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ABSTRACT 
 

Missense mutations that compromise the plasma membrane expression (PME) of integral membrane 
proteins (MPs) are the root cause of numerous genetic diseases. Differentiation of this class of 
mutations from those that specifically modify the activity of the folded protein has proven useful for the 
development and targeting of precision therapeutics. Nevertheless, it remains challenging to predict 
the effects of mutations on the stability and/ or expression of MPs. In this work, we utilize deep 
mutational scanning data to train a series of artificial neural networks to predict the effects of mutations 
on the PME of the G-protein coupled receptor (GPCR) rhodopsin from structural and/ or evolutionary 
features. We show that our best performing network, which we term PMEpred, can differentiate 
pathogenic rhodopsin variants that induce misfolding from those that primarily compromise signaling. 
This network also generates statistically significant predictions for the effects of mutations on the PME 
of another GPCR (β2 adrenergic receptor) but not for an unrelated voltage-gated potassium channel 
(KCNQ1). Notably, our analyses of these networks suggest structural features alone are generally 
sufficient to recapitulate the observed mutagenic trends. Moreover, our findings imply that networks 
trained in this manner may be generalizable to proteins that share a common fold. Implications of our 
findings for the design of mechanistically specific genetic predictors are discussed.  
 

Introduction 
 

Integral membrane proteins (MPs) are prone to misfolding and degradation, which leaves them 
vulnerable to the effects of destabilizing mutations.1 This intrinsic instability ultimately constrains their 
mutational tolerance.2 Indeed, a survey of 10,000 human genomes revealed that genetic variation is 
suppressed within regions encoding transmembrane domains (TMDs).3 Mutations that alter the 
physicochemical properties of TMDs can potentially disrupt membrane topology,4 folding,5,6 and/ or 
oligomerization.7-9 This type of mutation (class II) most often causes a reduction in the expression of 
the functionally mature protein at the plasma membrane (plasma membrane expression, PME), which 
is an underlying mechanism for numerous diseases of proteostasis.1 Efforts to target small molecules 
that correct such conformational defects to patients bearing class II variants have revolutionized the 
treatment of cystic fibrosis-10-13 a quintessential disease of MP misfolding.14 This breakthrough 
demonstrates that an understanding of the molecular effects of mutations can provide a decisive 
advantage in the development and targeting of precision therapeutics.15 Nevertheless, it remains a 
formidable challenge to rationalize the effects of most mutations on MP folding and function.16 
 

According to the UniProt database, there are currently over 1,200 known disease-linked MPs, many of 
which are established drug targets.17 Some of these genes are associated with hundreds of genetic 
variations that elicit mechanistically diverse molecular effects that have been linked to one or more 
disease phenotypes. Most of these variants remain uncharacterized, and computational inference is 
therefore required to interpret their molecular effects. Most knowledge-based algorithms developed for 
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such purposes (ie SIFT18 and PolyPhen219) have been trained against collections of variants that have 
been loosely associated with a complex spectrum of clinical phenotypes (ie ClinVar). Though these 
predictors are generally useful, the performance is ultimately constrained by inconsistencies within the 
training data. Recent efforts generate more accurate predictions have instead turned to biochemical 
training data. A collection of 21,026 deep mutational scanning (DMS) measurements was recently used 
to develop a machine learning algorithm (Envision) that produces more accurate, quantitative 
predictions for the effects of missense variants on protein function.20 However, these training data were 
devoid of mutational data from MPs and the algorithm was not designed to distinguish between the 
effects of mutations on expression versus activity. The effect of mutations on the thermal stability of 
MPs21 or on their expression levels in E. coli22,23 have been predicted with some success, though it is 
unclear whether either of these factors should directly relate to PME levels in eukaryotic cells. Smaller 
sets of experimental measurements have been used to develop algorithms that predict the proteostatic, 
functional, or phenotypic effects within specific MPs of interest.24-26 Nevertheless, these specialized 
tools also exhibit limited accuracy and cannot produce generalized predictions for the effects of 
mutations within other proteins.  
 

In the following, we describe the development of a computational tool to predict the impact of mutations 
on the PME of G-protein coupled receptors (GPCRs) that we term the PME predictor (PMEpred). Using 
a limited set of DMS measurements, we trained a series of artificial neural networks (ANNs) to predict 
the effects of mutations on the PME of the rhodopsin GPCR (Figure 1), the misfolding of which is 
associated with retinitis pigmentosa (RP) and a series of other related retinopathies.27 We show that 
PMEpred can differentiate class II rhodopsin variants from other disease variants that are known to 
primarily disrupt function. We also find that PMEpred generates statistically significant predictions for 
the impacts of mutations on the expression of the β2 adrenergic receptor (β2AR) GPCR, though not for 
an unrelated voltage-gated potassium channel (KCNQ1). These findings suggest that networks trained 
to recognize mutagenic trends in one receptor can be generalized to others that share the same fold. 
Finally, an analysis of the feature set used by these networks suggests mutagenic trends in PME can 
be recapitulated from structural features alone, and that evolutionary features offer relatively little 
predictive power. This finding highlights important considerations for the development of 
mechanistically specific genetic predictors.  

 

 
Figure 1. Training artificial neural networks to predict the plasma membrane expression of membrane protein variants. A 
schematic representation depicts the general training approach and network architecture used to develop the PMEPred algorithm. 
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Results 
 

Feature Selection and Network Training 
 

We recently utilized DMS to measure the relative PME of 
rhodopsin variants in HEK293T cells.2 In relation to other DMS 
results, these data are relatively limited in scope (808 mutations 
covering two TMDs). Nevertheless, to our knowledge, these data 
constitute the only example of a high-quality mutational scan that 
was specifically designed to measure the PME of MP variants 
within a human cell line. We therefore trained a series of ANNs 
consisting of 131 input nodes and a single hidden layer of 32 
neurons to recapitulate the relative PME of these rhodopsin 
variants from an array of evolutionary and/ or structural features 
(Figure 1). Each ANN was trained using a previously described k-
fold cross validation procedure in which the output of the network 
is iteratively refined against non-overlapping sub-sets of the 
training data.24 To avoid over-fitting, we utilized a dropout 
procedure in which neurons are occasionally ignored during the 
training process. We first trained an ANN using the feature set 
employed by Envision20 in addition to various other evolutionary 
and structural features (Table S1). To incorporate additional 
evolutionary information into the feature set, we derived 
evolutionary rates and a position-specific scoring matrix (PSSM) 
for rhodopsin. We also used a previously described structural 
model of human opsin to generate descriptors associated with the 
structural context of each mutated residue.28 To estimate the 
effects of each mutation on the free energy of the native 
conformation, we calculated Rosetta ddG values and 
incorporated each of the underlying energy terms as independent 
features. Finally, to account for any potential changes in the 
fidelity of cotranslational membrane integration,28 we used the 
Punta-Maritan scale to estimate the effects of mutations on the 
transfer free energy associated with the membrane integration of 
TMDs.29  
 

An ANN trained with these features generates predicted relative 
PME values (PMEpred scores) that are correlated with the 
training data (Pearson’s R = 0.69, Figure 2A). Moreover, a 
receiver operating characteristic analysis suggests this network 
is effective in classifying variants based on whether they 
decrease the PME of rhodopsin (AUC = 0.873, Figure 2B). A sensitivity analysis reveals that the most 
predictive features include sequence-based descriptors (ie descriptors for residue properties) and 
characteristics related to secondary structure (ie DSSP terms, Table S2). It should be noted, however, 
that while evolutionary features are often the most powerful for functional prediction, we find that similar 
predictive power can be achieved using structural features alone (Figure S1, Table S3). Nevertheless, 
regardless of the specific features employed, we find this network architecture is generally capable of 
recapitulating the observed mutagenic trends. Hereafter, we will refer to the final version of this network 
that employs the full feature set as PMEpred.  
 
 
 
 

 
Figure 2. Evaluation of PMEpred scores 
in relation to experimental training data. 
A) The PMEpred scores for 808 missense 
variants of rhodopsin are plotted in relation 
to the corresponding deep mutational 
scanning data in the training set. A linear fit 
of the data is shown for reference (dashed 
line, Pearson’s R = 0.69). B) A receiver 
operating characteristic plot describes the 
ability of PMEpred scores to classify 
variants based on whether they decrease 
the PME of rhodopsin by at least 10% (Area 
Under the Curve = 0.873). The dashed line 
represents the position of a curve with zero 
predictive power. 
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PMEpred Scores of Pathogenic Rhodopsin Variants  
 

To assess whether PMEpred can differentiate misfolded variants 
from other loss-of-function (LOF) variants, we generated PMEpred 
scores for 128 mutations within rhodopsin that are known to cause 
RP or other related retinopathies. Though these disease variants 
are enriched with class II variants that compromise PME, the 
distribution of PMEpred scores for these variants is comparable to 
that of the comprehensive set of 6122 rhodopsin variants (Figure 
S2). We reason that this poor discrimination could stem from a lack 
of predictive power within the loop regions, which lack coverage in 
the training data. Indeed, when variants within the loops are 
omitted, leaving 2808 TMD variants, the PMEpred scores of RP 
variants skews lower than those of other TMD variants (Mann-
Whitney p = 0.002, Figure S2). Moreover, the PMEpred scores for 
the known class II variants within this subset skew much lower than 
those that are known to specifically compromise function (Mann-
Whitney p = 0.02, Figure 3). Overall, 71% of known class II variants 
are predicted to decrease PME (PMEpred score < 1.0, Matthew’s 
correlation coefficient = 0.39). The unclassified variants within this 
set exhibit a distribution of scores that is comparable to those of 
known class II variants (Figure 3), which is consistent with the fact 
that misfolded variants are generally the most common class of 
LOF variant.5,6,30 Together, these findings demonstrate that 
PMEpred can differentiate class II variants from other classes of 
mutations within TMDs with a 71% accuracy. 
 

Evaluation of PMEpred Scores for Other Proteins 
 

Given the limitations of the training data, we sought to determine 
whether PMEpred can generate useful predictions for other 
proteins. Benchmarking PMEpred is challenging given the current 
lack of other quantitative, large-scale data sets that specifically measure trends in PME. However, the 
functional effects of ~7,800 variants within the β2AR GPCR were recently reported.31 Though PMEpred 
is not designed for direct functional predictions, we would expect mutations that decrease PME to be 
enriched among LOF mutations. To evaluate PMEpred scores for LOF variants, we first compiled a 
β2AR feature set and used it to calculate PMEpred scores for each of its missense variants. We then 
applied a quality filter to remove noisy measurements from the experimental β2AR scan data and 
classified the remaining variants as either neutral or LOF based on the average functional score across 
all measured variants (Figure 4A). The distribution of PMEpred scores across the entire receptor are 
comparable for neutral and LOF variants (Figure 4B). However, LOF variants within TMDs exhibit 
significantly lower PMEpred scores relative to neutral TMD variants (Mann-Whitney p = 9.9 × 10-14, 
Figure 4B). This observation again suggests PMEpred is incapable of predicting the proteostatic effects 
of loop mutations, which we attribute to a lack of training data within these regions. Consistent with this 
interpretation, also observe discrimination between neutral and LOF variants within the smaller subset 
of variants within TMs 2 & 7 (Mann-Whitney p = 2.2 × 10-5, Figure 4B), which are the mutagenized 
helices included in the training data. Despite this limitation, our results show that PMEpred can 
differentiate between neutral and LOF of β2AR even though the later subclass is certain to contain 
variants that retain native expression levels. These observations demonstrate that networks trained 
with data from one GPCR are capable of spotting mutagenic trends in another. 
 

 
Figure 3. PMEpred Scores for known 
Rhodopsin Disease Variants. A box and 
whisker plot describes the distribution of 
PMEpred scores among all pathogenic 
missense variants within the TM domains 
of rhodopsin (second box) in relation to 
the subsets that are either known to 
induce misfolding (class II, fourth box), or 
are known to have normal expression 
(non-class II, fifth box), or are currently 
unclassified (seventh box). Gray boxes 
(first, third, and sixth) show scores for 
variants in loop regions in addition to 
TMDs. The center line reflects the median 
score. The upper and lower edges of the 
box reflect the positions of the 75th and 
25th percentile. The upper and lower 
whiskers reflect the 90th and 10th 
percentile values. A p-value from a 
pairwise Mann-Whitney U-test comparing 
these distributions is shown. 
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To evaluate the fidelity of PMEpred scores, we measured the PME 
of a set of 21 TM2 and TM7 variants that are predicted to increase 
or decrease the expression of β2AR (Table S4). Briefly, the β2AR 
variants bearing an N-terminal hemagglutinin (HA) epitope tag were 
transiently expressed in HEK293T cells. Surface immunostaining 
was then used to mark plasma membrane β2AR with a fluorescent 
anti-HA antibody. Cellular fluorescence intensities were then 
quantified by flow cytometry and normalized relative to that of cells 
expressing WT β2AR. Relative PME measurements do not appear 
to be linearly related to PMEpred scores (Figure 5A), which may 
arise in part from the difference in the dynamic range of PMEpred 
scores relative to normalized PME measurements. There also 
appear to be several false-negatives that score well yet are poorly 
expressed (Figure 5A). Despite these shortcomings, variants that 
are predicted to reduce expression by at least 10% (PMEpred score 
≤ 0.9) exhibit significantly lower measured PME than those that are 
predicted to have higher expression (Mann-Whitney p = 0.01, Figure 
5C) and the rank correlation between PMEpred scores and 
measured values is statistically significant (Spearman’s ρ = 0.49, p 
= 0.02). Trends are similar regardless of whether evolutionary 
features were included (Figure S3). These findings demonstrate that 
PMEpred can predict the proteostatic effects of mutations within the 
TMDs of a related GPCR.  
 

We next sought to evaluate whether PMEpred can predict 
mutagenic trends within a structurally unrelated MP. For this 
purpose, we generated PMEpred scores for a set of 50 recently 
characterized pathogenic variants6 of the voltage gated potassium 
channel KCNQ1. Notably, nearly all of these variants are predicted 
to decrease the PME of KCNQ1 (Figure 5C), which is somewhat 
consistent with the fact that this set is enriched with class II variants.6 
Nevertheless, PMEpred scores are generally uncorrelated with 
experimental PME measurements for these KCNQ1 variants (Figure 
5B). These results imply PMEpred is unlikely to generate useful 
predictions for structurally divergent MPs. 
 

Discussion 
 

Predicting the effects of mutations on the folding and/ or expression of MPs remains notoriously 
difficult,16 and efforts to improve such predictions address an imminent challenge in precision 
medicine.15 In this work, we used a limited set of DMS measurements to train an ANN to predict the 
PME of MP variants from various structural and evolutionary features. Though this is a relatively small 
set of training data (808 variants in two helices of a single receptor),2 we show that the resulting 
networks generate significant predictions for the proteostatic effects of known disease mutants within 
the other TMDs of the same protein (rhodopsin, Figure 3). We also find that this network can generate 
statistically significant predictions for the effects of TMD mutations on another related receptor (β2AR), 
but not for mutations within a structurally distinct ion channel (KCNQ1). The statistical power of our 
rhodopsin and β2AR predictions is generally comparable to that of current predictors of variant function 
that were developed with much larger sets of training data, which bodes well for the utility of DMS data 
for the development of more accurate expression predictors. We suspect the limitations exhibited by 
the current version of PMEpred, such as the inability to accurately predict effects within loop regions, 

 
Figure 4. Distribution of PMEpred 
Scores for Neutral and Deleterious 
β2AR Variants. A) A histogram depicts 
the distribution of activity scores among 
5,910 variants of the β2AR variants in the 
presence of 625 nM isoproterenol, as 
was reported in reference 31. A vertical 
line reflects 95% of the average 
functional score of all variants, which was 
used as a cutoff value to define the set of 
loss of function (LOF) variants. B) A box 
and whisker plot depicts the distribution 
of PMEpred scores among neutral and 
LOF variants within the entire set of 
variants (left), within the TMD residues 
(center), or within TM 2 & 7 (right). The 
center line in each box reflects the 
median score. The upper and lower 
edges of the box reflect the positions of 
the 75th and 25th percentile. The upper 
and lower whiskers reflect the 90th and 
10th percentile values. p-values from 
Mann-Whitney U-tests comparing these 
distributions are shown for reference. 
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can be overcome with the incorporation of more complete training data and features that more 
accurately capture the effects of mutations on protein stability. Nevertheless, it is unclear whether 
deeper training sets from a more diverse array of proteins will be sufficient to generate predictions that 
can be generalized across proteins with distinct folds.  
 

The networks described herein were designed for a specific application- to predict the PME of MP 
variants in eukaryotic cells. Expression should be less challenging to predict than function or fitness, 
which are composites of expression and activity. Nevertheless, our efforts to predict these proteostatic 
effects revealed several observations that merit further consideration. First we note that, while 
evolutionary features are often potent for functional predictions,32 we find our networks exhibit 
comparable performance without them (Figure S1). This potentially suggests evolutionary data are 
biased towards function in a manner that ultimately undermines their utility for expression predictions. 
This is consistent with a recent analysis of DMS measurements on the effects of missense variants in 
PTEN and NUDT15, which shows that evolutionary rates are more closely associated with activity 
measurements whereas Rosetta ddG values correlate more closely with variant abundance.33 Our PME 
measurements of β2AR variants include one notable variant (N322L) that illustrates how evolutionary 
data may obscure the proteostatic effects of certain mutants (Figure 5 A & C). This mutation is heavily 
penalized due to the extreme conservation of N322, which forms part of the NPXXY motif. However, it 
also makes a relatively polar TMD more hydrophobic, which can dramatically enhance receptor 
PME.2,22,28 A second noteworthy observation concerns the low PME of several β2AR variants that are 
predicted to have robust expression (Figure 5A). Considering that most random mutations are 
destabilizing34 and that decreases in conformational stability often coincide with reduced PME,5 the 
general prevalence of high PMEpred scores among β2AR variants may hint at a more general issue 
(Figure 4B). The range of scores generated by these networks is dictated by those within the underlying 
training data from rhodopsin, which is known to be among the most stable GPCRs. While rhodopsin 
may be able to withstand the effects of most destabilizing mutations, the margin for error may be 
slimmer for a less stable protein like β2AR. The extent to which changes in stability (ΔΔG) influence the 
folding efficiency and/ or PME of individual variants depends on the underlying free energy of folding 
(ΔG) of the WT receptor- a critical unknown. Future algorithms may therefore benefit from approaches 
to account for this hidden variable. It may also be worth considering whether this factor may contribute 
to protein-specific variations in performance among leading functional predictors.20  
 

 
Figure 5. Evaluation of PMEpred scores in relation to Relative PME measurements of β2AR and KCNQ1 variants. A) The 
PMEpred scores for select β2AR variants are plotted against the corresponding measured value for the relative plasma membrane 
expression levels, which are normalized relative to that of WT. B) The PMEpred scores for select KCNQ1 variants are plotted against 
the corresponding measured value for the relative plasma membrane expression levels, which are normalized relative to that of WT. 
Measured values were previously reported in reference 6. C) A box and whisker plot compares the distributions of measured plasma 
membrane expression levels among β2AR (left) and KCNQ1 (right) variants that are predicted to decrease expression by at least 
10% (PMEpred ≤ 0.9) to those for variants that are predicted to have robust expression (PMEpred>0.9). p-values from Mann-Whitney 
U-tests comparing these distributions are shown for reference. 
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The investigations described herein provide new tools for the prediction of the PME of GPCR variants 
while highlighting important considerations for the development of mechanistically specific prediction 
algorithms. Though the predictions generated by the current version of PMEpred are not necessarily 
accurate enough to call individual variants, they could potentially be used to help guide protein 
engineering efforts that leverage massively parallel gene synthesis. We expect the performance of such 
predictions to continue to improve as additional training data become available. Performance may also 
be improved by approaches to improve the curation of biased feature sets. 
 

Materials & Methods 
 

Curation of Feature Sets 
 

An initial set of features was derived from those previously employed by Envision (listed in 
Supplementary Table 2 of Reference 20),20 except for those that cannot be derived obtained from 
comparative structural models (i.e. B-factor). We added several additional features to the final set. 
Features included the relative solvent accessible surface areas for each residue, which was calculated 
from our structural models using NACCESS. We included other features related to solvent accessibility 
such as neighbor count and neighbor vector, which we calculated using the Biochemical Library 
(BCL).35 Finally, the depth of an amino acid as measured by the distance to the surface of the protein 
was obtained using the Depth web server.36 Features related to secondary structure and hydrogen 
bonding were obtained from the program DSSP.37 We used  HHblits38 to generate a series of PSSMs 
with varying stringencies to serve as independent features that describe how individual substitutions 
relate to the observed mutational tolerance. PSSMs were derived from rhodopsin sequences mined 
from the Uniprot20 database at e-value thresholds 1e-2, 1e-3, 1e-4, 1e-5, and 1e-10. Our feature set also 
included evolutionary rates for each position that were derived with Consurf using the uniref90 database 
with PSI-BLAST and an e-value threshold of 0.0001 (four iterations).39 Sequences that were more than 
95% similar to one another were eliminated using CD-HIT.40 468 sequences in total were identified and 
aligned using MAFFT.41 To incorporate data from human genomes/ transcriptomes, the missense 
tolerance ratio for each residue in human rhodopsin was included as an independent feature.42,43 To 
integrate information related to conformational dynamics, we used the DynaMut server to carry out 
normal mode analysis on our model of human opsin and generated features for the calculated mean 
fluctuation and deformation at each position.44 Transfer free energies for wild-type and mutant amino 
acids were derived from the knowledge-based scale of Punta and Maritan.29 We also included 
previously reported descriptors related to the physicochemical properties of amino acid side chains 
such as volume, polarity, and hydrophilicity.45 Unweighted energy terms and composite scores derived 
from Rosetta ddG calculations were included as independent features. Feature sensitivity analysis was 
performed by calculating the L1 norm of the signal associated with each feature.46 Each row within the 
dataset represents single variants rather than single positions within the sequence. 
 

Network Training 
 

ANNs were implemented in bcl: model: Train within the Biochemical Library (BCL), a code repository 
maintained primarily by the Meiler laboratory at Vanderbilt University 
(http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1) . The neural network had a single 
hidden layer with 32 neurons. The transfer function employed was the sigmoid function. The momentum 
employed was 0.3 and the learning rate was 0.05. Dropout was used, and the probability of dropout in 
the input layer was 25%, while the probability of dropout in the hidden layer was 50%. Each network 
was trained for 10,000 iterations. 
 

Plasmid Preparation and Mutagenesis 
 

PME measurements were carried out using a transient expression vector we created by inserting a 
synthetic gene block encoding the cDNA sequence of the human β2AR (Integrated DNA Technologies, 
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Coralville, IA) into a modified pcDNA5 FRT using the NEBuilder kit (New England Biolabs, Ipswitch, 
MA). The final construct was designed to generate β2AR bearing an N-terminal influenza hemagglutinin 
tag from a transcript that also features a downstream internal ribosome entry site (IRES)- dasher GFP 
cassette that facilitates the unambiguous identification of positively-transfected cells. Mutations of 
interest were introduced into the β2AR cassette by site-directed mutagenesis. Plasmids used for 
transient expression in HEK293T cells were prepared using the Zymopure Midiprep Kit (Zymo 
Research, Irvine, CA). 
 

Plasma Membrane Expression Measurements 
 

The relative PME of β2AR variants was measured by flow cytometry using a simplified version of a 
previously reported method.5,28 Briefly, β2AR variants were transiently expressed in HEK293T cells 
using Lipofectamine 3000 (Invitrogen, Carlsbad, CA). Transfected cells were then harvested 2 days 
post transfection using TrypLE (Gibco, Grand Island, NY). Intact cells were then immunostained with a 
DyLight 550-conjugated anti-HA antibody (Invitrogen, Carlsbad, CA) for 30 minutes in the dark at room 
temperature. Following surface immunostaining, the cells were fixed using solution A from the Fix and 
Perm kit (Invitrogen, Carlsbad, CA) then washed twice and resuspended in phosphate buffered saline 
containing 2% fetal bovine serum. Cells were then filtered to remove aggregates prior to the analysis 
of cellular fluorescence profiles using a BD LSRII flow cytometer (BD Biosciences, Franklin Lakes, NJ). 
Cellular fluorescence profiles were analyzed using FlowJo (Treestar, Ashland, OR). The mean DyLight 
550 intensity of several thousand positively transfected cells expressing β2AR variants, which were 
identified based on bicistronic dasher GFP expression, was normalized by that of cells expressing WT 
β2AR to derive relative PME values. Reported values reflect the average value from three biological 
replicates.  
 

Acknowledgments 
 

We thank Hui Huang, Georg Kuenze, and Charles R. Sanders for providing expression data and structural 
models for KCNQ1. We thank Christiane Hassel and the Indiana University Flow Cytometry Core Facility for 
technical support. This research was supported in part by a grant from the National Institutes of Health (NIH) 
(R01GM129261 to J.P.S.). 
 

References 
 

1 Marinko, J. T. et al. Folding and Misfolding of Human Membrane Proteins in Health and 
Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 119, 5537-5606, 
doi:10.1021/acs.chemrev.8b00532 (2019). 

2 Penn, W. D. et al. Probing biophysical sequence constraints within the transmembrane 
domains of rhodopsin by deep mutational scanning. Sci Adv 6, eaay7505, 
doi:10.1126/sciadv.aay7505 (2020). 

3 Telenti, A. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A 113, 
11901-11906, doi:10.1073/pnas.1613365113 (2016). 

4 Schlebach, J. P. & Sanders, C. R. Influence of Pathogenic Mutations on the Energetics of 
Translocon-Mediated Bilayer Integration of Transmembrane Helices. Journal of Membrane 
Biology 248, 371-381, doi:10.1007/s00232-014-9726-0 (2015). 

5 Schlebach, J. P. et al. Conformational Stability and Pathogenic Misfolding of the Integral 
Membrane Protein PMP22. J Am Chem Soc 137, 8758-8768, doi:10.1021/jacs.5b03743 
(2015). 

6 Huang, H. et al. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving 
voltage sensor domain mutations. Sci Adv 4, eaar2631, doi:10.1126/sciadv.aar2631 (2018). 

7 Chen, F., Degnin, C., Laederich, M., Horton, W. A. & Hristova, K. The A391E mutation 
enhances FGFR3 activation in the absence of ligand. Biochim Biophys Acta 1808, 2045-2050, 
doi:10.1016/j.bbamem.2011.04.007 (2011). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.28.474371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474371
http://creativecommons.org/licenses/by/4.0/


9 
 

8 Placone, J. & Hristova, K. Direct assessment of the effect of the Gly380Arg achondroplasia 
mutation on FGFR3 dimerization using quantitative imaging FRET. PLoS One 7, e46678, 
doi:10.1371/journal.pone.0046678 (2012). 

9 Schlebach, J. P. & Sanders, C. R. The safety dance: biophysics of membrane protein folding 
and misfolding in a cellular context. Quarterly Reviews of Biophysics 48, 1-34, 
doi:10.1017/S0033583514000110 (2015). 

10 Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded 
classification of cystic fibrosis mutations. Mol Biol Cell 27, 424-433, doi:10.1091/mbc.E14-04-
0935 (2016). 

11 Wainwright, C. E., Elborn, J. S. & Ramsey, B. W. Lumacaftor-Ivacaftor in Patients with Cystic 
Fibrosis Homozygous for Phe508del CFTR. New Eng J Med 373, 1783-1784, 
doi:10.1056/NEJMc1510466 (2015). 

12 Taylor-Cousar, J. L. et al. Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for 
Phe508del. New Eng J Med 377, 2013-2023, doi:10.1056/NEJMoa1709846 (2017). 

13 Middleton, P. G. et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single 
Phe508del Allele. New Eng J Med 381, 1809-1819, doi:10.1056/NEJMoa1908639 (2019). 

14 Welsh, M. J. & Smith, A. E. Molecular mechanisms of CFTR chloride channel dysfunction in 
cystic fibrosis. Cell 73, 1251-1254 (1993). 

15 Kroncke, B. M., Vanoye, C. G., Meiler, J., George, A. L., Jr. & Sanders, C. R. Personalized 
biochemistry and biophysics. Biochemistry 54, 2551-2559, doi:10.1021/acs.biochem.5b00189 
(2015). 

16 Kroncke, B. M. et al. Documentation of an Imperative To Improve Methods for Predicting 
Membrane Protein Stability. Biochemistry 55, 5002-5009, doi:10.1021/acs.biochem.6b00537 
(2016). 

17 Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug-target network. Nat 
Biotechnol 25, 1119-1126, doi:10.1038/nbt1338 (2007). 

18 Sim, N. L. et al. SIFT web server: predicting effects of amino acid substitutions on proteins. 
Nucl Acids Res 40, W452-457, doi:10.1093/nar/gks539 (2012). 

19 Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat 
Methods 7, 248-249, doi:10.1038/nmeth0410-248 (2010). 

20 Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. Quantitative Missense 
Variant Effect Prediction Using Large-Scale Mutagenesis Data. Cell Syst 6, 116-124 e113, 
doi:10.1016/j.cels.2017.11.003 (2018). 

21 Muk, S. et al. Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein 
Coupled Receptors. Biophys J 117, 2228-2239, doi:10.1016/j.bpj.2019.10.023 (2019). 

22 Niesen, M. J. M., Marshall, S. S., Miller, T. F., 3rd & Clemons, W. M., Jr. Improving membrane 
protein expression by optimizing integration efficiency. J Biol Chem 292, 19537-19545, 
doi:10.1074/jbc.M117.813469 (2017). 

23 Saladi, S. M., Javed, N., Muller, A. & Clemons, W. M., Jr. A statistical model for improved 
membrane protein expression using sequence-derived features. J Biol Chem 293, 4913-4927, 
doi:10.1074/jbc.RA117.001052 (2018). 

24 Li, B. et al. Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance. Circ 
Cardiovasc Genet 10, doi:10.1161/CIRCGENETICS.117.001754 (2017). 

25 Wang, C. & Balch, W. E. Bridging Genomics to Phenomics at Atomic Resolution through 
Variation Spatial Profiling. Cell Rep 24, 2013-2028 e2016, doi:10.1016/j.celrep.2018.07.059 
(2018). 

26 Kozek, K. et al. Estimating the Post-Test Probability of Long QT Syndrome Diagnosis for Rare 
KCNH2 Variants. Circ Genom Precis Med, doi:10.1161/CIRCGEN.120.003289 (2021). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.28.474371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474371
http://creativecommons.org/licenses/by/4.0/


10 
 

27 Athanasiou, D. et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals 
potential strategies for therapy. Prog Retin Eye Res 62, 1-23, 
doi:10.1016/j.preteyeres.2017.10.002 (2018). 

28 Roushar, F. J. et al. Contribution of Cotranslational Folding Defects to Membrane Protein 
Homeostasis. J Am Chem Soc 141, 204-215, doi:10.1021/jacs.8b08243 (2019). 

29 Punta, M. & Maritan, A. A knowledge-based scale for amino acid membrane propensity. 
Proteins 50, 114-121, doi:10.1002/prot.10247 (2003). 

30 Wang, Z. & Moult, J. SNPs, protein structure, and disease. Human Mut 17, 263-270, 
doi:10.1002/humu.22 (2001). 

31 Jones, E. M. et al. Structural and functional characterization of G protein-coupled receptors 
with deep mutational scanning. Elife 9, doi:10.7554/eLife.54895 (2020). 

32 Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat Biotechnol 35, 
128-135, doi:10.1038/nbt.3769 (2017). 

33 Cagiada, M., Johansson, K.E., Valanciute, A., Nielsen, S.V., Hartmann-Petersen, R., Yang, 
J.J., Fowler, D.M., Stein, A., Lindorff-Larsen, K. Understanding the Origins of Loss of Protein 
Function by Analyzing the Effects of Thousands of Variants on Activity and Abundance. Mol 
Biol Evol 38, 3235-3246, doi:10.1093/molbev/msab095 (2021). 

34 Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of 
protein mutations appear to be universally distributed. J Mol Biol 369, 1318-1332, 
doi:10.1016/j.jmb.2007.03.069 (2007). 

35 Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R. & Meiler, J. Solvent accessible surface 
area approximations for rapid and accurate protein structure prediction. J Mol Model 15, 1093-
1108, doi:10.1007/s00894-009-0454-9 (2009). 

36 Tan, K. P., Nguyen, T. B., Patel, S., Varadarajan, R. & Madhusudhan, M. S. Depth: a web 
server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities 
and predict the pKa of ionizable residues in proteins. Nucl Acids Res 41, W314-321, 
doi:10.1093/nar/gkt503 (2013). 

37 Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of 
hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637, 
doi:10.1002/bip.360221211 (1983). 

38 Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein 
sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175, 
doi:10.1038/nmeth.1818 (2011). 

39 Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize 
evolutionary conservation in macromolecules. Nucl Acids Res 44, W344-350, 
doi:10.1093/nar/gkw408 (2016). 

40 Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or 
nucleotide sequences. Bioinformatics 22, 1658-1659, doi:10.1093/bioinformatics/btl158 (2006). 

41 Rozewicki, J., Li, S., Amada, K. M., Standley, D. M. & Katoh, K. MAFFT-DASH: integrated 
protein sequence and structural alignment. Nucl Acids Res, doi:10.1093/nar/gkz342 (2019). 

42 Traynelis, J. et al. Optimizing genomic medicine in epilepsy through a gene-customized 
approach to missense variant interpretation. Genome Res 27, 1715-1729, 
doi:10.1101/gr.226589.117 (2017). 

43 Silk, M., Petrovski, S. & Ascher, D. B. MTR-Viewer: identifying regions within genes under 
purifying selection. Nucleic acids research 47, W121-W126, doi:10.1093/nar/gkz457 (2019). 

44 Rodrigues, C. H., Pires, D. E. & Ascher, D. B. DynaMut: predicting the impact of mutations on 
protein conformation, flexibility and stability. Nucl Acids Res 46, W350-W355, 
doi:10.1093/nar/gky300 (2018). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.28.474371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474371
http://creativecommons.org/licenses/by/4.0/


11 
 

46 Barley, M. H., Turner, N. J. & Goodacre, R. Improved Descriptors for the Quantitative 
Structure-Activity Relationship Modeling of Peptides and Proteins. J Chem Inf Model 58, 234-
243, doi:10.1021/acs.jcim.7b00488 (2018). 

46 Meiler, J. & Baker, D. Coupled prediction of protein secondary and tertiary structure. Proc Natl 
Acad Sci U S A 100, 12105-12110, doi:10.1073/pnas.1831973100 (2003). 

 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.28.474371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474371
http://creativecommons.org/licenses/by/4.0/

