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Abstract

How skeletal muscle responds to mechanical perturbations, its rheology, is important for
animal movement control. The molecular machinery of myosin II-actin crossbridge cycling
is a crucial part of muscle’s rheological properties, and multiple models have been proposed
for this mechanochemical process. But current understanding of the scale-connection from
individual molecular motors to ensemble rheology is limited. Here we present computational and
mathematical analyses of several different hypotheses of crossbridge dynamics, from 2-state to
5-state myosin II motor models, and show that an ensemble of actomyosin crossbridges exhibits
surprisingly simple rheological behavior in all cases. The ensemble rheology is captured by a sum
of at most three linear viscoelastic sub-processes, and as few as one for some crossbridge models.
This simplification lends itself to computationally efficient phenomenological muscle models with
experimentally measurable parameters, while still remaining grounded in crossbridge theory.
However, the collapse of the ensemble behavior to few linear sub-processes identifies major
limitations of crossbridge models that cannot be resolved by adding complexity to the crossbridge
cycle and point to the roles of inter-crossbridge interactions and non-crossbridge elements.

Introduction

Muscle exerts force in response to in vivo neural inputs and length perturbations (Nishikawa et al.,
2018; Zajac, 1989). Like most soft passive materials, the forces induced by the length perturbation,
or simply perturbation response, relax over time (Huxley and Simmons, 1971; Nguyen et al., 2018)
and the timescales involved are crucial for the functional role of muscle because they enable faster-
than-reflex reactions (Bizzi et al., 1982; Hogan et al., 1987; Nishikawa et al., 2007; Nguyen et al.,
2018, figure 1a). For example, on durations shorter than the relaxation timescales, the perturbation
response is nearly unchanging and the muscle functions as an elastic solid body to resist stretching
and aid in elastic energy storage in tendons (Bizzi et al., 1982; Biewener and Roberts, 2000). And on
durations longer, the perturbation response relaxes significantly and the muscle instead functions
like a viscous damper which enables rapid postural changes and kinetic energy dissipation (Lin
and Rymer, 2000; Konow et al., 2012). But unlike passive materials, the muscle’s relaxation
timescales are neurally regulated by active molecular interactions of myosin motors with actin
filaments (Huxley and Tideswell, 1996), and whether a muscle functions like an elastic body, a
viscous damper, or an viscoelastic intermediate is subject to neural control. Thus, understanding
a muscle’s perturbation response in terms of its underlying molecular machinery helps to identify
the interplay of neural inputs and viscoelastic rheology in an animal’s motor control of its muscles
(Nguyen et al., 2018; Bizzi et al., 1982; Nishikawa et al., 2018, figure 1a).

Muscle properties such as short-range stiffness, viscous damping, loss modulus, and storage
modulus are examples of bulk rheological properties (Rack and Westbury, 1974; Konow et al.,
2012; Kawai and Brandt, 1980) that are characterizations of the muscle’s perturbation response
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and are analogous to similar characterizations of passive materials (Tschoegl, 2012) and active
materials (Gardel et al., 2004; Koenderink et al., 2009). The bulk rheological properties arise in
part from the internal molecular machinery, similar to cytoskeletal networks (Grewe and Schwarz,
2020), and in part from muscle’s passive tissues and geometry (Sleboda and Roberts, 2020; Fung,
2013). The mapping from the microscopic dynamics of the molecular machinery to its contributions
to bulk properties remains incomplete, however, and this gap is exemplified by the split between
two classes of widely used muscle models. Namely, macroscopic phenomenological models and
microscopic mechanochemical models that idealize muscles as one-dimensional structures.

Phenomenological models inspired by A.V. Hill’s work (Hill, 1938) are widely used to quantita-
tively describe muscle’s force production capabilities (Zajac, 1989; MacIntosh and MacNaughton,
2005; Fung, 1971; Todorov, 2003). These models incorporate an active contractile element, a paral-
lel element that is often modeled as a passive elastic or viscoelastic material, and a series elasticity
that captures tendon and other passive tissue compliance (figure 1b). The passive parallel element
represents non-contractile tissues and the intramuscular fluid that have well-known effects on the
contractile force capacity of muscle (Sleboda and Roberts, 2020). But muscle’s perturbation re-
sponse is dominated by the active contractile element except under extreme eccentric conditions
where the passive parallel element is important (MacIntosh and MacNaughton, 2005; Lindstedt
et al., 2001). In Hill-type models, the perturbation response of the active element are represented
by isometric force-length and isotonic force-velocity properties and its interactions with the series
elasticity (Zajac, 1989; Todorov, 2003), but these properties are known to lose predictive value
during locomotive situations where non-isometric and non-isotonic conditions that lead to tran-
sient and non-steady perturbation responses are commonplace (Lee et al., 2013; Sandercock and
Heckman, 1997; Dick et al., 2017; Rice et al., 2020; Perreault et al., 2003, figure 1b). Further-
more, parameters in Hill-type models do not lend themselves to interpretation in terms of known
mechanochemical processes within muscle. Despite these shortcomings, Hill-type models remain
the most viable means to perform large-scale biomechanical simulations and optimal control cal-
culations because of their low computational burden and ease of implementation (De Groote and
Falisse, 2021; O’Neill et al., 2013; Miller, 2014).

The flip side to phenomenological models are those that incorporate the current state of under-
standing of the microscopic mechanochemical cycles. The hydrolysis of ATP by myosin II motors
during formation of actin-myosin crossbridges underlie active muscle contraction and perturbation
response (Lymn and Taylor, 1971; Holmes, 1997; Huxley and Simmons, 1971). Each myosin under-
goes the biochemical Lymn-Taylor cycle in which it attaches to and detaches from actin filaments
based on ATP capture, hydrolysis, and release of byproducts (Lymn and Taylor, 1971). There
are different modeling approximations of this cycle that incorporate different numbers of inter-
mediate states (figure 1b). The biochemical Lymn-Taylor cycle is coupled to a mechanical cycle
that converts chemical energy to mechanical work. When attached, each myosin motor pulls on
the actin filament to generate piconewton forces and around 10 nm power strokes. The collective
action of many motors is modeled as an ensemble of stochastically cycling crossbridges whose force
contributions add up (Huxley, 1957; Huxley and Simmons, 1971). Mechanical perturbation of the
whole muscle ultimately perturbs the mechanochemical crossbridge cycle whose dynamics are load
and strain-dependent (Palmer, 2010; Liu et al., 2018), which in turn alters the force produced by
the ensemble and, in principle, manifests as bulk rheological properties of muscle. But crossbridge
models employ numerous biochemical parameters that cannot be directly measured because of
which we lack a mechanistic understanding of muscle’s emergent rheology. This is the so called
scale-connection problem.

Addressing the scale-connection problem would overcome many of the shortcomings of both mi-
croscopic and macroscopic models, and is a major objective of neuromuscular research (Nishikawa
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Figure 1: Current models of skeletal muscles. (a) An example of the motor functionalities pro-
vided by a muscle’s rheological response to perturbations. (b) Widely used muscle models can be
separated into microscopic biochemical models and macroscopic phenomenological models. The mi-
croscopic models track the dynamics of myosin motors whereas macroscopic models apply isometric
and isometric characterizations and transient forces to capture the active contractile element. The
isometric and isotonic characterizations are adapted from figure 8 of Zajac 1989 and the transient
forces are adapted from figure 3 of Huxley and Simmons 1971. The current paper seeks to connect
the crossbridge cycle dynamics to the emergent generalized transient force response beyond the
isometric and isotonic characterizations of muscle.

et al., 2018). The distribution-moment formalism was a crucial step in on-going efforts to address
it and presented a general approach to simplifying microscopic models without relying on the ex-
act choice of how a crossbridge cycle is modeled (Zahalak, 1981, 1986; Zahalak and Ma, 1990).
Specifically, the formalism assumed a Gaussian distribution for the fraction of bound crossbridges
as a function of crossbridge strain such that the governing ensemble dynamics is approximated
by the dynamics of measurable macroscopic quantities: stiffness, forces, and elastic energy stor-
age. Thus, it is an approximate yet tractable mapping from these macroscopic quantities to the
ensemble dynamics. But in assuming a preset distribution and not one that emerges from the
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crossbridge dynamics, it stops short of connecting scales back to the crossbridge cycle. Shortcom-
ings of this approximation are evident from multiple perturbation experiments which show that
the distribution-moment model does not accurately capture muscle forces, but more complex cross-
bridge models may be able to do so by sacrificing computational speed (Cole et al., 1996; van den
Bogert et al., 1998). So a gap remains in mapping crossbridge theory to the emergent rheology of
its ensemble.

In this paper, we connect the dynamics of a single crossbridge to the rheology of an ensemble or
population of crossbridges that represents a whole sarcomere. In particular, we analyze the ensemble
behavior of several different crossbridge models to identify a minimal parameter-set that affects
their emergent rheology. The paper begins with a brief tutorial on rheological characterization of
materials using complex modulus and dynamic stiffness. Then we use numerical simulations of large
ensembles of crossbridges, ranging in complexity from two-state to five-state crossbridge models,
to identify commonalities and differences in their perturbation responses. Next we analytically
derive the rheology of a two-state crossbridge model and show how a single exponential relaxation
process with one time-constant suffices to capture its rheology, how that relaxation is related to
the crossbridge dynamics, and provide a mechanical interpretation in terms of elastic and viscous
material properties. We then extend the characterization to more complex crossbridge models
by adding multiple exponential relaxations and discuss the implications of our work towards the
development of computationally efficient and parametrically parsimonious models that are still
interpretable in terms of the microscopic mechanochemical dynamics of actomyosin crossbridges.

Preliminaries

We focus here on the linear rheological characterization of muscle, which has proven useful in
developing predictive models of muscle behavior (Rack and Westbury, 1974; Nguyen et al., 2018;
Bizzi et al., 1982) and in interpreting in vivo muscle function for both large and small perturbations
(Palmer et al., 2020; Niederer et al., 2019). A central quantity in linear rheology is the material
modulus defined as the ratio of the measured stress to the applied strain. This modulus for muscle
depends on the rate at which the strain is applied and varies over time. Using the Laplace or
Fourier transform (Ogata, 2004), the applied strain and the resulting stress response are each
decomposed into a sum of sinusoids of different temporal frequencies, and their ratio yields a
frequency-dependent modulus. This characterization, a core tool in oscillatory rheology (Weitz
et al., 2007; Tschoegl, 2012), provides an interpretation of muscle material properties in terms of
frequency-dependent loss, storage, and complex moduli (Kawai and Brandt, 1980; Nguyen et al.,
2018; Nguyen and Venkadesan, 2021).

If the applied strain acting as an external perturbation is a small-amplitude sinusoidal wave,
then the resulting stress perturbation respones is approximately sinusoidal with both in-phase and
out-of-phase components with respect to the applied strain (figure 2(a-b)). The amplitude of the
in-phase stress and out-of-phase stress divided by the applied strain amplitude define the storage
modulus E′(ω) and loss modulus E′′(ω), respectively, and are functions of the oscillatory frequency
ω. The complex modulus E∗(ω) = E′(ω) + iE′′(ω) is a compact representation of the spring-like
storage modulus and damper-like loss modulus. The dynamic stiffnessK(ω) of sinusoidal analysis is
related to the complex modulus as K(ω) = (A/L0)|E∗(ω)| for a muscle tissue of cross-sectional area
A and length L0. If muscle were elastic like a Hookean spring, then K(ω) is a constant independent
of frequency. If muscle were viscous like a Newtonian fluid, then K(ω) is linearly proportional
to frequency. In reality, muscle is neither extreme and exhibits intermediate viscoelastic behavior
(figure 2c).
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Figure 2: Linear rheological characterization of muscles. (a) Schematic of an experimental setup
to measure a muscle’s response to perturbations. (b) For an oscillatory length perturbation, the
linear rheological response is characterized by an elastic modulus E′(ω) that measures the in-phase
response and a loss modulus E′′(ω) that measures the out-of-phase response. A general viscoelastic
response has both in-phase and out-of-phase components. (c) The dynamic stiffness K(ω) is a
third oscillatory rheological characterization. It is constant if the muscle is elastic and linearly
proportional to frequency if the muscle is viscous. The dynamic stiffness of a rabbit psoas muscle
is viscoelastic with features more complicated than elastic springs and viscous dashpots alone. The
rabbit psoas plot is adapted from figure 3 of Kawai and Brandt 1980.

Results

Numerical simulations of ensemble crossbridge models

We numerically compute the emergent rheology of an ensemble or population of independently
cycling crossbridges using previously published crossbridge models. The aim here is to survey the
literature and use models that differ in complexity and in the types of muscle phenomena that each
were designed to capture. To that end, we implement four crossbridge models ranging from two to
five internal states (Huxley, 1957; Murase et al., 1986; Smith, 1998; Lombardi and Piazzesi, 1990).
Importantly, our selection of crossbridge models is a representative but not exhaustive survey of all
muscle phenomena under active research. For example, the super relaxed myosin state introduces a
new detached state with orders of magnitude lower ATP turnover than the normal detached state
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(Stewart et al., 2010; McNamara et al., 2015). Thin filament activation and cooperative mechanisms
can introduce a coupling between crossbridges that break the assumption of independently cycling
crossbridges (Walcott, 2014). Spatially explicit sarcomere models account for the distribution
of crossbridges within the sarcomere and thus also for position-dependent crossbridge dynamics
(Daniel et al., 1998; Williams et al., 2012; Kosta et al., 2021). Although the crossbridge literature
is broader than our selection, or any similarly sized selection can reasonably sample, our objective
with numerical simulations is to connect the emergent ensemble rheology with the detailed modeling
choices regardless of the specific crossbridge model.

The simplest of the crossbridge models considered is Huxley’s original two-state formulation
that helped set the foundation for the whole class of crossbridge models developed since and its
emergent rheology can thus serve as a point of reference (Huxley, 1957). In it, Huxley idealizes
crossbridges as molecular springs that stochastically attach to and detach from a rigid thick and thin
filament backbone. The total elastic resistance of a population of these crossbridges is then taken
to characterize the active and transient forces of muscles and, in turn, also the rheology of muscles.
The other more complex crossbridge models refine Huxley’s formation by incorporating additional
attached and detached states which allows for new and higher-order dynamics that Huxley’s two-
state model may not capture. The three-state model by Murase et al., 1986 (Murase et al., 1986)
showed that a second attached internal state is necessary to capture the three dominant sinusoidal
processes observed in insect flight muscles. The four-state model by Smith, 1998 (Smith, 1998)
proposed a minimal kinetic scheme to capture the force transients resulting from the phosphate
release and ATP capture of the Lymn-Taylor cycle (Lindstedt et al., 2001). And lastly, the five-
state model of Lombardi and Piazzesi, 1990 (Lombardi and Piazzesi, 1990) proposed a relatively
complex kinetic scheme to capture the force transients of a frog skeletal muscle fiber under steady
lengthening that, notedly, incorporated a forced detached state accessible only when crossbridges
are stretched beyond a critical distance. The numbers of parameters involved for each model are
many with 4 for Huxley’s two-state model, 16 for the three-state model, 17 for the four-state
model, and 24 for the five-state model. These parameters define the neutral length, stiffness of
each attached crossbridge state, and the transition rates between them. A natural question that
arises is how the emergent ensemble rheology depends on these parameters and, given such a vast
parameter space, whether there is parameter-reduction that recapitulates the emergent rheology.
We shall explore if such a parameter reduction is possible in the numerical simulations below.

The emergent ensemble rheologies of the selected crossbridge models are computed in terms
of the dynamic stiffness, the variation of which with frequency determines whether the ensemble
is like an elastic solid or a viscous damper. Numerically, we integrate each model’s governing
differential equations to compute the force response of an ensemble of crossbridges to a step length
perturbation. The ensemble is initially at steady-state equilibrium so the emergent rheology arises
from the ensemble’s relaxation back to steady-state. Transforming the computed force response
and the imposed step length perturbation into the frequency domain and taking their ratio directly
yields the dynamic stiffness (Methods A).

We find that a simple behavior emerges at high and low frequencies regardless of model complex-
ity and that the difference between crossbridge models manifest only on intermediate frequencies
(figure 3b). Specifically, the dynamic stiffness is constant at high frequencies and linearly propor-
tional to ω at low frequencies, i.e. the dynamic stiffness is approximately

K(ω) ≈
{

k for high frequencies,

b · ω for low frequencies.
(1)

These asymptotic regimes imply that the ensemble is an elastic solid with spring constant k at
high frequencies and a viscous damper with damping coefficient b at low frequencies. But the
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Figure 3: Rheology of the ensemble dynamics of different crossbridge models. (a) An ensemble
of crossbridges operate collectively to model muscle forces. (b) The frequency-dependent dynamic
stiffness of different crossbridge models resembles an elastic spring at high frequencies and a viscous
dashpot at low frequencies. (inset) Collapse of different models onto equation (1) by normalizing the
axes. For each model, the dynamic stiffness is normalized by the value k computed at the highest
frequency. The frequency axis is normalized by a time-constant τ at which the two asymptotic
behaviors match. The gray bars indicate the bandwidth over which the models deviate by more
than 5% from their asymptotic behavior s.

dynamic stiffness at intermediate frequencies is more complicated in their frequency dependence,
differs between the model variants, and does not immediately present a mechanical interpretation.
We calculate a bandwidth in this intermediate frequency range where the dynamic stiffness differs
by more than 5% from the asymptotic response (grey bars in inset of figure 3b) as a measure
of complexity in the emergent rheology. The bandwidth is also indicative of computational cost
because the largest time-step that can be used for numerical integration is governed by the high-
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frequency end of the bandwidth whereas the duration of time needed for the transient response to
settle down is governed by the low-frequency end. We find that the two-state Huxley model has
the smallest bandwidth and is followed by the five-state, three-state, and four-state models. This
ordering does not follow the number of internal states so the complexity of the emergent rheology
does not correlate with complexity of the crossbridge model. For example, although the five-state
model requires 24 parameters, the largest amongst all models considered, its emergent rheology
is well-approximated as a high-frequency elastic spring and a low-frequency vicious damper which
requires only two parameters and suggests that a drastic parameter reduction from the detailed
crossbridge model to its emergent rheology is possible. We shall analyze the mathematical forms
of these crossbridge models to derive the exact form of the parameter reduction.

Rheology of the generalized two-state crossbridge model

We analytically derive the rheology for the two-state crossbridge ensemble to examine the rheo-
logical features at intermediate frequencies that are not captured by the high and low frequency
asymptotes (equation (1)). We refer to (Smith, 1998) for a conceptually identical but more general
derivation of a four-state crossbridge model while we focus here on the simpler two-state variant to
demonstrate how modeling choices lead to different rheological features.

Two-state crossbridges cycle between making and breaking bonds between rigid thick and thin
filaments. The attachment rate f(x) and detachment rate g(x), to form and break bonds, respec-
tively, are functions of the displacement x between the location of the myosin motor on the thick
filament and the nearest binding site on the thin filament. At every displacement x and time t,
the proportion of attached crossbridges is n(x, t), also known as the bond distribution, and the
detached proportion is (1− n(x, t)). The bond distribution n(x, t) evolves in time according to

dn(x, t)

dt
= (1− n(x, t))f(x)− n(x, t)g(x). (2)

This first-order differential equation has a steady-state bond distribution nss(x) = f(x)/(f(x) +
g(x)) at equilibrium. Starting with this equilibrium bond distribution, a step length perturbation of
amplitude a is delivered at t = 0 to elongate the whole system and hold it there. Every crossbridge
that was a displacement x away from its nearest binding site is now a displacement (x+a) away and
the distribution of crossbridges n(x, t) evolves in time to relax back to its equilibrium state according
to equation (2). The response to this step length perturbation is obtained using n(x, 0) = nss(x−a)
as the initial condition and integrating equation (2) to find

n(x, t) = nss(x) + (nss(x− a)− nss(x))e
−t(f(x)+g(x)). (3)

Therefore, n(x, t) exponentially relaxes to its steady-state nss(x) at a rate f(x)+g(x). We illustrate
this relaxation process in figure 4a using Huxley’s rate functions (Huxley, 1957). The force ∆F (t)
in response to the step length perturbation is determined by the difference between n(x, t) and its
steady state nss(x). In terms of crossbridge stiffness λxb in units of [force/length] and crossbridge
density M in units of [length]−1, the force response is

∆F (t) = Mλxb

∫ ∞

−∞
x(nss(x− a)− nss(x))e

−t(f(x)+g(x))dx. (4)

By restricting our attention to the linear regime, i.e. a small perturbation a, the force response
simplifies to

∆F (t) = −Maλxb

∫ ∞

−∞
x
dnss

dx
e−t(f(x)+g(x))dx. (5)
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This perturbation response may be rewritten as a sum of exponential relaxations with a displacement-
dependent relaxation time-constant τ(x) and displacement-dependent ensemble stiffness k(x) that
is given by,

∆F (t) = a

∫ ∞

−∞
k(x)e−t/τ(x)dx, (6)

k(x) = −Mλxbx
dnss(x)

dx
, and (7)

τ(x) =
1

f(x) + g(x)
. (8)

Therefore, the entire relaxation process may be thought of as being comprised of an infinity of
exponentially relaxing sub-processes where the displacement-dependent stiffness k(x) is the weight
and τ(x) the relaxation timescale for each sub-processes. To obtain a dynamic stiffness K(ω), we
use the Laplace transforms of equation (6) and of the step length perturbation to arrive at

K(ω) =

∣∣∣∣
∫ ∞

−∞
k(x)

iω

iω + 1/τ(x)
dx

∣∣∣∣ . (9)

The integrand is the mechanical impedance of a Maxwell body, a spring mechanically in series
with a dashpot, and a mechanical analogy can thus be drawn between ensemble crossbridge dy-
namics and Maxwell bodies. We demonstrate the analogy for the two-state model using Huxley’s
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Figure 4: The rheology of an ensemble of Huxley’s two-state crossbridges. (a) The time-evolution
of the bond distribution in response to a step length perturbation. (b) Rheology of an ensemble
of Huxley’s two-state crossbridges. The ensemble’s perturbation response exponentially relax with
time-constant τ(h) = 1/(f(h) + g(h)) where f(x) and g(x) are the rate functions and h is the
powerstroke distance. A mechanical interpretation of this single exponential relaxation is of a
spring in series with a dashpot.
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choices for the rate functions f(x) and g(x) (Huxley, 1957, figure 4b) given as

f(x) =

{
f1x for 0 ≤ x ≤ h,

0 otherwise,
and (10)

g(x) =

{
g2 for x < 0,

g1x for x ≥ 0.
(11)

which leads to the steady-state bond distribution nss(x)

nss =

{
f1/(f1 + g1) for 0 < x ≤ h

0 otherwise.
(12)

Applying equations (7 – 9), the dynamic stiffness corresponding to Huxley’s choices of f(x) and g(x)
is that of a single Maxwell body with stiffness k(h) and damping coefficient b = k(h)/(f(h)+g(h)) =
k(h)τ(h). To add more detail, the rectangular waveform of the steady-state bond distribution
(equation (12)) implies that k(x) of equation (7) is a sum of two δ-functions, a negative one at
x = 0 and a positive one at x = h. However, because the delta at x = 0 does not contribute to the
perturbation response, only the delta at x = h remains and the overall perturbation response is that
of a single Maxwell body. Huxley’s choices thus lead to an exact correspondence between ensemble
crossbridge dynamics and a single Maxwell body, which justifies the mechanical interpretation
for the high and low frequency rheological behaviors observed in figure 3 as elastic and viscous
behaviors. The spring-like behavior at high frequencies is not surprising because springs are built
into ensemble crossbridge models by idealizing each crossbridge as an individual spring, all of which
adds up at high frequencies. On the other hand, there are no dampers built into crossbridge models
and the low-frequency behavior thus arise as an emergent property of the ensemble rather than as
an intrinsic property of crossbridges. Specifically, each crossbridge dissipate stored elastic energy
as they cycle and this dissipation averaged over the entire ensemble and over many cycles manifests
as an effective damping coefficient at low frequencies.

The stiffness distribution k(x) of equation (7) is well-approximated by a δ-function for Huxley’s
two-state model leading to single exponentially relaxing sub-process that dominates the entire
perturbation response. Thus whether we need the full ensemble model or if we can approximate
the response with just a few discrete relaxation sub-processes depends on whether k(x) shows
localizations in x or not. We hypothesize that, for all crossbridge models considered in this paper,
the localization is a dominant feature and that only a few discrete relaxation sub-processes are
needed to capture the emergent rheological features on intermediate frequencies (figure 3b). Because
k(x) is proportional to the derivative of the steady-state bond distribution, its localization and
the resulting exponential sub-process directly equate to either a sharp rising or falling edge of
the steady-state bond distribution, or of multiple bond distributions for crossbridge models with
multiple attached states. We shall verify the hypothesis by fitting exponential sub-processes to
the dynamic stiffness computed for the crossbridge models and examine if those fitted processes
corresponds to rising or falling edges of the bond distribution.

Low-order models of multi-state crossbridge ensembles

Crossbridge dynamics are generally more complex than Huxley’s two-state model and may have
multiple internal states that introduce higher-order dynamics. Nevertheless, the perturbation force
response initially arises from stretching bound crossbridges and its long-term relaxation is because of
a redistribution of the crossbridges between the various possible states. This suggests an approach to
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tackle the behavior in the intermediate frequencies where crossbridge models were shown to deviate
from the simple asymptotic behavior of a Maxwell body (figure 3b). Namely that, under more
complicated attachment-detachment dynamics, the perturbation response would show multiple
exponential relaxation sub-processes. So we investigate whether a finite number of exponential
relaxations can capture the emergent ensemble rheologies in spite of possible complexities, under
the hypothesis that a few sub-processes dominate the response. In other words, we examine whether
the ensemble’s frequency-dependent dynamic stiffness K(ω) can be approximated by a sum of N
Maxwell bodies according to,

K(ω) ≈
∣∣∣∣∣

N∑

m=1

km
iω

iω + 1/τm

∣∣∣∣∣ . (13)

We find that at most three exponentially relaxing sub-processes, i.e. N = 3 in equation (13), are
needed for any of the crossbridge models to accurately capture the frequency-dependent stiffness
over seven orders of magnitude on the frequency axis (figure 5a, Methods B, Figure 5 - Table
Supplement 1). Huxley’s two state model fit exactly with a single sub-process, consistent with our
earlier derivation. The five-state model is also well-approximated by two sub-processes. The three-
and four-state models are mostly fitted by three sub-processes. By encapsulating the emergent
rheology using few sub-processes, the number of parameters associated with the crossbridge models
are fewer by 2–6 fold, with the biggest gains in reducing parametric complexity for the more
complex models with multiple internal states (table 1). Overall, the accurate fits demonstrates
that, although crossbridge models incorporate a vast parameter space, the rheologies exhibited
by their ensemble dynamics are far simpler and dominated by only a few exponentially relaxing
sub-processes.

Table 1: Reduction in parametric complexity. Number of parameters in the full model versus
the low-order approximation in terms of exponential sub-processes.

Model Full model Low-order approximation
Huxley, 1957 4 2
Murase et al., 1986 16 6
Smith, 1997 17 6
Lombardi et al., 1990 24 4

The fitting process finds sub-processes acting on vastly different timescales and has also been
previously applied to the describe the rheology of muscles in terms of sub-processes (Kawai and
Brandt, 1980; Kawai et al., 1993). We next address the question of how to relate the fitted values to
crossbridge dynamics. The analysis of Huxley’s two-state model provides a possible method to con-
nect the scales from crossbridge dynamics to ensemble rheology. The dynamic stiffness of the entire
ensemble depends on the integral over a continuum of exponential sub-processes k(x) e−t/τ(x), with
stiffness k(x) and time-constant τ(x) that depend on the crossbridge displacement x. Importantly,
we found that sub-processes where the stiffness k(x) peaked dominated the ensemble rheology, and
the associated relaxation time τ(x) governed the frequency-dependence of the ensemble stiffness
K(ω).

We investigated whether that insight carries over to the three-state model (Murase et al.,
1986). The three-state model serves as an intriguing test-case for several reasons. It required
the most number of fitted exponential sub-processes. The three-state model also exhibits features
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Figure 5: (a) The dynamic stiffness of different crosssbridge ensembles are accurately fitted by at
most 3 time-constants, each associated with an exponential process (see Figure 5 - Table Supplement
1 for fitted values). The traces are vertically shifted for clarity (see Figure 3 - Figure Supplement
1 for an unmodified plot). (b) Kinetic scheme of a three-state crossbridge model (Murase et al.,
1986). The matrix H(x) is a state transition matrix with two non-zero eigenvalues 1/τA and 1/τB.
(c) Examination of the derivatives of the steady-state distributions shows that the local peaks
accurately identifies the time-constants fitted in Figure 5 - Table Supplement 1.

that are most unlike the two-state model, including a significant dip in the dynamic stiffness
that is indicative of a negative exponential sub-process that has been previously attributed to a
delayed tension rise observed in a muscle’s perturbation response (Kawai et al., 2021). The three-
state model has two attached states with steady-state distributions n1,ss(x) and n2,ss(x), according
to the kinetics illustrated in figure 5b. We present here a simplified version of the analysis by
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assuming independence of the kinetic equations for each state, which allows us to identify separate
sub-processes associated with each bound state. Methods C presents a full analysis without this
simplification but shows nearly identical findings. To identify the dominant sub-processes of the
three-state model, we examine the sub-process stiffness distributions associated with each of the
two bound states, namely, λ1xdn1,ss(x)/dx and λ2xdn2,ss(x)/dx (figure 5c). There are four local
extrema, two per attached state, of the sub-process stiffness distributions (figure 5c) of which three
are clearly dominant. The fourth one appears near x = 3nm and is considerably smaller than the
other three by an order of magnitude. So we estimate the time constant τ associated with the three
dominant local extrema of these sub-process stiffness distributions and find that they resemble the
three fitted time-constants (Figure 5 - Table Supplement 2).

This level of correspondence is surprising because, generally, the sum of exponentials is not an
exponential. Being able to approximate the ensemble behavior as a sum of exponentials implies that
we are able to represent an integral over exponentials as a discrete sum of few exponentials. That the
sub-process stiffness distribution has just a few extrema is part of the reason, but additionally, the
time-constants should not vary too rapidly in neighborhood of the extrema for the approximation
to hold. Therefore, the surprising, but simplifying finding of the analysis is that the governing
equations of two, three, four, and five state crossbridge models are such that the integral over a
continuum of exponential sub-processes is well approximated by a sum over few discrete exponential
sub-processes.

Our examination of multi-state crossbridge models puts forth the following connection be-
tween the exponential relaxation fitted to muscle rheology and the dynamics of crossbridge cycling.
Namely, each fitted relaxation results from either a sharp rising or falling edge of the steady-state
bond distribution of attached crossbridge states. Assuming that most crossbridges attach at pos-
itive x, the fitted stiffness is positive for a falling edge and negative for a rising edge. The fitted
time-constant are associated with the attachment and detachment rates corresponding to the ris-
ing or falling edges of the steady-state bond distributions. Furthermore, because the forces arising
from the edges are modulated by x, the falling edge at larger x can dominate over the rising edge
at smaller x, such as in the case of Huxley’s two-state model. Therefore, although the bond dis-
tributions themselves may be of a complicated functional form due to the vast parameter space
that multi-state crossbridge models tend to require, the emergent ensemble rheology is simpler
and dominated by few rising and falling edges. This simplification affords a parameter reduction
of multi-state crossbridge models down to two per exponential relaxation, a stiffness and a time-
constant, and will allow us to compute the rheological behavior of ensemble crossbridge models
in large-scale musculoskeletal simulations in a manner as efficient as phenomenological Hill-type
muscle models but without compromising on the mechanistic, crossbridge-based understanding.

Discussion

Our results simplify the complexity of crossbridge models and show how lower-order dynamics
emerge from the connection across vastly different scales of crossbridge dynamics and ensemble
rheology. These results are similar to Zahalak’s distribution-moment formalism (Zahalak, 1981), but
go further and analyze how modeling choices of a single crossbridge cycle give rise to macroscopically
measurable rheological properties. We focused on the dynamic stiffness which generalizes notions
of elastic stiffness and viscous damping into a viscoelastic property that depend on the time-
duration of interest. Specifically, we showed that the emergent rheology of crossbridge ensembles
can be accurately fitted by only a few exponential sub-processes. Such fitting procedures have been
previously applied to empirical muscle data to identify the dominant exponential sub-processes
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(Kawai and Brandt, 1980; Kawai et al., 1993), and our findings add the understanding that these
sub-processes correspond to rising or falling edges of the steady-state bond distributions.

Phenomenological models, with few and experimentally measurable parameters, and lesser com-
putational overhead, present numerous advantages over detailed multiscale and spatially explicit
models (Kosta et al., 2021). Experimental measurability and the computational efficiency of Hill-
type models over PDE descriptions of crossbridge ensembles is a principal reason for the widespread
adoption of Hill-type muscle models (De Groote and Falisse, 2021; O’Neill et al., 2013; Miller, 2014)
despite their shortcomings (Nishikawa et al., 2018; Nishikawa and Huck, 2021). Therefore, aug-
menting Hill-type models with experimentally measurable exponential sub-processes will facilitate
large-scale biomechanical simulations without sacrificing the grounding of these muscle models in
crossbridge theory. But the finding that the rheological response of mean field models of cross-
bridge ensembles simplifies to sums of exponentials identifies some fundamental gaps in current
understanding of muscle’s response to perturbations. We discuss here two main issues brought to
light by the analyses.

One limitation is that systems with exponential relaxations have limited memory determined
by its time-constant. So an ensemble of crossbridges cannot remember its perturbation history far
beyond its longest time-constant. Residual force enhancement and force depression are history-
dependent phenomena that have implications for the motor control of muscles (Herzog, 2004), and
are in clear contradiction with having an exponentially decaying memory. In these phenomena,
the forces exhibited by a muscle fiber upon being stretched or shortened to a final length relax
towards a value that is persistently higher (force enhancement) or lower (force depression) than if
the muscle fiber were isometrically held at the final length. So, unlike exponential relaxation, muscle
exhibits long-lived memory of being stretched or shortened. This suggests that history-dependent
muscle phenomena are outside the purview of current crossbridge models. However, such history-
dependence parallels phenomena found in other biological and non-biological materials for which
a phenomenological fractional viscoelastic model captures power-law or non-exponential relaxation
(Jaishankar and McKinley, 2013; Bagley and Torvik, 1983; Kollmannsberger and Fabry, 2011).
Deriving inspiration from these fractional viscoelastic materials may help to better understand the
physical underpinnings of residual force enhancement and depression in muscles. Nevertheless, our
analyses of multiple crossbridge models show that they are not capable of exhibiting fractional
viscoelastic or other non-exponential responses over long time durations.

A second limitation is the neural control of muscle’s relaxation timescales (Nguyen et al., 2018).
It is common experience that muscle can remain stiff and behave like an elastic solid over long
timescales when it is highly stimulated by the nervous system; consider holding the elbow at a
fixed posture. On the flip side, when muscle is held in a relaxed state, stresses can dissipate over
much shorter period; consider throwing a fast ball where the biceps stretch rapidly. Contrary to
such common experience, we find that the time-constants arising from crossbridge ensembles do not
depend on the number of engaged crossbridges, i.e. not dependent on neural drive. The number
of binding sites available for crossbridges increases with calcium concentration. However, more
crossbridges would only increase the sub-process stiffness k and leave the relaxation time-constant
τ unchanged. This is because, in all the models we investigated, crossbridge cycling dynamics
are independent of the total number of crossbridges. Some crossbridge models incorporate faster
crossbridge cycling with higher calcium (Zahalak, 1986; Zahalak and Ma, 1990; Walcott, 2014).
While this leads to higher contractile forces, the time-constant would in fact decrease with higher
calcium rather than increase. Therefore, crossbridge models cannot simultaneously capture higher
contractile force and slower stress relaxation when the neural drive to muscle is greater.

The mismatches between exponential relaxations, known muscle phenomena, and requirements
of neural control all suggest that either crossbridge models currently lack an essential feature or
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that non-crossbridge elements come into play. There are multiple possible candidate resolutions
that we speculate may operate in unison, and certainly require further experimental investigation
to improve our understanding of muscle. Thick and thin filament compliance between neighboring
crossbridges can store elastic energy that dissipate far slower than the crossbridges themselves
and affect muscle forces on long experimental timescales (Mijailovich et al., 1996; Daniel et al.,
1998). Intersarcomeric dynamics may lead to dynamics not captured by single sarcomere model
such that the number of participating sarcomeres can drastically alter the rheology of a muscle
fiber (Shimamoto et al., 2009; Campbell, 2009; Caruel and Truskinovsky, 2018). Titin could be
another factor that can directly modulate force transmission across a sarcomere and therefore affect
crossbridge and inter-sarcomere dynamics (Nishikawa et al., 2012; Powers et al., 2014). Neural
feedback and reflexes could introduce additional time-constants depending on motor tasks, but is
limited by transmission delays on the order of 50ms for humans (Johansson and Cole, 1994; Hogan
et al., 1987). These and other possibilities require further investigation, but point to a shortcoming
in the current crossbridge theory for muscle forces and rheology.
Author Contributions: K.D.N. and M.V. conceived the research, designed the research, analyzed
and interpreted the results, and wrote the paper.
Competing interests: The authors declare no competing interests.

Methods

A Dynamic stiffness calculation of crossbridge models

We detail here the numerical calculation of dynamic stiffness for ensemble crossbridge models.
Although each model differs in number of internal states, a general differential equation for the
mass balance between states can be written. Let j be the index for the states, then nj(x, t) is
the distribution of crossbridges in the jth state at time t and with displacement x to the nearest
binding site. The mass balance will take the general form

dnj(x, t)

dt
= Pj(x, n1(x, t), n2(x, t), ..., N1(t), N2(t), ...) (14)

where Nj(t) =
∫∞
−∞ nj(x, t)dx is the total proportion of crossbridges in state j and Pj is a function

that depends on the crossbridge model. We use Pj as given by four different models varying from
two to five internal states (Huxley, 1957; Smith, 1998; Murase et al., 1986; Lombardi and Piazzesi,
1990).

We impose a step length perturbation of amplitude a and use the output force perturbation
response to numerically compute each model’s dynamic stiffness. Specifically, we numerically in-
tegrate equation (14) subjected to the initial condition nj(x, 0) = nj,ss(x − a) using the explicit
fourth-order Runge-Kutta (RK4) scheme (Press et al., 2007). The integration takes time steps of
size δt and terminates at a finite time T . The output force perturbation response is a discrete time
series ∆Fm indexed in time by m and calculated as

∆Fm =
∑

j

∫ ∞

−∞
kj(x− x0,j)(nj(x,mδt)− nj,ss(x))dx (15)

for stiffness kj and neutral length x0,j that depends on the jth crossbridge state. The dynamic
stiffness K(ω) is then computed in terms of z-transforms as

K(ω) =

∣∣∣∣
∑

m∆Fmz−m

∑
m∆Lmz−m

∣∣∣∣
z=exp(−iωδt)

(16)
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where ∆Lm is the step length perturbation equal to a for all m ≥ 0 and zero otherwise.
To calculate the dynamic stiffness for Huxley’s two-state model (Huxley, 1957) in dimensional

units, we use parameter values (f1, g1, g2) = (15, 4, 85)s−1 provided by (Zahalak and Ma, 1990)
(Zahalak and Ma, 1990). We also used a crossbridge stiffness kxb = 0.5pN/nm that is consistent
with literature values (Lombardi and Piazzesi, 1990; Smith, 1998).

B Fitting procedure

We detail here the process of fitting exponential relaxations to the dynamic stiffness of different
crossbridge models (figure 3d). We denote ωj as the frequency indexed by j and logarithmically
sampled from 5 ∗ 10−4 Hz to 5 ∗ 103Hz. We also denote K(ωj) as the numerically determined
dynamic stiffness at frequency ωj . The objective is to find N-pairs of parameters (km, τm) indexed
by m such that the function

y(ωj) =

∣∣∣∣∣
N∑

m=1

km
iωjτm

1 + iωjτm

∣∣∣∣∣ (17)

accurately captures K(ωj) where N is the number of exponential relaxations to fit and i is the
imaginary number. We defined fit to be the N-pairs of parameters (kj , τj) that minimizes the cost

∑

j

(log(y(ωj))− log(K(ωj)))
2 (18)

where we use the log function to equally weight behaviors at vastly different frequencies. The fit
was performed starting at N = 1 and N is incrementally increased until there is no appreciable
difference between the fits at N and at N + 1.

All optimization procedures are performed using the Python ‘scipy.optimize‘ library (Virtanen
et al., 2020).

Table Figure 5 - Table Supplement 1: Fitted parameters for figure 5a. Stiffness values are in units
of pN/nm per crossbridge and time-constants are in units of seconds.

Model k1 τ1 k2 τ2 k3 τ3
Huxley, 1957 0.39 5.3e-2 - - - -
Murase et al., 1986 0.09 0.59 -0.10 6.8e-2 0.15 3.2e-3
Smith, 1997 0.05 2.0 -0.12 3.6 0.20 1.4e-3
Lombardi et al., 1990 0.18 8.0 0.30 0.28 - -

C Perturbation analysis of three-state crossbridge model

We expand here the generalized two-state analysis to the three-state model by Murase et al., 1986
to identify the dominant time-constants in the system and compare them with the fitted values of
Figure 5 - Table Supplement 1. In the three-state model, there are two attached states with bond
distributions n1(x, t) and n2(x, t) and a detached state with distribution n0(x, t). By defining a
column vector n⃗ = [n0, n1, n2]

T , the governing dynamics of the system is given by

dn⃗(x, t)

dt
= −H(x)n⃗(x, t) (19)

such that n0(x, t) + n1(x, t) + n2(x, t) = 1 (20)

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


2-state - Huxley, 1957

3-state - Murase et al., 1986

4-state - Smith, 1998

5-state - Lombardi et al., 1990

Fits using sums of exponential relaxations 

Frequency (Hz)

D
yn

am
ic

 s
tif

fn
es

s 
(p

N
/n

m
 p

er
 c

ro
ss

br
id

ge
)

Figure 3 - Figure Supplement 1: Fitted curves to the dynamic stiffness of different crossbridge
models.

Table Figure 5 - Table Supplement 2: Comparison of fitted time-constants and time-constants
identified by using local peaks in the derivatives of steady-state bond distributions for a two-state
and a three-state crossbridge model. The peak of xdnss/dx for the two-state model (equation (11))
is computed exactly with a time-constant τ = 1/(f1h+ g1h) = 5.3e− 2 seconds.

Model Fitted time-constants Search using xdnss(x)/dx
Huxley, 1957 5.3e-2 seconds 5.3e-2 seconds
Murase et al., 1986 (0.59 , 6.8e-2 , 3.2e-3) seconds (0.64 , 7.2e-2 , 3.7e-3) seconds

and where H(x) is a 3x3 state transition matrix defined by the kinetic scheme of figure 5b.
These equations uniquely define the steady-state bond distribution at equilibrium which we de-
note as n⃗ss(x). Specifically, the state transition matrix has three eigenvector-eigenvalue pairs
(v⃗A(x), 1/τA(x)), (v⃗B(x), 1/τB(x)), and (n⃗ss(x), 0) where τA and τB are the two time-constants
driving the perturbation response and v⃗A(x) and v⃗B(x) are unit vectors.

Mirroring the generalized two-state derivation, the perturbation response to a step length of
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size a is obtained by setting n⃗(x, 0) = n⃗ss(x− a) as the initial condition to arrive at

n⃗(x, t) = n⃗ss(x) + e−H(x)t(n⃗ss(x− a)− n⃗ss(x)) (21)

= n⃗ss(x)− ae−H(x)tdn⃗ss(x)

dx
(22)

where the second equality arises by restricting our attention to small perturbations. We now expand
the matrix-vector multiplication on the RHS using eigendecomposition of H(x) as

n⃗(x, t)− n⃗ss(x) = −a
(
e−t/τA(x)wA(x)ν⃗A(x) + e−t/τB(x)wB(x)ν⃗B(x)

)
(23)

where wA and wB are linear weights that satisfy the linear system

[ν⃗A(x), ν⃗B(x), n⃗ss(x)]



wA(x)
wB(x)

0


 =

dn⃗ss(x)

dx
. (24)

The third linear weight is necessary zero because (n⃗(x, t)− n⃗ss(x)) in equation (23) must decay to
zero and cannot have a component parallel to nss(x) which does not decay.

The perturbation response is the first moment of equation (23) multiplied by a stiffness vector
that maps the bond distributions to forces. It is given in terms of crossbridge density M , stiffness
of the first attached state λ1, and stiffness of the second attached state λ2 as

∆F (t) = a

∫ ∞

−∞

[
kA(x)e

−t/τA(x) + kB(x)e
−t/τB(x)

]
dx (25)

where kA(x) = −MxwA(x)⟨[0, λ1, λ2]
T , ν⃗A(x)⟩ (26)

and kB(x) = −MxwB(x)⟨[0, λ1, λ2]
T , ν⃗B(x)⟩. (27)

The operator ⟨·⟩ denotes the dot product between two column vectors. The first entry in the stiffness
vector is set to zero to represent the detached crossbridge state. Our analysis of the generalized two-
state crossbridge model suggests that dominant time-constants appears where either kA(x) or kB(x)
are localized, and we find that these time-constants do not significantly differ from heuristically
using the derivatives of the steady-state distributions (figure 5 - Figure Supplement 1).
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Figure 5 - Figure Supplement 1: Examination of the local peaks in stiffnesses kA(x) and kB(x)
identifies the dominant time-constants. The stiffnesses are computed using an eigenvector analysis
of the state-transition matrix H(x) and are different from λ1xdn1,ss(x)/dx and λ2xdn2,ss(x)/dx
used in figure 5c as a heuristic search. The identified time-constants do not significantly differ from
the values found in figure 5c.

References

Bagley, R. L. and Torvik, P. (1983). A theoretical basis for the application of fractional calculus
to viscoelasticity. Journal of Rheology 27, 201–210.

Biewener, A. A. and Roberts, T. J. (2000). Muscle and tendon contributions to force, work,
and elastic energy savings: a comparative perspective. Exercise and Sport Sciences Reviews 28,
99–107.

Bizzi, E., Chapple, W. and Hogan, N. (1982). Mechanical properties of muscles: Implications
for motor control. Trends in Neurosciences 5, 395–398.

Campbell, K. S. (2009). Interactions between connected half-sarcomeres produce emergent me-
chanical behavior in a mathematical model of muscle. PLoS Computational Biology 5, e1000560.

Caruel, M. and Truskinovsky, L. (2018). Physics of muscle contraction. Reports on Progress
in Physics 81, 036602.

Cole, G. K., van den Bogert, A. J., Herzog, W. and Gerritsen, K. G. (1996). Modelling of
force production in skeletal muscle undergoing stretch. Journal of Biomechanics 29, 1091–1104.

Daniel, T. L., Trimble, A. C. and Chase, P. B. (1998). Compliant realignment of binding
sites in muscle: transient behavior and mechanical tuning. Biophysical Journal 74, 1611–1621.

De Groote, F. and Falisse, A. (2021). Perspective on musculoskeletal modelling and predictive
simulations of human movement to assess the neuromechanics of gait. Proceedings of the Royal
Society B 288, 20202432.

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


Dick, T. J., Biewener, A. A. and Wakeling, J. M. (2017). Comparison of human gastrocne-
mius forces predicted by hill-type muscle models and estimated from ultrasound images. Journal
of Experimental Biology 220, 1643–1653.

Fung, Y. (1971). Comparison of different models of the heart muscle. Journal of Biomechanics
4, 289–295.

Fung, Y.-C. (2013). Biomechanics: mechanical properties of living tissues. Springer Science &
Business Media.

Gardel, M., Shin, J. H., MacKintosh, F., Mahadevan, L., Matsudaira, P. and Weitz,
D. A. (2004). Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–
1305.

Grewe, J. and Schwarz, U. S. (2020). Rheology of mixed motor ensembles. arXiv preprint
arXiv:2007.05518 .

Herzog, W. (2004). History dependence of skeletal muscle force production: implications for
movement control. Human movement science 23, 591–604.

Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of
the Royal Society of London. Series B-Biological Sciences 126, 136–195.

Hogan, N., Bizzi, E., Mussa-Ivaldi, F. A. and Flash, T. (1987). Controlling multijoint
motor behavior. Exercise and Sport Sciences Reviews 15, 153–190.

Holmes, K. C. (1997). The swinging lever-arm hypothesis of muscle contraction. Current Biology
7, R112–R118.

Huxley, A. and Tideswell, S. (1996). Filament compliance and tension transients in muscle.
Journal of Muscle Research & Cell Motility 17, 507–511.

Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys.
Chem 7, 255–318.

Huxley, A. F. and Simmons, R. M. (1971). Proposed mechanism of force generation in striated
muscle. Nature 233, 533–538.

Jaishankar, A. and McKinley, G. H. (2013). Power-law rheology in the bulk and at the
interface: quasi-properties and fractional constitutive equations. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 469, 20120284.

Johansson, R. S. and Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian
Journal of Physiology and Pharmacology 72, 511–524.

Kawai, M. and Brandt, P. W. (1980). Sinusoidal analysis: a high resolution method for
correlating biochemical reactions with physiological processes in activated skeletal muscles of
rabbit, frog and crayfish. Journal of Muscle Research & Cell Motility 1, 279–303.

Kawai, M., Saeki, Y. and Zhao, Y. (1993). Crossbridge scheme and the kinetic constants of
elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.
Circulation Research 73, 35–50.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


Kawai, M., Stehle, R., Pfitzer, G. and Iorga, B. (2021). Phosphate has dual roles in cross-
bridge kinetics in rabbit psoas single myofibrils. Journal of General Physiology 153.

Koenderink, G. H., Dogic, Z., Nakamura, F., Bendix, P. M., MacKintosh, F. C.,
Hartwig, J. H., Stossel, T. P. and Weitz, D. A. (2009). An active biopolymer network
controlled by molecular motors. Proceedings of the National Academy of Sciences 106, 15192–
15197.

Kollmannsberger, P. and Fabry, B. (2011). Linear and nonlinear rheology of living cells.
Annual review of materials research 41, 75–97.

Konow, N., Azizi, E. and Roberts, T. J. (2012). Muscle power attenuation by tendon during
energy dissipation. Proceedings of the Royal Society B: Biological Sciences 279, 1108–1113.

Kosta, S., Colli, D. F. and Campbell, K. S. (2021). Fibersim, an open-source spatially-explicit
model of the half-sarcomere. Biophysical Journal 120, 96a–97a.

Lee, S. S., Arnold, A. S., de Boef Miara, M., Biewener, A. A. and Wakeling, J. M.
(2013). Accuracy of gastrocnemius muscles forces in walking and running goats predicted by
one-element and two-element hill-type models. Journal of Biomechanics 46, 2288–2295.

Lin, D. C. and Rymer, W. Z. (2000). Damping actions of the neuromuscular system with
inertial loads: soleus muscle of the decerebrate cat. Journal of Neurophysiology 83, 652–658.

Lindstedt, S. L., LaStayo, P. and Reich, T. (2001). When active muscles lengthen: properties
and consequences of eccentric contractions. Physiology 16, 256–261.

Liu, C., Kawana, M., Song, D., Ruppel, K. M. and Spudich, J. A. (2018). Controlling
load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nature structural &
molecular biology 25, 505–514.

Lombardi, V. and Piazzesi, G. (1990). The contractile response during steady lengthening of
stimulated frog muscle fibres. The Journal of Physiology 431, 141–171.

Lymn, R. and Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by
actomyosin. Biochemistry 10, 4617–4624.

MacIntosh, B. R. and MacNaughton, M. B. (2005). The length dependence of muscle active
force: considerations for parallel elastic properties. Journal of Applied Physiology 98, 1666–1673.

McNamara, J. W., Li, A., Dos Remedios, C. G. and Cooke, R. (2015). The role of
super-relaxed myosin in skeletal and cardiac muscle. Biophysical reviews 7, 5–14.

Mijailovich, S. M., Fredberg, J. J. and Butler, J. P. (1996). On the theory of muscle con-
traction: filament extensibility and the development of isometric force and stiffness. Biophysical
Journal 71, 1475–1484.

Miller, R. H. (2014). A comparison of muscle energy models for simulating human walking in
three dimensions. Journal of biomechanics 47, 1373–1381.

Murase, M., Tanaka, H., Nishiyama, K. and Shimizu, H. (1986). A three-state model for
oscillation in muscle: sinusoidal analysis. Journal of Muscle Research & Cell Motility 7, 2–10.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


Nguyen, K. D., Sharma, N. and Venkadesan, M. (2018). Active viscoelasticity of sarcomeres.
Frontiers in Robotics and AI .

Nguyen, K. D. and Venkadesan, M. (2021). Rheological basis of skeletal muscle work loops.
arXiv [cond-mat.soft], 2005.07238.

Niederer, S. A., Campbell, K. S. and Campbell, S. G. (2019). A short history of the
development of mathematical models of cardiac mechanics. Journal of molecular and cellular
cardiology 127, 11–19.

Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J., Daley, M. A.,
Daniel, T. L., Full, R. J., Hale, M. E., Hedrick, T. L. et al. (2007). Neuromechanics: an
integrative approach for understanding motor control. Integrative and Comparative Biology 47,
16–54.

Nishikawa, K. and Huck, T. G. (2021). Muscle as a tunable material: implications for achiev-
ing muscle-like function in robotic prosthetic devices. Journal of Experimental Biology 224,
jeb225086.

Nishikawa, K. C., Monroy, J. A. and Tahir, U. (2018). Muscle function from organisms to
molecules. Integrative and Comparative Biology 58, 194–206.

Nishikawa, K. C., Monroy, J. A., Uyeno, T. E., Yeo, S. H., Pai, D. K. and Lindstedt,
S. L. (2012). Is titin a ‘winding filament’? a new twist on muscle contraction. Proceedings of
the royal society B: Biological sciences 279, 981–990.

Ogata, K. (2004). System dynamics, volume 13. Pearson/Prentice Hall Upper Saddle River, NJ.

O’Neill, M. C., Lee, L.-F., Larson, S. G., Demes, B., Stern, J. T. and Umberger, B. R.
(2013). A three-dimensional musculoskeletal model of the chimpanzee (pan troglodytes) pelvis
and hind limb. Journal of Experimental Biology 216, 3709–3723.

Palmer, B. M. (2010). A Strain-Dependency of Myosin Off-Rate Must Be Sensitive to Frequency
to Predict the B-Process of Sinusoidal Analysis, pp. 57–75. New York, NY: Springer New York.

Palmer, B. M., Swank, D. M., Miller, M. S., Tanner, B. C., Meyer, M. and LeWinter,
M. M. (2020). Enhancing diastolic function by strain-dependent detachment of cardiac myosin
crossbridges. Journal of General Physiology 152.

Perreault, E. J., Heckman, C. J. and Sandercock, T. G. (2003). Hill muscle model errors
during movement are greatest within the physiologically relevant range of motor unit firing rates.
Journal of Biomechanics 36, 211–8.

Powers, K., Schappacher-Tilp, G., Jinha, A., Leonard, T., Nishikawa, K. and Herzog,
W. (2014). Titin force is enhanced in actively stretched skeletal muscle. Journal of Experimental
Biology 217, 3629–3636.

Press, W. H., William, H., Teukolsky, S. A., Saul, A., Vetterling, W. T. and Flan-
nery, B. P. (2007). Numerical recipes 3rd edition: The art of scientific computing. Cambridge
University Press.

Rack, P. M. and Westbury, D. (1974). The short range stiffness of active mammalian muscle
and its effect on mechanical properties. The Journal of Physiology 240, 331–350.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


Rice, N., Jeong, S. and Nishikawa, K. (2020). How do muscle length and activation interact
to determine muscle force production? In Integrative and Comparative Biology, volume 60, pp.
E195–E195. Oxford University Press.

Sandercock, T. G. and Heckman, C. (1997). Force from cat soleus muscle during imposed
locomotor-like movements: experimental data versus hill-type model predictions. Journal of
Neurophysiology 77, 1538–1552.

Shimamoto, Y., Suzuki, M., Mikhailenko, S. V., Yasuda, K. and Ishiwata, S. (2009).
Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick
stretch. Proceedings of the National Academy of Sciences 106, 11954–11959.

Sleboda, D. A. and Roberts, T. J. (2020). Internal fluid pressure influences muscle contractile
force. Proceedings of the National Academy of Sciences 117, 1772–1778.

Smith, D. (1998). A strain-dependent ratchet model for [phosphate]-and [atp]-dependent muscle
contraction. Journal of Muscle Research & Cell Motility 19, 189–211.

Stewart, M. A., Franks-Skiba, K., Chen, S. and Cooke, R. (2010). Myosin atp turnover
rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proceedings of
the National Academy of Sciences 107, 430–435.

Todorov, E. (2003). On the role of primary motor cortex in arm movement control. Progress in
Motor Control III 6, 125–166.

Tschoegl, N. W. (2012). The phenomenological theory of linear viscoelastic behavior: an intro-
duction. Springer Science & Business Media.

van den Bogert, A., Gerritsen, K. and Cole, G. (1998). Human muscle modelling from a
user’s perspective. Journal of Electromyography and Kinesiology 8, 119–124.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J. et al. (2020). SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272.

Walcott, S. (2014). Muscle activation described with a differential equation model for large
ensembles of locally coupled molecular motors. Physical Review E 90, 042717.

Weitz, D., Wyss, H. and Larsen, R. (2007). Oscillatory rheology: Measuring the viscoelastic
behaviour of soft materials. GIT Laboratory Journal Europe 11, 68–70.

Williams, C. D., Regnier, M. and Daniel, T. L. (2012). Elastic energy storage and radial
forces in the myofilament lattice depend on sarcomere length. PLoS computational biology 8,
e1002770.

Zahalak, G. I. (1981). A distribution-moment approximation for kinetic theories of muscular
contraction. Mathematical Biosciences 55, 89–114.

Zahalak, G. I. (1986). A Comparison of the Mechanical Behavior of the Cat Soleus Muscle With
a Distribution-Moment Model. Journal of Biomechanical Engineering 108, 131–140.

Zahalak, G. I. and Ma, S.-P. (1990). Muscle activation and contraction: constitutive relations
based directly on cross-bridge kinetics. Journal of Biomechanical Engineering 112, 52–62.

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/


Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application to biome-
chanics and motor control. Critical Reviews in Biomedical Engineering 17, 359–411.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2021.12.29.474482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.29.474482
http://creativecommons.org/licenses/by/4.0/

	Dynamic stiffness calculation of crossbridge models
	Fitting procedure
	Perturbation analysis of three-state crossbridge model

