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Abstract

Structural connectivity of the brain at different ages is analyzed using diffusion-weighted Magnetic

Resonance Imaging (MRI) data. The largest decrease of the number and average length of stream-

lines is found for the long inter-hemispheric links, with the strongest impact for frontal regions.

From the BOLD functional MRI (fMRI) time series we identify age-related changes of dynamic

functional connectivity (dFC) and spatial covariation features of the FC links captured by meta-

connectivity (MC). They indicate more constant dFC, but wider range and variance of MC. Finally

we applied computational whole-brain network model based on oscillators, which mechanistically

expresses the impact of the spatio-temporal structure of the brain (weights and the delays) to the

dynamics. With this we tested several hypothesis, which revealed that the spatio-temporal reorga-

nization of the brain with ageing, supports the observed functional fingerprints only if the model

accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity,

and (ii) decrease of propagation velocity due to the loss of myelination. We also show that having

these two conditions, it is sufficient to decompose the time-delays as bimodal distribution that only

distinguishes between intra- and inter-hemispheric delays, and that the same working point also

captures the static FC the best.

Keywords: Aging, Spatio-temporal structure, Connectome, Dynamic Functional Connectivity,

Metaconnectivity, Compensation, demyelination

1. Introduction

Combining network dynamics approaches with graph theory metrics is a leading paradigm for

studying the brain. The former is motivated by the observations that the brain architecture shapes

its neurophysiological activity (Sporns et al., 2004; Vincent et al., 2007; Wang et al., 2013). As a

consequence in the study of its large-scale dynamics, the brain is typically represented as a network
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of anatomically interacting regions each constrained by inherent dynamics (Sanz-Leon et al., 2015).

Using this paradigm, a number of modeling studies have demonstrated that independently of the

size of the brain regions and their underlying dynamics, neuroanatomical constraints of the human

brain shape and drive its functionality during resting healthy state (Kringelbach et al., 2015; Deco

et al., 2009, 2011; Schirner et al., 2018; Courtiol et al., 2020), or during pathologies such as epilepsy

(Jirsa et al., 2017), stroke (Allegra Mascaro et al., 2020), or Alzheimer’s disease (Stefanovski et al.,

2019).

Development of the network neuroscience (Bassett and Sporns, 2017; Bullmore and Sporns,

2009) has been possible due to advances of non-invasive structural (Johansen-Berg and Rushworth,

2009; Hagmann et al., 2010) and functional (Logothetis et al., 2001) brain imaging. The former

allows application of graph theory metrics to describe the biologically realistic connectivity, the so-

called connectome (Ghosh et al., 2008; Sporns et al., 2005). On the functional imaging side, until

recently the focus of research was on the functional connectivity (FC) that calculates co-activation

or information flow between fluctuations in the blood oxygenation-level dependent (BOLD) fMRI

of distant brain regions (Friston, 2011). It is now established that non-stationarity in FC reveals a

rich structure characterized by rapid transitions between few discrete FC states, which is captured

by the so called dynamic Functional Connectivity (Hansen et al., 2015; Betzel et al., 2016; Calhoun

et al., 2014; Allen et al., 2014). Temporal variations of the resting-state have shown to be more

predictive in the context of ageing, showing differences in the modularity (Viviano et al., 2017) and

decrease of FC variation for inter-modular connections (Chen et al., 2017). Dynamic FC tends to

slow down and becomes less complex as well as more random with increasing age (Battaglia et al.,

2020), while modular slowing of dFC was associated with cognitive dysfunction (Lombardo et al.,

2020).

Ageing of the brain, is well described, both structurally (Peters, 2006; Perry et al., 2015; Lim

et al., 2015) and functionally (Stumme et al., 2020; Battaglia et al., 2020), but the causality between

them still has not been established on personalized level, besides the attempts to statistically link

some of the observed patterns between the two (Betzel et al., 2014; Zimmermann et al., 2016). As

an important attempt, a possible link was shown between the decrease of complexity of the brain

function in ageing and its structural changes represented as long-range pruning (Nakagawa et al.,

2013), while similarly a computational model was used to test the hypothesis that hub vulnerability

in Alzheimer disease is due to the highest level of activity of the same regions (de Haan et al., 2012).

There is a great amount of evidence in favor of the functional benefits of greater variability in neural

systems (Sleimen-Malkoun et al., 2014; Garrett et al., 2011). Loss of variability with ageing is often

followed with compensatory and adaptive processes (Lövdén et al., 2010), as well as dedifferentiation

(Baltes and Lindenberger, 1997), which are theorized to play an important role in the cognition

and dynamics (Cabeza et al., 2018). However, these have not been linked to the structural loss,

which is consistently shown not to have a significant role in age-related cognitive decline (Burke

and Barnes, 2006).

Anatomical evidence suggests that ageing mostly affects interhemispheric structural links that
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decrease with advancing age (Knott and Harr, 1997; Duffy et al., 1996; Kikuchi et al., 2000).

Hemispheric networks decrease in efficiency with age (Caeyenberghs and Leemans, 2014), while

topology of hub regions (Perry et al., 2015) and modular organization (Lim et al., 2015) remain

largely stable despite a substantial overall decrease in the number of streamlines with age. Most

studies show greatest deficit in the frontal regions of the brain, and there are regional differences

in white matter hyperintensities (Peters, 2006), which most likely result from demyelination and

reduce the axons transmission speed (Wen and Sachdev, 2004). Specifically, there is strong evidence

that age and loss of myelin integrity reduces conduction velocity along nerve fibers (Peters, 2002).

One of the possible mechanisms are myelin sheath alterations, which are strongly correlated with

ageing in monkeys (Peters and Sethares, 2002). As for the direct evidence of conduction velocity

reduction, in cats for example has been found that along nerve fibers in the pyramidal tracts it is

decreased by 43% for old cats compared to young ones (Xi et al., 1999).

The work that we present has three main goals: (i) to characterize the spatial distribution of

the decrease in structural connectivity including the lengths of white matter tracts, (ii) to identify

the changes in the dynamic of the Functional Connectivity and its higher order spatial features,

and (iii) to test the causality between (i) and (ii) on personalized level using a mechanistic model.

A special attention for the structural analysis is put on the tract lengths that have been so far

overlooked, even though together with the propagation velocity they define the time-delays due

to axonal propagation, which is determinant for the oscillatory processes (Petkoski et al., 2018;

Petkoski and Jirsa, 2019). Time delays and the weights compose the space-time structure of the

brain that is crucial in shaping its macroscopic activity (Sanz-Leon et al., 2015; Ghosh et al., 2008;

Deco et al., 2009), and taken together in the renormalized connectome (Petkoski and Jirsa, 2020),

they unveil structural affinity for spectral activation patterns in the brain through graph theoretical

metrics. Functional alterations are studied through the dFC and MC, which capture temporal and

spatial aspects of the FC (Arbabyazd et al., 2020). For the last part, we utilize Kuramoto oscillators,

which despite being overtly simple, due to their parsimonious parametrization allow for drawing

specific links between network structure and the emergent synchronization patterns of the neuronal

activity (Pope et al., 2021; Cabral et al., 2011; Allegra Mascaro et al., 2020).

2. Results

2.1. White matter loss

2.1.1. Global changes in the SC

A known feature of the connectome of ageing brain, is the decrease of the total number of

connections. Results in Fig. 1 show that this is robustly reflected in all three metrics used for the

weights: raw counts, distinct connection counts, and weighted distinct connection counts (Schirner

et al., 2015). Mostly affected are the weighted distinct connection counts, which are taking into

account the surface of the GWI, while avoiding multiple counting of different tracks, and as such

are mostly used in the analysis as a default connection weights (Battaglia et al., 2020; Schirner

et al., 2018).

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 1, 2022. ; https://doi.org/10.1101/2021.12.30.474565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474565
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 40 60 80

age [y]

2

2.5

3

3.5

4

#
 o

f 
fi
b
e
rs

×10
7

r=-0.49
p=0.0003

20 40 60 80

age [y]

0.8

1

1.2

1.4

1.6

1.8

2

#
 o

f 
fi
b
e
rs

×10
7

r=-0.48
p=0.0004

20 40 60 80

age [y]

5

6

7

8

9

10

#
 o

f 
fi
b
e
rs

×10
4

r=-0.52
p=0.0001

Figure 1: Total number of raw counts (left), distinct connection counts (middle), and weighted distinct connection
counts (right) for each subject, and their correlation with age.

2.1.2. Spatial changes in the SC

Next we investigated if the drop in the number of connections is spatially uniform and to what

extent it is affecting the links of different lengths. We analyzed the changes of the intra- and inter-

hemispheric links, and of the long and the short connections, where the boundary is set at 70mm,

so that it correspond to the local minimum in the global distribution shown in the supplementary

Fig. S1. These results are shown in Fig. 2, and they imply that the loss of connections is spatially

and across lengths heterogeneous, with long and external links the strongest affected. For example,

the number of external connections in the oldest subjects is several times smaller compared to the

youngest. Since external links are longer than the internal, Fig. S1, the decreases in the external

and generally longer links, Fig. 2, could be an effect of a same phenomenon targeting either longer

or the external links.

We also checked to what extent the decrease of number of tracts impacts the average length

of the remaining tracts. For each link we assume that there are as many tracts as given by the

weight of the link (i.e. the counts), each of them with a length equal to the mean of all the tracts.

Importantly, the overall distribution of tract lengths is quite robust across the different procedures

for recovering the tracts, or if median was used instead of the mean length (see Fig. S1). Results

in Fig. 3 show that the mean and median length of the tracts decrease with ageing, and that the

external and long links are mostly affected. It is worth noting that the internal links have longer

mean than median values, indicating that they have assymetric distribution with few very long

outliers. For the external links on contrary, median and mean values are very close to each other,

with short external links having much more short outliers and long external links having more long

outliers that skew the means. These effects become stronger with ageing indicating that despite

the significant decrease of the average length of the external links, the very long and very short

external links are less affected.

2.1.3. Lobe-specific changes

To get a better insight into the spatial extent of the white matter loss, the total number of

tracts and their length was analyzed taking into account which lobes of the brain they connect.

The fontal lobe is the most affected by the decrease of fibre counts, Tab. 1, and within-lobe fibers

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 1, 2022. ; https://doi.org/10.1101/2021.12.30.474565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474565
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 40 60 80

age [y]

4

4.5

5

5.5

6

6.5

7

#
 o

f 
fi
b
e
rs

×10
4 short

r=-0.39
p=0.005

20 40 60 80

age [y]

0.5

1

1.5

2

2.5

#
 o

f 
fi
b
e
rs

×10
4 long

r=-0.45
p=0.001

20 40 60 80

age [y]

4

5

6

7

8

9

#
 o

f 
fi
b
e
rs

×10
4 internal

r=-0.36
p=0.01

20 40 60 80

age [y]

0

2000

4000

6000

8000

10000

12000

#
 o

f 
fi
b
e
rs

external
r=-0.62
p=0.000001

20 40 60 80

age [y]

4

4.5

5

5.5

6

6.5

7

#
 o

f 
fi
b
e
rs

×10
4 int short

r=-0.38
p=0.006

20 40 60 80

age [y]

0

2000

4000

6000

8000

10000

#
 o

f 
fi
b
e
rs

ext long
r=-0.61
p=0.000002

20 40 60 80

age [y]

200

400

600

800

1000

1200

#
 o

f 
fi
b
e
rs

ext short
r=-0.27
p=0.06

20 40 60 80

age [y]

0

0.5

1

1.5

2

#
 o

f 
fi
b
e
rs

×10
4 int long

r=-0.14
p=0.34

Figure 2: Total number of distinct connection counts, for (upper plots left to right) short, long, internal, and external
links; and for (lower plots left to right) internal short, external long, external short, and internal long links.

have generally larger loss than those between. Regions of the cingulate preserve the internal tracts,

while their connections to the frontal, occipital and parietal lobe are significantly reduced. Besides

the frontal, the number of internal tracts in the occipital and parietal lobe also experience strong

negative relationship with ageing. As for the between-lobes connections, those between temporal

and occipital lobes are the most decreased with age.

Temporal Cingulate Frontal Occipital Parietal

Temporal
-0.25
(8.6e-2)

-0.16
(2.5e-1)

0.02
(8.9e-1)

-0.55∗∗∗

(3.9e-5)
-0.43∗

(1.8e-3)

Cingulate
-0.16
(2.5e-1)

0.21
(1.4e-1)

-0.53∗∗

(9.0e-5)
-0.30
(3.1e-2)

-0.47∗

(5.3e-4)

Frontal
0.02
(8.9e-1)

-0.53∗∗

(9.0e-5)
-0.58∗∗∗

(8.4e-6)
0.03
(8.3e-1)

-0.01
(9.2e-1)

Occipital
-0.55∗∗∗

(3.9e-5)
-0.30
(3.1e-2)

0.03
(8.3e-1)

-0.53∗∗

(8.1e-5)
-0.24
(9.5e-2)

Parietal
-0.43∗

(1.8e-3)
-0.47∗

(5.3e-4)
-0.01
(9.2e-1)

-0.24
(9.5e-2)

-0.48∗∗

(4.8e-4)

Table 1: Correlation coefficients with age and their p-values (in brackets) for the number of tracts in and between
different lobes. Statistically significant values (p < 0.05) are bold, values with p < 0.005, p < 0.0005 and p < 0.00005
are indicated with one, two and three asterisks respectively.

We also analyzed whether the observed effects are identically distributed among the longer and

the shorter part of the links (see Tab. S1 in the Suplementary Material), where the division is set at

70mm. Longer tracts are much more affected than the short only for the links within parietal and

between the parietal and occipital lobe. Shorter tracts on the other hand are more contributing to
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Figure 3: Average (blue for median and red for mean) track lengths for the whole brain (left column), internal links
(middle column), and external links (right column) and for links of all lengths (top row), short links only (middle
row) and long links only (bottom row).

loss of connectivity for the links connecting the cingulate with the frontal and parietal regions, as

well as those between parietal and temporal lobes. For the other significant changes from Tab. 1,

the effect is mostly equally affecting longer and shorter tracts.

Another aspect of the white matter loss is shown in Tab. 2, where the decrease of number of

tracts on the level of lobes is analyzed between and within hemispheres. The strongest effects from

within the lobes, Tab. 1, are shown to be mainly due to the loss of interhemispheric links, for the

case of the frontal and parietal lobe, while for the occipital lobe the loss is quite homogeneous. As

for the connectivity between the lobes, the decrease within the hemisphere seems to be stronger.

In this case the results are the same as for the short links, with parietal links to temporal and to

the cingulate regions mostly affected, together with the occipital to temporal connections. On the

other hand, frontal to parietal links are mostly affected by the interhemispheric connectivity loss

between the different lobes.

Besides region-specific change in the total number of tracts, we also analyzed the relationship
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Lobes
Temporal Cingulate Frontal Occipital Parietal

left right left right left right left right left right

Temporal
left

-0.13
(3.7e-1)

-0.05
(7.6e-1)

0.18
(2.0e-1)

0.07
(6.1e-2)

-0.06
(6.9e-1)

-0.16
(2.8e-1)

-0.54∗∗∗

(5.0e-5)
-0.15
(3.1e-1)

-0.35
(1.3e-2)

-0.26
(6.7e-2)

right
-0.32
(2.4e-2)

0.24
(8.8e-2)

0.17
(2.3e-1)

-0.21
(1.4e-1)

0.11
(4.6e-1)

-0.19
(1.9e-1)

-0.38
(7.2e-3)

-0.36
(1.1e-2)

-0.39
(5.3e-3)

Cingulate
left

0.26
(7.2e-2)

0.05
(7.2e-1)

-0.43∗

(1.8e-3)
-0.39
(5.6e-3)

-0.38
(6.4e-3)

-0.35
(1.3e-2)

-0.45∗∗

(9.1e-4)
-0.12
(4.2e-1)

right
0.15
(3.1e-1)

-0.33
(2.0e-2)

-0.45∗∗

(1.2e-3)
-0.29
(3.8e-2)

0.01
(9.6e-1)

-0.15
(3.0e-1)

-0.38
(7.3e-3)

Frontal
left

-0.22
(1.2e-1)

-0.54∗∗∗

(5.3e-5)
-0.04
(8.0e-1)

0.03
8.5e-1

-0.04
(7.9e-1)

-0.47∗∗∗

(4.9e-4)

right
-0.23
(1.0e-1)

-0.23
(1.1e-1)

0.06
(6.6e-1)

-0.38
(6.0e-3)

0.13
(3.8e-1)

Occipital
left

-0.40∗

(3.7e-1)
-0.41∗

(2.9e-3)
0.02
(9.1e-1)

0.21
(1.5e-1)

right
0.51∗∗∗

(1.5e-4)
-0.31
(3.0e-2)

-0.31
(3.0e-2)

Parietal
left

-0.03
(8.3e-1)

-0.56∗∗∗

(2.5e-5)

right
-0.16
(2.7e-1)

Table 2: Correlation coefficients with age and p-values (in brackets) for the number of tracts in and between different
lobes. Statistically significant values (p < 0.05) are bold, values with p < 0.005 and p < 0.0005 are indicated with
one asterisks and two asterisks respectively.

between age and mean of the inter and intra lobe tract lengths, since the overall length of tracts is

also affected by ageing, Fig. 3. Comparing the obtained trends in Tab. 3, with those for the number

of tracts in Tab. 1, we point to several features of the lobe-specific connectivity reorganization with

ageing. Tracts within the frontal lobe are again influenced the strongest, meaning that not just

their number is mostly reduced compared to the other lobes, but their length is mostly decreased.

The same is the case with the links within the parietal and between the parietal lobe and cingulate.

Moreover, separate analysis for the long versus the short portions of the tracts (see Tabs. S1 - S2

in the Supplementary Material) reveals that for the within frontal and within parietal tracts, the

reduction in length is due to the strong decrease of the longer tracts, despites the preserved length

by the remaining long links. As for the parietal-cingulate links, their loss mainly affects the shorter

ones, which nevertheless become even shorter. It is interesting to note that temporal-cingulate

links are the only one with significant increase of their average lengths, while their overall count

also seems to be increasing, though not significantly.

The reduction of the number of tracts is not necessary related to the reduction of their length.

For example, the tracts connecting the temporal with the occipital and parietal regions preserve

their mean length beside the strong decrease of their total count. Similarly, although the total

number of tracts between occipital and the parietal lobe is not significantly reduced, there is a

significant reduction in long tracts, Tab. S1, which then leads to reduced mean length.

Regarding the changes of the average length of the links between the lobes depending on the

hemisphere, the effect is generally smaller, Tab. S3. The strongest decrease is observed for the

interhemispheric links within the frontal lobe, and frontal - cingulate. Interestingly, the length of
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Lobes Temporal Cingulate Frontal Occipital Parietal

Temporal
-0.24
(9.9e-2)

0.30
(3.6e-2)

-0.09
(5.5e-1)

-0.11
(4.3e-1)

0.04
(8.0e-1)

Cingulate
0.30
(3.6e-2)

0.08
(5.7e-1)

-0.14
(3.3e-1)

-0.16
(2.7e-1)

-0.40∗

(4.5e-3)

Frontal
-0.09
(5.5e-1)

-0.14
(3.3e-1)

-0.50∗∗

(2.0e-4)
-0.04
(7.8e-1)

0.20
(1.6e-1)

Occipital
-0.11
(4.3e-1)

-0.16
(2.7e-1)

-0.04
(7.8e-1)

-0.28
(5.2e-2)

-0.30
(3.3e-2)

Parietal
0.04
(8.0e-1)

-0.40∗

(4.5e-3)
0.20
(1.6e-1)

-0.30
(3.3e-2)

-0.45∗

(1.0e-3)

Table 3: Correlation coefficients with age and their p-values (in brackets) for the mean length of tracts in and
between different lobes. Statistically significant values (p < 0.05) are bold, values with p < 0.005 and p < 0.0005 are
indicated with one asterisks and two asterisks respectively.

interhemispheric frontal-parietal tracts are not particularly impacted besides the strong reduction

in the overall connectivity Tab. 2. Similar patterns were found for the interhemispheric parietal,

and for all the within occipital links.

2.1.4. Clustering

Possible changes in the clustering and modularity of the SC were investigated using Louvain

modularity (Blondel et al., 2008) for weighted undirected links from the Brain Connectivity Toolbox

(Rubinov and Sporns, 2010). The optimal number of clusters was set at 2, 3, 4 and 5 and even

though the modularity decreased in all the studied cases, Fig. 4, these were not statistically

significant. For all but one subject the modularity decreases by increasing the number of partitions.

Hence for 49 of the subjects statistically significant highest modularity is achieved for 2 partitions.

For 32 out of 50 subjects even without setting the initial division on hemispheres, it was found as

optimal one (with highest modularity coefficient) in each of the 100 runs of the algorithm. In only

three of the rest, the same resolution parameters for the hemispheric division did not yield higher

modularity.

0 5 10 15 20 25 30 35 40 45 50

subject #

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q

2 3 4 5 2H(50-99) 2H<50

Figure 4: Mean modularity coefficient and their errorbars for the connectome of each subject for the most optimal
partitions with 2, 3, 4 and 5 clusters, and for preset hemispheric division in the cases when not all of the 100
realizations of bicluster partitions correspond to the hemispheric division.

Similar results were observed for the modularity of weak, strong, short and long tracts, Fig. S2.

As expected strong links are mostly influencing the modularity, so the results for the clustering of
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strong links are very similar to the clustering of the full connectome. Short links-only networks yield

optimal hemispheric division for each of the subjects, whilst weak links give optimal modularity

with 2 clusters for every subject, with hemispheric division being the most optimal for 45 of them.

Long links on the other hand do not exclusively produce significantly smaller modularity for larger

partitions, as it would have been expected from the distribution of the track lengths, Fig. S1 and

also (Petkoski et al., 2016, 2018), which show that most of the interhemispheric tracts are long,

compared to the median. However, due to the missrepresentation of the interhemispheric tracts

with DTI (Finger et al., 2016; Jones et al., 2013; Reveley et al., 2015; Zalesky et al., 2016), the

intrahemispheric long links are still of a similar size as the interhemispheric links, thus still resulting

in high intrahemispheric connectivity, and hence high modularity for hemispheric division.

Taken together with the other results in this Section this suggests that the spatio-temporal

structural architecture can be indeed divided into two modules corresponding to the hemispheres.

Correspondingly, most of the network dynamics measures are expected to distinguish between

within- and between-hemispheres large-scale dynamics.

2.2. Functional reorganization

First we analyzed static FC, Fig. 5 (A), for the internal and external links of each of the lobes

(frontal, temporal, parietal, occipital, and cingulate). They all decrease with age, but none of the

changes is statistically significant (see Tab. S4 top). Similarly, FC decreases for the internal and the

external links of each of the resting state networks (Default Mode Network, Visual, Sensory Motor,

Frontal Parietal, Executive Control and Auditory), but none of this yields statistical significance

(see Tab. S4 bottom).

To go beyond the static data features, we analyzed the alterations with age in the dynamics of

the FC, as captured by dFC and MC, (Arbabyazd et al., 2020), Fig. 5 (B). We focused on the dFC

walk paradigm, as introduced by Battaglia et al. (2020). In short, relatively small variations of FC

from one observation time to the next result in shorter flight lengths and more extensive network

reconfigurations than in larger flight lengths. We characterize this temporal evolution of the FC

by the mean of the dFC. Smaller mean of dFC corresponds to more fluid brain dynamics, which

quicker reconfigures its dynamics.

For the spatial aspects of the dFC, we analyzed Metaconnectivity (MC) (Lombardo et al.,

2020). It captures correlations between the links, Fig. 5 (C), which we grouped in different

modules depending on whether they are inter- or intrahemispheric, where the latter are further

divided by the hemispheres. Thus, we analyzed dynamics associated with five spatially separate

modules: left-left to left-left, left-left to right-right, right-right to right-right, left-right to left-right,

and intrahemispheric (left-left and right-right) to interhemispheric (left-right), Fig. 5 (D).

Fluidity of the dFC showed a significant decrease with ageing as captured by the increase of the

mean non-overlapping off-diagonal dFC (further simply referred as mean dFC), and hence decrease

of the mean dFC velocity, as already reported (Battaglia et al., 2020). Interestingly, the relationship

is increasing and becoming more significant for decreasing length of the sliding window, Fig. 6.
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Figure 5: From static to dynamic Functional Connectivity. (A) Traditionally, correlations between neural activity
time-series of N different brain region nodes are averaged over long times and compiled into the entries FCij of
a static NxN FC matrix (right). (B) Sliding windows of a shorter temporal duration, it is possible to estimate a
stream of time-resolved FC(t) networks, so-called dFC stream. The degree of similarity (inter-matrix correlation)
between FC(t) networks observed at different times is then represented into a dFC matrix. (C) Alternatively, one can
consider each individual FC link as a dynamic variable FCij attached to the graph edge between two regions i and
j. Generalizing the construction of the FC matrix in panel (A), we can thus extract a N(N − 1)xN(N − 1) matrix of
covariance between the time-courses of different FCij links, giving rise to the MC matrix. (see Arbabyazd et al. (2020)
for more details). (D) Example of empirical FC, FCD and MC for the first subjects, with the latter 2 calculated for
window sizes of 60 and 10 seconds, and overlap of 58 and 8 respectively. Links in the MC matrix rows and columns
are ordered starting from internal left hemispheric, internal right hemispheric and external (inter-hemispheric).

Similar trends are also observed for the median and the mode of the dFC, and only for the short

sliding windows these are accompanied by increase of the variance and kurtosis od dFC, Fig. S3.

Even more significant changes were observed for the higher order interactions of dFC, as cap-

tured by the MC, Fig. 7. These show very significant increase of the range and standard deviation

of the values, which point to increased variations of spatial covariations. The effects were also

systematically more pronounced for smaller windows. Here we were able to analyze the spatial

component of the dynamical connectivity, revealing that the trends are generally preserved among

all pairs of links. Nevertheless, interactions involving interhemispheric links, are slightly stronger

affected, followed by the MC between the intrahemispheric links, and between the inter and intra-

hemispheric links.
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Figure 6: Scatter plots and the correlation of the mean dFC as a metric of dynamical reconfigurations, against the
age of the subjects for different sizes of the sliding window.

The very strong increase of variance and magnitude of MC is followed by more modest, but still

generally significant decrease in its kurtosis and mean values Fig. S4. Same as before, covariations

between interhemispheric and between inter- and intra-hemispheric links are the strongest affected.

2.3. Brain Network Model for causal impact of SC over dFC

We constructed a brain network model to mechanistically analyze the effects of the ageing-

related SC reorganization, to the neuronal activity. Even though the latter operates at EEG

frequency bands, we also simulated the impact to the BOLD time-series using Balloon-Windkessel

model (Friston et al., 2003) of TVB (Sanz-Leon et al., 2015), in order to be able to apply the

same analysis as for the empirical measurements. We built the BNM using Kuramoto oscilla-

tors(Kuramoto, 1984) with explicit heterogeneous time-delays (Petkoski et al., 2018). Beside its

simplicity and representing highly idealized system, the model can nonetheless exhibit rather non-

trivial collective dynamics that could map different states of the brain (Breakspear et al., 2010;

Cabral et al., 2011; Petkoski et al., 2018). In its current implementation, its simplicity allows it to

only account for the impact of the spatio-temporal structure of the brain to the emergent dynamics.

Having fixed noise and natural frequencies, and personalized space-time structure, we performed

parametric exploration of the global coupling and conduction velocity, as the only free parameters

of the model. This allowed us to test several hypothesis. For the global coupling, we explored two

strategies: (i) constant scaling for each subject, which implies a very strong impact of the connec-

tivity loss to the dynamics, and (ii) subject-specific scaling proportional to the mean strength of

the weights, which implies compensatory mechanisms for each subject. The first strategy propor-

tionally accounts for the connectivity loss and it leads to very different dynamics between subjects,

because the mean values of the weights, which mainly constrain the network dynamics (Arenas

et al., 2008; Rodrigues et al., 2016) differ between subjects by almost 50% (the highest was 38.7

and lowest 22.2, with correlation with ageing of -0.2559 and p=0.0729).

The second approach decreases the influence of the SC, and practically compensate its loss by

bringing the dynamical working point across subjects in the same range. However, this might be

advantageous as well, since all the subjects are supposed to be healthy and in a same state. Thus it
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Figure 7: Correlation with age of magnitude (left) and standard deviation (right) of different spatial components of
the empirical MC for different sizes of the sliding window.

is not expected large-scale dynamical properties between them to deviate too strong, as also visible

in the empirical data. Moreover, the effect of subject-specific spatio-temporal structure is still fully

shaping the observed dynamics.

For the conduction velocity, we also adopted two strategies: (i) fixed velocity for each subject

that does not explicitly takes into account the effects of demyelination with ageing, which are not

captured by the connectome (although they are still implicitly assumed by the changes that they

cause in the SC), and (ii) decreasing velocity with age, which assumes that not all of the aspects of

the demyelination are fully captured by the SC through changes in the fractional anisothropy and

henceforth weights, but increased propagation time at the existing links should be explicitly taken

into account. In the case of age-dependent conduction velocity, it is calculated as

vsubj = v −
agesubj −min(agesubj)

max(age)−min(age)
∆v.

The last hypothesis that we checked with the BNM, was whether the decomposition of the time-

delays into the hemispheric modes (Petkoski et al., 2016, 2018) is sufficient to capture the main

data features of the dynamics at time-scales of BOLD.

Simulations for dFC reveal that there is a relatively wide parameter range for the global coupling
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scaled individually, and for conduction velocities linearly decreasing with age, where the average

statistics of dFC is in agreement with the empirical results, Fig. 8. Significant increase for the

means of dFC occurs for all 4 window lengths, for both models, with the full and with reduced

delay matrices. More importantly, it is not just the same trend with age that appears statistically

significant, but that is also the case for the subject specific metrics. Assuming global instead of

individualized scaling for the global coupling, generally reverses the trends in the statistics of dFC,

and the same is the case for constant conduction velocity.
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Figure 8: Correlation between simulated dynamical reconfigurations measures (mean of the off-diagonal FCD) with
age and with the empirical results of each subject, for the full and the reduced model. The results are shown for
different levels of global coupling G, scaling for the cohort (identical scaling for each subject indicated with scall all
and subject specific scaling dependent on their mean connectivity indicated with scall subj ), age dependent linear
decrease of the conduction velocity ∆v, and window size (60s, 30s, 20s and 10s). Statistically significant correlations
are indicated with green squares. Parameters: conduction velocity v = 3.3m/s, natural frequency f = 10Hz, noise
intensity D = 1.

Same parameter sweep for the global coupling was also ran for propagation velocities of 2m/s

and 5m/s, which showed qualitatively similar patterns as for 3.3m/s, see Fig. S3, even though

less pronounced agreement with the empirical results. For the case with no delays, the results do

not show any significant trends with age, nor significant correlation with empirical subject specific

results.

Spatial aspect of dFC is captured by the statistics of the MC that is shown in Fig. 9. The

strongest spatial patterns with age of the range and the STD of MC are well captured by both

models around the same working points as for FCD. Significant correlations again appear also

for the individualized dynamics, in addition to the general age-related trends. Unlike the results

for FCD, here significant correlations with the ageing trends also can occur for the case of age

independent propagation velocity, or global scaling, though for much fewer parameters, and never
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for the same working point consistently across the metrics.
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Figure 9: Correlation between simulated metaconnectivity measures (range in the upper plots and STD in the
lower plots) with age and with the empirical results for each subject. Results are shown for different levels of global
coupling G, scaling for the cohort (identical scaling for each subject indicated with scall all and subject specific scaling
dependent on their mean connectivity indicated with scall subj ), age dependent linear decrease of the conduction
velocity ∆v, and window size (60s, 30s, 20s and 10s). The full and the reduced models are analyzed for the MC
between the interhemispheric links (upper plots) and for the links in the left and in the right hemisphere (lower plots).
Statistically significant correlations are indicated with green squares. Parameters: v = 3300mm/s, D = 1.

We performed additional exploration to characterize the dynamical working point with respect
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to the activity at time-scales observed in dFC. In Fig. 10 we show STD and the range of FCD values

for individualized scaling of the couplings and drift of the propagation velocities, which showed the

best match with the data, Fig. 8 - 9. Different window sizes show slightly different profiles for

these two metrics, but interestingly, the highest predictive value of the models is observed around

the values of global couplings which maximize the richness of the dFC. This becomes more obvious

if the values are averaged over different window sizes (thicker red and blue lines).
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Figure 10: (top) STD and (middle) range of FCD of the full and reduced model for v = 3.3m/s (shades of red) and
v = 5m/s (shades of blue) and for 4 different sliding windows (60s, 30s, 20s and 10s). The mean over the different
sizes of the windows is also shown (thicker red and blue lines), (bottom) Mean correlation over the cohort of the
individualized simulated and empirical FC. The global coupling is scaled with the mean weights for each subject,
∆v = 0.3, and D = 1.

In the same figure, we also show that these optimal dynamical range overlaps with the working

point where the model reaches highest predictive value for the static FC. It is worth noting that

for the fast dynamical activity, the same model has richest dynamical repertoire as captured by the

variability of the Kuramoto order parameter at smaller global couplings (see Fig. S4).

3. Methods

3.1. Data acquisition

In this study we analyze anatomical and diffusion weighted images of 50 subjects acquired at

Berlin Center for Advanced Imaging, Charité University Medicine, Berlin, Germany (age ranged

from 18 to 80 years, mean 41.26 ± 18.36; 30 females and 20 males). 49 of these subjects were

used in the study for describing the automated pipeline for constructing personalized virtual brains

from multimodal neuroimaging data (Schirner et al., 2015) and their dFC were also analyzed as
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part of a larger cohort (Battaglia et al., 2020). The pipeline combines several state-of-the-art

neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-

tessellations, structural and functional connectomes, lead field matrices, electrical source activity

estimates and region-wise aggregated BOLD fMRI time-series (Schirner et al., 2015).

3.2. Construction of SC networks

Desikan-Killiany atlas (Desikan et al., 2006) is used as implemented in FREESURFER (exclud-

ing the corpus callosum, but including the insular cortices of both hemispheres) leading to 68 cortical

regions of interest (ROI). Since tracks are two-dimensional line objects there is no straightforward

way to compute the surface area of a track-terminal. Therefore, (Schirner et al., 2015) devised

a new bundling scheme in order to group tracks into distinct connections. A distinct connection

is defined as a pair of grey-white matter interface (GWI) voxels for which at least one track was

generated, regardless of the number of tracks found or the concrete pathway. This metric is further

expanded to a second metric by another assumption that states that all distinct connections that

share a common terminal voxel must also be bounded by the same bottleneck, and consequently

the maximum bandwidth of that voxel must be split up among all distinct connections. Therefore,

upon determining all distinct connections for a voxel, the total coupling strength of this voxel is

split up over all its distinct connections in equal parts resulting in weighted distinct connections.

It follows that in this approach the maximal total coupling strength of a region is given by

the area of its GWI and not by the amount of tracks that emanate from it, since this number is

highly dependent on local anatomy and the characteristics of the diffusion profile. This approach

is justified by the assumption that the coupling strength of a region is proportional to the size of

the GWI of that region, assuming a fixed ratio of long-range connections per microcircuit volume.

Upon tractography the pipeline (Schirner et al., 2015) computes distinct connections and ag-

gregates them for each region to generate three types of SC matrices:

- raw counts, contain track counts of all tracks that were found between each pair of regions (sym-

metric),

- distinct connection counts, contain only distinct connections between each pair of regions (sym-

metric),

- weighted distinct connection counts, in which the strength of each distinct connection is divided

by the number of all distinct connections leaving the voxel (yielding asymmetric strength matrices).

For the last case, symmetric SC matrix was constructed by taking the mean of the weights per each

direction of the links.

Along with strengths, the pipeline outputs three different SC distances matrices that contain

the mean, mode and median lengths of all tracks that were found between each pair of regions.

3.3. MRI acquisition

Magnetic resonance imaging (MRI) acquisition was performed on a 3T Siemens Tim Trio scan-

ner. Every subject was scanned in a session that included a localizer sequence (3, 8 mm slices,

repetition time [TR] = 20 ms, echo time [TE] = 5 ms, voxel size = 1.9 × 1.5 × 8.0mm, flip angle
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[FA] = 40◦, field of view [FoV] = 280 mm, 192 mm matrix), a T1- weighted high-resolution image

(MPRAGE sequence, 192, 1 mm sagittal slices, voxel size 1× 1× 1mm, TR=1940 ms, TE=2.52ms,

FA = 9◦, FoV = 256 mm, 256 mm matrix), a T2 weighted image (2:16 min, 48,3mm slices, voxel

size 0.9 × 0.9 × 3mm, TR=2640ms, TE1=11 ms, TE2=89 ms, FoV=220 mm, 256 mm matrix),

followed by diffusion weighted imaging (61, 2 mm transversal slices, voxel size = 2.3 × 2.3 × 2.3

mm, TR = 7500, TE = 86 ms, FoV = 220 mm, 96 mm matrix). Subjects were then removed

from the scanner to have their EEG cap put on, and then simultaneous fMRI-EEG images were

acquired in a single run (BOLD T2∗weighted, 32, 3 mm transversal slices, voxel size = 3 × 3 ×
3 mm, TR=1940 ms, TE=30 ms, FA= 78 ◦, FoV = 192 mm, 64 mm matrix). Five dummy scans

were automatically discarded by the Siemens scanner.

During the scans, subjects were to remain awake and reduce head movement. Head cushions

served to minimize head movement, and earplugs were provided, during the 20 min of uninterrupted

scan.

3.4. fMRI processing

fMRI data were pre-processed following Schirner et al. (2015) and in a same manner as in

Battaglia et al. (2020), using the software FEAT (fMRI Expert Analysis Tool) first-level analy-

sis from the FMRIB (Functional MRI of the brain). Motion correction was performed using EPI

field-map distortion correction, BET brain extraction, and high-pass filtering (100s) to correct for

baseline signal drift, MCFLIRT to correct for head movement across the trial. As an additional

correction measure, we further regressed out six FSL head motion parameters from the measured

BOLD time-series. Functional data was registered to individual high-resolution T1-weighted im-

ages using linear FLIRT, followed by nonlinear FNIRT registration to Montreal Neurological In-

stitute MNI152 standard space. Voxel-level BOLD time series were reduced to 68 different brain

region-averaged time series, according to a Desikan parcellation (Desikan et al., 2006). We neither

performed a slice-timing correction, smoothing, normalization of BOLD intensities to a mean, nor

global regression.

3.5. Modularity

The optimal community structure of the connectomes was calculated using the Louvain function

(Blondel et al., 2008) from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) for the

weighted undirected links. For each subject the algorithm was ran starting from a value of the

resolution parameter which gives twice the number of the required partitions. Then the resolution

parameter was decreased by 1% at each consecutive step until a partition consisting of predefined

number of communities was achieved. The procedure was repeated 100 times each, for partitions of

2, 3, 4 and 5 communities. For each of these partitions the modularity coefficient Q was calculated.

It is a scalar value between -1 and 1 that measures the density of links inside communities as

compared to links between communities (Newman and Girvan, 2004). In addition we calculated

the modularity coefficient for the case when the initial community affiliation vector was set to

correspond exactly to the left and right hemispheres. Here again an algorithm was ran for the
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same 100 resolution parameters that earlier achieved optimal bi-community structure, until it was

assured that the division in 2 communities corresponds to the hemispheric division.

3.6. dFC metrics

Static (time-averaged) functional connectivity is calculated as Pearson correlation of the BOLD

time-series, empirical or simulated, in a given time window. Evolution of FC over time is captured

by dFC that here is defined the same as Functional Connectivity Dynamics (FCD) in Hansen

et al. (2015). It describes the similarity between FC(t) matrices at different time windows tk,

where k = 1 . . .M . The (tk, tl) entry of the M × M FCD matrix is provided by the Pearson

correlation between the upper triangular parts of the two matrices FC(tk) and FC(tl) (Arbabyazd

et al., 2020). We calculated FCD for 4 different window sizes (30, 15, 10 and 5 time points), which

always move by one time point. In all the cases, by keeping the interval between two consecutive FC

network time-resolved estimations constant, higher and lower correlations of the FCD can naturally

be interpreted as associated to a slower or faster speed of dFC reconfiguration (Battaglia et al.,

2020). Hence, a first aim to describe dFC consists of a suitable quantification and description of

the distributions of FCD entries, notably, their mean, median or mode, giving a typical dFC speed,

and their spread as given by their second and higher momenta, i.e. STD and kurtosis.

In addition we calculated higher order interactions between brain regions using metaconnectivity

(MC) (Arbabyazd et al., 2020). Exactly as typical static FC analysis ignore time, the previously

mentioned FCD analyses ignore space. However, FC reconfiguration may occur at different speeds

for different sets of links (Lombardo et al., 2020). Furthermore, the fluctuations of certain FC links

may covary with the fluctuation of other FC links, but in the same time be relatively independent

from the fluctuation of other sets of links. Therefore, we compute a different dFC speed distribution

for different sets of links, wgich constitute spatial dFC modules. MC is defined as correlation

between link-wise time-series consisting of the pair-wise correlations between the given nodes at

each window. Hence it represents a fourth order statistics between node’s dynamics. We have

ordered the links in the MC matrices in a such a way that besides the statistics of the overall MC,

we also calculate the statistics of the links within the left and within the right hemispheres, between

the hemispheres, between the internal left versus right hemispheric links, and left and right versus

interhemispheric each. These are all illustrated in Fig. 5, where the metaconnectivity within the 7

clusters is expected to be distinctive, as a consequence of the high hemisphiric bimodularity of the

SC discussed in Section 3.5.

4. Model

4.1. Brain Network Model with Kuramoto oscillators

We build the personalized BNM comprising of 68 delay-coupled cortical brain regions, each

having a dynamics captured by Kuramoto oscillators (Cabral et al., 2011; Petkoski et al., 2018;

Pope et al., 2021). For the metrics of connection strengths we have chosen the weighted distinct

connection counts, because they take most physiological features into account (Schirner et al.,
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2015). The time delays corresponding to the links are defined from the personalized lengths by

setting the propagation velocity from within the physiological range for brain signals (Nunez and

Srinivasan, 2006; Trebaul et al., 2018), which is usually between 1 − 10m/s. In particular we

use 3.3m/s, which was shown to have a highest predictive value for supporting realistic spectral

activation patterns (Petkoski and Jirsa, 2020). To confirm the generality of the results, we also

use propagation velocities of 2m/s and 5m/s. For the lengths of the tracks, we use mean values,

instead of median or the mode, because some links having small number of tracts so the mode

cannot be reliably defined and detected, whilst the median and mean have similar values, as shown

in Fig. S1.

We consider the Kuramoto model (KM) (Kuramoto, 1984) with explicit heterogeneous time-

delays τij and coupling strengths Kij , rewritten as

Kij = Gwij ,

where G is a global coupling parameter and wij are the normalized weights from the connectome.

The model represents as a canonical model for weakly delay-coupled oscillators with long delays in

comparison to the coupling strengths or natural frequencies ωi (Izhikevich, 1998; Ermentrout and

Wechselberger, 2009). For symmetric, link-dependent delays, τij = τj,i, phases θi of each oscillator

evolve as

θ̇i = ω +
G

N

N∑
j=1

wij sin[θj(t− τij)− θi] + ξi(t), i = 1 . . . N, (1)

where ω is natural frequency of oscillators and ξi(t) takes into account the contribution of differ-

ent stochastic forces and are assumed to be sources of Gaussian white noise satisfying 〈ξi(t)〉 =

0, 〈ξi(t)ξj(t)〉 = 2Dδijδ(t− t′)
The heterogeneity in phase models can stem from natural frequencies and/or from additive

noise term, but both sources have similar influence to the observed global dynamics (Acebrón et al.,

2005). The size of the connectome-derived networks is quite small, N = 68 cortical regions, and

the connection strengths span almost across 5 orders of magnitude, hence if the natural frequencies

are heterogeneous the global dynamics would be highly influenced by the particular realization of

the probability density function of the natural frequencies (Petkoski et al., 2018). To avoid this we

have decided to fix the natural frequencies of each node, while still introducing heterogeneity to

each oscillator in a form of a independent white noises with same intensity.

For the parameters space, we explore only the global coupling G and the propagation velocity v,

while keeping fixed the level of the noise D and the natural frequencies f . This is justified because

the dynamics for the KM in general depends on the ratio G/D (Acebrón et al., 2005). Similarly

the impact of the time-delays depend on their relative size compared to the natural frequencies

(Petkoski et al., 2016).
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4.2. BNM with reduced distribution of delays

The reduced model is derived from the decomposition of the space-time structure of the con-

nectome (Petkoski et al., 2016, 2018). It assumes bimodal δ-distributed time-delays, with values

corresponding to the mean delays of the internal and external links for each subject. The model

hence read

θ̇i = ω +
G

N

N/2∑
j=1

 wij sin[θj(t− τint)− θi] + wi,j+N/2 sin[θj+N/2(t− τext)− θi] + ξi(t), i = 1 . . . N2

wi,j+N/2 sin[θj+N/2(t− τint)− θi] + wij sin[θj(t− τext)− θi] + ξi(t), i = 1 + N
2 . . . N.

(2)

4.3. Simulated BOLD

Simulated neural activity was converted into simulated BOLD signals using a Balloon-Windkessel

model (Friston et al., 2003) and the resulting time-series were then downsampled at 2s, to corre-

spond to the empirical BOLD signals. Because of the simplicity of the model, the physical quantity

whose variations underlie BOLD signal was chosen as bi = sin θi, as it has been the case in other

studies of the neuronal activity using Kuramoto oscillators (Cabral et al., 2011; Ponce-Alvarez

et al., 2015; Petkoski et al., 2018; Pope et al., 2021).

5. Discussion

In this work we identify the significant changes in the dynamics of brain FC, as reflected in

dFC and MC metrics for the dynamical reconfigurations, and we apply a BNM to causally test

which aspects of the spatiotemporal reorganization of the brain structure with the ageing, could

be responsible for the former dynamical alterations.

5.1. SC alterations with age

Age-related changes of the total number and the weights of tracts have been of interest of many

studies (Perry et al., 2015; Betzel et al., 2014; Lim et al., 2015) that, nevertheless, overlooked the

spatial distribution of tract lengths on which we also focus here. The most commonly observed

feature of the topological organization of the white matter connectivity across the human lifespan

is an inverted U shape (Zhao et al., 2015; Coupé et al., 2017), with a decrease in the global network

properties, such as the network strength, starting from the third decade, as confirmed with our

results for the decrease in SC. This loss of white matter connectivity is especially pronounced for

the inter-hemispheric links, which is also in line with the literature (Puxeddu et al., 2020). This on

the other hand also causes the average length of the remaining tracts do decrease with age, since

the interhemispheric links are on average longer.

The mostly affected area by the decrease of the fibre counts was frontal lobe, Tab. 1, which was

in agreement with the similar studies (Gunning-Dixon et al., 2009; Peters, 2006). Similarly strong

loss is observed in the occipital lobe, but this is more equally affecting intra- and inter-hemispheric

links, hence having much smaller impact on the tract lengths. It is interesting to be noted that
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even though we found within-lobe fibers to be more affected than those between lobes, Tab. 1, the

modularity is still generally stable, which is in line with the literature (Lim et al., 2015).

In addition, many studies indirectly point to the decrease of white matter fibers in the frontal

regions by showing strong negative relationship with functional anisotropy (FA) and age, that is

especially prominent in the frontal lobe (Grieve et al., 2007; Bennett et al., 2010; Billiet et al., 2015;

Inano et al., 2011), whereas (Sexton et al., 2014) reported a general accelerated decline in anisotropy

during senescence. Most of the these works (Grieve et al., 2007; Mädler et al., 2008; Inano et al.,

2011) also measured axonal and radial diffusion and related the trends in those measures to the

demyelination, as indicated by the measurements of myelin water fraction. However, there are

also some contradicting studies (Billiet et al., 2015), which although observed the decrease of the

FA with ageing, did not find significant difference in myelin water fraction. We did not recover

myelination or other related metric in this study, but instead using the BNM we found that model’s

predictability is increased if a reduction of conduction velocity due to hypothesized demyelination

is assumed to occur linearly with age.

5.2. dFC alterations with age

It is now a widely recognized concept in the study of the dynamics of the human brain network,

that functional connectivity is not static, but changes its pattern over time, even during rest. The

possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed

substantial interest in methods that estimate time-resolved fluctuations in functional connectivity

(Lurie et al., 2020). In the context of ageing, analysis of the temporal variations of the resting-

state showed differences in the modularity (Viviano et al., 2017), and decrease of FC variation for

the inter-network connections (Chen et al., 2017). Dynamic FC tends to slow down and becomes

less complex as well as more random with increasing age (Battaglia et al., 2020), and similarly,

modular slowing of dFC was associated with cognitive dysfunction induced by sleep deprivation

(Lombardo et al., 2020). Cognitive performance in healthy older adults relates to spontaneous

switching between states of functional connectivity during rest, as captured by FCD (Cabral et al.,

2017). Also, lower metastability at slow time-scales of BOLD activity is associated with higerh age

(Escrichs et al., 2020), which is in agreement with the functional benefits of greater variability in

neural systems, including flexibility/adaptability, heightened dynamic range, Bayesian optimality,

and multi-stability (Sleimen-Malkoun et al., 2014; Garrett et al., 2011).

Here, first we showed that several metrics derived on static FC do not any predictive value for

the ageing, which is not surprising knowing that simulated FC that fits best to the same subjects

empirical FC may not necessarily be the same simulated FC (Triebkorn et al., 2020). Next, we

focused our analysis on the temporal aspects of the dynamics of FC and the spatial aspects of the

covariations between the FC links. The former generally confirmed the findings from (Battaglia

et al., 2020) about slowing down of dFC, as reflected by it’s average values. This decrease of

average dFC (Rabuffo et al., 2021) seems to accelerate at shorter time-scales, as observed from

dFC calculated at sliding windows of 10s. Interestingly, the variance of dFC seems less affected,

and only starts to significantly increase at faster time-scales.
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Age related changes are even stronger for the covariations between the FC links, as captured

by different spatial components of MC. Here it is not the mean values that are mostly affected, but

the variance and the range of the MC values, which increase very significantly with age. Larger

trends for shorted time-scales are also visible here, though to much smaller extent. Spatially

speaking, the trends are strongest for the covariations of inter-hemispheric links (even though the

interhemispheric static FC is unaffected) between themselves, and with the intra-hemispheric ones.

These results point for first time that taking into account the spatial aspects of the dFC or higher

order interactions, could serve as a better and more robust biomarker for ageing. This is to be

expected also due to the large spatial heterogeneity of the white-matter loss, which nevertheless

does not result in observable changes in the respective static FC metrics. A possible reason for this

is the fact that FC by definition averages out all the nonlinearities in the dynamics (Hansen et al.,

2015), which is highly non-stationary (Heitmann and Breakspear, 2017; McIntosh and Jirsa, 2019).

5.3. Linking the structure and the function

Age-related alterations in brain structure and function have been linked to the age-related cog-

nitive decline, though challenges still remain (Hedden et al., 2016). Sources of heterogeneity are

not fully understood, but seem to be associated with different neurobiological substrates (loss of

white matter tracts and demyelination), and single-cohort designs might be optimal in reducing the

sources of interindividual variation that may be unrelated to age (Zuo et al., 2016). Current mod-

els indicate that structure and function are significantly correlated, but the correspondence is not

perfect because function reflects complex multisynaptic interactions in structural networks (Suárez

et al., 2020). This has been demonstrated also in the respect with ageing (Zimmermann et al.,

2018), where SC and FC each show unique and distinct patterns of variance across subjects, and

variability of alterations of functional connectivity is especially high across older adults (Stumme

et al., 2020). Therefore, function cannot be directly estimated from structure, but must be inferred

by mechanistic models, which can causally test the higher-order interactions (Schirner et al., 2018;

Courtiol et al., 2020), and hence offer higher explanatory value compared with the data-driven

methods (Jockwitz et al., 2017). It was already shown that a specific pattern of SC/FC coupling

predicts age more reliably than does region wise SC, or FC decrease alone (Zimmermann et al.,

2016), but causal link between the SC age-related changes and the FC reorganizations are still am-

biguous. This indicates that the impact that SC has on the brain dynamics need to be investigated

beyond the FC (Triebkorn et al., 2020).

Compensation (Lövdén et al., 2010) and dedifferentiation (Baltes and Lindenberger, 1997) of

brain are probably among the major causes that make establishing the SC/FC link with ageing

on individualized level even more difficult. Compensatory mechanisms of the global coupling in

shifting the dynamical working point were already demonstrated in the case of the resting-state of

epilepsy (Courtiol et al., 2020). This homeostatic compensation is one of the main theories for the

ageing (Park and Reuter-Lorenz, 2009; Sleimen-Malkoun et al., 2014). Another reason could be

that time-delays are often ignored, and they still cannot be retrieved on individual level, but tract

lengths are used as a proxy (Sanz-Leon et al., 2015). This however cannot capture the important
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effects that demyelination might have on increasing the propagation delays (Sorrentino et al., 2021a)

With the model that we have constructed, we try to account for both, the impact of the age-related

compensation and demyelination, combined with the individualized spatio-temporal structure.

The model shows statistically significant individualized predictive value for the most significant

dFC and MC data features. This is observed only if (i) dynamical compensation is assumed through

the global effective coupling that is identical across subjects, by normalizing each connectome

with the individualized mean connectivity, and (ii) conduction velocity is linearly decreased with

ageing to account for the demyelination that is not accounted in the weights and lengths of the

individualized connectome. Moreover, the results hold even if space-time structure is spatially

decomposed (Petkoski et al., 2016, 2018; Petkoski and Jirsa, 2019), such that only lumped intra

and interhemispheric delays are taken into account. The latter is supported by the results for

the SC alterations, which indeed show that the strongest decrease with ageing is observed for

the interhemispheric tract lengths. It is also worth noting that the best fit for the mean of FCD

is obtained at the working point that maximizes the variability of dFC as observed through the

variance and the magnitude of the (Triebkorn et al., 2020). This holds for both the original and

the reduced model.

To summarize the main results from the model are quite robust and they indicate that:

1. Brain compensates for the loss of connectivity with the age by increasing the effective global

coupling. Common scaling that excludes compensation leads only to negative correlations

with the empirical data, regardless of the propagation velocity, or whether it is constant or

decreasing with age.

2. Using identical conduction velocity across age has very small predictive value. On contrary,

significantly better predictability is achieved if the propagation velocity is assumed to linearly

decrease with age due to demyelination. This is the only scenario that leads to significant

correlation of the simulated results not just with age, but also with the personalized FCD

and MC metrics, and it holds for different propagation velocities and strengths of decrease.

3. Spatio-temporal decomposition along its hemispheric modes, has similar predictive value as

the full model, meaning that inter-hemispheric SC alterations during ageing are of the crucial

importance for the dynamical alterations.

4. The working point with the best correlation is at the parameters space with highest variability

at slow time-scales, and the same working point also gives a reasonable agreement with the

static FC.

5.4. Limitations of the study

The reliability of the obtained results for the impact of the structure on the emergent function

during ageing could be improved by using larger cohorts, which become more available, such as

1000Brains (Caspers et al., 2014) or the Human Connectome Project Van Essen et al. (2013). For

this, it would be necessary to use digital research platforms for brain science such as EBRAINS

that allows integration and accessibility of those datasets together with simulation engines (Schirner
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et al., 2021). Similarly, parcellation-induced variation of empirical and simulated brain connectomes

at group and subject levels is another issue that needs to be considered Domhof et al. (2021).

Nevertheless, most of our finding, independently for the structure and function, and for their link

with the brain network model, show quite significant trends from statistical viewpoint, giving

us confidence in the reported statistical changes and in the mechanisms linking them, which are

recovered on individualized level for a first time.

Decomposition of time-delays in the reduced model probably works because using homogeneous

velocities is already introducing lots of bias for the delays. As a such, the main modes of the delays

seem to contain sufficient predictive value, as demonstrated in-silico (Petkoski et al., 2018; Petkoski

and Jirsa, 2019). It should be noted that obtaining individualized conduction velocity for large

scale brain models is a complex issue. One could argue that taking a single value is far from reality,

since the delays are known to differ by several orders of magnitude and to be directly dependent of

the diameter of the axon and the presence of a myelin sheath. Thus, action potential velocity can be

generally between 0.1 m/s in unmyelinated axons and 100 m/s in large myelinated axons, and it is

a direct function of the diameter of the axon and the presence of a myelin sheath (Waxman, 1980).

Besides, the presence of axonal irregularities and repetitive stimulation or activation of specific

ion channels also reduce the conduction velocity (Debanne, 2004). In that sense, (Caminiti et al.,

2013) found that the spectrum of tract lengths obtained with MRI closely matches that estimated

from histological reconstruction of axons labeled with an anterogradely transported tracer. They

also measured conduction velocity of myelinated axons in human brain were between 6-10 m/s.

However, it has also been reported that similar overall population of myelinated to non-myelinated

axons can be found in corpus callosum of different species (Olivares et al., 2001), with the latter

having generally velocity <1m/s. All these indicates that better estimates of the time-delays

(Trebaul et al., 2018), especially if they are personalized (Sorrentino et al., 2021b) are expected to

improve the results of any large-scale BNM.
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Finger, H., Bönstrup, M., Cheng, B., Messé, A., Hilgetag, C., Thomalla, G., Gerloff, C., König, P.,

2016. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from

DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative

Methods along the Modeling Path. PLoS Computational Biology 12, e1005025.

Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connectivity 1, 13–36.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19, 1273–

1302.

Garrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2011. The Importance of Being Vari-

able. Journal of Neuroscience 31, 4496–4503.

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 1, 2022. ; https://doi.org/10.1101/2021.12.30.474565doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ghosh, A., Rho, Y., McIntosh, A.R., Kötter, R., Jirsa, V.K., 2008. Noise during rest enables the

exploration of the brain’s dynamic repertoire. PLoS Computational Biology 4, e1000196.

Grieve, S.M., Williams, L.M., Paul, R.H., Clark, C.R., Gordon, E., 2007. Cognitive aging, exec-

utive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J

Neuroradiol 28, 226–235.

Gunning-Dixon, F.M., Brickman, A.M., Cheng, J.C., Alexopoulos, G.S., 2009. Aging of cerebral

white matter: a review of mri findings. International Journal of Geriatric Psychiatry: A journal

of the psychiatry of late life and allied sciences 24, 109–117.

de Haan, W., Mott, K., van Straaten, E.C.W., Scheltens, P., Stam, C.J., 2012. Activity Dependent

Degeneration Explains Hub Vulnerability in Alzheimer’s Disease. PLoS Computational Biology

8. journal.pcbi.1002582.

Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., Meuli, R.,

Thiran, J.P., Honey, C.J., Sporns, O., 2010. MR connectomics: Principles and challenges. J.

Neurosci. Methods 194, 34–45.

Hansen, E.C.A., Battaglia, D., Spiegler, A., Deco, G., Jirsa, V.K., 2015. Functional connectivity

dynamics: Modeling the switching behavior of the resting state. NeuroImage 105, 525–535.

Hedden, T., Schultz, A.P., Rieckmann, A., Mormino, E.C., Johnson, K.A., Sperling, R.A., Buckner,

R.L., 2016. Multiple brain markers are linked to age-related variation in cognition. Cerebral

cortex 26, 1388–1400.

Heitmann, S., Breakspear, M., 2017. Putting the dynamic back into dynamic functional connec-

tivity , 1–37.

Inano, S., Takao, H., Hayashi, N., Abe, O., Ohtomo, K., 2011. Effects of Age and Gender on White

Matter Integrity. American Journal of Neuroradiology 32, 2103–2109.

Izhikevich, E., 1998. Phase models with explicit time delays. Physical Review E 58, 905–908.

Jirsa, V.K., Proix, T., Perdikis, D., Woodman, M.M., Wang, H., Bernard, C., Bénar, C., Chauvel,

P., Bartolomei, F., Bartolomei, F., Guye, M., Gonzalez-Martinez, J., Chauvel, P., 2017. The

Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. NeuroImage

145, 377–388.

Jockwitz, C., Caspers, S., Lux, S., Eickhoff, S.B., Jütten, K., Lenzen, S., Moebus, S., Pundt, N.,
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7. Suplementary Material
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Figure S1: Probability Density Function (PDF) of global (left column), internal (middle column) and external (right
column) weighted lengths of the links, for distinct connection counts (black), weighted distinct connection counts
(red) and raw counts (blue) of the tracks. For each link, the length is calculated as a mean (upper row) and median
(middle row) length of all the tracts in that link.
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Figure S2: Mean modularity coefficient and their errorbars for the connectome of each subject containing only
the long, short, strong or weak links. The most optimal partitions are analyzed for 2, 3, 4 and 5 clusters, and for
preset hemispheric division in the cases when not all of the 100 realizations of bicluster partitions correspond to the
hemispheric division.
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Figure S3: Scatter plots and the correlation of median, mode, variance, kurtosis, and range of dFC, against the age
of the subjects for different sizes of the sliding window.
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Figure S4: Correlation with age of kurtosis (left) and mean (right) of different spatial components of the empirical
MC for different sizes of the sliding window.

short (l < 70mm) long (l > 70mm)

Temporal Cingulate Frontal Occipital Parietal

Temporal
-0.24
(8.9e-2)

-0.28
(5.1e-2)

-0.09
(5.5e-1)

-0.29
(4.2e-2)

-0.49∗∗

(2.6e-4)

Cingulate
-0.28
(5.1e-2)

0.22
(1.2e-1)

-0.52∗∗

(1.0e-4)
-0.25
(8.5e-2)

-0.49∗∗

(3.4e-4)

Frontal
-0.09
(5.5e-1)

-0.52∗∗

(1.0e-4)
-0.22
(1.2e-1)

–
0.16
(2.7e-1)

Occipital
-0.29
(4.2e-2)

-0.25
(8.5e-2)

–
-0.50∗∗

(2.1e-4)
-0.16
(2.5e-1)

Parietal
-0.49∗∗

(2.6e-4)
-0.49∗∗

(3.4e-4)
0.16
(2.7e-1)

-0.16
(2.5e-1)

-0.10
(4.8e-1)

Temporal Cingulate Frontal Occipital Parietal

Temporal
-0.08
(5.8e-1)

0.29
(4.0e-2)

0.09
(5.2e-1)

-0.45∗

(1.0e-3)
-0.15
(3.0e-1)

Cingulate
0.29
(4.0e-2)

0.02
(8.9e-1)

-0.06
(6.8e-1)

-0.25
(7.8e-2)

-0.10
(5.1e-1)

Frontal
0.09
(5.2e-1)

-0.06
(6.8e-1)

-0.54∗∗∗

(4.3e-5)
0.03
(8.2e-1)

-0.12
(4.2e-1)

Occipital
-0.45∗

(1.0e-3)
-0.25
(7.8e-2)

0.03
(8.2e-1)

-0.42∗

(2.7e-3)
-0.46∗

(6.9e-4)

Parietal
-0.15
(3.0e-1)

-0.10
(5.1e-1)

-0.12
(4.2e-1)

-0.46∗

(6.9e-4)
-0.57∗∗∗

(1.9e-5)

Table S1: Correlation coefficients with age and their p-values (in brackets) for the number of short and long tracts
(shorter and longer than 70mm) in and between different lobes. Statistically significant values (p < 0.05) are bold,
values with p < 0.005, p < 0.0005 and p < 0.00005 are indicated with one, two and three asterisks respectively.
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short (l < 70mm) long (l > 70mm)

Temporal Cingulate Frontal Occipital Parietal

Temporal
-0.24
(9.4e-2)

0.27
(6.0e-2)

0.14
(3.4e-1)

-0.06
(6.9e-1)

-0.06
(6.6e-1)

Cingulate
0.27
(6.0e-2)

0.03
(8.2e-1)

-0.28
(4.7e-2)

-0.03
(8.3e-1)

-0.42∗

(2.6e-3)

Frontal
0.14
(3.4e-1)

-0.28
(4.7e-2)

-0.19
(1.9e-1)

–
-0.02
(8.9e-1)

Occipital
-0.06
(6.9e-1)

-0.03
(8.3e-1)

–
0.03
(8.5e-1)

0.03
(8.6e-1)

Parietal
-0.06
(6.6e-1)

-0.42∗

(2.6e-3)
-0.02
(8.9e-1)

0.03
(8.6e-1)

0.11
(4.3e-1)

Temporal Cingulate Frontal Occipital Parietal

Temporal
0.47∗

(6.1e-4)
0.16
(2.6e-1)

0.05
(7.2e-1)

-0.15
(3.0e-1)

-0.16
(2.6e-1)

Cingulate
0.16
(2.6e-1)

0.11
(4.4e-1)

0.08
(5.7e-1)

0.28
(4.7e-2)

-0.05
(7.4e-1)

Frontal
0.05
(7.2e-1)

0.08
(5.7e-1)

-0.28
(4.8e-2)

-0.01
(9.4e-1)

-0.46∗

(8.7e-4)

Occipital
-0.15
(3.0e-1)

0.28
(4.7e-2)

-0.01
(9.4e-1)

-0.18
(2.2e-1)

-0.35
(1.2e-2)

Parietal
-0.16
(2.6e-1)

-0.05
(7.4e-1)

-0.46∗

(8.7e-4)
-0.35
(1.2e-2)

-0.19
(1.8e-1)

Table S2: Correlation coefficients with age and their p-values (in brackets) for the mean length of short and long
tracts (shorter and longer than 70mm) in and between different lobes. Statistically significant values (p < 0.05) are
bold, values with p < 0.005, p < 0.0005 and p < 0.00005 are indicated with one, two and three asterisks respectively.

Lobes
Temporal Cingulate Frontal Occipital Parietal

left right left right left right left right left right

Temporal
left

-0.02
(8.9e-1)

0.17
(2.3e-1)

0.31
(3.1e-2)

0.13
(3.6e-1)

-0.06
(6.6e-1)

-0.11
(4.7e-1)

-0.18
(2.0e-1)

-0.02
(8.9e-1)

0.24
(9.8e-2)

0.03
(8.6e-1)

right
-0.41∗

(2.8e-3)
0.15
(2.9e-1)

0.14
(3.2e-1)

0.27
(6.2e-2)

-0.09
(5.3e-1)

0.01
(9.5e-1)

-0.02
(9.1e-1)

0.0 (9.8e-
1)

0.02
(9.1e-1)

Cingulate
left

0.09
(5.5e-1)

0.01
(9.5e-1)

0.04
(0.78)

-0.44∗

(1.4e-3)
-0.26
(7.3e-2)

0.01
(9.3e-1)

-0.38
(6.3e-3)

-0.24
(8.9e-2)

right
0.03
(8.3e-1)

-0.35
(1.3e-2)

-0.08
5.6e-1

0.08
(5.6e-1)

0.05
(7.4e-1)

-0.29
(4.1e-2)

-0.38
(6.8e-3)

Frontal
left

-0.20
(1.7e-1)

-0.36
(9.7e-3)

-0.26
(6.7e-2)

0.30
3.5e-2

-0.04
(7.8e-1)

0.01
(9.3e-1)

right
-0.14
(3.3e-1)

-0.07
(6.3e-5)

0.09
(5.4e-1)

-0.13
(3.7e-1)

0.10
(5.0e-1)

Occipital
left

-0.01
(9.5e-1)

-0.19
(1.8e-1)

0.13
(3.7e-1)

0.21
(1.5e-1)

right
0.07
(6.1e-1)

-0.26
(7.4e-2)

-0.04
(7.7e-1)

Parietal
left

0.18
(2.1e-1)

-0.29
(4.0e-2)

right
0.01
(9.3e-1)

Table S3: Correlation coefficients with age and p-values (in brackets) for the mean length of tracts in and between
different lobes. Statistically significant values (p < 0.05) are bold, values with p < 0.005 and p < 0.0005 are indicated
with one asterisks and two asterisks respectively.
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lobes

all Temporal Cingulate Frontal Occipital Parietal

internal
-0.18
(2.0e-1)

-0.21
(1.5e-1)

0.07
(6.4e-1)

-0.06
(6.7e-1)

-0.12
(4.1e-1)

-0.17
(2.3e-1)

external
-0.18
(2.2e-1)

-0.19
(1.9e-1)

-0.18
(2.2e-1)

-0.27
(5.8e-2)

-0.12
(4.2e-1)

-0.14
(3.2e-1)

RSN

DMN Visual
Sensory
Motor

Auditory
Executive
Control

Frontal
Parietal

others

internal
-0.21
(1.5e-1)

-0.26
(7.2e-2)

-0.16
(2.6e-1)

-0.20
(1.6e-1)

-0.02
(8.8e-1)

-0.14
(3.4e-1)

0.13
(3.8e-1)

external
-0.14
(3.5e-1)

-0.19
(1.9e-1)

-0.18
(2.1e-1)

-0.16
(2.7e-1)

-0.11
(4.4e-1)

-0.19
(2.0e-1)

-0.23
(1.1e-1)

Table S4: Correlation coefficients with age and p-values (in brackets) for the FC strength of all the internal and
external links for a given lobe (top) and RSN (bottom). No statistically significant values (p < 0.05) are detected.
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