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Abstract 

Deep learning-based variant callers are becoming the standard and have achieved superior 

SNP calling performance using long reads. In this paper, we present Clair3, which leveraged 

the best of two major method categories: pile-up calling handles most variant candidates 

with speed, and full-alignment tackles complicated candidates to maximize precision and 

recall. Clair3 ran faster than any of the other state-of-the-art variant callers and performed 

the best, especially at lower coverage. 

 

Maintext 

The first preprint of DeepVariant1 was released in late 2016, marking the beginning of the 

use of deep learning-based methods (DL methods) instead of traditional statistical methods 

for variant calling. Over the years, several DL methods have been developed. We are now 

witnessing a complete take-over, led by DeepVariant for short-read variant calling. Long-

read variant calling, using Oxford Nanopore (ONT) data, on the other hand, has been 

dominated by DL-methods since the beginning, primarily owing to the difficulty caused by 

its higher base error rate in general. Although the DL methods for short-read and long-read 

have a lot in common, the problem of long-read variant calling is considered more difficult. 

This led to two major designs – using pileup or full-alignment as the input of the decision-

making neural network – which are significantly different in both performance and speed. 
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Long-read variant callers, including Clairvoyante2, Clair3, and Nanocaller4, are pileup-based, 

in which the read alignments are summarized into features and counts before being 

inputted into a variant calling network. PEPPER-Margin-DeepVariant5 (PEPPER) is full 

alignment-based. The input to the DeepVariant variant calling network is kept with spatial 

information in the read alignments and is tens of times larger than the pileup inputs in 

terms of size. Medaka6 is consensus-based; it uses pileup input to generate a diploid 

consensus in the first iteration and two haploid consensuses in the second. The differences 

between the reference and consensuses are identified and combined into variants. 

NanoCaller uses a 3-layer CNN architecture, which is similar to the architecture of our first-

generation caller Clairvoyante. These are all state-of-the-art algorithms; the pileup-based 

algorithms are usually superior in terms of time efficiency and the full-alignment algorithms 

provide the best precision and recall. More characteristics and limitations of the two designs 

are discussed in Clair3 and DeepVariant1, respectively. However, while the two designs are 

not mutually exclusive, there have not been any studies combining pileup calling and full-

alignment calling. 

 

To fill the gap, we developed Clair3, the successor to Clair, which makes the best of both 

designs. It runs as fast as the pileup-based callers and performs as well as the full alignment-

based callers. Extended Data Figure 1 shows the workflow for Clair3. The philosophy behind 

Clair3 is to trust the full-alignment model unless the pileup model can make a quick but 

reliable decision. First, the pileup calling network goes through all the variant candidates 

that passed a coverage threshold and an alternative allele frequency threshold. Next, the 

high-quality pileup calls are used to phase the alignments and as part of the final output. 

Then, the alignments phased by WhatsHap7 are used to generate full-alignment input that is 

~23 times larger in size than the pileup input for each low-quality pileup call for full-

alignment calling. Finally, the full-alignment calls are integrated with the high-quality pileup 

calls as the final output. More details and parameters about the Clair3 workflow, 

input/output, and network architecture are provided in Methods. 

 

We benchmarked Clair3 v0.1-r11 against PEPPER r0.8, Medaka v1.4.4 (that last version of 

ONT’s in-house tool that supported variant calling), Longshot8 v0.4.5 (non-deep learning-

based; works only with SNP), and Clair v2.1.1 (the Clair3 predecessor) on two GIAB9, 10 
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samples: HG003 and HG004. HG003 was tested on models (including a pileup and a full-

alignment model) trained on HG001, 2, 4 and 5. HG004 was tested on models trained on 

HG001, 2, 3 and 5. The model availability and training details are in Methods. We primarily 

benchmarked ONT data base-called using Guppy 5 (version 5.0.14) data, but in addition we 

also benchmarked Guppy 4 (version 4.2.2) for two reasons: 1) variant caller’s capability can 

be shown on noisier data - compared to the Guppy 5, which was released in mid-2021, 

Guppy 4’s read accuracy is ~1.8% lower11, so it can better demonstrate the speed and 

performance of different variant calling methods, and 2) data compatibility - as at the 

completion date of this paper, Guppy 4 base-called reads were still the latest version 

available for download by the Human Pangenome Reference Consortium12. A summary of 

the datasets used for training and testing is shown in Supplementary Table 1. The correct 

PEPPER and Medaka models for either Guppy 5 or 4 data were used for benchmarking. The 

links to the dataset, and the versions, commands and parameters used for each tool are 

available in the Supplementary Notes.  

 

The benchmarking results at coverage from 10x to 50x of Guppy 5 data are shown in Figure 

1a, Supplementary Table 2, and Supplementary Table 3. The observations of different tools 

on HG003 and HG004 are almost identical, ruling out the possibility of any tools’ overfitting 

to a particular sample. In terms of the SNP F1-score, Clair3 outperformed all other tools at 

the more challenging lower coverage (10x to 20x). Above 20x, Clair3 performed similar to 

PEPPER above 20x, but ran much faster. Different from the SNP F1-score that plateaued 

above 20x, the Indel F1-score kept increasing with coverage. Looking at the precision and 

recall at 20x, which is an optimistic estimation of the minimal coverage achievable per 

PromethION flowcell in production, in terms of SNP (Figure 1b), Clair3 achieved 99.22% and 

99.42%, compared to PEPPER’s 99.66% and 98.99%, in HG003. In terms of Indel, Clair3 

achieved 88.56% and 62.33%, compared to PEPPER’s 86.06% and 63.26%. In terms of speed 

(Figure 1c), at 20x, Clair3 and Clair ran the fastest (~5 hours). PEPPER ran about four times 

slower than Clair3 (~20 hours). We then benchmarked using the noisier and more 

challenging Guppy 4 data, on which Clair3 has more significantly outperformed the other 

tools (Supplementary Table 4 and Supplementary Table 5). Using Guppy 4 data, Clair3 

significantly outperformed the other tools from 10x to 30x. At 20x in HG003, in terms of 

SNP, Clair3 achieved 99.17% and 98.77%, compared to PEPPER’s 90.40% and 98.95%. In 
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terms of Indel, Clair3 achieved 80.91% and 53.33%, compared to PEPPER’s 73.73% and 

48.53%. Using Guppy 4 data, Clair3 ran about three times faster than PEPPER (~8 vs. ~30 

hours). To observe the performance characteristics of Clair3 at different genomic contexts, 

we compared Clair3 to PEPPER according to the GIAB genome stratifications13 v2.0 on 

HG003 at sufficient coverage of (50x) of the noisier Guppy 4 data. The results are shown in 

Supplementary Figure 1 and Supplementary Table 6. In SNPs, Clair3 outperformed PEPPER 

on precision in low complexity and functional regions. Clair3 and PEPPER had the same 

recall in different regions. In Indels, Clair3 outperformed PEPPER in both precision and recall 

in all regions.  

 

The success of the Clair3 method lies in the effective distinction between true and false calls 

during pileup calling, so that only necessary candidates are sent to the much more 

computationally intensive full-alignment calling. Figure 2a shows that an effective 

distinction was achieved using variant quality. Using HG003 at 50x as an example, most false 

variant calls and false reference calls had a quality between 0 to 10, while the true calls 

were between 15 to 30. In reality, while the correctness of a pileup call is not known in 

advance, we empirically decided to send the bottom 30% of the pileup variant calls and the 

bottom 10% of the pileup reference calls to full-alignment calling as the default settings of 

Clair3 (See Methods). In the previous example, quality cut-off 16 was chosen for the variant 

calls, which resulted in 96% of the false variant calls and only 7% of the true variant calls 

being sent to full-alignment calling. Similarly, cut-off 16 was chosen for the reference calls, 

so that 98% of the false reference calls and only 13% of the true reference calls were sent to 

full-alignment calling. Figure 2b shows that ~60% of the pileup failed variant calls and ~30% 

of the pileup failed reference calls were correctly called in full-alignment calling. We tested 

sending different percentages of pileup variant calls to full-alignment calling, from 0% 

(pileup calling only) to 100% (full-alignment calling only). The results are shown in Figure 2c 

and Supplementary Table 8. Clair3’s default, which had a similar performance to full-

alignment calling but ran ~3 times faster, showed that integrating pileup and full-alignment 

calling is a better strategy than relying on only one of them. To eliminate the concern of 

model overfitting, we benchmarked chromosome 20, which has always been excluded from 

model training. The results shown in Supplementary Table 7 concluded that no overfitting is 

observed in Clair3. 
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The benchmarks focused on the more challenging ONT data, but the Clair3 method is not 

restricted to a particular sequencing technology. It should work particularly well in terms of 

both runtime and performance on noisy data. Having integrated plenty of feedback from 

the community and ONT, Clair3 is currently in its eleventh revision. We observed that ONT 

has removed the variant calling submodule from Medaka and suggested Clair3 for variant 

calling since v1.5.014. We also observed that in PEPPER’s r0.715 update, a module in the front 

of the pipeline that was used solely for variant candidate selection was repurposed to 

output summary-based variant calls to relieve the heavy full-alignment calling workload, 

which is converging to Clair3’s idea. We expect integrating pileup and full-alignment calling 

to be a common practice in deep learning-based variant calling in the future. 

Method 

The Clair3 workflow 

As Extended Data Figure 1 shows, pileup candidates that are above a coverage threshold 

and an allele frequency threshold are extracted, and then called using the pileup network. 

The pileup calls are grouped into variant calls (genotype 0/1, 1/1, and 1/2) and reference 

calls (0/0). Both groups are ranked according to variant quality (QUAL). High-quality 

heterozygous SNP calls (top 70% in 0/1 calls) are used in WhatsHap phasing to produce 

phased alignment for input to the full-alignment network. Low-quality pileup calls 

(defaulted to the lowest 30% of variants and 10% of reference calls) are then called again 

using the full-alignment network. Finally, the full-alignment calls and high-quality pileup 

calls are outputted. Clair3 supports both VCF and GVCF output formats. 

 

Input/Output 

Clair3 uses a pileup input design simplified from that of its predecessors, and a full-

alignment input to cover as many details in the read alignments as possible. Supplementary 

Figure 2 visualizes the pileup and full-alignment inputs of a random SNP, insertion, deletion, 

or non-variant. The pileup input is 594 integers – 33 genome positions wide with 18 

features at each position – A+, C+, G+, T+, IS+, I1
S+, DS+, D1

S+, DR+, A-, C-, G-, T-, IS-, I1
S-, DS-, 

D1
S-, and DR-. +, - means the positive strand and negative strand. A, C, G, T, I, D means the 
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count of read support of the four nucleotides, insertion, and deletion. Superscript “1” 

means only the indel with the highest read support is counted if various lengths of indel 

were found in a candidate site. (i.e., all indels are counted if without “1"). Subscript “S” 

means the starting position of an indel. Subscript “R” means the following positions of an 

indel. For example, a 3bp deletion with the most reads support will have the first deleted 

base counted in either D1
S+ or D1

S-, and the second and third deleted bases counted in 

either DR+ or DR-. The design was determined experimentally, but the rationale is that for 

1bp indels that are easy to call, look into the differences between the “S” counts, but reduce 

the quality if the “R” counts and discrepancy between positions increase. Supplementary 

Figure 2 provides some intuitions on how the features are counted given four random 

examples. For developers to confirm their understanding, the input creation logics are 

available at https://github.com/HKU-

BAL/Clair3/blob/main/preprocess/CreateTensorPileup.py. The pileup output is explained in 

the “Network outputs of the pileup and full-alignment network” section in the 

Supplementary Materials. The indel allele (or two indel alleles) with the highest reads 

support is used as the output according to the decision made in the 21-genotype task. The 

full-alignment input is 23,496 integers – 8 channels of 33 genome positions and 89 

maximum number of reads. The description of the eight channels is in the Supplementary 

Note. The full-alignment output is explained in the “Network outputs of the pileup and full-

alignment network” section in the Supplementary Materials. The two indel length tasks can 

represent the exact indel length from -15 to 15bp, or below -15bp/ above 15bp. An indel call 

with an exact length will output the most reads-supported allele at that length. Otherwise, 

the most reads-supported allele below -15bp/ above 15bp is outputted. In training, indel 

length task 1 is given the smaller number, and in all our variant calling experiments, no 

length predictions in task 1 larger than in task 2 were observed. The maximum supported 

coverage of full-alignment input was 89. If the coverage was above 89, random subsampling 

of reads was applied. If the coverage was below 89, zero-padding was applied with reads 

placed at the center of the input. The maximum supported coverage of full-alignment input 

can be increased by changing the “matrix_depth_dict” variable in the “param_f.py” 

configuration file.  
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Network architecture 

The pileup and full-alignment networks are shown in Supplementary Figure 3. The pileup 

network uses two bidirectional long short-term memory (Bi-LSTM) layers with 128 and 160 

LSTM units. Stacked LSTM layers enable the network to learn the characteristics of raw 

sequential signal from different aspects at each position, but without increasing memory 

capacity, which enables the network to converge faster. Compared to Clair, the transpose-

split layer is removed for a 40% speedup with a small performance loss that is taken care of 

in full-alignment calling. The full-alignment network is derived from residual neural network 

(ResNet) and uses three standard residual blocks. A convolutional layer is added on top of 

each residual block to expand channels but reduce dimensionality across channels. A spatial 

pyramid pooling16 (SPP) layer is used to tackle the problem of varying coverage in full-

alignment input. SPP is a pooling layer that removes a network's fixed-size constraint, thus 

avoiding the need for input cropping or warping at the beginning. The SPP layer generates 

various receptive fields using three pooling scales (1x1, 2x2, and 3x3) in each channel. It 

then pools the receptive fields of all channels and generates a fixed-length output for the 

next layer. In both networks, the dropout rates of 0.2 for the flatten layer, 0.5 for the 

penultimate dense layer, and 0.2 for the task-specific final dense layers, are empirically 

determined. In comparison, the Inception-v3 network used as full-alignment network in 

DeepVariant and PEPPER is ~8 times larger (2,989,210 vs. ~24 million parameters) than 

Clair3’s full-alignment network. 

 

We tried removing a residual block from the full-alignment network, the overall F1-score 

reduced by ~4% in average in multiple experiments with HG003 and HG004, and coverage 

from 10x to 50x. Adding a residual block, the overall F1-score improvements were 

unnoticeable, but the network speed slowed down by 20%. Removing the SPP layer reduced 

the Indel F1-score by ~10% at 10x coverage. More results of removing the insertion, 

phasing, MQ, BQ channel, or the two Indel length tasks are shown in the Supplementary 

Table 9. A visualization toolkit that shows the network activations of individual inputs using 

guided propagation is available at the GitHub repository. 
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Model availability and training 

Pretrained models are provided in Clair3’s installation. Models for specific chemistries and 

basecallers that are tested and supported by the ONT developers are available through 

Rerio (https://github.com/nanoporetech/rerio). The detailed steps, options, and caveats for 

training a pileup model and a full-alignment model are available in Clair3’s GitHub repo (at 

https://github.com/HKU-BAL/Clair3/blob/main/docs/pileup_training.md and 

https://github.com/HKU-BAL/Clair3/blob/main/docs/full_alignment_training_r1.md ) and 

are continually updated. The pretrained models, while targeted for use in production, were 

trained using multiple GIAB samples with known variants and 10 coverages for each sample 

(more details in the “Training data augmentation using subsampled coverage” section in 

Supplementary Materials), but they always hold out chromosome 20 in Clair3. We used the 

following new training technics in Clair3. (1) Representation Unification: a variant can be 

represented in multiple forms13. Traditional variant calling methods rely on postprocessing 

(e.g., hap.py, RTG Tools) to equate multiple forms. However, to generate correct training 

samples, Clair3 must unify a variant’s representations between the alignments and the truth 

variants. Supplementary Figure 4 shows four cases in which the alignments and the truth 

variants have different representations that would confuse the training if not unified. Clair3 

chooses to align the truth variants' representation to the alignments. The five detailed steps 

are shown in Supplementary Figure 5. First, the truth variants and alignments are phased (if 

not yet done) using WhatsHap. Second, among the candidates with alternative allele 

frequency ≥0.15, confident and in situ matches between the alignments and truth variants 

are identified and excluded from computationally intensive step 3. Third, the best match 

between the possible haplotypes of the truth variants and candidates is sought. Each of the 

truth variants can be either positive (using its reported genotype) or negative (using 0|0), 

and their Cartesian product forms possible haplotypes of the truth variants. Similarly, each 

candidate can be either 0|0, 0|1 (or 1|0 according to the phased alignments), or 1|1, and 

their Cartesian product forms the possible haplotypes of the candidates. A pairwise 

comparison is then done to find equivalent haplotypes between the two Cartesian products, 

and among all equivalents, the candidate haplotype with the most reads support is selected. 

The variants in the haplotype are used as the new truth variants. This step is 

computationally intensive, so in practice, we applied the step to partitions with at most 15 

candidates and required less than 100bp between the candidates. Fourth, low alternative 
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allele frequency (≥0.08 but <0.15) candidates with in situ matches between the alignments 

and the truth variants were chosen. Fifth, the truth variants or unified variants generated in 

steps 2, 3 and 4 were merged. In our benchmarks, representation unification alone in 

general increased the SNP recall by ~0.2% and Indel recall by ~2%. (2) Ratio of variants to 

non-variants samples for training: In Clair, the ratio was fixed at 1:2. In Clair3, we tested 

ratios up to 1:10 for both pileup and full-alignment model training, and we observed a 

monotonic but decelerated performance increase with more non-variants added to the 

training. Since focal loss is used to alleviate the effect of training class imbalance, another 

possible explanation is that the 21-genotype output task that Clair3 relies primarily on is 

insensitive to the ratio because it judges only the genotype of a candidate instead of 

whether a candidate is a variant or not. We chose 1:5 and 1:1 as the default ratio for pileup 

and full-alignment model training, respectively, to strike a balance between model 

performance and training speed. (3) Use of phased alignments: Deep-learning and full-

alignment based variant callers DeepVariant and PEPPER concluded that using phased 

alignments is essential to their high performance. In Clair3, high-quality heterozygous pileup 

calls are used to phase the input alignments using the ‘phase’ and ‘haplotag’ modules in 

WhatsHap. The phased alignments are used as input for full-alignment calling. When 

training a full-alignment model, two training samples for each variant, one using phased 

alignments and the other unphased, are used to ensure the model works when alignments 

cannot be properly phased. In our benchmarks, the use of phased alignments alone, in 

general, increased the SNP F1-score by ~0.1%, and the Indel F1-score by ~6%. (4) New 

optimization methods: Clair3 removed both the cyclical learning rate and learning rate 

decay strategies used in Clair, and now uses the Ranger optimizer (RectifiedAdam17 plus 

Lookahead18) for automated warm-up, faster convergence, minimal computational 

overhead, etc. In our benchmarks, compared to Clair, the new optimizer alone, in general, 

increased the overall F1-score of pileup calling by ~0.2% (tested with three repetitions with 

random seed changed in weight initialization). 

 

Benchmarking methods and computational concerns 

We used five GIAB samples, HG001 to 5, for either model training or testing. Following the 

PrecisionFDA v2 practices9, 10, we used HG003 and HG004 for testing. When using either 
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HG003 or HG004 for testing, the other four samples were used for training. We selected 

10% of the training samples for validation and chose the best-performing epoch in the first 

30 epochs in the validation data for benchmarking. We used hap.py13 to compare the called 

variants against the true variants, and used Clair3’s ‘GetOverallMetrics’ module to generate 

three metrics, ‘precision’, ‘recall’, and ‘F1-score’, for five categories: ‘overall’, ‘SNP’, ’Indel’, 

‘Insertion’, and ‘Deletion’. The evaluation metrics also followed the PrecisionFDA v2 

practices and are further explained in Supplementary Materials. We used qfy.py with V2.0 

GIAB genome stratifications to evaluate Clair3’s performance in challenging and targeted 

regions of the genome. Runtimes and memory consumptions were gauged on a server with 

two 2.1GHz Intel Xeon Silver 4116s, with 24 cores, and 256GB memory at 2666MHz. With 

the same setting, Clair3 finished in ~6 hours using ~20x of ONT Guppy 4 data and in ~2 hours 

with the same amount of Guppy 5 data. The peak/average memory consumption of Clair3 

and other tools are shown in Supplementary Table 10. 

 

Brief summary of methods tested showing no or negligible improvement 

(1) Use of more residual blocks in the full-alignment network: We added a fourth residual 

block with 512 channels. The number of parameters increased from 2,989,210 to 9,812,634. 

The runtime doubled, but the performance change was negligible, even though the terminal 

training loss fell. (2) Local realignment: This technique is essential for high indel calling 

performance in state-of-the-art, short-read, small variant callers. But it worked differently 

on long reads. We tried local realignment using a 2000bp window in regions with a high 

density of candidates using a local realignment algorithm similar to that of DeepVariant. We 

observed that while it increased the recall, local realignment tripled the runtime and 

introduced ~10% of new non-variant candidates, which in turn, lowered the precision. In 

Clair3, we implemented local realignment, but disabled it on long reads as the default. (3) 

Including variants outside high-confidence regions in training: To increase variant training 

samples, we explored including variants outside the high-confidence regions in training, but 

observed negative performance improvement in Clair. In Clair3, the GIAB truth datasets we 

used were upgraded from version 3.3.2 to 4.2.1, but we had the same observation that 

including variants outside the high-confidence regions in training jeopardized model 

performance. (4) Selecting candidates for full-alignment calling based on reference 
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sequence complexity: Variant calling is more difficult in the “low complexity” and “difficult 

to map” regions. In addition to selecting candidates by pileup calling quality ranking for full-

alignment calling, we added those candidates at positions with relatively low sequence 

entropy (the lowest 30% of the whole genome). About three times more candidates were 

selected for full-alignment calling, but the performance increase was negligible. 

 

Code availability 

Clair3 is open-source software (BSD 3-Clause license), hosted by GitHub at 

https://github.com/HKU-BAL/Clair3, and available through Docker, Bioconda, and 

Singularity. Clair3 is also available in Zenodo at DOI “10.5281/zenodo.6637001”. 

 

Data availability 

The 1) links to the reference genomes, truth variants, benchmarking materials, and ONT 

data, and 2) the commands and parameters used in this study, are available in the 

Supplementary Notes. All analysis output, including the VCFs and running logs, are available 

at http://www.bio8.cs.hku.hk/clair3/analysis_result. 
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Figure 1. Benchmarking results on HG003 and HG004 with Guppy 5 data. (a) The SNP/Indel 

F1-score of different tools at multiple coverage from 10x to 50x. In terms of the SNP F1-

score, Clair3 outperformed the other tools at the more challenging lower coverage (10x to 

20x). (b) The precision against the recall of different tools at 20x coverage. (c) The runtime 

breakdowns of different tools at 20x coverage. Clair3 and Clair ran the fastest (~5 hours), 

PEPPER ran about four times slower than Clair3 (~20 hours). 
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Figure 2. Pileup and full-alignment calling working details and synergy on HG003 at 50x 

coverage of Guppy 5 data. (a) The variant quality distribution of the true and false 

variant/reference pileup calls. The figure shows that an effective distinction was achieved 

using variant quality. (b) The performance of full-alignment on pileup failed variants of 

different variant quality. The figure shows that ~60% of the pileup failed variant calls and 

~30% of the pileup failed reference calls were correctly called in full-alignment calling. (c) 

The F1-score when different proportions of low-quality variant/reference calls enter full-

alignment calling. QUAL is the variant quality as defined in the VCF specifications. The figure 

shows that integrating pileup and full-alignment calling is a better strategy than relying on 

only one of them. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.12.29.474431doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474431
http://creativecommons.org/licenses/by/4.0/


 17 

References 

1. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural 
networks. Nature biotechnology 36, 983-987 (2018). 

2. Luo, R., Sedlazeck, F.J., Lam, T.-W. & Schatz, M.C. A multi-task convolutional deep 
neural network for variant calling in single molecule sequencing. Nature 
communications 10, 1-11 (2019). 

3. Luo, R. et al. Exploring the limit of using a deep neural network on pileup data for 
germline variant calling. Nature Machine Intelligence 2, 220-227 (2020). 

4. Ahsan, M.U., Liu, Q., Fang, L. & Wang, K. NanoCaller for accurate detection of SNPs 
and indels in difficult-to-map regions from long-read sequencing by haplotype-aware 
deep neural networks. Genome Biology 22, 261 (2021). 

5. Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant 
enables high accuracy in nanopore long-reads. Nature methods 18, 1322-1332 
(2021). 

6. Medaka, https://github.com/nanoporetech/medaka. 
7. Patterson, M. et al. WhatsHap: weighted haplotype assembly for future-generation 

sequencing reads. Journal of Computational Biology 22, 498-509 (2015). 
8. Edge, P. & Bansal, V. Longshot enables accurate variant calling in diploid genomes 

from single-molecule long read sequencing. Nature communications 10, 1-10 (2019). 
9. Olson, N.D. et al. PrecisionFDA Truth Challenge V2: Calling variants from short and 

long reads in difficult-to-map regions. Cell Genomics 2, 100129 (2022). 
10. Wagner, J. et al. Benchmarking challenging small variants with linked and long reads. 

Cell Genomics 2, 100128 (2022). 
11. Nanopore EPI2ME Labs, https://labs.epi2me.io/gm24385_2021.05/. 
12. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo 

assembly of eleven human genomes. Nature biotechnology 38, 1044-1053 (2020). 
13. Krusche, P. et al. Best practices for benchmarking germline small-variant calls in 

human genomes. Nature biotechnology 37, 555-560 (2019). 
14. Medaka v1.5.0, https://github.com/nanoporetech/medaka/releases/tag/v1.5.0. 
15. PEPPER r0.7, https://github.com/kishwarshafin/pepper/releases/tag/r0.7. 
16. He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional 

networks for visual recognition. IEEE transactions on pattern analysis and machine 
intelligence 37, 1904-1916 (2015). 

17. Liu, L. et al. On the variance of the adaptive learning rate and beyond. arXiv preprint 
arXiv:1908.03265 (2019). 

18. Zhang, M.R., Lucas, J., Hinton, G. & Ba, J. Lookahead optimizer: k steps forward, 1 
step back. arXiv preprint arXiv:1907.08610 (2019). 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.12.29.474431doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474431
http://creativecommons.org/licenses/by/4.0/


 18 

 

 
 
Extended Data Figure 1. The workflow for Clair3. 
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