Abstract
Microglia take on an altered morphology during chronic opioid treatment. This morphological change is broadly used to identify the activated microglial state associated with opioid side effects, including tolerance and opioid-induced hyperalgesia (OIH). Following chronic opioid treatment and peripheral nerve injury (PNI) microglia in the spinal cord display similar morphological responses. Consistent with this observation, functional studies have suggested that microglia activated by PNI or opioids engage common molecular mechanisms to induce hypersensitivity. Here we conducted deep RNA sequencing of acutely isolated spinal cord microglia from male mice to comprehensively interrogate transcriptional states and mechanistic commonality between multiple OIH and PNI models. Following PNI, we identify a common early proliferative transcriptional event across models that precedes the upregulation of histological markers of activation, followed by a delayed and injury-specific transcriptional response. Strikingly, we found no such transcriptional responses associated with opioid-induced microglial activation, consistent with histological data indicating that microglia number remain stable during morphine treatment. Collectively, these results reveal the diversity of pain-associated microglial transcriptomes and point towards the targeting of distinct insult-specific microglial responses to treat OIH, PNI, or other CNS pathologies.
Competing Interest Statement
G.S. is a cofounder of Epiodyne, a drug discovery company, an inventor on a patent application related to imaging of neural dynamics to discover analgesics, and a member of the NIH PSPP Preclinical Screening Platform for Pain External Consulting Board.
Footnotes
↵* Co-senior authors.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117321