 

found support for the Trade-off Hypothesis, as Nudibranch species with greater baseline heat 202 

tolerance had reduced heat tolerance plasticity. However, they did not adjust values for 203 

potential regression to the mean as we do here.  204 

 205 

Results 206 

Results without evolution but with measurement error 207 

We first present results of simulations in which phenotypic plasticity is present but does not 208 

diverge among taxa. In this case, the only source of variation among taxa is measurement error. 209 
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If regression to the mean is not an issue, we would expect the correlation coefficients 210 

generated in our simulations to be centered on 0.  211 

Instead, we found that measurement error generated a pattern consistent with genetic 212 

assimilation (that is, a negative correlation between baseline phenotype and reaction norm 213 

slope) due to regression to the mean, but only for Experimental Designs 1 and 2 (Figure 2). By 214 

contrast, regression to the mean does not bias results using Experimental Design 3 (Figure 2). 215 

This finding does not dependent on the level of plasticity organisms exhibit. For example, even 216 

if there is no plasticity in the trait, a negative relationship between baseline phenotype and 217 

reaction norm slope will emerge with Experimental Designs 1 and 2 if the phenotypes in each 218 

environment are measured with error (see Supplemental Figure S1; see also Deery et al. 2001 219 

for an individual-level example). The bias induced by Experimental Designs 1 and 2 is largely 220 

 
Figure 2. Summary of phylogenetic correlation coefficients between baseline phenotype and reaction norm 
slope from simulations in which plasticity is present but does not diverge among taxa, and phenotypes in each 
environment are measured with error. Points indicate the median and black lines the central 95% of 
correlation coefficients from 1000 simulations. The error variance of simulations is shown above each column. 
Alternating shading differentiates different simulated experimental designs, which are written on the 
righthand side of the figure.  “est.” denotes estimated correlation coefficients given measurement error, while 
“c. est” denotes those same correlation coefficients adjusted to remove the effect of regression to the mean 
following our modified Kelly and Price (2005) correction. Adjusted results are not given for Experimental 
Design 3 because the adjustment cannot be applied to data collected with that design.  
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removed, however, when the simulated data are adjusted using our phylogenetic modification 221 

of the Kelly and Price (2005) correction (Figure 2 “corrected estimates”).  222 

 223 

Results with neutral evolution of phenotypic plasticity 224 

If phenotypic plasticity evolves via the Linked Phenotype mechanism (in which reaction norm 225 

slope and intercept evolve directly), a pattern consistent with genetic assimilation is unlikely to 226 

evolve under neutral processes (Figure 3 “true” values). However, this assumes that there is no 227 

measurement error when estimating phenotypes. With measurement error, regression to the 228 

mean can produce spurious support for genetic assimilation with Experimental Designs 1 and 2, 229 

though this effect depends on the magnitude of measurement error relative to the rate of 230 

evolution (Figure 3 “estimates” values). The greater the measurement error, the more likely 231 

that regression to the mean can become a problem. Adjusting data generated by Experimental 232 

Designs 1 and 2 using our modified Kelly and Price correction removes the regression to the 233 

mean effect (Figure 3 “corrected estimates”). These results, however, also highlight the 234 

importance of judicious application of the Kelly and Price correction. This is because if there is a 235 

weakly negative to positive correlation between baseline phenotype and plasticity, the Kelly 236 

and Price correction can create a spurious negative relationship between the two variables (for 237 

example, see Figure 3 results with Experimental Design 2, s2 = 1 and s2 = 0.01).  238 

 If phenotypic plasticity evolves via the Unlinked Phenotypes mechanism (phenotypes in 239 

each environment evolve directly and independently of one another), neutral evolution will 240 

yield a negative relationship between baseline phenotype and reaction norm slope (Figure 4 241 

“true” values). Furthermore, the negative relationship between these traits is maintained in the 242 
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presence of measurement error (Figure 4 “estimated” values). In this case, however, adjusting 243 

the data using the Kelly and Price correction mostly eliminates the true negative relationships 244 

between the traits (Figure 4 “corrected” estimates). Conversely, if data are collected using 245 

 
 
Figure 3. Summary of phylogenetic correlation coefficients between baseline phenotype and reaction 
norm slope from simulations in which plasticity evolved by Brownian motion via the Linked 
Phenotypes mechanism. Each panel shows the result of 1000 simulations. Each row shows the results 
of simulations with a different experimental design (Figure 1): Bottom, Design 1. Middle: Design 2. 
Top: Design 3. Alternating shaded areas differentiate simulations with different Brownian motion rate 
parameters (s2). Each column contains simulations with a different error variance for phenotypic 
estimation (s2). “true” denotes the true phylogenetic correlation values from the simulations. “est.” 
denotes estimates of the true correlation coefficients given measurement error. “c. est” denotes 
estimated correlation coefficients corrected to remove the effect of regression to the mean following 
our modified Kelly and Price (2005) adjustment. Adjusted results are not given for Experimental 
Design 3 because the method cannot be applied to data collected with that design.   
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Experimental Design 3, the true negative relationship between the traits is largely maintained; 246 

however, if measurement error is too high the capacity for Experimental Design 3 to yield the 247 

true negative relationship is decreased (Figure 4).  248 

 
 
Figure 4. Summary of phylogenetic correlation coefficients between baseline phenotype and 
reaction norm slope from simulations in which plasticity evolved by Brownian motion via the 
Unlinked Phenotypes mechanism. Each panel shows the result of 1000 simulations. Each row 
shows the results of simulations with a different experimental design (Figure 1): Bottom, Design 
1. Middle: Design 2. Top: Design 3. Alternating shaded areas differentiate simulations with 
different Brownian motion rate parameters (s2). Each column contains simulations with a 
different error variance for phenotypic estimation (s2). “true” denotes the true phylogenetic 
correlation values from the simulations. “est.” denotes estimates of the true correlation 
coefficients given measurement error. “c. est” denotes estimated correlation coefficients 
adjusted to remove the effect of regression to the mean following our modified Kelly and Price 
(2005) correction. Adjusted results are not given for Experimental Design 3 because the method 
cannot be applied to data collected with that design. 
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 249 

Reanalysis of Nudibranch heat tolerance data 250 

We re-analyzed data on heat tolerance plasticity in Nudibranchs (Armstrong et al. 2019) by 251 

applying our phylogenetic adaptation of the Kelly and Price (2005) correction. In the original 252 

analysis, the authors found a significant negative relationship between independent contrasts 253 

for baseline heat tolerance and heat tolerance plasticity (P < 0.005, Armstrong et al. 2019). In 254 

our re-analysis, we found that a negative relationship remained, but was no longer significant at 255 

the a = 0.05 level (P = 0.069; Figure 5).  256 

 257 

 
 
Figure 5. Nudibranch heat tolerance plasticity data from Armstrong et al. (2019). 
Phenotypes were collected using Experimental Design 2 (Figure 1). Original data and 
analysis in gray. Re-analysis applying the modified Kelly and Price (2005) method to 
remove regression to the mean effects in black.  
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Discussion 258 

Herein, we have identified three general patterns important for testing and understanding the 259 

evolution of genetic assimilation at the macroevolutionary level: 1) regression to the mean is a 260 

pervasive problem; 2) experimental design and data correction can minimize the effect of 261 

regression to the mean; and 3) neutral evolutionary processes can produce patterns consistent 262 

with genetic assimilation, depending on the linkage between trait expression in different 263 

environments. Below, we discuss each of these findings in greater detail. 264 

 265 

Regression to the mean when plasticity does not diverge 266 

When phenotypic plasticity was present but did not diverge among taxa, measurement error 267 

alone generated spurious correlations between baseline phenotype and plasticity under 268 

Experimental Designs 1 and 2 (Figure 2 “estimated” values). Furthermore, the magnitude of the 269 

correlation coefficient was affected very little by the magnitude of measurement error 270 

simulated (Figure 2). These results clearly demonstrate that regression to the mean can be a 271 

significant problem when testing for genetic assimilation at the macroevolutionary level. The 272 

choice of experimental design, however, also matters considerably. In particular, when data are 273 

collected using Experimental Design 3, regression to the mean is not a persistent problem 274 

(Figure 2).     275 

 Why are Experimental Designs 1 and 2 susceptible to regression to the mean while 276 

Experimental Design 3 is not? The crux of the matter is that with Designs 1 and 2, the reaction 277 

norm slope depends on the estimated baseline phenotype. Designs 1 and 2 have only one 278 

estimate of baseline phenotype. That single baseline phenotype is also used to estimate 279 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2021. ; https://doi.org/10.1101/2021.12.28.473512doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.473512
http://creativecommons.org/licenses/by-nc-nd/4.0/


plasticity. If measurement error causes an estimate of baseline phenotype to be above the true 280 

value, that will drive down the estimated reaction norm slope. Conversely, if error causes a 281 

baseline estimate to be below its true value, this will in turn drive up the estimated reaction 282 

norm slope. With Design 3, this cannot happen because the baseline phenotype and reaction 283 

norm are estimated using separate samples.  284 

Design 3 demands two independent estimates of phenotype under baseline conditions, 285 

which we will call e1 and e2. One of those estimates (let’s say e1) is used only as the baseline 286 

phenotype, but does not contribute to the calculation of plasticity. The other estimate (e2) 287 

contributes only to the calculation of plasticity. Under this design, if measurement error causes 288 

e1 to be above or below the true value it will have no effect on the plasticity estimate, which 289 

depends only on e2.  290 

All hope is not lost with Experimental Designs 1 and 2, however. Using our modified 291 

Kelly and Price correction, phenotypic values can be adjusted such that the bias towards a 292 

spurious negative relationship is removed (Figure 2 “corrected” values). Next, we discuss the 293 

implications of these different approaches when plasticity itself evolves.  294 

 295 

Regression to the mean under neutral evolution of plasticity (Linked Phenotype model) 296 

Under the Linked Phenotypes model, the intercept (essentially baseline phenotype) and 297 

reaction norm slope evolve via Brownian motion. Under this model, neutral evolution does not 298 

produce a negative relationship between baseline phenotype and plasticity under any 299 

experimental design (Figure 3 “true” values). The introduction of measurement error, however, 300 

can again lead to regression to the mean under Experimental Designs 1 and 2 (Figure 3 301 
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“estimated” values). The degree to which regression to the mean is a problem depends on the 302 

magnitude of measurement error relative to the variance in true trait values among taxa as 303 

denoted by the Brownian motion rate parameter. If measurement error is large and/or 304 

phenotypic variation among taxa is low, regression to the mean emerges consistently for 305 

Experimental Designs 1 and 2. By contrast, if measurement error is small and phenotypic 306 

variation among taxa is large, regression to the mean is much less of an issue (Figure 3 307 

“estimated” values).  308 

 Applying the Kelly and Price correction to data collected under Experimental Designs 1 309 

and 2 can remove the effect of regression to the mean when it is present (Figure 3 “corrected” 310 

values). Our results, however, also highlights the caveat that a Kelly and Price correction should 311 

only be applied if the initial analysis yields a significant negative relationship. When initial 312 

analyses yield no significant negative relationship, applying the Kelly and Price correction can 313 

itself create a spurious negative relationship between baseline phenotype and plasticity. 314 

Experimental design 3 again avoids the problem of regression to the mean due to the 315 

estimation of two baseline phenotypes (see above). 316 

 317 

Regression to the mean under neutral evolution of plasticity (Unlinked Phenotypes) 318 

Under the Unlinked Phenotypes model, the phenotypes in each environment evolve 319 

independently of one another, and the magnitude of plasticity emerges as a byproduct of the 320 

difference between the two phenotypic values. Under these conditions, a true negative 321 

association between baseline phenotype and plasticity consistently results under Brownian 322 

motion evolution (Figure 4 “true” values). In other words, there are conditions in which neutral 323 
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evolution alone can produce a pattern consistent with genetic assimilation. We discuss this in 324 

more detail below.  325 

 Unlike the Linked Phenotypes model, experimental error has little to effect on the 326 

correlation coefficients calculated with the Unlinked Phenotypes model using Experimental 327 

Designs 1 and 2 (Figure 4 “estimate” values). The reason for this is that phenotypic evolution via 328 

Brownian motion in the Unlinked Phenotypes model amounts to random independent 329 

increases or decreases in the phenotypes expressed in each environment, while experimental 330 

error leads to spurious random increases or decreases in the phenotypes measured in each 331 

environment, which from a statistical standpoint is the same process. 332 

 When data from the Unlinked Phenotypes model are adjusted using the Kelly and Price 333 

correction, the negative relationship between baseline phenotype and plasticity disappears 334 

(Figure 4, “corrected” values). In this case, however, the correction does not remove a spurious 335 

relationship due to regression to the mean. Instead, it removes a true relationship that resulted 336 

from a neutral evolutionary process. This occurs because of the conceptual foundation upon 337 

which the Kelly and Price correction is predicated: it assumes that a hallmark of regression to 338 

the mean is that phenotypic values between treatments (in this case, environments) within 339 

experimental units are uncorrelated with one another. This, of course, is the precise pattern 340 

that neutral evolution will produce if the phenotypes induced by plasticity are unlinked.  341 

 Correlation coefficients estimated using Experimental Design 3 can maintain the true 342 

negative relationship between baseline phenotype and plasticity, but only if the measurement 343 

error is not too large. As measurement error grows relative to the true phenotypic variance 344 
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among taxa, estimated correlation coefficients move away from the true values and towards 0 345 

(Figure 4).  346 

 347 

Implications 348 

Our results make clear that regression to the mean is a serious statistical problem that can 349 

confound tests of genetic assimilation at macroevolutionary scales. Whether or not regression 350 

to the mean is an issue in any particular study will depend on the experimental design used. 351 

Unfortunately, the problematic experimental designs (our Designs 1 and 2) are those most 352 

often used to test for plasticity and genetic assimilation. This is certainly true within the field of 353 

thermal physiology, where tests of the Trade-Off Hypothesis, which states that greater thermal 354 

tolerance evolves via genetic assimilation (Heerwaarden and Kellerman 2020), are almost 355 

invariably based on data collected using Experimental Designs 1 and 2 (e.g., Armstrong, others). 356 

These studies typically find support for the Trade-off Hypothesis but do not account for 357 

regression to the mean.  358 

Fortunately, data collected using Experimental Designs 1 and 2 can be successfully 359 

adjusted to remove regression to the mean using the Kelly and Price method. For example, 360 

when plasticity is invariant among taxa, adjusting the data removes spurious relationships 361 

between baseline phenotype and plasticity due to measurement error (Figure 3). The same 362 

holds under neutral evolution when there is linkage between the traits expressed in each 363 

environment (Figure 3). The caveat is that adjusting data using the Kelly and Price method can 364 

incorrectly obfuscate a true negative relationship between baseline phenotype and plasticity if 365 

the traits expressed in each environment are unlinked (Figure 4).  366 
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The need to adjust data can be avoided by using Experimental Design 3. This approach 367 

does not lead to spurious negative relationships between baseline phenotype and plasticity 368 

(Figures 3 and 4). It also recovers true negative relationships when they occur (Figure 4). 369 

Unfortunately, however, this experimental design is significantly more labor intensive that 370 

Designs 1 and 2. It requires that we estimate phenotypes on more groups of individuals (3 371 

versus 2), and it’s reliability depends on measurement error in the estimation of phenotypic 372 

trait means for each environment, making large sample sizes crucial.  373 

 Overall, our results demonstrate that great care is necessary both in the design of 374 

macroevolutionary tests for genetic assimilation, as well as in the interpretation of our results. 375 

A lack of correlation between plasticity and baseline phenotype is not the correct null 376 

hypothesis in many cases due to the statistical phenomenon of regression to the mean. Once 377 

this is recognized, the potential solutions to the regression to the mean problem must be 378 

applied with care. Additionally, the expected null hypothesis under neutral evolution depends 379 

on the mechanism that underlies the expression of phenotypic plasticity. We hope that this 380 

analysis will be a helpful reference for others in the design and analysis of future studies of 381 

hypothesized genetic assimilation in phenotypically plastic traits.  382 
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Data and code to reproduce all the analyses of this study available at: 389 

GitHub: https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2390 

Fliamrevell%2FGunderson-and-Revell-391 

2021&amp;data=04%7C01%7Cagunderson%40tulane.edu%7C5ccb9b6c257243c5fe3d08d9c331392 

ba9a%7C9de9818325d94b139fc34de5489c1f3b%7C0%7C0%7C637755440671031894%7CUnkn393 

own%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6M394 

n0%3D%7C3000&amp;sdata=Y7HsLY01%2B5Em95N%2FkWmBCtltDGYjZMGMPyzscWSXbSk%3395 

D&amp;reserved=0. 396 
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