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Vascular networks continuously reorganize their morphology by growing new or shrinking existing
veins to optimize function. Flow shear stress on vein walls has been set forth as the local driver
for this continuous adaptation. Yet, shear feedback alone cannot account for the observed diversity
of network dynamics – a puzzle made harder by scarce spatio-temporal data. Here, we resolve
network-wide vein dynamics and shear during spontaneous reorganization in the prototypical vascu-
lar networks of Physarum polycephalum. Our experiments reveal a plethora of vein dynamics (stable,
growing, shrinking) that are not directly proportional to local shear. We observe (a) that shear rate
sensing on vein walls occurs with a time delay of 1 min to 3 min and (b) that network architecture
dependent parameters – such as relative pressure or relative vein resistance – are key to determine
vein fate. We derive a model for vascular adaptation, based on force balance at the vein walls.
Together with the time delay, our model reproduces the diversity of experimentally observed vein
dynamics, and confirms the role of network architecture. Finally, we observe avalanches of network
reorganization events which cause entire clusters of veins to vanish. Such avalanches are consistent
with architectural feedback as the vein connections perpetually change with reorganization. As
these network architecture dependent parameters are intrinsically connected with the laminar fluid
flow in the veins, we expect our findings to play a role across flow-based vascular networks.

Veins interwebbed in networks distribute resources
across numerous forms of life, from the blood vascula-
ture in animals [1–4], via the leaf venation in plants [5, 6]
to the vein networks entirely making up fungi and slime
molds [7, 8]. Integral to a vascular network’s success is its
continuous reorganization, growing new veins and shrink-
ing existing ones [3, 9, 10]. As vein dynamics are usually
perceived as local adaptation of individual veins [1], reor-
ganization patterns at the network scale remain a puzzle.
However, understanding network reorganization is crucial
to understand development [3], and combat widespread dis-
eases [11, 12].

While the biological makeup of vasculature systems is
quite diverse, the physics underlying pervading laminar
fluid flows is the same [13]. Already almost a century ago
Murray introduced the idea that flow shear stress drives
vein radius adaptation [14]. Within his framework, at
steady state, veins minimize viscous dissipation while con-
strained by a constant metabolic cost per vein volume.
Since Murray derived his hypothesis, studies have been fo-
cused on static networks [6, 15, 16]. Data on optimal static
network morphologies agrees very well with Murray’s pre-
dictions, strikingly across very different forms of life; from
animals [17, 18], to plants [17, 19] and slime molds [20, 21],
underlining the relevance of fluid flow physics for vascular
morphologies.

How do flows shape network morphologies beyond the
steady state, during reorganization? Data on vein dynam-
ics, [3, 22–25], even during spontaneous reorganization, is
limited due to the difficulty to acquire time resolved data
covering entire networks. Observation of network excerpts
suggests that flow shear stress alone can not account for the

∗ These two authors contributed equally
† Corresponding author E-mail: k.alim@tum.de

diversity of observed dynamics [26]. In light of scarce exper-
imental observations, a number of vein adaptation models
have been introduced [4, 10, 20, 22, 27–33]. Yet, the mech-
anisms that govern vein adaptation and thereby network
reorganization can only be conclusively determined exper-
imentally.

Here, the vascular networks formed by the slime mold
Physarum polycephalum open up the unique possibility
to quantify simultaneously vein dynamics and flow shear
stress in the entire network, since the organisms’ body is
reduced to two dimensions [8, 21, 22]. The flows pervading
the vein networks’ arise from rhythmic contractions of the
vein walls, due to acto-myosin activity in the vein cortex.
As the flows oscillatory component changes rapidly (1 min
to 2 min) [34, 35], average flows dominate long-term vein
adaptation dynamics (10 min and more). Our aim, here, is
to employ P. polycephalum to quantify experimentally and
rationalize with minimal modelling ingredients, individual
and global vein reorganization dynamics.

Our quantitative data reveals that shear rate indeed
feeds back on vein radii, interestingly with a time delay. Im-
portantly, the effect of shear rate is disparate: similar shear
rate values may cause veins either to grow or to shrink. To
reconcile these disparate dynamics, we derive a model of
vein adaptation based on force balance on the vein wall.
In agreement with experiments, our model predicts that
vein adaptation is driven by shear rate, yet highlights that
vein fate is also determined by network architecture de-
pendent parameters, such as relative pressure and relative
resistance. As veins shrink and grow, network architecture
continuously changes. As a consequence, vein fate is not
constant in time. We find that this dynamical perspec-
tive explains an avalanche of events resulting in connected
clusters of veins vanishing within a network. Our analysis
identifies network architecture dependent parameters that
can be easily mapped out in living flow networks, thus pro-
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FIG. 1. Diverse vein dynamics emerge during network reorganization. (A) Close-up and (B) full network analysis of vein radius
dynamics and associated shear rate in P. polycephalum. (i) Bright-field images of reorganizing specimen allow to record vein
dynamics. (ii) Velocity measurements: (A) Velocity profiles along veins extracted with particle image velocimetry (inset: profile
along vein cross-section) and (B) vein contractions driving internal flows over the entire network are integrated to calculate shear
rate in veins (here shown at the initial observation time). (iii) Vein radius and shear rate as a function of time (connected dots)
and time-averaged trends (full lines). A.iii shows the dynamics in the vein #K from A.ii, B.iii shows the vein marked in blue in B.i.
(iv) The time-averaged shear rate is plotted against the time-averaged radius with color encoding time. Trajectory arrow colors
match arrow colors marking vein position in A.i (#H), A.ii (#K) and B.i, respectively. Veins marked in pink are shrinking while
stable veins are in blue.

viding a conceptual shift to be tested on other vascular
systems with fluid flows.

RESULTS

Individual vein dynamics with complex shear-vein radius
relation

We observe vein dynamics by tracking vein radius and
shear rate in P. polycephalum specimen using two com-
plementary imaging techniques, see Fig. 1. On the one
hand, we use close-up vein microscopy over long time scales
(Fig. 1-A.i). This allows us to directly measure radius dy-
namics a and fluid flow rate Q inside a selection of veins
using particle image velocimetry (Fig. 1-A.ii). On the other
hand, we observe full networks (Fig. 1-B.i). Here, radius
dynamics a are measured and flows Q inside veins are sub-
sequently calculated numerically integrating conservation
of fluid volume, see Materials and Methods. Our imag-
ing techniques resolve vein adaptation over a wide range
of vein radii, (a = 5 − 70 µm) showing rhythmic contrac-
tions, with a period of T ' 1 − 2 min (connected dots

Fig. 1-iii). As the fluid shear rate τ = 4
π
|Q|
a3 is a nonlin-

ear function of the vein radii, it oscillates with twice the
contraction frequency (Fig. S1). To access veins’ long time
behaviors, we average over fast oscillations (over tave ' T )
and obtain the time-averaged radius 〈a〉 and shear rate 〈τ〉
(full lines in Fig. 1-iii). Relating time-averaged shear rate
to time-averaged vein radius we find diverse, complex, yet
reproducible vein trajectories (Fig. 1-iv, see also Fig. S7).
Particularly in shrinking veins the relation between shear
and vein adaption is ambiguous. As the radius of a vein

shrinks, the shear rate either monotonically decreases (pink
in Fig. 1-iv), or, monotonically increases (dark pink), or,
increases at first and decreases again, undergoing a non-
monotonic trajectory (light pink). Disparate shrinking dy-
namics are reproduced for over 200 veins in the network
(Methods). In contrast stable veins have a definite shear-
radius relation: usually stable veins perform looping trajec-
tories in the shear rate-radius space (blue arrows in Fig. 1-
iv). In the full network, these loops circle in clockwise
direction for 80% of the observed stable veins. Clockwise
circling corresponds to an in/decrease in shear followed by
an in/decrease in vein radius pointing to a shear feedback
on local vein adaptation.

Shear rate feedback occurs with a time delay

However, feedback between shear rate and radius adap-
tation is not immediate and clearly appears to occur with
a time delay (Fig. 1-iii), ranging from 1 min to 10 min.
We systematically investigate the time delay between shear
rate and vein adaptation. For each vein segment, we cal-
culate the cross correlation between averaged shear rate

〈τ〉(t+ ∆t) and average vein adaptation d〈a〉
dt (t) as a func-

tion of the delay ∆t. Time delays tdelay, corresponding to
the correlation maximum, are recorded if the maximum is
significant (Fig. S4). From entire networks with more than
10000 vein segments we obtain statistically relevant data of
time delays tdelay (Fig. S5). We find time delays 1 min to
3 min are most common with an average of tdelay ' 2 min,
strikingly similar across different full network specimen.
The time delay observed is independent of the averaging
window (Fig. S3). Our measurements are consistent with
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measured data on the contractile response of active fibers
[36, 37], which exhibit a time delay of about 1− 5 s for in
vitro gels [37] – that could accumulate in much longer time
delays in vivo [38].

Shear rate and resistance feedback alone can not account for
the diversity of dynamics

Our experimental data clearly points to a feedback of
shear rate on individual vein adaptation. From previous
works [10, 27, 29, 31, 33] we expect that the magnitude of
shear rate determines vein fate, i.e. lower shear resulting
in a shrinking vein. Yet, this is not corroborated by our ex-
perimental measurements. In fact, despite displaying equal
vein radii and comparable shear rate toward the beginning
of our data acquisition, some veins are stable in time (blue
in Fig. 1-iv), while others vanish (pink). Further, mapping
out shear rate throughout the network at the beginning
of our observation, see Fig. 1-B.ii, reveals that dangling
ends have low shear rate, due to flow arresting at the very
end of each dangling end. Yet, some dangling ends will
grow (i.e red dot in Fig. 1-B.i.). In parallel, small veins
located in the middle of the organism show high shear yet
will vanish (yellow arrow in Fig. 1-B.ii, other examples in
Fig. S6-A, Fig. S13-C and S14-C). Therefore, the hypothe-
sis that veins with low shear should vanish, as they cannot
sustain the mechanical effort [39, 40], cannot be reconciled
with our data. Also, other purely geometrical vein char-
acteristics such as vein resistance [22], R = 8µL

π〈a〉4 , where µ

is the fluid viscosity and L the vein length [41], clearly do
not determine vein fate either, as they are directly related
to vein radius. Therefore, additional feedback parameters
must play a role.

Model derived from force balance reproduces disparate
individual vein dynamics

Our aim is now to identify other flow-based feedback pa-
rameters that drive vein adaptation on long timescales. As
we focus on flow-based feedback, we explore theoretically
the force balance on vein walls. Taking inspiration from
previous works [27–31], we derive vein adaptation dynam-
ics (Methods and SI Text Sec. 1). We consider force balance
on a vein wall segment of radius a and length L and average
out short time scales of vein contractions (1 − 2 min, cor-
responding to elastic deformations [35]) to focus on longer
time scales corresponding to growth or disassembly of the
vein wall (10− 60 min, linked to e.g actin fiber rearrange-
ments [42, 43]). In the force balance perspective, pressure,
circumferential stress and active stresses are typically con-
stant during an adaptation event [8] and vary smoothly
throughout the network (Fig. S6). In contrast, shear stress
(proportional to shear rate) is observed to change signifi-
cantly over time and space throughout the network, and is
therefore expected to contribute significantly to long time
scale dynamics. Importantly, shear stress does not directly
participate in radial dilatation or shrinkage, as it acts par-
allel to the vein wall. Rather, the cross-linked actin fiber
cortex responds anisotropically to shear stress and hence

tends to dilate or shrink vessels [36, 37] (Fig. S2). We thus
arrive at the adaptation rule

d〈a〉
dt

=
〈a〉
tadapt

(
τ2
s

τ2
loc

− 1

)
, (1)

where τs is shear stress sensed by the vessel wall, τloc is
a shear rate reference and tadapt is the adaptation time
to grow or disassemble a vein wall. The quadratic depen-
dence in (1) originates from fits of the experimental data on
the anisotropic response of actin fibers in Ref. [37]. Alter-
natively, a linear dependence, as in the phenomenological
model of Ref. [27], would not affect our results.

The force balance perspective (1) already brings insight
into the mechanisms driving vein fate. In fact, the shear
reference τloc typically measures the local fluid pressure rel-
ative to the rest of the network τloc ' ∆Pnet/µ (SI Text
Sec. 1). It is therefore related to the network’s architecture
as pressure senses the entire network’s morphology. Since
τloc is spatially dependent, veins with similar shear magni-
tude may suffer different fates; a radical shift compared to
previous works [27–31]. The adaptation timescale tadapt,
that controls adaptation speed, is also spatially dependent.

Finally, we radically deviate from existing models [27–31]
by incorporating explicitly the measured time delay tdelay

between the shear sensed by a vein wall τs and fluid shear
rate 〈τ〉 through the phenomenological first order equation

dτs
dt

= − 1

tdelay
(τs − 〈τ〉) . (2)

that correctly reproduces the experimentally measured
time delay tdelay between time-averaged shear rate 〈τ〉 and
radius adaptation d〈a〉/dt (Fig. S4). At steady state, we
recover a constant shear rate 〈τ〉 = τs = τloc, corresponding
to Murray’s law (see Methods)[14]. Thus, τloc, which also
includes a contribution from active stress generation, can
be viewed as a proxi for a vein’s metabolic cost in Murray’s
law.

To analyse the non-linear dynamics of our model Eqs. (1-
2) for a single vein, we need to specify the flow-driven shear
rate 〈τ〉. The flow in a vein is coupled to the flows through-
out the network. To take the entire network into account
we consider a vein, connected at both ends to the remain-
ing network, and map out the equivalent flow circuit repre-
senting the network, see Fig. 2-A. The flow circuit consists
of two parallel resistances: R = 8µL

π〈a〉4 for the vein and

Rnet corresponding to the remaining network resistance.
The average net flow generated by the vein contractions is

Q =
〈∣∣Ld(πa2)

dt

∣∣〉 ' 8πLε〈a〉2(t)
T where ε is the relative con-

traction amplitude. Q thus measures the mass exchanges
between the network and the vein. As mass is conserved,
this results in an inflow Qnet = −Q, in the rest of the net-
work. Flows generated by the rest of the network average
out to I and the sum I + Q flows within the vein – see
Fig. 2-A. ii. With Kirchhoff’s first and second circuit law,
the time-averaged shear rate in the vein is

〈τ〉(t+ tave) ' 4(I +Q)

π〈a〉3
(t) =

4Qnet(〈a〉)
π〈a〉3

1

1 +R(〈a〉)/Rnet
(t)

(3)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2022. ; https://doi.org/10.1101/2021.12.29.474405doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474405
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

0 a a
radius

0

locsh
ea

r r
at

e

C.No time delay

0 10 20 30 40 50
time (min)

2

3

4

5

6

sh
ea

r r
at

e 
(1

/s
)

45

50

55

60

65

ra
di

us
 (

m
)trend

fit

⟨a⟩stable0 a a
radius

0

locsh
ea

r r
at

e

⟨a⟩unstable

data
model

#E

τ lo
c

time-averaged radius

time-averaged

ℬ

$A. i.
$

ℬ

$

ℬ
R

Q

Vein model

I
Network

Rnet
Qnet

I + Q

ii. iii.

0 a
radius

0

loc

sh
ea

r r
at

e
non-monotonous
monotonous

0 a
radius

0

loc

sh
ea

r r
at

e
non-monotonous
monotonous

0 a
radius

0

loc

sh
ea

r r
at

e
non-monotonous
monotonous

0 a a
radius

0

loc

sh
ea

r r
at

e

0 a a
radius

0

loc

sh
ea

r r
at

e

τ lo
c

τ lo
c

B. i. With time delay

⟨a⟩stable
⟨a⟩unstable

0 a a
radius

0

locsh
ea

r r
at

e

⟨a⟩unstable 0 a a
radius

0

locsh
ea

r r
at

e

time-averaged radiustime-averaged radius

tim
e-

av
er

ag
ed



 s

he
ar

 ra
te

B. ii.

⟨τ⟩(t + tave) = 32Lϵ
T

⟨a⟩3

⟨a⟩4 + 8Lμ /πRnet

0 10 20 30 40 50
time (min)

2

3

4

5

6

sh
ea

r r
at

e 
(1

/s
)

45

50

55

60

65

ra
di

us
 (

m
)trend

fit

tim
e-

av
er

ag
ed

 

sh

ea
r r

at
e

tim
e-

av
er

ag
ed



 s

he
ar

 ra
te

0 a
radius

0

loc

sh
ea

r r
at

e
non-monotonous
monotonous

0 a a
radius

0

loc

sh
ea

r r
at

e

FIG. 2. Stable and unstable vein dynamics are predicted within
the same model. (A) Translation of a bright field image of spec-
imen (i) into vein networks (ii); each vein is modeled as a flow
circuit link. (iii) A vein flow circuit consists of a flow source Q
(due to vein pumping) and a resistor R (viscous friction). The
rest of the network is modelled by an equivalent circuit with
flow source Qnet = −Q and resistor Rnet. I flows from the rest
of the network to the vein. (B) Time-averaged shear rate versus
radius from (1) (i) with a time delay ((2)) and (ii) without (re-
placing (2) with τs = 〈τ〉 and tave = 0 in (3)), with fixed points
and typical trajectories. (B.i) also shows a zoom of shrinking
veins, including monotonic and non-monotonic trajectories. (C)
Fit of model Eqs. (1-2) to the time-averaged radius 〈a〉 using
time-averaged shear rate data 〈τ〉 as input signal, for a repre-
sentative close-up vein (#E). Here we fix tdelay = 120 s and
fitted parameters are tadapt = 891 s and τloc = 1.83 s−1. See SI
Text Sec. 2 for details.

where tave is the typical averaging time. The coupled dy-
namics of {〈τ〉, 〈a〉} are now fully specified through Eq. (1-
3).

Our dynamic system {〈τ〉, 〈a〉} reproduces the key fea-
tures of the trajectories observed experimentally. First,
stable and unstable fixed points, and hence vein fate, de-
pend on the parameters R/Rnet, Qnet and τloc ' ∆Pnet/µ
(SI Text Sec. 2), determining two stable fixed points at
(0, 0) and (τloc, 〈a〉stable(R/Rnet, Qnet, τloc)), and an unsta-
ble fixed point (τloc, 〈a〉unstable(R/Rnet, Qnet, τloc)). Note
that the stable fixed point with finite radius, (τloc, 〈a〉stable)
corresponds to Murray’s steady state. Second, the time
delay tdelay sets the dynamics observed. In fact, we find
theoretically clockwise spiraling trajectories starting near
the stable fixed point (τloc, 〈a〉stable) (blue in Fig. 2-B.i)
as well as veins shrinking with monotonous (dark pink in
Fig. 2-B.i) or with non-monotonous shear rate decrease
(light pink Fig. 2-B.i). Without the time delay (3), in-
stantaneous shear sensing as τs = 〈τ〉 (similarly as in e.g.
Ref. [27]) can produce neither circling nor non-monotonous

trajectories (Fig. 2-B.ii).
We further verify that our model quantitatively accounts

for the observed dynamics with physiologically relevant pa-
rameters. We fit our 12 close-up data sets, as well as 12
randomly chosen veins of the full network in Fig. 1-B, for
vein radius data 〈a〉(t) from input shear rate data 〈τ〉(t).
This determines model constants tadapt and τloc. The time
delay tdelay is either set to an average value, to the best
cross-correlation value for the specific vein, or fitted for,
with no significant change in the results. Overall, we find
a remarkable agreement between fit and data (Fig. 2-D,
Figs. S8-13 and Tables S1-3), suggesting that the mini-
mal ingredients of this model are sufficient to reproduce
experimental data. In all samples, fitting parameters re-
sulted in physical values [44], with τloc being on the order
of magnitude of measured shear rates and tadapt & 10 min
corresponding to long time scale adaptation of vein radii.
Notably, for all fits to data with intermediate time frames
(15 min to 40 min) corresponding to the time scale of van-
ishing events, we find constant τloc yields perfect agree-
ment, while for longer time duration τloc has to change.
This confirms that network architecture-dependent param-
eters, such as τloc, feed into the adaptation dynamics and
- notably - change when network architecture changes.

Network architecture determines vein dynamics and ultimate
fate

Which vein and network specific parameters are the most
important for vein adaptation? Our model Eqs. (1-3) high-
light R/Rnet, Qnet, τloc as potential candidates. The resis-
tance ratio R/Rnet varies over orders of magnitude (Fig. 3-
A), with values that are not correlated with vein size (see
Fig. S17). Rather, R/Rnet depends on the network’s archi-
tecture – e.g. whether a vein is in the network center or on
the outer rim. R/Rnet reflects the relative cost to trans-
port mass through the rest of the network, and is thus
also intuitively a good candidate to account for individual
vein adaptation. Qnet typically scales with the vein radius,
with larger outflows observed in larger veins (Fig. 3-B).
Hence Qnet provides similar information as the vein resis-
tance R, namely information on local morphology, and is
not an additional important feedback parameter. Finally,
τloc ∝ ∆Pnet is also network architecture dependent. We
find that pressure maps of ∆Pnet are mostly uniform, ex-
cept towards dangling ends where relevant differences are
observed (Fig. 3-C) and could influence vein adaptation.
Our aim is now to investigate in more detail how these
novel, network architecture dependent feedback parame-
ters, R/Rnet and ∆Pnet, control vein dynamics on the basis
of three key morphologies.

Dangling ends are unstable: disappearing or growing. As
observed in our data, dangling ends are typical examples
of veins that can start with very similar shear rate and ra-
dius and yet suffer radically different fates (Fig. 1-B.i and
ii, Fig. 4-A). Dangling ends either vanish or grow but never
show stably oscillating trajectories. Topologically, and un-
like the mid veins considered in Fig. 2-A, dangling ends are
only connected to the rest of the network by a single node.
The relative resistance Rnet therefore cannot be calculated
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FIG. 3. Flow-based feedback parameters. Full network maps
of the same specimen as in Fig. 1-B, at the beginning of the
observation, of the (A) resistance ratio R/Rnet, (B) vein outflow
Qnet and (C) fluid pressure in a vein relative to the average
pressure in the network ∆Pnet (in absolute value). Grey veins
in (A) correspond to bottleneck veins or dangling ends for which
Rnet can not be defined.

in a dangling end and cannot play a role. Local pressure
∆Pnet is thus the only remaining feedback parameter. We
observe on the example of Fig. 4-A that large values of
∆Pnet favor growth and small values prompt veins to van-
ish. These possible outcomes are also predicted with model
equivalent flow circuits (Fig. S12 and SI Text Sec. 3). Local
pressure feedback is thus connected to dangling end fate:
it is a prime example of the importance of network-based
architectural information.

Competition between parallel veins decided by resistance ra-
tio. Parallel veins are another example in which initially
very similar and spatially close veins may suffer opposite
fates, see Fig. 4-B. Often, both parallel veins will eventu-
ally vanish (Fig. S15-A and S16-A), yet what determines
which vanishes first? Eq. (3) highlights that the ratio of
a vein’s resistance relative to the resistance of the remain-
ing network R/Rnet could be a determining factor. In fact,
exploring R/Rnet in our full network (Fig. 4-B) we find
that a vein with a large resistance ratio R/Rnet > 1 will
vanish. In contrast, a vein with R/Rnet < 1 will remain
stable. In fact, if R/Rnet > 1, it is energetically more fa-
vorable to transport mass through the rest of the network
instead of through the vein. This is consistently observed
and is also consistent with theoretical predictions on the
equivalent flow circuit (Fig. S12 and SI Text Sec. 3) and
coherent with Ref. [27]. The resistance ratio is thus a ro-
bust predictor for locally competing veins. Although it is
somewhat similar to shear, as highlighted through Eq. (3),
there is one main advantage to the investigation of R/Rnet,
namely that it is easily computed from global network ar-
chitecture and does not require to resolve flows.

Loops shrink first in the middle. Finally, loopy structures
i.e. a long vein connected at both ends to the remaining
network, are often observed in P. polycephalum. Surpris-
ingly, we experimentally observe loops to start shrinking
in their very middle (Fig. 4-C, also Fig. S15-A and S16-A)
despite the almost homogeneous vein diameter and shear
rate along the entire loop. This is all the more surprising
as quantities such as ∆Pnet and R/Rnet are also constant
along the loop. This phenomenon again seems to lie in
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FIG. 4. Network architecture controls vein fate on 3 examples.
(A-C) (i) determining factors mapped out from experimental
data for the specimen of Fig. 1-B and (ii) typical trajectories
from data. Pink (resp. blue) arrows point to a vanishing (resp.
stable or growing) vein. (A) (ii) Dangling ends either vanish or
grow indefinitely, coherently with (i) the relative local pressure
∆Pnet. Arrows point to veins initially similar in size (∼ 23µm).
(B) Parallel veins are unstable: one vanishes in favor of the other
one remaining (ii), coherently with (i) its relative resistance,
R/Rnet, being higher . (C) Loops first shrink in the center
of the loop (ii) – i.e. from the point furthest away from the
nodes connecting it to the rest of the network – as evidenced
by focusing on (i) the time of vein segment vanishing. Black
arrows point to other loops also vanishing from the center.

the architecture: when a vein segment in the loop shrinks,
mass has to be redistributed to the rest of the network.
This increases shear in the outer segments, preventing dis-
appearance of the outer segments. Once the center segment
has disappeared, both outer segments follow the dynamics
of dangling ends, and their fate is again determined by net-
work architecture (through the local pressure ∆Pnet). This
mechanism is consistently predicted within an equivalent
flow circuit (Fig. S12 and SI Text Sec. 3). Importantly,
we find that as soon as a vein disappears, the network’s
architecture changes: flows must redistribute and vein con-
nections are updated. Hence, an initially stable vein may
become unstable. Vein fates thus dramatically evolve over
time, in line with network architecture evolution.

Single vanishing vein triggers avalanche of vanishing events
among neighboring veins

After focusing on individual vein dynamics, we now ad-
dress global network reorganization. Observing a disap-
pearing network region over time reveals that vein vanish-
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ing events happen sequentially in time (Fig. 5-A and B).
Inspired by the importance of resistance ratios for parallel
veins, we here map out resistance ratios R/Rnet at subse-
quent time points in an entire region (Fig. 5-A). At the
initial stage (Fig. 5-A, 2 min) the majority of veins are pre-
dicted to be stable by the resistance ratio R/Rnet. Yet, the
few veins with high resistance ratio (red arrows in Fig. 5-
A, 2 min) are indeed successfully predicted to vanish first
(black crosses in Fig. 5-A, 5 min). As a consequence of veins
vanishing, the local architecture is altered and the resis-
tance ratios undergo drastic changes. Veins that were sta-
ble before are now predicted to be unstable. This pattern,
in which the vanishing of individual veins causes neighbor-
ing veins to become unstable, repeats until the entire region
vanishes in an avalanche in less than 15 min (Fig. S15-A,D
and S16-A,D show similar avalanches in other specimen).
Note that a vanishing vein may rarely also stabilize a pre-
viously unstable vein (Fig. 5-A, 16 min, blue arrow).

The fundamental origin of vanishing avalanches can be
narrowed down again to network architecture. We explore
a model network region with a few veins of similar resis-
tance r connected to the rest of the network, represented
by an overall equivalent resistance Rrest (Fig. 5-C). We pre-
condition all veins to be stable by assuming for each vein
a resistance ratio R/Rnet ∼ r/Rrest . 1. If a vein’s mor-
phology is slightly perturbed, e.g. with a smaller radius,
and therefore with a slightly higher resistance say 2r (pur-
ple in Fig. 5-C), the perturbed vein’s resistance ratio may
become greater than 1, making the vein unstable and van-
ishing. Yet when two network nodes are removed from the
network as the vein vanishes, individual veins previously
connected through the node now become a single longer
vein. A longer vein has a higher resistance. Hence, in our
example, the “new” longer vein becomes unstable as well
(blue in Fig. 5-C). Once this latter one vanishes, another
neighboring vein can become longer and unstable yet again
(green in Fig. 5-C). Reciprocally, vein growth and parallel
vein disappearance can – more rarely – decrease R/Rnet,
and in turn stabilize a growing vein, as in Fig. 5-A at 16 min
(see also Fig. S15-D and S16-D). In our simple mechanistic
model, the series of events follows an avalanche principle,
exactly similar to that observed in our experiments: a van-
ishing vein disturbs local architecture and that is enough
to modify nearby resistance ratios and hence stability. The
avalanche of disappearing veins eventually results in the
removal of entire network regions.

DISCUSSION

We here report highly resolved data of spontaneous net-
work reorganization in P. polycephalum in which both in-
dividual vein dynamics and fluid flows pervading veins are
quantified simultaneously. We observe disparate vein dy-
namics that originate from shear-driven feedback on vein
size, with a time delay ranging from 1 min to 3 min. Our
force balance model challenges previous concepts showing
that vein fate is not only determined through shear mag-
nitude but also through network architecture dependent
parameters. In particular, dangling end fate is connected
to relative pressure while inner network’s vein stability is
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FIG. 5. Avalanche of sequentially vanishing veins. (A) Time
series of network reorganization. The colorscale indicates the
ratio between the resistance of an individual vein R and the
rest of the network Rnet. Red arrows highlight vanishing veins
in the experiment, black crosses indicate veins that disappeared
within the previous time frame. Veins for which the resistance
ratio cannot be calculated, such as dangling ends, are plotted
with R/Rnet = 1. (B) Map of times indicating vanishing events.
Gray veins will remain throughout the duration of the experi-
ment. (C) Dynamics of the resistance ratio of the 3 color coded
veins within a minimal network, inspired from the highlighted
gray region of the network in (B). Vein resistances are chosen as
R = r except for a perturbed vein for which R = 2r. Rrest repre-
sents the rest of the network relative to the region, distinct from
Rnet which is relative to a single vein. In this model, a vein van-
ishes if its individual resistance ratio R/Rnet > 1. Vanishing of
veins sequentially increases resistance ratios of neighboring veins
making them unstable. Here r/Rrest = 0.1, yet similar behavior
was obtained consistently over a wide range of r values.

tightly determined by the vein’s resistance ratio relative
to the resistance associated with mass flows in the rest of
the network, R/Rnet. While R/Rnet is directly related to
shear, it has the advantage of being easily computed from
network morphology, without needing to resolve flows. Net-
work architecture strongly depends on time. As unstable
veins vanish, the relative architecture of changes, inducing
avalanches of vanishing veins, overall resulting in significant
spontaneous reorganization.

While our experimental investigation is specific to
P. polycephalum, we expect that the two key concepts un-
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raveled here (time delay and network architecture feed-
back) may very well be at play in other vascular networks.
First, the ubiquity of delayed shear feedback, beyond the
contractile response of acto-myosin, suggests that a diver-
sity of dynamics (circling, non-monotonous) may also oc-
cur in other vascular networks. In fact, also the turnover
time for actin filaments in living cells ranges 10 s to 30 s,
close to our measured time delay [45–47]. Other pathways,
such as chemical pathways for sheared endothelial cells in
blood vasculature, are processed with a time delay of a
few minutes [48–50], while reorganization occurs on longer
timescales ranging from 15 min for individual cells to sev-
eral days for blood vasculature [46, 51].

Second, network architecture feedback (through pres-
sure and resistance ratio) is connected to the laminar flows
pervading the network. Thus, our perspective could be
extended to investigate reorganization in other networks
where laminar flows are an essential building block, in
essence networks where Murray’s law holds at steady state.
Particularly, our insight suggests simple parameters to map
out, such as relative resistance and pressure. Likely these
network architecture dependent parameters may explain
discrepancies between shear and network reorganization in
other vascular networks [3, 22–25]. Such systematic param-
eter search unravelled by our force balance approach could
also be extended to the study of pathological states, e.g.
with low oxygen levels [52, 53] or during tumor growth [54].

The fact that pervading flows and network architecture
are so intermingled originates in the simple physical prin-
ciple that flows are governed by Kirchhoff’s laws at nodes,
and hence “autonomously” sense the entirety of the net-
work’s architecture. Yet, Kirchhoff’s laws are not limited
to flow networks, but also govern electrical [55], mechan-
ical [56–59], thermal [60] and resistor-based neural net-
works [61, 62]. Having the physics of Kirchhoff-driven
self-organization at hand may thus pave the way for au-
tonomous artificial designs with specific material [56, 57]
or learning properties [55, 61, 62].

MATERIALS AND METHODS

Microscopic images of all the specimens used for this
study are made available as movies in MP4 format.

Preparation and Imaging of P. polycephalum

P. polycephalum (Carolina Biological Supplies) networks
were prepared from microplasmodia cultured in liquid sus-
pension in culture medium [63, 64]. For the full network
experimental setup, as in Fig. 1-B of the main text, mi-
croplasmodia were pipetted onto a 1.5% (w/v) nutrient free
agar plate. A network developed overnight in the absence
of light. The fully grown network was trimmed in order
to obtain a well-quantifiable network. The entire network
was observed after 1 h with a Zeiss Axio Zoom V.16 micro-
scope and a 1x/0.25 objective, connected to a Hamamatsu
ORCA-Flash 4.0 camera. The organism was imaged for
about an hour with a frame rate of 10 fpm.

In the close-up setup, as in Fig. 1-A of the main text,
the microplasmodia were placed onto a 1.5% agar plate
and covered with an additional 1 mm thick layer of agar.
Consequently, the network developed between the two agar
layers to a macroscopic network which was then imaged
using the same microscope setup as before with a 2.3x/0.57
objective and higher magnification. The high magnification
allowed us to observe the flow inside the veins for about one
hour. Typical flow velocities range up to 1 mm s−1 [65].
The flow velocity changes on much longer time scales of
50 s to 60 s. To resolve flow velocity over time efficiently
5 frames at a high rate (10 ms) were imaged separated by
a long exposure frame of 2 s. As different objectives were
required for the two setups, they could not be combined
for simultaneous observation. The 12 close-up data sets
are indexed #A− L consistently in the main text and SI.

Image Analysis

For both experimental setups, image analysis was per-
formed using a custom-developed MATLAB (The Math-
Works) code. This procedure extracts the entire network
information of the observed organism [63]: single images
were binarized to identify the network’s structure, using
pixel intensity as well as pixel variance information, ex-
tracted from an interval of images around the processed im-
age. As the cytoplasm inside the organism moves over time,
the variance gives accurate information on which parts of
the image belong to the living organism and which parts
are biological remnants. The two features were combined
and binarized using a threshold. The binarized images were
skeletonized and the vein radius and the corresponding in-
tensity of transmitted light were measured along the skele-
ton. The two quantities were correlated according to Beer-
Lambert’s law and the intensity values were further used
as a measure for vein radius, as intensity provides higher
resolution. For the imaging with high magnification, in ad-
dition to the network information, the flow field was mea-
sured using a particle image velocimetry (PIV) algorithm
inspired by [66–68], see Fig. 1-A.ii of the main paper. The
particles necessary for the velocity measurements are nat-
urally contained within the cytoplasm of P. polycephalum.

Flow calculation from vein contractions

Building on the previous image analysis, we used a
custom-developed MATLAB (The MathWorks) code to
calculate flows within veins for the full networks, based on
conservation of mass. The algorithm follows a two stage
process.

First, the network structure obtained from the images
was analyzed to construct a dynamic network structure.
This structure consists in discrete segments that are con-
nected to each other at node points. At every time point,
the structure can evolve according to the detected vein
radii: if a radius is lower than a certain threshold value, the
corresponding segment vanishes from the structure. Seg-
ments which are isolated due to vanishing segments are also
removed. We carefully checked by eye that the threshold
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levels determining when a segment vanished agreed with
bright-field observations. Note that we do not account for
entirely new segments in the dynamic structure. As no
substantial growth occurs in our data, this is a good ap-
proximation.

Second, flows in each vein were calculated building on
Ref. [8]. In a nutshell, each vein segment i has an unknown
inflow from neighboring segments, in addition to flow aris-
ing due to the segment’s contractions, 2πai

∂ai
∂t , where ai de-

notes the radius of segment i. Unknown inflows are related
with Kirchhoff’s laws. Furthermore, pressure is determined
at every network node from the segment resistances given
by Poiseuille’s law Ri = πa4

i /8µLi where Li is the length of
a segment. Compared to Ref. [8], we introduced two major
additions. On the one hand, the actual live contractions
ai(t) are used, as detected from sequential images. To en-
sure that Kirchhoff’s laws are solved with a good numerical
accuracty, the radius traces ai(t) were (1) adjusted at each
time so that overall cytoplasmic mass is conserved (mass
calculated from image analysis varied by less than 10% over
the analysis time) and (2) overdiscretized in time by adding
2 linearly interpolated values between each frame. Hence
the simulation time step ∆t = 2s is 3 times smaller than
the acquisition time, and favors numerical convergence of
all time dependent processes. Note that the results were
found to be independent of the simulation time step ∆t
when decreasing it by a factor 2. On the other hand, a seg-
ment (or several) that vanishes creates (just before disap-
pearing) an added inflow of −πa2

iLi/∆t, where ai the seg-
ment’s radius just before disappearing. This corresponds
to radius retraction as observed in the movies.

Data analysis

a. Time averages – For all data, we extract short
time averages by using a custom-developed MATLAB (The
MathWorks) routine. To determine the short time aver-
ages of the oscillating shear rate and vein radius, we used
a moving average with a window size of tave ' 2 − 3T
(T ' 120 s). The ith element of the smoothed signal is

given by x̃i = 1
N

∑N
j xi−N

2 +j , where N is the window size.

At the boundary where the averaging window and the sig-
nal do not overlap completely, a reflected signal was used
as compensation. This can be done because the averaging
window is relatively small and the average varies slowly in
time. The determined trend (for the close-up data sets) was
then smoothed with a Gaussian kernel to reduce artefacts
of the moving average filter.

b. Statistical information on trajectories – Out of the
12 close-up veins investigated, 6 veins show stable clockwise
feedback, 4 shrink and vanish, 1 shows stable anticlockwise
feedback, and 1 is not classifiable (see Fig. S7). For the
specimen of Fig. 1-B, out of 200 randomly picked veins, 80
show stable clockwise feedback, 80 shrink and vanish, 20
show stable anticlockwise feedback and 20 are not classi-
fiable. Out of the 80 shrinking veins, monotonic decrease
is observed for 25%, monotonic increase for 40%, and non-
monotonic trajectories 15% of the time. The remaining
20% of vanishing veins are unclassifiable, as their recorded
trajectories are too short to allow for any classification.

c. Fitting of the model – Fitting of the model to the
data was performed using a non-linear least squares algo-
rithm included in the SciPy optimize package [69], or a
linear least squares algorithm, according to whether 2 or 3
model parameters had to be fitted. The relative fitting

error is defined as 1
Nt

∑Nt

t=1

(
|〈a〉data

t − 〈a〉fit
t |/〈a〉data

t

)
,

where Nt is the number of data points. To find the op-
timal time windows for fitting including fitting the time
delay tdelay, we chose close-up data sets forming loopy tra-
jectories (#G, #E, #F and #K), as the loops are the char-
acteristic feature ensuing from the time delayed dynamics.
As stressed in the main text the model parameters are not
expected to be constant over long times (on which loops are
typically observable). To find suitable time frames where
model parameters where approximately constant and loops
observable we systematically varied the time windows of
the data used for the fitting. The distribution of time de-
lays fitted for different time windows was found to range
from 1 min to 10 min (see Fig. S8). For fits including only 2
model parameters, τloc and tadapt, we fixed the time delay
either to a constant value tdelay = 120 s or to the value ob-
tained by cross correlation, and fitted the remaining model
parameters (Figs. S9-13 and Tables 1-3).

d. Equivalent resistances – Finally equivalent resis-
tances (Rnet) in our full network structures are calculated
using an algorithm based on Kirchhoff’s laws [70], from the
values of R for each vein segments directly evaluated from
data. The algorithm was tested to yield correct results
on simple geometries where analytic expressions may be
found. For example, for a network consisting of a loop of 4
similar vein segments of resistance R, the relative resistance
for any of the vein segment corresponds to the resistance
of “the rest of the network”: here 3 resistances in series.
Hence Rnet = 3R.

Vascular adaptation from force balance

We briefly derive here our vascular adaptation model
from force balance and provide more details for the deriva-
tion in SI Text Sec. 1. We consider the force balance
equation on a small vein wall segment of radius a, length
L, thickness e. As the motion is typically slow and occur-
ring over microscopic scales we neglect inertial contribu-
tions and write

0 = 2πaL

(
(p−pext)+σcircum +σactive +σr(µτs)

)
− γ̃Lda

dt
,

(4)
where p − pext is the hydrodynamic pressure difference
between interior and exterior, σcircum is the circumferen-
tial stress (or elastic tension), σactive corresponds to active
stresses from the acto-myosin cortex, and γ̃Ldadt is the fric-
tion force reflecting the long time scale for fiber rearrange-
ment [42, 43]. Note that since the shear rate τ acts longi-
tudinally on the walls, it does not contribute to the force
balance on the radial direction. Yet, the vein walls con-
sist of an anisotropic material, namely cross-linked fibers
(the actin gel) such that radial stress σr(µτs) builds up
as a result of longitudinal shear rate sensing (with a time
delay) [36, 37, 48–50].
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The general force balance (4) significantly simplifies
when we average over the short time scales of vein contrac-
tions (1−2 min) [35], typically corresponding to elastic de-
formations, to focus on the longer time scales of 10−60 min
corresponding to vein wall assembly or disassembly inherit-
ing from e.g. actin fiber rearrangements [42, 43]. On these
longer time scales, significant morphological vein adapta-
tion of 〈a〉 occurs. 〈σactive〉 is a constant as it is expected to
vary only on short time scales in line with the periodic con-
tractions. Note also that it is a negative stress, that tends
to shrink the vein – this reflects the impact of metabolic
cost, here induced by vein wall activity. 〈σcircum〉 ' 0 over
short time scales, as such forces are intrinsically elastic
forces and hence do not pertain long time features. Finally,
our numerical calculations of pressures within observed net-
works show that 〈(p−pext)〉 depends smoothly on the loca-
tion within the network, but barely varies in time [8] (see
SI Fig. S6). We obtain a time-independent, yet position-
specific constant τ̃loc = − 1

µ 〈(p−pext)+σcircum+σactive〉. As

we expect active stresses to be likely as important a term
in this expression as pressure, we expect that τ̃loc & 0.

Furthermore, we assume a phenomenological functional

form for the radial stresses, as σr(µτs) ' µ τ
2
s

τc
, in line with

observations of sheared cross-linked actin fibers [36, 37]
where τc is a positive constant. Importantly, this radial
stress, acts in the positive direction, i.e. dilates vessels –
see Fig. S2.

Finally, to simplify the expressions we now introduce
τloc =

√
τcτ̃loc and

tadapt =
γ

2πµτloc
(5)

a characteristic adaptation timescale for vascular rear-
rangement. This allows us to recover the vascular adap-
tation rule (1). Again, we refer the reader to more details
on the derivation in the SI Text Sec. 1.

Agreement with Murray’s law

Our result is consistent with Murray’s steady-state as-
sumption. In fact, the (non-trivial) steady state of our

model Eqs. (1-2) corresponds to a constant average shear
in the vein 〈τ〉 = τloc. This corresponds exactly to Mur-
ray’s result of minimum work. In fact, Murray stipulates
that the energy dissipation of a single vein (of radius a and
length L) is given by flow dissipation associated with the
vein’s resistance and energy expense to sustain the vein

E =
1

2

Q2

R
+ πbLa2 =

4µLQ2

πa4
+ πbLa2. (6)

where R = πa4/8µL is the vein resistance assuming
Poiseuille flow in the vein, b is a local metabolic constant
per unit volume, Q the flow rate and µ viscosity. The
principle of minimum energy expense suggests to search
the minimum of E with respect to the vein radius a which

gives the relation a6
optimal = 8Q2η

bπ2 . The shear rate τ can

be expressed as τ = 4Q
πa3 and hence the optimal (or steady-

state) shear rate is independent of radius and flow rate

τoptimal =
√
b/µ. This is consistent with our steady state

where shear rate is constant 〈τ〉 = τloc. The constant
τloc can thus also be interpreted as being related to the
typical local energy expense to sustain the vein

√
b/µ.

Note that we bring further insight compared with Mur-
ray’s derivation, as our adaptation dynamics (4) originates
from force balance on the vein wall, and hints that τloc (or
the metabolic cost) also depends on local pressure.
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