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Abstract 13 

The combination of image analysis and fluorescence superresolution microscopy methods 14 

allows for unprecedented insight into the organization of macromolecular assemblies in cells. 15 

Advances in deep learning-based object recognition enables the automated processing of 16 

large amounts of data, resulting in high accuracy through averaging. However, while the 17 

analysis of highly symmetric structures of constant size allows for a resolution approaching 18 

the dimensions of structural biology, deep learning methods are prone to different forms of 19 

bias. A biased recognition of structures may prohibit the development of readouts for 20 

processes that involve significant changes in size or shape of amorphous macromolecular 21 

complexes. What is required to overcome this problem is a detailed investigation of potential 22 

sources of bias and the rigorous testing of trained models using real or simulated data 23 

covering a wide dynamic range of possible results. Here we combine single molecule 24 

localization-based superresolution microscopy of septin ring structures with the training of 25 

several different deep learning models for a quantitative investigation of bias resulting from 26 

different training approaches and finally quantitative changes in septin ring structures. We 27 

find that trade-off exists between measurement accuracy and the dynamic range of 28 

recognized phenotypes. Using our trained models, we furthermore find that septin ring size 29 

can be explained by the number of subunits they are assembled from alone. Our work 30 

provides a new experimental system for the investigation of septin polymerization.  31 
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 2 

Introduction 1 

 2 

Light microscopy is a technique of fundamental importance in cell biology and with the 3 

development of superresolution techniques has allowed unprecedented insight into cellular 4 

processes on the brink of structural biology1–7. Machine learning-based computational image 5 

processing furthermore allows for high-throughput analysis of even complex phenotypes in 6 

cells8–12 and has accelerated progress in cell biological discovery. In recent years a number of 7 

open source deep learning platforms have been made available13–22 that require minimal 8 

know-how on the user side. At the same time, methods have been developed to reduce 9 

background23,24 and to accelerate image processing in superresolution microscopy25–27. 10 

Especially in superresolution microscopy, image processing allows for ultrahigh resolution of 11 

multiprotein complexes such as nuclear pores3,28 or centrioles29,30. However, these are highly 12 

symmetric structures of constant size that bear several symmetry axes. As a result, they 13 

contain intrinsic means to allow for accurate averaging. For superresolution microscopy and 14 

averaging to harness its full power with the help of deep learning-based image processing to 15 

improve resolution of more amorphous structures and to develop quantitative readouts for 16 

structural changes it remains to be determined to what extent deep learning methods can 17 

handle changes in organization or even size of target structures. Overfitting may make it 18 

impossible to detect even small changes in morphology or size, on the other hand poor fitting 19 

may not allow for accurate measurements.  20 

Here we combine deep learning-assisted image analysis based on an open-source platform 21 

with single molecule localization-based superresolution microscopy (SMLM) of subresolution 22 

septin ring structures. Septins are the fourth cytoskeleton31,32 and assemble from nonpolar 23 

heteromultimeric rod-shaped complexes  into ring-like structures of subresolution size when 24 

not associated to tubulin or actin33. These rings are free of actin and are thought to represent 25 

bona fide septin filamentous polymers34. The composition of septin complexes plays an 26 

important role in septin function35,36 and septin ring size depends on the composition of 27 

septin complexes37. Septin ring size may thus be a long sought-after readout for complex 28 

assembly and composition. Here we ask what factors in supervised deep learning affect ring 29 

recognition and finally, accuracy of ring size measurements in native and perturbed cells with 30 

differing ring size. To do so, we train six different models on data annotated according to 31 
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 3 

several different parameters and by three different experts and validate them on cellular and 1 

synthetic SMLM datasets. We find that while most models readily recognize ring-structures 2 

in the size range expected in native cells and allow for highly accurate determination of septin 3 

ring diameter from SMLM data, only few models allow for the accurate recognition and 4 

measurement of rings of differing size. We furthermore show that septin ring size can be 5 

explained by septin complex composition alone, and we thus provide a new experimental 6 

paradigm for the investigation of septin complex assembly. Our results demonstrate that the 7 

combination of deep learning with SMLM can provide accurate readouts of changes in the 8 

size of amorphous multiprotein structures and that experimental design and careful 9 

validation are essential for the generation of reliable experimental pipelines. 10 

 11 

  12 
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 4 

Results 1 

We chose septin rings as a model to test the robustness and accuracy of deep learning-2 

assisted superresolution microscopy for measurements of subresolution cellular structures. 3 

The septins are a family of GTP-binding proteins that comprise the fourth cytoskeleton. 4 

Septins can assemble into filaments themselves or attach to actin stress fibers, however, 5 

when actin stress fibers are collapsed via the use of cytochalasin D, they form ring structures 6 

of around 350 nm diameter33,37 (Figure 1A). When imaged in SMLM, rings appear as 7 

homogenously sized, symmetric rings with a thin perimeter (Figure 1B), but also incomplete 8 

rings, arcs, small filamentous structures and aggregates can be found. When we acquired 9 

many cells in SMLM imaging after Cytochalasin D treatment and selected hundreds of rings 10 

from the stained septin structures, we could average them for accurate determination of their 11 

diameter of 343.9 ± 5.0 nm (n = 181, Figure 1C). We concluded that we could accurately 12 

determine septin ring diameter using this method. 13 

 14 
FIGURE 1: Superresolution microscopy assay for quantification of septin ring diameter.  15 
(A) Genome-edited NRK52E cells expressing mEGFP-Septin-2 from both alleles were treated with 5 µM 16 
Cytochalasin D for 30 min (or DMSO as control) prior to fixation, resulting in the formation of ring-like 17 
structures. Images of mEGFP fluorescence were taken by spinning disc confocal microscopy. Scale bar: 10 18 
µm. (B) Septin rings can be readily resolved by single molecule localization-based superresolution 19 
microscopy. NRK52E cells were treated with 5 µM Cytochalasin D for 30 min and immunostained against 20 
Septin-7. Images were taken by conventional epi-fluorescence microscopy and by dSTORM. Scale bar: 10 21 
µm. (C) Scheme of the procedure for the measurement of septin ring diameter. Left to right: Septin rings 22 
from superresolution microscopy images were cropped and averaged. The intensity profile of the averaged 23 
rings was measured at 18 successive 10° incremental rotations and the peak-to-peak distance of all of these 24 
profiles was averaged to return the ring diameter. Scale bar: 5 µm. 25 
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We next aimed to use a widely available and versatile deep learning network to train it to 1 

recognize septin rings. We decided to use the ZeroCostDL4Mic13 platform which provides free 2 

cloud-based computation and the StarDist38 network that has been widely used for detection 3 

of cellular structures. However, since it had not been used for ring detection we decided to 4 

test, if it could be trained from scratch to recognize septin rings in SMLM reconstructions. To 5 

do so, we used an annotated dataset of 496 images for training and adjusted parameters of 6 

the StarDist network until we could reliably reach convergence of our model. 7 

We next aimed to ask, how annotation bias may affect model learning and the capability of 8 

the model to detect phenotypes strongly different from the wildtype (wt) situation in our 9 

images. In cellular SMLM images, septin rings are of variable circularity and completeness in 10 

labeling and occasionally touch. We hence decided to test if higher or lower stringency in 11 

determining a ring would be suitable for training and if masks precisely following the ring 12 

outline would lead to more accurate results. After training, we furthermore asked, whether 13 

the deep learning models would be able to accurately recognize and measure also 14 

significantly smaller or bigger rings. 15 

For training, we generated a large amount of SMLM images of cytochalasin D-treated cells, 16 

which we separated into a training set of 496 images and a cellular holdout test dataset of 32 17 

images. We then designed a framework to train deep learning models using six different 18 

annotation strategies and to test the models on the cellular holdout data, the synthetic data 19 

and a biological test case, that is rings devoid of Septin-9 (Figure 2). We asked one human 20 

expert to annotate in three different ways in terms of accuracy of the masks (how does it fit 21 

to the ring) and labeling stringency (how circular and/or continuous do rings have to be) and 22 

after that asked two more human experts to individually annotate with custom masks and 23 

low stringency. A final sixth model was trained using the consensus masks. All trained models 24 

resulted in robust recognition of rings in the cellular test dataset of 32 SMLM images and we 25 

benchmarked the models in terms of precision (fraction of recognized objects that are 26 

present in ground truth), recall (fraction of objects in ground truth that are recognized) and 27 

measured average ring size compared to ground truth (Figure 2). We then went on to run the 28 

models on synthetic SMLM data generated using FluoSim39 in which ring sizes from 125 to 29 

500 nm were simulated. Finally, we tested the two best performing models on a cellular 30 

example of ring size change, cells in which Septin-9 had been removed from the complex, 31 

leading to significantly smaller rings37.  32 
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 1 
FIGURE 2: General annotation, training and benchmarking strategy for deep learning-assisted septin ring 2 
recognition and measurement.  3 
528 dSTORM images of septin rings in NRK52E cells were generated and used for annotation and training 4 
(496 images) or as holdout test dataset (32 ground truth images). To benchmark annotation strategies for 5 
deep learning, images were annotated with different labeling accuracy, annotation stringency, and by 6 
three independent human experts as well as the majority voting thereof. For each annotation strategy we 7 
generated a deep learning models based on the ZeroCostDL4Mic platform using the StarDist network. For 8 
benchmarking, we compared the ability of the models to recognize the rings and to return the correct ring 9 
diameter, both in cellular data and synthetic data with rings of known diameter. The best performing 10 
models were then applied to measure the diameter of septin rings in knockout cells. 11 
 12 

To evaluate the influence of labeling strategies on recognition by the deep learning models, 13 

a septin biologist recognized septin rings in the cellular test dataset of SMLM data. These we 14 

accepted as bona fide septin rings and the resulting dataset and average diameter are in the 15 

following termed ground truth. We then asked a human expert, “Leon”, to annotate the 16 

training set according to three different strategies. The first strategy used low stringency in 17 

recognition as a septin ring and required the expert to draw a custom mask around each ring 18 

(Figure 2). The second strategy required the expert to use low stringency in septin ring 19 

recognition, but to use a circular mask or, to be more precise, a convex circular-shape mask 20 

with flexible size that covered the target ring for annotation. The third strategy required the 21 

expert to apply high stringency in selecting rings and to use a custom drawn mask. When the 22 

annotation-specific models were trained and applied to the cellular test dataset, we found 23 

that all models recognized a large fraction of rings reliably when compared to ground truth 24 

albeit with varying precision and recall (Figure 3A). Specifically, the low stringency, custom 25 

mask trained model led to the highest recall with 89.5% of rings found that were present in 26 
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 7 

the ground truth. On the other hand, the high stringency, custom mask trained model led to 1 

the highest precision with 89% of all recognized rings being true positives, but recall was low. 2 

The circular mask, low stringency model was of intermediate precision and recall and no 3 

model showed precision nor recall below 50%. Overall, we concluded that our models could 4 

reliably recognize septin rings in our cells. 5 

 6 
FIGURE 3: Effect of annotation accuracy and stringency on the ability of deep learning models to detect 7 
rings of different size.  8 
(A) Overlay of randomly colored masks of recognized septin ring structures in dSTORM images by 3 9 
different deep learning models: custom mask and low stringency model (aka “Leon”); circular mask and 10 
low stringency model; custom mask and high stringency model. The rings detected in a representative 11 
dSTORM reconstruction from the holdout data are shown together with the respective ground truth. 12 
Precision and recall calculations are shown below. Scale bar: 5 µm. (B) Overlay of randomly colored masks 13 
of recognized ring structures in synthetic dSTORM images with predetermined ring diameters from 275 to 14 
500 nm as recognized by the deep learning models as in (A). Number of detected rings in each condition is 15 
shown on the bottom left of each image and plotted on the right. Scale bar: 5 µm. 16 
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 8 

When the composition of septin complexes is changed, the diameter of septin rings changes 1 

as well37, suggesting that ring size may provide a readout for septin complex assembly and 2 

composition. However, to accurately measure the diameter of rings with different sizes, our 3 

models must recognize rings of even strongly differing diameters for an accurate readout of 4 

ring-size changes. We thus aimed to test whether one of our training strategies would lead to 5 

a bias in the recognition of differently sized rings and only recognize rings in the size-range 6 

found in our untreated cells. To do so, we analyzed a panel of synthetic SMLM test datasets 7 

in which rings of a predefined diameter from 275 to 500 nm, respectively, were present. 8 

When we then applied our models to recognize rings in these synthetic test datasets, we 9 

found striking differences in ring recognition (Figure 3B). While the low stringency, custom 10 

mask model (hereafter called “Leon”) reliably recognized rings in all test cases, the other two 11 

models failed to reliably recognize rings for cases significantly below or above the ring sizes 12 

present in our cells. We concluded that the custom mask, high stringency model (hereafter 13 

called “high stringency”) and the circular mask, low stringency model (hereafter called 14 

“circular mask”) were biased for rings in the size range found in cells and that the training 15 

strategy significantly impacts recognition of septin rings towards superresolution 16 

measurements. 17 

Next, we aimed to investigate how three different experts using the same annotation strategy 18 

would influence ring recognition by the resulting models. We asked two additional experts, 19 

“Lea” and “Nadja” to annotate the cellular SMLM training dataset according to the low 20 

stringency, custom mask strategy. From the annotations of the three experts “Leon”, “Lea” 21 

and “Nadja” we furthermore created a “majority voting“ annotation. When we then trained 22 

additional models according to the “Lea”, “Nadja” and “majority voting” annotations on our 23 

cellular test dataset, we found that all models exhibited a precision above 60% and a recall 24 

above 80% when compared to ground truth (Figure 4A). The “Nadja” model exhibited an 25 

exceptional recall of 92.8%, but only 60.4% precision, meaning that the “Nadja” model 26 

recognized many objects that were not found in the ground truth. The performance of the 27 

“majority voting” model was very similar to that of the “Leon” model. We concluded that 28 

indeed the specific annotation style of different experts influences ring recognition 29 

significantly. When we next applied the “Lea”, “Nadja” and “majority voting” models to the 30 

panel of synthetic test datasets and compared them to the “Leon” model, we found 31 

significant discrepancies in performance (Figure 4B).  32 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.28.474382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 1 
FIGURE 4: Effect of annotator’s bias on the ability of deep learning models to recognize rings of different 2 
size.  3 
(A) Overlay of randomly colored masks of recognized septin ring structures in dSTORM images by 4 4 
different deep learning models: custom mask and low stringency model each for individual annotators 5 
“Leon”, “Lea”, ”Nadja” and for majority voting model. The rings detected in a representative dSTORM 6 
reconstruction from the holdout data are shown together with the respective ground truth. Precision and 7 
recall calculations are shown below. Scale bar: 5 µm. (B) Overlay of randomly colored masks of recognized 8 
ring structures in synthetic dSTORM images with predetermined ring diameters from 275 to 500 nm as 9 
recognized by the deep learning models as in (A). Number of detected rings in each condition is shown on 10 
the bottom left of each image and plotted on the right. Scale bar: 5 µm. 11 
 12 

Both the “Nadja” and the “majority voting” models reliably outperformed the other models 13 

for smaller rings, while for rings in the range of those found in cells, all models performed 14 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.28.474382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

equally well. We also tested rings below 275 nm in size (data not shown). For the smallest size 1 

of 125 nm, no model could recognize any rings in synthetic SMLM test datasets. Only the 2 

“Nadja” model could recognize rings reliably from a diameter of 245 nm upward, making it 3 

clearly stand out from the other models. Large (500 nm) rings on the other hand were readily 4 

recognized by the “Nadja” and “Leon” models, while the “Lea” and “majority voting” models 5 

recognized less than half of the rings detected by either the “Nadja” or “Leon” models. We 6 

concluded that the bias introduced by individual annotators has significant consequences on 7 

the recognition of septin rings in SMLM data. 8 

We next aimed to ask, to what extent these biases in septin ring annotation would impact the 9 

accurate measurement of septin ring diameter in datasets analyzed by our models. To do so, 10 

we averaged the recognized septin rings for every model and condition and measured the 11 

diameter in nm as described in Figure 1C. When we compared the results of our models on 12 

the cellular SMLM test dataset, we found that all models resulted in a measurement with an 13 

accuracy within 3% of the 343.9 nm found in the ground truth (Figure 5A). We next aimed to 14 

ask, if we could measure differences as small as 5 nm in ring diameter. To do so, we generated 15 

synthetic SMLM test datasets with diameters in 5 nm steps from 350 nm, to 380 nm. When 16 

we ran our models on these datasets and measured the average diameters of the respectively 17 

recognized rings, we found that all models resulted in very accurate measurements of the 18 

respective ring sizes, with errors maximally 3 - 4 nm (Figure 5B). Overall, the highest spread 19 

was found for the “circular mask” and “high stringency” models (Figure 5C), while the 20 

residuals were lowest for the “majority voting” model (Figure 5D). We concluded that all 21 

models were suitable to automatically extract and measure ring size in native cellular SMLM 22 

datasets. When we plotted the measured ring diameter against ground truth ring diameter in 23 

synthetic SMLM test data, we found that all models exhibited excellent linearity over the 24 

range from 275 to 500 nm with R2-values above 0.94 (Figure 6A). While thus all models were 25 

very precise in their measurement of ring diameter, a clear dependence of measurement 26 

accuracy on the number of recognized rings was found (Figure 6B), suggesting that the 27 

generation of higher amounts of data could further ameliorate measurement accuracy for the 28 

less well performing models. In Figure 6C, we summarize the data from Figures 3-5 in an 29 

accessible overview according to the z-scores for ring recognition (top) and ring diameter 30 

measurement (bottom). Found values are horizontally z-scored, thus emphasizing differences 31 
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between models even if they may be small in absolute size and describing relative 1 

performance. However, this overview allows for general observations.  2 

 3 
FIGURE 5: Quantification of the precision of deep learning-based ring measurements.  4 
(A) Results for septin ring diameter measurements in cellular dSTORM holdout data by the respective deep 5 
learning models. Averaged recognized ring images are shown for each model and average ring diameter 6 
and deviation from ground truth are shown below the images. Number of rings averaged is shown on the 7 
bottom left of each image. The plot on the right shows the deviation of measured septin ring diameter 8 
from ground truth for each model in %. Scale bar: 200 nm. (B) Results for septin ring diameter 9 
measurements in synthetic dSTORM data of known ring size by respective deep learning models. 10 
Underlying ground truth ring diameter is given on the left. Averaged recognized ring images are shown for 11 
each model and diameter, average ring diameter and deviation from ground truth are shown below the 12 
images. Number of rings averaged is shown on the bottom left of each image. Scale bar: 200 nm. (C) 13 
Deviation from respective ground truth ring diameter in percentage points measured for all models and 14 
for all 7 ground truth ring diameters shown in (B). Black lines indicate mean deviation. (D) Deviation from 15 
respective ground truth ring diameter in percentage plotted against ground truth diameter for all models. 16 
Dashed line marks 0% deviation, colored lines show a linear fit. 17 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.28.474382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 1 
FIGURE 6: Deep learning models accurately and robustly measure septin ring size in dSTORM data.  2 
(A) Measured ring diameter in synthetic dSTORM data plotted against ground truth ring diameter for all 3 
models used in this study. The magnified inset below shows the ring size range exemplified in Figure 5B. 4 
(B) Deviation from respective ground truth ring diameter for synthetic rings from 275 nm to 500 nm in 5 
percentage points measured for all models plotted against the respective number of detected rings in each 6 
case. Note that deviation from ground truth decreases with larger number of rings detected. (C) Global 7 
analysis of deep learning model performance. From top to bottom: Precision and recall values in cellular 8 
data, number of rings recognized in synthetic data, ring size deviation from ground truth in cellular data 9 
and deviation from ground truth ring size in synthetic data. Heat map shows horizontally z-scored values. 10 
 11 

It seems that the z-scores for recall and precision, respectively, are correlated with specific 12 

outcomes. The model with the lowest precision, “Nadja”, performed best in recognizing rings 13 

of sizes significantly different from those measured in native cells, suggesting that a less 14 

stringent selection of cellular structures as rings allows the model to recognize rings of 15 

different sizes more easily. On the other hand, the model with the highest precision, “high 16 
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stringency”, did not perform well in synthetic data of ring sizes. For recall on the other hand, 1 

the models that most reliably recognized and most accurately measured rings in the expected 2 

size in cells, showed the highest values (“Leon” and “majority voting”), whereas the models 3 

with low recall (“high stringency” and “circular mask”) exhibited the worst performance. We 4 

concluded that precision and recall are important indicators of model performance, but they 5 

do not suffice to predict experimental outcome. 6 

Having found models that can recognize septin rings of different sizes and accurately measure 7 

their diameter, we decided to test our models on an experimental system, where septin ring 8 

size is known to vary. Septin complexes in mammalian cells are non-polar, palindromic rod-9 

shaped heterooctamers of around 34 nm length40–44 that bear two Septin-9 subunits in their 10 

middle. When Septin-9 is removed from cells through RNA interference, septin rings are 11 

known to be smaller37. This suggests that ring size is connected to complex length as the 12 

septin complexes created in absence of Septin-9 are known to be hexamers45 of around 26 13 

nm length. If that is the case, septin ring size should reflect complex size and ring size should 14 

be dependent on the number of complexes in the ring. To ask, whether we can thus estimate 15 

the number of septin complexes in rings from SMLM measurements, we performed SMLM on 16 

embryonic fibroblast cells from wt and Septin-9-/- mice46. We found septin rings to be in the 17 

size range of 300 - 400 nm and decided to analyze ring diameter using the “Leon” and the 18 

“majority voting” models as they most accurately measured the average ring diameter in that 19 

range. Indeed, both models readily recognized many rings in measured SMLM data (Figure 20 

7A). In wt cells, we measured an average ring diameter of 413.3 nm (“majority voting”) or 21 

425.5 nm (“Leon”). Geometrically, this would translate into 39 septin octamers with a 9.2° 22 

association angle (“Leon”) or 38 octamers with a 9.4° association angle (“majority voting”). 23 

On the other hand, in Septin-9-/- cells, we measured ring diameters of 334.4 nm (“Leon”) or 24 

335.0 nm (“majority voting”), which would translate into 40 septin hexamers with an 8.9° 25 

association angle for both models (Figure 7B). Strikingly, we could thus determine that septin 26 

ring size in our cells must be determined by the propagation angle of about 9° between 27 

polymerizing septin complexes that would then lead to 40 septin complexes required to form 28 

a ring. We concluded that machine learning supported SMLM superresolution microscopy 29 

could reveal information on the ultrastructural arrangement of septin complexes in rings. 30 

 31 
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 1 
FIGURE 7: Accurate measurement of cellular septin ring size reveals the geometric architecture of septin 2 
rings.  3 
(A) Septin ring recognition in wild-type (wt) and Septin-9-/- MEFs. Septin ring recognition was performed 4 
with the two deep learning models “Leon” and “majority voting”. Representative overlay of randomly 5 
colored masks of recognized septin ring structures in dSTORM images and averaged ring images are shown 6 
for each case. Average ring diameter is shown below. Number of rings averaged is shown on the bottom 7 
left of each image. Scale bars: upper row 5 µm, bottom row 200 nm. (B) Model of septin ring assembly. 8 
Shown are schematic representations of septin complexes. In mouse fibroblasts the knockout of Septin-9 9 
is thought to remove the central Septin-9 dimer (blue) from the palindromic, heterooctameric complex, 10 
resulting in a heterohexamer. Since the polymerization interface for septin filament assembly is the same 11 
for hexamer and octamer, the rules for assembly of rings should be the same for both complexes and 12 
resulting rings thus smaller. Septin rings measured via deep learning-assisted superresolution microscopy 13 
data analysis in Septin-9-/- cells are smaller than wildtype rings, consistent with a constant mode of 14 
assembly of rings from ~ 40 complexes with an interface angle j of ~ 9°.  15 
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Discussion 1 

We here developed a deep learning-based assay for the recognition and measurement of 2 

septin ring size in superresolution images of mammalian cells. We trained deep learning 3 

models in several different ways to investigate possible bias. We demonstrate that the outline 4 

of the annotation mask, the stringency in annotation, and the generation of a consensus 5 

between experts influence the outcome of both the accuracy of measurements as well as 6 

robustness in detection of target structures. For example, we found that some of the models 7 

were more sensitive to changes in ring size than others. Especially if the models are supposed 8 

to recognize structures with a different phenotype in cells, such bias can be decisive. This 9 

suggests that benchmarking on simulated data covering the whole phenotypic range provides 10 

an excellent means to control the reliability of the deep learning models.  11 

So far, deep learning models for the recognition of fluorescence labeled structures in cells 12 

have mostly been used to recognize structures of low or highly predictable variability such as 13 

cellular nuclei17,38,47. The correct recognition of different phenotypes is, however, an essential 14 

property of data analysis models in experimental biology. To ensure this is possible for our 15 

models, we use a wide array of synthetic SMLM data to test our models on the capability to 16 

recognize phenotypes that are different from what is observed in wt cells. Our data suggest 17 

that very stringent criteria in the selection of native rings may lead to overfitting and thus be 18 

detrimental to the recognition of rings of different size in cells, as observed for the “high 19 

stringency” and likely also the “Lea” model. On the other hand, less stringent criteria lead to 20 

a slightly lower accuracy in the measurement of ring diameter, as observed for the “Nadja” 21 

model. From all of our models, the “majority voting” model belonged to the best performing 22 

models both for recognizing wt cellular rings as well as for recognizing rings of significantly 23 

different size. It also resulted in very low error in ring size determination. Our data agree with 24 

previous observations that consensus or majority voting models often perform better than 25 

models based on individual annotators48. 26 

Our data provide insight into the requirements in experimental design of deep learning-based 27 

data analysis pipelines of superresolution microscopy specifically and into the generation of 28 

robust deep learning models in general. We furthermore provide a robust quantitative assay 29 

for the investigation of subresolution structures assembled from an essential cytoskeletal 30 

component, the septins.  31 
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Our finding that the septin ring diameter both in Septin-9 wt and in Septin-9-/- cells can be 1 

explained by 40 complexes adding an angle of 9° each towards ring closure suggests that 2 

superresolution microscopy of septin complexes may be useful as a readout to investigate 3 

septin complex assembly in the future. That the angle in Septin-9 containing complexes is the 4 

same as in Septin-9-free complexes suggests that the 9° propagation angle is not introduced 5 

at the center of the hexamer, but rather at the polymerization interface between terminal 6 

Septin-2-group septins in adjacent complexes. In baker’s yeast Saccharomyces cerevisiae, it is 7 

known that the terminal septin in the heterooctamer, here cdc11 or shs1, determines the 8 

degree to which septin filaments bend. Straight filaments form with cdc11 and ring-like 9 

filaments form with shs1 at the termini of the complex49. It is tempting to speculate that the 10 

Septin-2-group septins, which occupy the termini of the mammalian octamer may play a 11 

similar role. It is known that the Septin-2 group members (Septin-1, Septin-2, Septin-4, and 12 

Septin-5) can replace one another at position X in a Septin-X/6/7/7/6/X heterohexamer 13 

biochemically50 and that they exhibit non-overlapping functions36,51–53 that may be a result of 14 

their mode of filament assembly. In the future, our assay will allow for investigations into 15 

potential influences of complex-terminal septin subunits on ring-size and thus septin 16 

polymerization properties.  17 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.12.28.474382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.28.474382
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Materials and methods 1 

 2 

Cell culture and immunostaining.  3 

The NRK52E-Septin-2-GFPEN/EN genome edited cell line expressing mEGFP-Septin2 from both 4 

alleles was generated as described54. All steps in the following were carried out at room 5 

temperature unless otherwise stated. NRK52E-Septin-2-GFPEN/EN, Septin-9c/c (wt) or Septin-9-6 
/- (knockout) mouse embryonic fibroblasts46 were seeded on round coverslips (thickness no. 7 

1.5) coated with 0.01% (w/v) poly-L-Lysine solution (Sigma) and grown in DMEM (Gibco, 8 

Thermo Fisher Scientific) supplemented with 10% (v/v) fetal calf serum, 2 mM L-Glutamine 9 

(Gibco, Thermo Fisher Scientific) and 100 U/ml penicillin–streptomycin (Sigma) at 37 °C and 10 

5% CO2 in a humidified incubator. The next day, cells were treated with 5 µM Cytochalasin D 11 

for 30 min at 37 °C in DMEM without supplements to induce septin ring formation. Cells were 12 

fixed in 4% (w/v) paraformaldehyde solution in PHEM buffer (60 mM PIPES-KOH pH 6.9, 25 13 

mM HEPES, 10 mM EGTA, 1 mM MgCl2) for 15 min at 37°C. 1.5. Fixation was quenched with 14 

50 mM NH4Cl in PHEM buffer for 7 min. Cells were permeabilized using 0.25% (v/v) TritonX-15 

100 in PHEM buffer for 5 min and then blocked with Image-iT FX signal enhancer (Invitrogen, 16 

Thermo Fisher Scientific) for 30 min before blocking for 1h with 4% (v/v) horse serum, 1% 17 

(w/v) BSA and 0.1% (v/v) TritonX-100 in PHEM buffer. The sample was then stained with 10 18 

µg/ml anti-GFP nanobody coupled to Alexa Fluor-647 at 4°C overnight or with rabbit anti-19 

human-Septin-7 IgG (1:500, IBL America) overnight and subsequently with goat anti-rabbit 20 

Alexa Fluor-647 conjugate IgG-Fab (1:500, Thermo Fisher Scientific) for 45 min in PHEM buffer 21 

supplemented with 1% (w/v) BSA and 0.1% (v/v) TritonX-100. Samples were post-fixed in 4% 22 

(w/v) paraformaldehyde in PHEM buffer for 10 minutes and quenched as described above. 23 

For the cellular septin ring dataset NRK52E 13 samples were prepared out of which 6 were 24 

stained with anti-GFP nanobody and 7 were stained with anti-Septin-7 antibody resulting in 25 

288 and 240 images, respectively. Out of these 528 images 32 were randomly selected to be 26 

used as test dataset while the remaining 496 images were used for training of the deep 27 

learning models. For the Septin-9c/c or Septin-9-/- mouse embryonic fibroblasts 96 images 28 

were generated from each sample. 29 

 30 

 31 
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Spinning disc confocal microscopy. 1 

Images were acquired on an inverted IX71 microscope (Olympus) equipped with a CSU-X1 2 

spinning disk unit (Yokogawa) and an iLas laser illumination system (Gataca Systems) with a 3 

491 nm laser for illumination. A 60x NA 1.42 oil objective (Olympus) was used, and images 4 

were taken with an ORCA Flash 4.0LT sCMOS camera (Hamamatsu). The System was operated 5 

using the software MetaMorph. 6 

 7 

dSTORM of septin rings. 8 

Coverslips with immunostained samples were mounted in a mounting chamber and filled 9 

with GLOX + BME buffer (4% (w/v) glucose, 140 mM b-mercaptoethanol, 10 mM NaCl, 200 10 

mM Tris-HCl pH 8, 500 µg/ml glucose oxidase, 40 µg/ml glucose catalase and 10% (v/v) 11 

glycerol). dSTORM images were acquired on a Vutara 352 superresolution microscope 12 

(Bruker) equipped with an ORCA Flash4.0 sCMOS camera (Hamamatsu) and a 60x NA 1.49 13 

ApoN oil immersion total internal reflection fluorescence (TIRF) objective (Olympus), yielding 14 

a pixel size of 98 nm. Data were acquired in TIRF illumination at a laser power density of ~35 15 

kW/cm2 using a 639 nm laser. dSTORM images were reconstructed from 10,000 images taken 16 

with an exposure of 20 ms per image. Reference epi-fluorescence images were taken with an 17 

exposure of 500 ms and low laser power density. Images were reconstructed with a pixel size 18 

of 10 nm using the software Vutara SRX v.6.04.14.  19 

 20 

Generation of synthetic dSTORM ring data.   21 

Synthetic storm data was generated using FluoSim39. Geometry files were created using a 22 

python script, which generates non-overlapping randomly spaced rings with a thickness of 23 

150 nm. Each geometry file contains 100 rings of the same radius. To generate background 24 

geometry files a python script was used, which creates 100 overlapping irregular 25 

icosahedrons per geometry with random side lengths of up to 500 nm. The geometry files 26 

were imported into FluoSim. To mimic the immunostaining process 10000 dyes were 27 

distributed randomly onto the geometries. Single-molecule localization reconstructions were 28 

then generated using parameters which resemble the experimental STORM imaging 29 

parameters (pixel size 10 nm, switch on rate 0.027 Hz, switch off rate 10 Hz, simulation time 30 

step 20 ms, localization precision 10 nm, 10000 frames). 31 

 32 
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Data preparation for deep learning. 1 

The deep learning trainings have been carried out on 496 cellular SMLM reconstructed images 2 

of size 1024 by 1024 pixels rendered at a pixel size of 10 nm, where the number of septin 3 

rings per image was ranging from 0 to ~30 rings. Each training image has been manually 4 

annotated using each of the six different annotation strategies resulting in six different paired 5 

sets of raw and corresponding mask images. The manual annotation was performed using the 6 

Fiji plugin Labkit (https://imagej.net/plugins/labkit/). This way, our annotators manually drew 7 

masks around each potential septin ring resulting in mask images in which all pixels within an 8 

annotated ring were labeled with a distinct integer, while background pixels were labeled 9 

with zero. Based on the model as well as the number of septin-like rings in the image, a few 10 

to tens of seconds are spent on manual annotation of a single image. Moreover, the “majority 11 

voting“ annotation - where the certainty level of the labels is high - is created from the 12 

annotations made by the three expert annotators. A given pixel in the “majority voting“ label 13 

image is considered as a part of a mask only if it has been annotated by at least two individual 14 

annotators, otherwise it is considered background. The unseen test dataset comprising 32 15 

cellular SMLM images was manually annotated by a septin biologist and the result was used 16 

as ground truth for further benchmarking of the models.   17 

 18 

Deep learning model training and parameter settings. 19 

For septin ring recognition, we trained each of the six models from scratch with the same 20 

cellular SMLM image data paired with the corresponding set of model specific mask images. 21 

To do so, we selected the 2D variant of the StarDist38 machine learning network with the U-22 

Net structure as its core. We trained the StarDist network on the ZeroCostDL4Mic platform 13 23 

as it provided simple access to a range of popular deep learning networks including StarDist. 24 

The hyperparameters of the StarDist structure, originally designed for cell and nuclei 25 

segmentation problems, were tuned in our implementations for the recognition of rings in 26 

SMLM image data. To do so, we adjusted the ZeroCostDL4Mic StarDist notebook to enable a 27 

long-running grid search for hyperparameter optimization as well as offline data analysis. The 28 

grid search yielded different sets of hyperparameters when optimizing for recall and 29 

precision, of which we chose the one that ensured a reasonable balance between the two 30 

criteria in all the six trained models. Table 1 summarizes the values of the StarDist network’s 31 

hyperparameters used in our experiments. In order to avoid adding another cause for bias, 32 
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no augmentation was used for training. Furthermore, transfer learning is not considered in 1 

our work. The batch size was set to 8 and a mae function was chosen as the loss function. Of 2 

the training dataset, 10% were used as a validation set to monitor possible overfitting during 3 

training. 4 

To guarantee a fair comparison of the six different annotation strategies, we trained each pair 5 

of raw images and corresponding mask images on the same StarDist network with fixed 6 

hyperparameters. In order to train the StarDist network, the key adopted python packages 7 

included tensorflow (v 0.1.12), Keras (v 2.3.1), csbdeep (v 0.6.3), numpy (v 1.19.5), and cuda 8 

(v 11.1.105). The training process has been accelerated using a Tesla P100 GPU and depending 9 

on the model it took between 123 to 161 minutes.  10 

 11 

  12 

Table 1. Hyperparameter configuration of the 

Stardist network used in this research 

Parameter Value 

Number of epochs  200 

Patch size 1024x1024 

Batch size 8 

Percentage validation  10 

n rays 32 

Grid parameter 2 

Initial learning rate 0.0003 

Augmentation No 

Transfer learning No 

   13 

  14 

Ring recognition by means of trained models. 15 

For benchmarking, we ran the six trained models on the cellular test dataset and the synthetic 16 

ring dataset using the ZeroCostDL4Mic platform. For the ring recognition in the Septin9c/c and 17 

Septin9-/- cell data we exported the models from the ZeroCostDL4Mic platform and ran them 18 

using the StarDist Fiji plugin. The outputs generated by the models were mask images of the 19 

same size of the corresponding test image. 20 
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Ring averaging and diameter measurement. 1 

To generate average ring images, the model output mask images were converted into binary 2 

images using Fiji. The centers of the individual ring masks were calculated and fixed-size 3 

bounding boxes were created around the center points. Bounding boxes touching the image 4 

borders were excluded from further measurements. The bounding box ROIs were then 5 

together with the corresponding images fed to CellProfiler47 to extract per-ring crops from 6 

the corresponding raw images. Using a custom written Fiji macro, we measured the average 7 

ring diameter as follows: the ring crops per condition were averaged and the diameter was 8 

determined by measuring horizontal line profiles with a line thickness of 1 pixel on 18 9 

successive 10° rotations of the image (see Figure 1C). In each of these 18 intensity plots the 10 

peak-to-peak distance was measured and then averaged to calculate the ring diameter. 11 

 12 

Calculation of septin ring geometry 13 

The septin ring circumference C was calculated based on the formula C = p*d where d is the 14 

measured ring diameter. The circumference was then divided by the approximate 15 

periodicity length of heterooctameric or heterohexameric complexes as can be found in 16 

filaments including the Septin-2-NC interface gap in the open conformation as predicted by 17 

pdb structure data (pdb codes: 2QAG, 7M6J, 6UQQ, 5CYO). This was in line with the observed 18 

periodicity length of the heterooctameric complex as found in filamentous septin 19 

assemblies40–44. The septin complex association angle was calculated by dividing 360° by the 20 

number of septin complexes found in the ring. 21 

 22 

Statistics 23 

We used the precision metric to show how relevant the recognized objects are in comparison 24 

to the septin rings in the ground truth. It was calculated as TP / (TP + FP), where TP stands for 25 

the number of true positives and FP is the number of falsely recognized objects. Recall, on the 26 

other hand, was used to show how well the recognized objects match the septin rings in the 27 

ground truth. Thus, it was calculated as TP / (TP + FN), where FN is the number of relevant 28 

septin rings in the ground truth that were not recognized by the models. Both measures fall 29 

in the [0%, 100%] interval, with higher values corresponding to better septin ring recognition 30 

performance. R2 values were calculated in R (R Project) using the “lm” function. z-score values 31 

were calculated across the six models using the formula z = (x-µ)/s, where x is the variable 32 
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(recall, precision, ring diameter, no of rings detected), µ is the mean over the group of 1 

variables of all six models and s is the standard deviation from the mean. 2 
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