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ABSTRACT – Learning goal-directed behaviours requires integration of separate information 

streams representing context, relevant stimuli and reward. Dendrites of pyramidal neurons 

are suitable sites for such integration, but it remains elusive how their responses adapt when 

an animal learns a new task. Here, we identify two distinct classes of dendritic responses 

that represent either contextual/sensory information or reward information and that differ in 

their task- and learning-related dynamics. Using longitudinal calcium imaging of apical 

dendritic tufts of L5 pyramidal neurons in mouse barrel cortex, we tracked dendritic activity 

across learning and analyzed both local dendritic branch signals and global apical tuft 

activity. During texture discrimination learning, sensory representations (including 

contextual and touch information) strengthened and converged on the reward-predicting 

tactile stimulus when mice became experts. In contrast, reward-associated responses were 

particularly strong in the naïve condition and became less pronounced upon learning. When 

we blocked the representation of unexpected reward in naïve animals with optogenetic 

inhibition, animals failed to learn until we released the block and learning proceeded 

normally. Our results suggest that reward signals in dendrites are essential for adjusting 

neuronal integration of converging inputs to facilitate adaptive behaviour. 

Learning enables animals to adapt to 

environmental challenges and flexibly acquire 

new behaviours. For learning to occur, distinct 

information streams in the brain—coding for 

context, specific sensory stimuli, and outcome 

value (e.g. reward)—need to be integrated and 

processed in a novel, meaningful way to link 

reward predictions to suitable actions. 

Consistent with this notion, neuronal circuits 

dynamically reorganize their activity upon task 

learning1. For example, neuronal populations in 

the barrel cortex of primary somatosensory 

cortex (S1), especially those projecting to 

secondary somatosensory cortex (S2), undergo 

functional changes that reflect behavioural 

adaptations during texture discrimination 

learning2. Functional adaptations of neuronal 

circuits ultimately are implemented at the level of 

single neurons through plasticity mechanisms 

shaping synaptic integration in neuronal 

dendrites3. Because of their complexity, 

including nonlinear properties, dendrites 

possess a large computational power4,5 and thus 

are prime candidate sites for adjustments that 

may be required for learning. Apical dendritic 

tufts of L5 pyramidal neurons in neocortex, for 

instance, receive a wide range of functionally 

distinct inputs, representing sensory stimuli6,7, 

motor actions8, information from higher-order 

areas9, and reward10. Yet, it remains unknown 

how dendritic signals in individual branches or 

entire apical tufts—driven by these diverse 

inputs—reorganize during learning and to what 

degree such adaptations are related to 

behavioural changes upon task learning.  

To address these questions, we sparsely 

expressed GCaMP6f in L5 pyramidal neurons in 

the S1 barrel cortex of 6–10-week-old adult 

Rbp4-Cre mice. We specifically targeted L5
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Fig. 1 | Longitudinal multi-plane calcium imaging of L5 dendrites across learning. a, S1S2 projecting L5 

pyramidal neurons labelled with GCaMP6f using a dual-virus approach in Rbp4-cre mice. Lower right: Coronal 

maximum-intensity projection (MIP) of labelled neuronal population in a cleared brain (CLARITY, 120-m range). b, 

Left: Coronal MIP of sparsely GCaMP6f-labelled L5 neurons in barrel cortex in a cleared hemisphere (iDISCO, 150-

m range). Right: Schematic of four two-photon imaging planes. c, Left: Example field-of-view with selected ROIs 

and respective ΔF/F traces across all imaging planes. Red circles: local events (LE). Top right: MIP of the same tuft 

with arbourization schema. Lower right: Example ΔF/F traces of two trials containing global event (GE) and LE, 

respectively. d, Schematic of go/no-go texture discrimination task. Right: Trial structure and table of trial outcomes. 

e, Learning curves across 650 trials aligned to first expert trial (n = 8 mice). Black line: mean ± s.d. in 50-trial bins; 

grey lines: individual mice; dots indicate transitions from naïve to learning period for individual mice. f, Left: 

Heatmaps of normalized ΔF/F traces for two example dendrites across learning. Right: Example ΔF/F traces for 

naïve, learning, and expert Hit trials (grey: individual trials; black: mean traces). Arrows indicate approximate times 

of first touch and reward valve opening. 
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neurons projecting to S2 by using an 

intersectional Cre/Flp viral labelling approach 

(Fig. 1a,b; Methods). Because Rbp4-Cre mice 

are not specific for L5 subtypes, labelled 

neurons presumably included L5A and L5B 

neurons sparsely distributed across barrel 

cortex (Supplementary Fig. 1). Through a 

chronic cranial window and using multi-plane 

two-photon calcium imaging with an electrically 

tunable lens11, we recorded calcium transients in 

multiple dendritic tuft branches and their parent 

apical trunks (Fig. 1b,c; -30 µm to -370 µm 

depth; 10 Hz effective frame rate). We manually 

selected trunk cross-sections and dendritic 

branch segments (continuous stretches of 5 - 20 

µm) as regions of interests (ROIs). Multi-plane 

calcium imaging of multiple dendritic tuft 

branches and their corresponding parent trunk 

enabled us to discriminate between ‘global 

events’ (GE), with large-amplitude signals in the 

trunk and most tuft branches, and ‘local events’ 

(LE), with typically smaller but detectable 

calcium signals in only one or few tuft branches 

but no detectable calcium transient in the trunk 

(Fig. 1c).  

To investigate dendritic calcium signals during 

learning, we trained mice (n = 8) in a go/no-go 

texture discrimination task2,12. In each trial, we 

presented either a coarse (grit size P100) or a 

smooth (P1200) sandpaper to the whiskers (go 

texture: P100, n = 3 mice; P1200, n = 5). Correct 

licking in go trials (Hits) triggered a water reward 

whereas correct rejections (CR) in no-go trials, 

as well as Misses on go trials, were neither 

rewarded nor punished. False alarms (FA) in no-

go trials were mildly punished with white 

acoustic noise (Fig. 1d; Methods). For analysis, 

we defined five time windows linked to the trial 

structure (cue, pre-touch, touch, late-touch, and 

outcome). All mice improved their performance 

from naïve (50%, i.e. chance level) to expert 

level (>75%), on average within 1178 ± 368 trials 

(8-14 days; 1 session per day; 67-209 trials per 

session; mean ± s.d., n = 8 mice). To 

compensate for different learning rates, we 

aligned all individual learning curves to the first 

expert trial and performed analysis in the time 

window from 500 trials before to 150 trials after 

this time point (trial identifier [ID] from -500 to 

150; Fig. 1e). With learning, mice developed 

anticipatory whisking preceding the first whisker-

texture touch and anticipatory whisking and 

licking before the outcome window2 

(Supplementary Fig. 2). Throughout the entire 

training period, we measured task-related 

calcium signals longitudinally in the same 

dendrites of S1S2 L5 neurons. Example 

calcium traces from a dendritic trunk (T1) and a 

tuft branch (D4) of an individual L5 neuron reveal 

preferred activity in variable task windows and 

also illustrate differences in the evolution of 

dendritic activity profiles across learning (Fig. 

1f).  

For a comprehensive analysis of task- and 

learning-related dendritic dynamics in our entire 

data set, we identified and selected calcium 

traces with significant calcium transients 

(Methods). Using a UMAP embedding based on 

similarity of the trial-related calcium traces, we 

found that both the short time scale (within single 

trials) and the long time scale (across trials) are 

reflected in the two-dimensional UMAP plot (Fig. 

2a). Colour coding according to the onset times 

of clearly detectable dendritic calcium transients 

(Methods) showed that dendritic activity was 

distributed over the entire trial time course, 

including cue, pre-touch, touch, late-touch, and 

outcome windows. A small fraction of calcium 

traces displayed double-transients in both the 

pre-touch and outcome windows, represented in 

the middle of the UMAP plot. Colour coding 

based on trial ID revealed an interesting pattern 

of overrepresentation of calcium transients with 

onsets in the pre-touch and touch window in 

expert trials, whereas in early naïve trials 

calcium transients in the cue and outcome 

windows appeared to be more abundant (Fig. 

2a; for colour coding of other features see 

Supplementary Fig. 3). This overview indicates 

that S1S2 L5 dendritic activity reflects various 

task-related events and that the trial-related 

temporal pattern of dendritic activation 

reorganizes during learning. 

To evaluate dendritic functional reorganization 

quantitatively and to examine whether 

consistent learning-related patterns exist, we 

developed ‘transformation clustering’, a 

statistical approach to identify dendritic tuft 
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Fig. 2 | Two dendritic subclasses defined by distinct changes in sensory and reward representations. a, Top: 

Correlation-metric-based UMAP embedding of all recorded ΔF/F traces with detectable transient onsets, coloured 
according to transient onset time. Inserts: ΔF/F traces and average ΔF/F traces associated with local 2D 
neighbourhoods. Bottom: UMAP embedding coloured according to smoothed trial ID (8 mice, 22’027 traces). b, 

Schematic depiction of transformation clustering, identifying two functionally distinct clusters of dendritic responses by 
their coherent shift over learning. c, Left: Transient onset density during learning aligned to trial start in the reward and 

sensory class, Right: Average onset densities in naïve and expert conditions. Only trials with detectable onsets are 
included. d, Percentages of trunk and apical branches per class. e, Reconstruction of example tuft from a two-photon 
image stack. Branches are coloured according to the respective class. f, Class assignment of apical trunks in relationship 
to the percentage of branches classified as sensory and reward. g, Fraction of branches per neuron assigned to each 

cluster (42 tufts; sorted according to trunk class, sub-sorted according to percentage of sensory branches).  
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branches or apical trunks that exhibited similar 

learning-associated activity changes. 

Specifically, we compared the high-dimensional 

single-trial responses between all possible 

dendrite pairs across learning using a nearest 

neighbour method13, and performed hierarchical 

link clustering (Fig. 2b; we greedily expanded 

clusters by also assigning dendritic ROIs with 

sparse activity; Methods and Supplementary 

Fig. 4). We identified two major, functionally 

distinct classes of change in dendritic responses 

across learning. One class shows abundant and 

large calcium transients in the outcome window 

for the naïve condition, especially upon reward 

in Hit trials and to a lesser degree upon 

punishment in FA trials (Fig. 2c). These 

responses decrease in frequency in the expert 

condition. We refer to this response pattern as 

the ‘reward class’, which in our interpretation 

mainly represents unexpected outcome and is 

less prominent when the animal has learned the 

task. In contrast, dendrites belonging to the 

second functional class display strong activation 

in naïve animals early in the trial (cue-related), 

which then shifts towards the pre-touch and 

touch windows in the expert condition (Fig. 2c). 

This ‘sensory class’ of responses apparently 

represents sensory inputs related to both 

contextual stimuli and the reward-predicting 

sensory stimulus, i.e. the texture touch. The 

distinct temporal dynamics across learning for 

both classes is also evident in the UMAP 

embedding (Fig. 2b and Supplementary Fig. 

3). Differences across classes are also apparent 

in the average ΔF/F transients, albeit less 

pronounced than for transient onset densities 

(Supplementary Fig. 5). 

To analyze the tuft composition in terms of 

functional class, we evaluated the 42 neurons 

with identified trunk ROI. For both trunks and tuft 

branches, nearly half of the dendrites belonged 

to the sensory class and about a third to the 

reward class (Fig. 2d; the remaining dendrites 

were not classified due to insufficient number of 

data points). Based on reconstructions from z-

stacks we found that all tufts contained dendritic 

branches of both functional classes (Fig. 2e-g) 

with no apparent dependence on depth below 

the pia (Supplementary Fig. 6). In the majority 

of neurons, the functional class of the trunk 

corresponded to the most abundant class in its 

tuft branches (Fig. 2f,g). No difference in 

morphology was obvious in tufts dominated by 

either of the functional classes (Supplementary 

Fig. 6). Taken together, we identified two major 

functional classes of dendritic branches with 

distinct changes in their activity profiles across 

learning. One class highlights the representation 

of unexpected outcomes in the naïve condition, 

whereas the other develops enhanced activity in 

the pre-touch and touch windows upon learning, 

indicating integration of contextual, sensory, and 

reward inputs such that the reward-predicting 

sensory stimulus becomes expected and well-

represented in the expert condition. 

Functional changes in dendritic integration may 

also be reflected by changes in the abundance 

of local and global events (LE and GE, 

respectively). Whereas LE in tuft branches may 

reflect inputs not sufficiently strong to trigger 

calcium spikes near the main bifurcation (or 

lacking sufficient coincident basal dendritic 

activation14,15), GE likely are associated with 

somatic action potential output, presumably in 

form of action potential bursts6,8. To discriminate 

LE and GE, we considered for each dendritic tuft 

the simultaneously recorded ΔF/F signals in 

trunk and daughter branches. We defined 

events with significant calcium transients in the 

apical trunk as GE and events with activation of 

at least one tuft branch, but not the trunk, as LE 

(Fig. 3a-c and Supplementary Fig. 7). These 

definitions are justified because nearly all tuft 

branches were co-active with the trunk in GE 

whereas only a small fraction of branches were 

engaged in LE (Fig. 3d). In 27’300 trials 

considered in total, we labeled 14.4% as GE, 

7.9% as LE, and 2.1% as mixed events (at least 

one GE and one LE with peak times separated 

by >1 s). In 73.1% of trials no event was 

detected, indicating sparse tuft activity 

(Supplementary Fig. 7 and Methods; 2.5% of 

trials were not considered due to data exclusion 

criteria). If multiple GE or LE occurred in the 

same trial, the event with the largest amplitude 

in any ROI was used for further analysis. 

Overall, the correlation of branch and trunk 
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Fig. 3 | Gradient like change of dendritic representations during learning depends on behavioral window. a, 

Example ΔF/F traces of multiple tuft branches and trunk across all imaging planes (Red: LE). b, ΔF/F traces LE and 

GE. c, Schematic depiction of LE and GE. d, Percentages of branches with detectable calcium transients during LE 

and GE. (Dashed lines: mean). e, Probability of GE and LE over learning across all tufts in Hit trials. (Shaded area: 

s.e.m.; 0.003 and 0.04 for naïve vs. learning 2 and learning 1 vs. learning 2, one-way ANOVA) f, Probability of GE 

and LE per pre-touch, touch, late-touch and outcome window in Hit trials. (Shaded area: s.e.m.; Sensory trunks: GE 

in touch window: 0.03, 0.03 and 0.007 for naïve vs. expert, learning 1 vs. expert and learning 2 vs. expert; GE in 

outcome window: 0.011 for naïve vs. expert. LE in pre-touch window: 0.04 and 0.04 for naïve vs. expert and learning 

1 vs. expert. Reward cluster: GE in outcome window: 0.009 and 0.01 for naïve vs. learning 2 and learning 1 vs. 

learning 2; one-way ANOVA). Bottom: Average number of trials with GE or LE (mean ± s.e.m.; Sensory tufts: 0.02 

and 0.005 for naïve vs. expert and learning 1 vs. expert for pre-touch; 0.02, 0.007 for naïve vs. expert and learning 

1 vs. expert for touch;0.015 for naïve vs. expert for late-touch; 0.003 and 0.04 for naïve vs. expert and learning 1 vs. 

expert for outcome; Reward tufts: 0.001 and 0.005 for naïve vs. learning 2 and learning 1 vs. learning 2 for outcome; 

one-way ANOVA) g, Summary of changes in strength of functional representations during learning and cellular 

working model. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


 

7 
 

signals in the same tuft was high but decreased 

with distance from the main bifurcation 

(Supplementary Fig. 7).  

Next, we analyzed how the probability of GE and 

LE in Hit trials changes across learning. 

Averaged across all tufts, the probability of GE 

remained rather constant while the probability of 

LE increased with learning and plateaued once 

mice reached expert performance (Fig. 3e). We 

further differentiated in which of the salient trial 

time windows GE and LE occurred, with tufts 

separated according to their trunk’s functional 

class (sensory or reward). In sensory tufts, LE 

and GE probabilities increased across learning 

for all tested windows, starting in the outcome 

and late-touch window and followed by the pre-

touch and touch periods (Fig. 3f). Interestingly, 

LE and GE in sensory tufts also became more 

abundant in FA trials in expert animals, perhaps 

reflecting a reward prediction error 

(Supplementary Fig. 8). In reward tufts, GE 

probability was prominently high in naïve and 

early learning phase and then decreased with 

learning, whereas LE probability remained low 

and relatively unchanged. We also analyzed the 

discrimination power of GE, as an estimate of 

neuronal output.   Although trunks showed some 

discriminability for trial types, discriminability of 

go vs. no-go texture overall was low 

(Supplementary Fig. 9).  

We interpret these findings regarding changing 

event probabilities as learning-related changes 

of the effective strengths of several input 

streams converging on the L5 dendritic tufts, 

carrying information about context (pre-touch), 

relevant sensory stimulus (touch and late-

touch), and reward (outcome window). In Fig. 3g 

we propose a working model, in which the 

functional class of a dendritic tuft receiving 

mixed inputs is determined by its dominant input 

type. Sensory tufts show a strengthening of the 

representation (more frequent LE and GE) of the 

task-relevant contextual and tactile inputs with 

learning whereas reward tufts in naïve animals 

display strong activity representing unexpected 

reward. From this model, we hypothesize that 

this salient outcome representation in reward 

tufts possibly drives circuit adaptations that are 

essential for learning, including the observed 

changes in dendritic integration. 

To assess whether unexpected reward 

representation in the S1S2 pathway is 

behaviourally relevant for learning, we densely 

expressed eArchT3.0 in S1S2 L5 neurons and 

applied optogenetic inhibition specifically during 

the outcome window (Fig. 4a-c; n = 5). We 

validated the inhibitory effect of the optogenetic 

manipulation on eArchT3.0-expressing S1S2 

L5 neurons using extracellular recordings in 

anesthetized mice. Laser illumination reduced 

spontaneous multi-unit activity and generated a 

pronounced sink in the current source density 

(CSD) signal in superficial layers including L1, 

indicating inhibition of dendritic tufts (Fig. 4d,e). 

In addition, laser stimulation reduced the firing 

rate of single units detected in L5, consistent 

with the targeted subpopulation (Fig. 4f). Having 

verified the population effect of the perturbation 

in the anesthetized condition, we applied 

optogenetic inhibition in awake mice, starting in 

the naïve condition and continuing during 

training in the texture discrimination task. We 

applied optogenetic perturbation for 1’800 trials, 

well above the average number of trials that the 

set of mice trained in the 2-photon experiments 

required to reach expert performance. At the end 

of this long perturbation period, none of the mice 

with eArchT3.0-expression had reached expert 

level (mean 62% ± 6.2%). After 1’800 trials, the 

optogenetic block was lifted. Only then, 

eArchT3.0-expressing mice were able to 

improve their task performance to expert levels, 

with a time course comparable to mice 

expressing eYFP or GCaMP6f (Fig. 4g,h; 

Supplementary Fig. 10). Licking and whisking 

behaviour remained unaffected by the 

optogenetic perturbation (Supplementary Fig. 

11). We conclude that processing of the reward 

signal in the S1S2 neuronal population, 

presumably involving dendritic tuft activity, is 

required for behavioural adaptation.  

In summary, dendritic tuft activity in S1S2 L5 

pyramidal neurons displays a spectrum of task-

related responses, with two major functional 

classes distinguished by distinct profiles of 
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change during learning. We interpret these 

classes as arising from salient input streams 

converging on the apical tufts, which adapt their 

relative strengths as animals gain task 

proficiency. Dendrites in the sensory class may 

receive touch-specific inputs conveyed via 

thalamus16,17 but also contextual or anticipatory 

inputs from posterior association areas9,18 and 

anterior motor and premotor areas7,19,20. 

Strengthening of these responses around the 

time of whisker touch is in line with the recently 

reported enhancement of behaviourally relevant 

sensory representations during learning21. 

Interestingly, texture discrimination remained 

low even in experts. L5 neurons in S1 thus may 

predominantly represent the presence and 

saliency of relevant tactile inputs and 

discriminate choice rather than stimulus 

identity22. Dendrites in the reward class may 

receive feedback input about behavioural 

outcome, in particular prediction errors. 

Dendritic representations of reward in L5 tufts of 

barrel cortex have been described previously10, 

for both unexpected random rewards and 

rewards delivered in a behavioural trial structure. 

In our study, reward representations became 

less pronounced during learning. The learning-

related changes in both classes might be due to 

local plasticity in the tuft itself or in the 

projections  from upstream regions, such as 

S223, postrhinal 9, premotor20, or orbitofrontal24 

areas. Furthermore, alterations in the 

 
 

 
Fig. 4 | Optogenetic suppression of reward representations prevents learning. a, Pathway-specific optogenetic 

manipulation of S1S2 L5 neurons using eArchT3.0. b, Dense labelling of eArchT3.0 in L5 neurons (confocal image, 

coronal view, 100 µm). c, Trail structure and timing of optogenetic perturbation. d, Top: Schematic of optogenetic 

perturbation with simultaneous electrode shank recording in isoflurane-anesthetized mice. Bottom: Voltage recording 

of example unit in S1 BC. e, Average current source density across S1 around optogenetic perturbation (isoflurane 

aesthesia, 3 sessions, 2 mice, 300 trials) f, Firing rate of L5 units with and without optogenetic manipulation (red 

line:median, box: 25th and 75th percentile, whiskers: 5th and 95th percentile, outliers: crosses; 5 mW, 43 units, 600 

trials, 6 sessions, n = 4 mice, t-test p<0.0001). g, Optogenetic perturbation during a texture-discrimination task was 

carried out for 1’800 trials. Learning curves of eArchT3.0-expressing mice (n = 5) and control mice (from GCaMP6f 

experiments, n = 8; and YFP controls, n = 3)). h, Average number of trials required to reach expert performance in 

control mice (YFP and two-photon), optogenetically perturbed eArchT mice, and for perturbed mice after subtraction 

of the 1’800 perturbed trials (1’150 ± 314, 3’019 ± 659, and 1’219 ± 659 trials; mean ± s.d.; p<0.001 for perturbed 

ArchT-expressing mice vs. control mice; p = 0.89 for corrected perturbed ArchT-expressing mice vs. control mice; 

Wilcoxon ranksum test). 
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engagement of local interneurons in superficial 

layers of cortex25 and neuromodulation of 

dendritic processing26,27 could contribute to the 

weakening of reward representation and the 

strengthening of the representation of the 

behaviourally-relevant sensory stimuli. In how 

far functional classes of tufts correspond to 

anatomical subdivisions of L5 neurons28 remains 

unclear and requires further study.  

The existence and relevance of local dendritic 

branch activations in L5 tufts in vivo has recently 

been debated14,15,29,30. Here, we reliably 

detected local dendritic events in about 8% of all 

trials. We assume that LE are caused by 

spatially-restricted synaptic inputs leading to 

postsynaptic potentials that can cause local 

regenerative events but fail to invade the whole 

tuft and initiate calcium spikes at the dendritic 

nexus. The occurrence of localized calcium 

events in tuft branches could thus reflect 

strengthening of such inputs. In addition, LE may 

directly contribute to local plasticity, as 

suggested by experiments during motor 

learning31. Finally, our demonstration that 

inhibition of apical dendritic reward signals 

suppresses the animal’s ability to learn, adds to 

findings that dendrites are crucial for 

sensorimotor processing6,8 and lends support to 

their hypothesized role as subcellular sites of 

credit assignment32. The flexible integration of 

diverse information streams in the dendritic tufts 

of cortical pyramidal neurons provides a 

powerful means to facilitate dynamic 

computations in service of adaptive behaviour.  
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Methods 

All experimental procedures were carried out in accordance with the guidelines of the Federal 

Veterinary Office of Switzerland and were approved by the Cantonal Veterinary Office in Zurich 

under license number 234/2018. 

 

Animals and preparations for chronic imaging. We used male and female adult 6-10 week old 

Rbp4-Cre transgenic mice (n = 8, Tg(Rbp4-cre)KL100Gsat/Mmucd, MGI:4367068, ref. 33,34). For 

surgical preparation, mice were anesthetized using isoflurane (1.5-2% in O2) and the body 

temperature was maintained at 37°C using a heating pad with rectal probe. After exposing the skull, 

a 4-mm diameter craniotomy was made above the left S1 barrel cortex and S2. Stereotactic 

injections of AAVretro-hSyn1-chI-FLEX-mCherry_2A_NLS_FLPo virus solution (6.3 x 1012 vg/ml, 

dilution 1:50) was injected into S2 (three injections à 210 nl; AP|ML|DV coordinates from bregma (in 

mm): -0.7|3.5|-1, -1.2|4.1|-1.5, -1.3|4.5|-1.5). AAV-2.1-hSyn1-fio-GCaMP6f virus solution (1.8 x 1012 

vg/ml) was injected into L5 of barrel cortex (three injections à 210 nl: -0.7|-3|-0.6, -1.1|-3|-0.5, -1.1|-

2.4|-0.6). The craniotomy was sealed with a 4-mm glass cover slip and dental cement (Tetric 

EvoFlow). A light-weight head-post was fixed on the skull using dental cement. For the 3 days 

following the surgery, animals were monitored and analgesics (Metacam, 5 mg/kg, s.c.) and 

antibiotics (Baytril, 10 mg/kg, s.c.) were administered. Animal handling began 5 days after surgery 

and the first imaging session took place >21 days after virus injection.  

 

Behavioural task and mouse training. The setup for the go/no-go texture discrimination task has 

been described previously12,35. Each trial started with the opening of the laser shutter (Thorlabs, 

SH05/M) followed after 1 s by an auditory tone (two 2-kHz beeps of 100-ms duration with 50-ms 

interval). Then, either the rough or smooth texture (P100/P1200 sandpapers) was moved for 2 s 

towards the whiskers on the right side of the animal’s snout. We presented the two texture types 

randomly but with no more than 3 repetitions. In expert mice, which typically show anticipatory 

whisking, the first texture-whisker touch typically occurs around 0.5 s before the texture stops35. After 

a 2-s stimulus presentation period the texture was retracted and an auditory tone (4 beeps of 4 kHz; 

50-ms duration with 25-ms intervals) signalled the start of the 2-s response period. A water reward 

was given when the mouse licked in the outcome window after the presentation of the go texture 

(‘Hit’). The first lick during the outcome window triggered the feedback. Licks during the late-touch 

window were not punished but ignored. A white noise punishment was given for licking in the 

outcome window for the no-go texture (‘False alarm’, FA). When the mouse withheld licking after the 

presentation of the go texture (‘Miss’) or the no-go texture (‘Correct rejection’) neither reward nor 

punishment was given. In the first training session, the identities of go and no-go textures were 

randomly assigned to the animal and maintained for the whole experiment (go texture: P100 in 3 

mice and P1200 in 5 mice). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


 

13 
 

Animals were kept on a reversed light/dark cycle. After accustoming the mice to the experimenter, 

habituation to head-immobilization began. We increased head-restraining time with every training 

session, carrying out two session per day. Mice were water scheduled for behavioural training once 

they sat quietly for >2 min and were introduced to the experimental setup. Weight, health and water 

intake were monitored daily. During the first two sessions in the setup, mice only received water 

reward (~5 µl per repetition). In session 3 and 4 the go-texture presentation was introduced and an 

automatic water reward was given, to form an association between texture and reward. Once the 

mice were able to trigger the water reward autonomously, the no-go texture was introduced starting 

from presentation in 1% of the cases and gradually increasing to 50%. The first imaging session was 

scheduled when mice licked consistently for both the textures. Imaging sessions were carried out 

once per day per animal and lasted as long as a mouse actively engaged in the task (63-209 trials 

per session). For the first 3-5 imaging sessions go and no-go textures were presented each in 50% 

of the trials. Thereafter, to facilitate learning, presentation of the no-go texture was repeated in trials 

following an error trial (false alarm or miss). This ‘repeat-incorrect’ strategy was accounted for in the 

calculation of behavioural performance by considering the occurrence of the go-texture in a sliding 

window of 5 trials. Mice learned to differentiate the textures and showed stable expert performance 

(>75% correct trails) after 12-18 sessions. Performance of each animal was quantified by a state-

space smoothing algorithm that provides a learning curve with confidence intervals36. The first expert 

trial and the last naïve trial were identified by an expectation maximization algorithm using a 

Gaussian state equation. Learning onset (i.e., the last naïve trial) was defined as the trial when the 

lower 95% confidence interval exceeded 50% correct responses. The first expert trial was defined 

as the trial, from which on onwards the performance of the animal exceeded chance level with 95% 

confidence. For analysis of the learning process of all mice, we aligned learning curves to the first 

expert trial and used a time window of 500 trials before and 150 trials after the first expert trial (trial 

ID -500 to 150).  

 

Recording of licking and whisking behaviour. Using a 950-nm infrared LED, whisker motion was 

imaged during the trial at 40 Hz using a high-speed CMOS camera (A504k, Basler). The average 

whisking angle across all whiskers was analyzed from the videos using a whisker tracking software37. 

The whisker envelope was extracted as the difference between the maximum and minimum whisker 

angle using the Matlab function envelope. The estimated time point of the first touch between whisker 

and texture was obtained by calculating the time of the average whisker envelope maximum within 

the pre-touch and touch window across one session. Licking was estimated based on the event rate 

from the capacitive lick sensor sampled at 100 Hz. The lick rate was calculated based on the number 

of lick events in a 200-ms sliding window, assuming that an average lick event lasts 4 ms. 
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Two-photon calcium imaging. In vivo awake calcium imaging was performed using a custom-built 

two-photon microscope equipped with a Ti:sapphire laser system (Chameleon Ultra, Coherent), a 

water-immersion objective (CFI LWD 16X/, 0.8 NA; Olympus), a custom-built scanner unit with a 4-

kHz resonance scan mirror (CRS 4KHz, Cambridge Technology) and a galvometric mirror (6220H, 

Cambridge Technology), a Pockel's Cell (Model 350-80-LA-02, Conoptics, Danbury, CT) and a 

hybrid-photodetector (HPDs, R11322U-40 MOD, Hamamatsu). The microscope was controlled by 

the custom-written software Scope23 (http://sourceforge.net). An electrically tunable lens (ETL; 

Optotune EL-10-30-TC, Optotune AG, Zurich, CH; with an plano-concave offset lens, f = -100 mm, 

Qioptiq) was imaged on the scan mirrors using a 1:1 telescope of f= 100 mm lenses (AC254-100-B-

ML, Thorlabs). For initial identification of GCaMP6f-positive neurons, a volume stack was acquired 

using 800-nm excitation and a green emission filter (510 ± 42 nm bandpass). For calcium imaging, 

GCaMP6f was excited at 920 nm. Four imaging planes were identified per animal, spanning from 

close to the pia mater to below the nexus of L5 tufts (approx. -30 µm to -370 µm).  Images were 

acquired at 10 Hz with 508x168 pixel resolution resulting in a 230 µm x 230 µm field of view. Laser 

power was adjusted per plane ranging from 10 to 65 mW under the objective. Single trials of >7 s 

duration were recorded with 4-s inter-trial intervals.  

 

Optogenetic silencing. To transiently suppress dendritic tuft activity of L5 pyramidal neurons in 

barrel cortex during reward delivery (in the outcome window), we used the same surgical procedure 

of virus injection and window implantation as described for the calcium imaging experiments. In five 

mice, we made three injections of undiluted AAVretro-hSyn1-chI-FLEX-mCherry_2A_NLS_FLPo 

virus solution (6.3 x 1012 vg/ml) into S2 and three injections of AAV-1/2-hSyn-chl-dFRT-

eArchT3.0_EYFP-dFRT virus solution (5.3 x 1012 vg/ml) in S1 barrel cortex (coordinates and 

volumes as described above). In three additional mice we expressed eYFP (AAV5-EF1a-fDIO-

EYFP_WPRE, 4.9 x 1012 vg/ml) instead of eArchT3.0 for control. After the implantation of the glass 

window, a ferrule holding an optical fiber (910 µm) was positioned and secured in place with dental 

cement above the window centered over barrel cortex. Animal handling and training was carried out 

as described above. Once mice reliably licked for water in the experimental setup, 561-nm green 

laser light (5 mW, CW laser Coherent OBIS-561-50 LS) was delivered through the optical fiber in 

100% of the trials. The perturbation only occurred during the outcome window of the trial, lasting 2.4 

s (4.8 - 7.2 s in trial time). After 1800 trials of laser perturbation, optogenetic silencing was stopped. 

The optical fiber transmitting the laser light to the behavioural setup was detached from the ferrule 

placed above the craniotomy. This change preserved similar light conditions and allowed the mouse 

to behave and learn without the optogenetic manipulation. Experiments were stopped after 8 weeks 

of experimentation in accordance with our animal licence. For mice that did not reach expert 

performance levels, but performed above chance levels at this time, the last recorded trial was 

considered as their first expert trial. Licking behaviour was constantly recorded during the whole 
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experiment. To determine the effect of optogenetic perturbation on whisking behaviour, we 

connected the optical fiber to the ferrule in expert mice and applied laser illumination in 50% of trials. 

We analyzed whisking behaviour as described above and the conditions with and compared without 

manipulation.  

 

In vivo electrophysiological recordings. To validate the effect of optogenetic perturbation we 

performed acute in vivo recordings in lightly anesthetized mice (n = 3) expressing eArchT3.0 

selectively in S1S2 L5 neurons. At the start of validation experiments, animals were anesthetised 

with isoflurane (2% for induction and <1.5% during recording), and their body temperature was 

maintained at 37°C using a heating pad. A small craniotomy (<1 mm diameter) was performed over 

the area of virus injection in barrel cortex and the brain was covered with silicon oil. A silver wire was 

placed in contact with the cerebrospinal fluid through a small (0.5 mm) trepanation over the 

cerebellum to serve as reference electrode. A silicon probe (Atlas Neurotechnologies, 32-contact 

linear array with 50 µm inter-contact spacing) was inserted into the left cortical hemisphere. The top-

most electrode was left in contact with the surface of the brain under visual guidance, to ensure that 

the probe covered the entire cortical column including superficial L1. A fiber optic cannula was 

positioned to deliver laser light (561 nm, 5 mW) to the surface of the brain just adjacent to the silicon 

probe, but not inserted into the brain. After positioning of the silicon probe and cannula, the 

preparation was left for 30 min to allow the brain and electrode to stabilise. After stabilisation, the 

broadband voltage was amplified and digitally sampled at a rate of 30 kHz using a commercial 

extracellular recording system (RHD2000, Intan Technologies). Spontaneous activity was recorded 

over 1-1.5h long recording sessions divided into trials (7-s duration, laser on for 2 s) separated by 

1-s inter-trial intervals, mimicking the awake optogenetic experiments. The raw voltage traces were 

processed offline using fourth-order Butterworth filters to separate the local field potential (< 400 Hz 

lowpass filter) and the multi-unit activity (MUA; bandpass filter 0.46-6 kHz). Subsequently, the local 

field potential was used to compute the current source density in order to localize currents arising 

from the optogenetic stimulation. The high-pass data were thresholded at 5.5 times the standard 

deviation across the recording session and the numbers of spikes in windows of interest were 

counted. In order to combine data across mice, the activity at sites with clear MUA was expressed 

in percent of the baseline value, i.e. the average spike rate during the period without laser 

illumination.   

 

Cleared tissue light-sheet microscopy. Two mice were injected with retrograde AAVretro-hSyn1-

chI-FLEX-mCherry_2A_NLS_FLPo virus in S2 and AAV5-EF1a-fDIO-EYFP_WPRE virus in S1 (for 

details see above) and their brains were cleared using the CLARITY protocol38,39. In brief, after 4 

weeks of expression, mice were perfused and the brains post-fixed for 48 hours in a hydrogel 

solution (1% paraformaldehyde, 4% acrylamide, 0.05% bis-acrylamide, 0.25% VA044) before the 
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hydrogel polymerization was induced at 37°C. Then the brains were placed in 40 ml of 8% SDS at 

room temperature (RT) for approx. 25 days. The brains were put into a refractive index matching 

solution (RIMS) and equilibrated for 1 day before imaging.  

We visualized sparsely GCaMP6f-labelled S1S2 L5 neurons after clearing brain hemispheres (n 

= 2) with a custom iDISCO protocol40. After 4 weeks of expression, mice were perfused and the 

brains post-fixed in 4% PFA in PBS for 4.5 hours at 4°C, shaking at 40 rpm. Brain hemispheres were 

washed in PBS for 3 days at RT and 40 rpm, with daily solution exchange. Samples were dehydrated 

in serial incubations of 20%, 40%, 60%, 80% methanol (MeOH) in ddH2O, followed by 2 times 100% 

MeOH, each for 1 hour at RT and 40 rpm. Pre-clearing was performed in 33% MeOH in 

dichloromethane (DCM) overnight (o.n.) at RT and 40 rpm. After 2 times washing in 100% MeOH 

each for 1 hour at RT and then 4°C at 40 rpm, bleaching was performed in 5% hydrogen peroxide 

in MeOH for 20 hours at 4°C and 40 rpm. Samples were rehydrated in serial incubations of 80%, 

60%, 40%, and 20% MeOH in in ddH2O, followed by PBS, each for 1 hour at RT and 40 rpm. 

Permeabilization was performed by incubating the mouse hemispheres 2 times in 0.2% TritonX-100 

in PBS, each for 1 hour at RT and 40 rpm, followed by incubation in 0.2% TritonX-100 + 10% dimethyl 

sulfoxide (DMSO) + 2.3% glycine + 0.1% sodium azide (NaN3) in PBS for 3 days at 37°C and 65 

rpm. Blocking was performed in 0.2% Tween-20 + 0.1% heparine (10 mg/ml) + 5% DMSO + 6% 

donkey serum in PBS for 2 days at 37°C and 65 rpm. Samples were stained gradually with primary 

polyclonal chicken-anti-GFP antibody (Aves Labs, GFP-1020) and secondary donkey-anti-chicken-

AlexaFluor488 antibody (Jackson ImmunoResearch, 703-545-155) 1:400 in 0.2% Tween-20 + 0.1% 

heparine + 5% DMSO + 0.1% NaN3 in PBS (staining buffer) in a total volume of 1.5 ml per sample 

every week for 4 weeks at 37°C and 65 rpm. Washing steps were performed in staining buffer 5 

times each for 1 hour, and then for 2 days at RT and 40 rpm. Clearing was started by dehydrating 

the samples in serial MeOH incubations as described above. Delipidation was performed in 33% 

MeOH in DCM o.n. at RT and 40 rpm, followed by 2 times 100% DCM each for 30 minutes at RT 

and 40 rpm. Refractive index (RI) matching was achieved in dibenzyl ether (DBE, RI = 1.56) for 4 

hours at RT.  

3D stacks of cleared brains and hemispheres were acquired using a mesoSPIM light-sheet 

microscope41 (www.mesospim.org). Imaging data were post-processed using custom-written 

routines in MATLAB. To visualize neurons, local contrast enhancement was performed per slice by 

subtracting a Gaussian-smoothed version of the slice (4σ). Barrels were visible in the green 

autofluorescence channel. An anatomical barrel map was fitted to the barrel autofluorescence using 

the MATLAB functions cpselect and fitgotrans. 3D volume projection was performed using Imaris 

(9.8.0, Oxford Instruments). 

 

Confocal histology. After the last awake imaging session mice were administered a lethal dose of 

pentobarbital (Ekonarcon, Streuli) and transcardially perfused with sterile NaCl (0.9%) followed by 
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4% paraformaldehyde (PFA, 0.1 M phosphate buffer, pH 7.4). From 100-µm thick coronal brain 

slices we acquired histological images with a confocal laser-scanning microscope (Olympus 

FV1000). Coronal sections were registered to Paxinos and Franklin’s mouse brain atlas using 

manually set landmarks using cpselect (MATLAB) and aligning the atlas via fitgeotrans (MATLAB). 

 

Morphological reconstructions. Anatomical two-photon image stacks of all field of views were 

aquired before behavioural training using the two-photon microscope with 800-nm laser excitation. 

3D reconstructions of imaged dendritic tufts were obtained using the semi-manual interpolation 

option of the VolumeSegmenter app in MATLAB. Tuft membership was determined based on the 

morphological stacks as well as on high correlation of calcium signals. In 42 neurons, the trunk could 

be clearly identified together with its corresponding daughter tuft branches. The comparison of 

functional class within dendritic tufts as well as the LE/GE analysis were performed on this subset 

of neurons. 

    

Preprocessing and visualization of calcium imaging data.  Motion correction of the acquired 

movies of GCaMP6f fluorescence was carried out by a custom-written Python pipeline using the 

NoRMCorre algorithm for non-rigid artefact correction provided by CaImAn42. Single non-overlapping 

dendritic branches were identified and regions of interest (ROIs) were defined manually for each 

session. A consistent nomenclature was used to identify the same dendritic branches over 

consecutive sessions. If multiple ROIs along the same branch were identified, only the ROI closest 

to the trunk was used for further analysis. Calcium indicator fluorescence signals were extracted 

using custom software routines written in MATLAB (Mathworks). Background fluorescence was 

estimated in a background ROI as the bottom 1st percentile fluorescence signal across the entire 

session and subtracted before calculating the relative percentage change of fluorescence from 

baseline ΔF/F = (F-F0)/F0. Baseline fluorescence F0 was computed as 51st percentile of the 

fluorescence signal in a 4-s sliding window. ΔF/F traces were smoothed with a 5-point 1st-order 

Savitsky-Golay filter. Upon visual inspection, we manually excluded calcium traces with obvious 

artefacts such as motion-induced artefacts, light reflections from the texture, or non-physiological 

calcium traces. All remaining data were visualized using an Euclidian-distance based UMAP 

embedding (UMAP embedding 1; Supplementary Fig. 4) with a neighbourhood size of 100 data 

points in the high-dimensional space. For further analyses, detectable transients were defined as 

fluorescence signals that deviated from baseline by >5.5 standard deviations. The set of trials with 

detectable F/F transients was visualized using a correlation metric-based UMAP embedding 

(UMAP embedding 2) and a neighbourhood size of 30 data points in the high-dimensional space. 

Analysis and data exploration was carried out using dataspace13 and custom-written MATLAB code. 

To determine the onsets of calcium transients, we found for every threshold-crossing event the peak 

position in a given trial (highest peak found by MATLAB function findpeaks with minimal distance 
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between peaks of 1 s and >25% ΔF/F peak prominence). Local maxima were not included in further 

analysis. Based on the determined primary transient peak, the calcium transient onset time point 

was defined as the minimum of the first derivative of the ΔF/F trace until 1 s prior to the detected 

peak. Transients with their peak position within the start window (0-1 s of trial time) were not 

considered as their onset likely occurred during the inter-trial interval. Density maps of calcium 

transient onsets were derived by calculating the distribution of onset time points in 50-trials bins of 

from naïve to expert condition. 

Functional co-evolution of dendritic signals and transformation clustering. To assess learning-

related functional changes of trial-related calcium traces in individual dendritic branches or trunk 

ROIs we employed the custom-developed approach of “transformation clustering” that is inspired by 

earlier work using nearest neighbour graphs to understand high dimensional data13. Functional 

changes across the learning time course in one dendritic branch were compared to the changes of 

any other dendritic branch in our dataset as follows:  

Let 𝑑 and 𝑑’ denote a pair of dendritic ROIs with trial responses 𝑥𝑖
𝑑 and 𝑥𝑖

𝑑′
∈ ℝ70 (7-s recording at 

10 Hz), where 𝑖 denotes the index of the trial (the trial ID) in which the response was recorded. Note 

that many trials contain no detectable transients (as defined above). Let 𝑖1, … , 𝑖𝑘 denote the indices 

of the trials in which dendritic ROI 𝑑 shows a detectable transient. Let 𝑁𝑁𝑘(𝑑,  𝑖,  𝑑′) denote the set 

of 𝑘 nearest neighbours of the trial response 𝑥𝑖
𝑑 among all responses 𝑥𝑖

𝑑′
 for dendritic ROI 𝑑′ that 

show detectable transients. Let 𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) denote the set of trial indices of the nearest 

neighbours of the trial response 𝑥𝑖
𝑑 among the activations for ROI 𝑑′: 

𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) = {𝑗 | xj

d′  

∈ 𝑁𝑁𝑘(𝑑,  𝑖,  𝑑′)}                                              (1) 

Finally, let <𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖,  𝑑′) > denote the average of those trial indices. We define the similarity of 𝑑 

and 𝑑′ as the correlation coefficient between the two vectors [𝑖1, … , 𝑖𝑘] and [<𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖1,  𝑑′) >, … , <

𝑁𝑁𝑡𝐼𝐷
𝑘 (𝑑,  𝑖𝑘 ,  𝑑′) >].  We refer to this correlation coefficient as 𝑇𝑐𝑐𝑑𝑑′ (transformation correlation 

coefficient). To assess significance of the correlation, we compared the actual 𝑇𝑐𝑐𝑑𝑑′  to a null 

hypothesis derived by shuffling trial IDs for dendritic ROI d’. Shuffling removes the long term temporal 

relationship between ROIs 𝑑 and 𝑑′. We define the corrected transformation correlation coefficient, 

𝐶𝑇𝑑𝑑′, as the inverse percentile of 𝑇𝑐𝑐𝑑𝑑′ with respect to the null hypothesis distribution generated 

by many shuffle iterations (e.g. 1’000).   

Let CT denote the square matrix of corrected transformation correlation coefficients for all pairs of 

dendritic ROIs d and d’. We compute a symmetric dissimilarity matrix, 𝐃, through 𝐃 =  −(𝐂𝐓 + 𝐂𝐓T), 

where 𝐂𝐓T denotes the matrix transpose of 𝐂𝐓. We applied hierarchical link clustering to extract 

transformation clusters. We achieved comparable results using k-means clustering after applying 

multidimensional scaling to the dissimilarity matrix 𝐃. 
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Note that only dendritic ROIs with more than 40 F/F traces with detectable calcium transients 

spanning a range of more than 500 trial IDs were included in the initial transformation clustering 

analysis. The results from this initial clustering were greedily expanded in order to assign cluster IDs 

also to dendritic branches and apical trunks that had only 6-39 trials with detectable calcium 

transients (independent of the range of recorded trial IDs). For these dendritic ROIs we calculated 

corrected transformation correlation coefficients with all other previously classified dendritic ROIs. 

The 5 previously classified ROIs with highest coefficients values (corresponding to the smallest 

dissimilarities) were selected and the predominant cluster ID of this set was as assigned to the 

unclassified ROI. 

Detection of local and global events. In the analysis of local events (LE) and global events (GE) 

we included the 42 neurons with identified trunk ROI. F/F traces in all ROIs of a tuft were compared 

by binarizing the aligned ΔF/F traces such that all time bins with a calcium transient peak were 

assigned a ‘1’ and all other time bins zeros, forming a binary matrix with dimensions ROIs × frames. 

Trials without any detectable transient were labelled ‘no event’ trials. Trials with any detectable event 

in the trunk, irrespective of the activity in the tuft branches, were classified as global event (GE) trials. 

Transients occurring in the tuft branches in a 2-s time window around the trunk event (-1 to +1 s) 

were considered to be related to the GE. If no detectable transient occurred in the trunk but one or 

several tuft branches showed transients (with peak times not spread over more than 2 s) this trial 

was labelled as a LE trial. If several ROIs showed calcium transients during a LE, the ROI with the 

largest transient amplitude was selected for further analysis. A ‘mixed trial’ contained a GE and a 

LE, with the GE peak (in the trunk ROI) and the LE peak (in the tuft ROI with the largest transient 

amplitude) separated by more than 1 s. All detected LE and GE were double-checked and manually 

approved. Event probabilities were calculated depending on various parameters, such as tuft cluster 

identity, trial type and trial window. The numbers of GE or LE events in 16-trial bins were determined 

and the probability was calculated as the number of events per tuft and per trial. For the statistical 

analysis, values were averaged for 4 training periods (‘naïve’: trial ID -500 to -351, ‘learning 1’: -350 

to -176; ‘learning 2’: -175 to -1; and ‘expert’: 0 to 150) followed by one-way ANOVAs. The average 

number of trials with events across tufts was calculated by summing up the number of GE and LE 

per trial window per period and significance tested with one-way ANOVAs.  

 

Discrimination analysis for apical trunks. Analysis of the trial type discriminability of GE was 

carried out for 42 trunks. We tested the discrimination power of the trunk population in two trial time 

windows and in the 4 training periods (‘naïve’, ‘learning 1’, ‘learning 2’, and ‘expert’). The first trial 

time window included pre-touch, touch and a fraction of the late-touch window (2.3-3.5 s in trial time) 

and the second window was defined around the outcome period (4.9-6.9 s in trial time). We 

calculated discriminability of Hit vs. CR, Hit vs. FA, and FA vs. CR trials for the tuft pool by 

determining the number of detectable transients per window and per training period. The receiver-
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operating characteristics (ROC) curve was calculated and the area under the curve (AUC) 

determined using the MATLAB function perfcurve. The 95% confidence interval was obtained by 

shuffling trial type labels 5’400 times (100 times per trunk) and calculating the 95th and 5th percentile 

of the shuffled data set per bin.  
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Supplementary Figures 

 

Supplementary Figure 1 | Histological characterization of imaged S1S2 L5 pyramidal neurons. a, 

Coronal confocal overview image of GCAMP6f-labelled L5 pyramidal neurons in barrel cortex (green) and 

retrogradely-labelled mCherry-tagged neurons (red) with projections to S2. b, Maximum-intensity projection of 

a confocal image stack of sparsely labelled L5 neurons expressing GCaMP6f in S1 barrel cortex (150 m 

slice). Note that most apical dendrites were cut in this slice preparation. c, Visualization of the location of 

sparsely-labelled GCaMP6f-expressing L5 neurons in barrel cortex from an iDISCO-cleared hemisphere. Top: 

Dorsal view of L5 soma location in barrel cortex, with barrel map overlaid according to L4 autofluorescence. 

Bottom: Sagittal view of L5 neurons in barrel cortex along the A/P axis. Note, the maximum-intensity projection 

of GCaMP6f-expressing neurons was calculated across the whole of barrel cortex (1.3 mm slice) whereas the 

barrel map outline was derived from a reduced stack (210 m slice) as visualized in the schematic above (red 

strip). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


 

22 
 

 

Supplementary Figure 2 | Change of behavioural variables during learning. a, Average whisking envelope 

in naïve and expert mice split by trial type (6311 naïve Hit, 4952 expert Hit, 28919 naïve CR, 3811 expert CR, 

10938 naïve FA and 2769 expert FA trials, 8 mice, mean ± s.e.m.). b, Average lick rate in naïve and expert 

mice split by trial type (same number for trials as in (a); 8 mice, mean ± s.e.m.). c, Relationship of mean lick 

rate and mean ΔF/F levels during the outcome trial window (41387 trials; 8 mice, ρ = 0.07). 
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Supplementary Figure 3 | Mapping of various features of trial-related dendritic calcium signals in the 

UMAP space. a, UMAP embedding of all ΔF/F traces with detectable calcium transient onsets within trials 

coloured by mouse ID (left), tuft ID (middle), and dendrite ID (right; 22’027 data points, NN=30). b, UMAP 

embedding of ΔF/F traces of sensory and reward class coloured according to their cluster ID. Note that trials 

of both classes are inter-mixed within the UMAP embedding. The classes can only be separated by their 

temporal profile of activity changes during learning as shown in c, UMAP embedding of ΔF/F traces in 

dendrites of sensory and reward class, coloured according to smoothed trial ID.  
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Supplementary Figure 4 | Processing pipeline for dendritic ΔF/F data. a, Flow chart for ΔF/F data 

processing. b, Number of traces, neurons and dendritic branches per processing step. Note not for every 

neuron a trunk was recorded. Colour in (3) and (5) are based on transient onset times (4b). c, Relationship 

between silhouette values and cluster numbers obtained as an alternative clustering approach for 

transformation clustering step 7 using k-means clustering. Black line indicates mean silhouette value (k = 2-

10 clusters, 100 repetitions each). 
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Supplementary Figure 5 | Average ΔF/F traces per trial type and functional cluster. a, Average ΔF/F 

traces across trial types for dendritic branches belonging to reward (left) and sensory (right) class. Averages 

include only trials of tuft branches and apical trunks with a detectable calcium transient onset and are shown 

separately for the naïve (black) and expert (green) condition. Note that average ΔF/F traces reflect both 

transient abundance and transient amplitudes, while transient onset densities shown in Fig. 2c do not consider 

amplitudes. (Reward dendrites: 1452 naïve Hit, 964 expert Hit, 304 naïve CR, 597 expert CR, 1472 naïve FA, 

402 expert FA trails; Sensory dendrites: 1383 naïve Hit, 1671 expert Hit, 566 naïve CR, 1283 expert CR,2377 

naïve FA, 714 expert FA trails; n = 8 mice; mean ± s.e.m).  
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Supplementary Figure 6 | Morphological reconstructions of imaged dendritic tufts and their 

functional composition. a, Fraction of apical branches per class across imaging planes. b, Number of 

branches per functional class per tuft (n = 42). Dendrites that were not assigned to a class due to insufficient 

data point are shown in black. c, Absolute number of apical in sensory and reward tufts (13 ± 7 and 9 ± 5 

branches, respectively; mean ± s.d.; p = 0.08, Student t-test; Black line: median , box:  25th and 75th 

percentile,  whiskers: 5th and 95th percentile, outliers: points. d, Examples of L5 apical dendritic tufts 

reconstructed from two-photon image stacks. Branches are colour-coded according to their functional class. 
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Supplementary Figure 7 | Characteristics of local and global events. a, Example ΔF/F traces of GE (top 

row) and LE (bottom row) for all ROIs in an example tuft (trunk: red; tuft branches: black). b, Data processing 

flow for event classification. c, Mean ΔF/F values for all tuft branches versus the mean ΔF/F value of the 

corresponding trunk in the same trial (ρ = 0.65 for all data points). Top: Colour code according to the trunk-tuft 

correlation value across each trial. Bottom: Colour code indicates the event type. d, Correlation between ΔF/F 

traces in apical branches and trunks across imaging planes within and across tufts during learning (42 tufts, 

mean ± s.e.m).  

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2021. ; https://doi.org/10.1101/2021.12.28.474360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474360


 

28 
 

 

 

 

Supplementary Figure 8 | Local and global event probabilities in CR and FA trials.  a, Overall probability 

for GE and LE per trial across learning in CR trials(Shaded areas: s.e.m.). b, GE and LE probability in CR split 

by trial window (pre-touch, touch, late-touch and outcome) and trunk class (p= 0.007, 0.025, 0.016 for GE in 

sensory tufts in pre-touch window between naïve and expert, learning 1 and expert and learning 2, and expert, 

respectively; p=0.034 for LE in sensory tufts in late-touch window between naïve and learning 1; one-way 

ANOVA). c, Overall GE and LE probability in FA trials. d, GE and LE probability in FA trials, split by trial window 

and trunk class (p = 0.047,0.042 and 0.047 for GE in reward tufts in late touch window between naïve and 

learning 1, learning 1 and learning 2 and learning 1 and expert; p = 0.031 for GE in reward tufts in outcome 

window between naïve and expert; one-way ANOVA). 
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Supplementary Figure 9 | AUC-based discrimination ability of L5 trunk population. a, Discrimination 

power of global dendritic tuft output (GE) was assessed in two windows (window 1: pre-touch, touch and 

partially late-touch; window 2: outcome window). b, Pooled AUC-based discrimination power for Hit versus CR 

trials for all recorded trunks(Confidence intervals: 95th and 5th percentile of randomly shuffled data). c, Pooled 

discrimination of Hit versus FA trials. d, Pooled discrimination of FA versus CR trials. 
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Supplementary Figure 10 | Influence of optogenetic perturbation on learning. a, Learning curves of 

various control experiments with eArchT3.0-, YFP- or GCaMP6f-expressing mice excited by 651-nm or 920-

nm laser light with 2.5, 5.0, 7.5 or >120 mW light intensity(Green line : end of the laser perturbation after 1’800 

trials).   
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Supplementary Figure 11 | Behavioural variables during optogenetic manipulation. a, Average lick rates 

during Hit trials in eYFP-expressing control mice (n = 3; 5 mW laser illumination at 561 nm; 321, 401 and 589 

trials in the naïve, learning and expert condition) and eArchT3.0-expressing mice (n = 5; 5 mW laser 

illumination, 1000 trials per condition) during and after perturbation (end of perturbation= last 200 perturbation 

trials, mean ± s.e.m). b, Comparison of normalized cumulative distribution of reward-triggering licking onsets 

in Hit trials in eArchT3.0- and eYFP-expressing mice. c, Average whisking angle in Hit trials in expert mice in 

laser on and laser off trials (468 and 428 trials; n = 3 mice).   
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